xref: /dragonfly/sys/dev/netif/wb/if_wb.c (revision 28c7b939)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_wb.c,v 1.26.2.6 2003/03/05 18:42:34 njl Exp $
33  * $DragonFly: src/sys/dev/netif/wb/if_wb.c,v 1.7 2004/01/06 01:40:50 dillon Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_wb.c,v 1.26.2.6 2003/03/05 18:42:34 njl Exp $
36  */
37 
38 /*
39  * Winbond fast ethernet PCI NIC driver
40  *
41  * Supports various cheap network adapters based on the Winbond W89C840F
42  * fast ethernet controller chip. This includes adapters manufactured by
43  * Winbond itself and some made by Linksys.
44  *
45  * Written by Bill Paul <wpaul@ctr.columbia.edu>
46  * Electrical Engineering Department
47  * Columbia University, New York City
48  */
49 
50 /*
51  * The Winbond W89C840F chip is a bus master; in some ways it resembles
52  * a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
53  * one major difference which is that while the registers do many of
54  * the same things as a tulip adapter, the offsets are different: where
55  * tulip registers are typically spaced 8 bytes apart, the Winbond
56  * registers are spaced 4 bytes apart. The receiver filter is also
57  * programmed differently.
58  *
59  * Like the tulip, the Winbond chip uses small descriptors containing
60  * a status word, a control word and 32-bit areas that can either be used
61  * to point to two external data blocks, or to point to a single block
62  * and another descriptor in a linked list. Descriptors can be grouped
63  * together in blocks to form fixed length rings or can be chained
64  * together in linked lists. A single packet may be spread out over
65  * several descriptors if necessary.
66  *
67  * For the receive ring, this driver uses a linked list of descriptors,
68  * each pointing to a single mbuf cluster buffer, which us large enough
69  * to hold an entire packet. The link list is looped back to created a
70  * closed ring.
71  *
72  * For transmission, the driver creates a linked list of 'super descriptors'
73  * which each contain several individual descriptors linked toghether.
74  * Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
75  * abuse as fragment pointers. This allows us to use a buffer managment
76  * scheme very similar to that used in the ThunderLAN and Etherlink XL
77  * drivers.
78  *
79  * Autonegotiation is performed using the external PHY via the MII bus.
80  * The sample boards I have all use a Davicom PHY.
81  *
82  * Note: the author of the Linux driver for the Winbond chip alludes
83  * to some sort of flaw in the chip's design that seems to mandate some
84  * drastic workaround which signigicantly impairs transmit performance.
85  * I have no idea what he's on about: transmit performance with all
86  * three of my test boards seems fine.
87  */
88 
89 #include "opt_bdg.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/queue.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 
106 #include <net/bpf.h>
107 
108 #include <vm/vm.h>              /* for vtophys */
109 #include <vm/pmap.h>            /* for vtophys */
110 #include <machine/clock.h>      /* for DELAY */
111 #include <machine/bus_memio.h>
112 #include <machine/bus_pio.h>
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <bus/pci/pcireg.h>
119 #include <bus/pci/pcivar.h>
120 
121 #include "../mii_layer/mii.h"
122 #include "../mii_layer/miivar.h"
123 
124 /* "controller miibus0" required.  See GENERIC if you get errors here. */
125 #include "miibus_if.h"
126 
127 #define WB_USEIOSPACE
128 
129 #include "if_wbreg.h"
130 
131 /*
132  * Various supported device vendors/types and their names.
133  */
134 static struct wb_type wb_devs[] = {
135 	{ WB_VENDORID, WB_DEVICEID_840F,
136 		"Winbond W89C840F 10/100BaseTX" },
137 	{ CP_VENDORID, CP_DEVICEID_RL100,
138 		"Compex RL100-ATX 10/100baseTX" },
139 	{ 0, 0, NULL }
140 };
141 
142 static int wb_probe		(device_t);
143 static int wb_attach		(device_t);
144 static int wb_detach		(device_t);
145 
146 static void wb_bfree		(caddr_t, u_int);
147 static int wb_newbuf		(struct wb_softc *,
148 					struct wb_chain_onefrag *,
149 					struct mbuf *);
150 static int wb_encap		(struct wb_softc *, struct wb_chain *,
151 					struct mbuf *);
152 
153 static void wb_rxeof		(struct wb_softc *);
154 static void wb_rxeoc		(struct wb_softc *);
155 static void wb_txeof		(struct wb_softc *);
156 static void wb_txeoc		(struct wb_softc *);
157 static void wb_intr		(void *);
158 static void wb_tick		(void *);
159 static void wb_start		(struct ifnet *);
160 static int wb_ioctl		(struct ifnet *, u_long, caddr_t);
161 static void wb_init		(void *);
162 static void wb_stop		(struct wb_softc *);
163 static void wb_watchdog		(struct ifnet *);
164 static void wb_shutdown		(device_t);
165 static int wb_ifmedia_upd	(struct ifnet *);
166 static void wb_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
167 
168 static void wb_eeprom_putbyte	(struct wb_softc *, int);
169 static void wb_eeprom_getword	(struct wb_softc *, int, u_int16_t *);
170 static void wb_read_eeprom	(struct wb_softc *, caddr_t, int,
171 							int, int);
172 static void wb_mii_sync		(struct wb_softc *);
173 static void wb_mii_send		(struct wb_softc *, u_int32_t, int);
174 static int wb_mii_readreg	(struct wb_softc *, struct wb_mii_frame *);
175 static int wb_mii_writereg	(struct wb_softc *, struct wb_mii_frame *);
176 
177 static void wb_setcfg		(struct wb_softc *, u_int32_t);
178 static u_int8_t wb_calchash	(caddr_t);
179 static void wb_setmulti		(struct wb_softc *);
180 static void wb_reset		(struct wb_softc *);
181 static void wb_fixmedia		(struct wb_softc *);
182 static int wb_list_rx_init	(struct wb_softc *);
183 static int wb_list_tx_init	(struct wb_softc *);
184 
185 static int wb_miibus_readreg	(device_t, int, int);
186 static int wb_miibus_writereg	(device_t, int, int, int);
187 static void wb_miibus_statchg	(device_t);
188 
189 #ifdef WB_USEIOSPACE
190 #define WB_RES			SYS_RES_IOPORT
191 #define WB_RID			WB_PCI_LOIO
192 #else
193 #define WB_RES			SYS_RES_MEMORY
194 #define WB_RID			WB_PCI_LOMEM
195 #endif
196 
197 static device_method_t wb_methods[] = {
198 	/* Device interface */
199 	DEVMETHOD(device_probe,		wb_probe),
200 	DEVMETHOD(device_attach,	wb_attach),
201 	DEVMETHOD(device_detach,	wb_detach),
202 	DEVMETHOD(device_shutdown,	wb_shutdown),
203 
204 	/* bus interface, for miibus */
205 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
206 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
207 
208 	/* MII interface */
209 	DEVMETHOD(miibus_readreg,	wb_miibus_readreg),
210 	DEVMETHOD(miibus_writereg,	wb_miibus_writereg),
211 	DEVMETHOD(miibus_statchg,	wb_miibus_statchg),
212 	{ 0, 0 }
213 };
214 
215 static driver_t wb_driver = {
216 	"wb",
217 	wb_methods,
218 	sizeof(struct wb_softc)
219 };
220 
221 static devclass_t wb_devclass;
222 
223 DECLARE_DUMMY_MODULE(if_wb);
224 DRIVER_MODULE(if_wb, pci, wb_driver, wb_devclass, 0, 0);
225 DRIVER_MODULE(miibus, wb, miibus_driver, miibus_devclass, 0, 0);
226 
227 #define WB_SETBIT(sc, reg, x)				\
228 	CSR_WRITE_4(sc, reg,				\
229 		CSR_READ_4(sc, reg) | x)
230 
231 #define WB_CLRBIT(sc, reg, x)				\
232 	CSR_WRITE_4(sc, reg,				\
233 		CSR_READ_4(sc, reg) & ~x)
234 
235 #define SIO_SET(x)					\
236 	CSR_WRITE_4(sc, WB_SIO,				\
237 		CSR_READ_4(sc, WB_SIO) | x)
238 
239 #define SIO_CLR(x)					\
240 	CSR_WRITE_4(sc, WB_SIO,				\
241 		CSR_READ_4(sc, WB_SIO) & ~x)
242 
243 /*
244  * Send a read command and address to the EEPROM, check for ACK.
245  */
246 static void wb_eeprom_putbyte(sc, addr)
247 	struct wb_softc		*sc;
248 	int			addr;
249 {
250 	int		d, i;
251 
252 	d = addr | WB_EECMD_READ;
253 
254 	/*
255 	 * Feed in each bit and stobe the clock.
256 	 */
257 	for (i = 0x400; i; i >>= 1) {
258 		if (d & i) {
259 			SIO_SET(WB_SIO_EE_DATAIN);
260 		} else {
261 			SIO_CLR(WB_SIO_EE_DATAIN);
262 		}
263 		DELAY(100);
264 		SIO_SET(WB_SIO_EE_CLK);
265 		DELAY(150);
266 		SIO_CLR(WB_SIO_EE_CLK);
267 		DELAY(100);
268 	}
269 
270 	return;
271 }
272 
273 /*
274  * Read a word of data stored in the EEPROM at address 'addr.'
275  */
276 static void wb_eeprom_getword(sc, addr, dest)
277 	struct wb_softc		*sc;
278 	int			addr;
279 	u_int16_t		*dest;
280 {
281 	int		i;
282 	u_int16_t		word = 0;
283 
284 	/* Enter EEPROM access mode. */
285 	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
286 
287 	/*
288 	 * Send address of word we want to read.
289 	 */
290 	wb_eeprom_putbyte(sc, addr);
291 
292 	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
293 
294 	/*
295 	 * Start reading bits from EEPROM.
296 	 */
297 	for (i = 0x8000; i; i >>= 1) {
298 		SIO_SET(WB_SIO_EE_CLK);
299 		DELAY(100);
300 		if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
301 			word |= i;
302 		SIO_CLR(WB_SIO_EE_CLK);
303 		DELAY(100);
304 	}
305 
306 	/* Turn off EEPROM access mode. */
307 	CSR_WRITE_4(sc, WB_SIO, 0);
308 
309 	*dest = word;
310 
311 	return;
312 }
313 
314 /*
315  * Read a sequence of words from the EEPROM.
316  */
317 static void wb_read_eeprom(sc, dest, off, cnt, swap)
318 	struct wb_softc		*sc;
319 	caddr_t			dest;
320 	int			off;
321 	int			cnt;
322 	int			swap;
323 {
324 	int			i;
325 	u_int16_t		word = 0, *ptr;
326 
327 	for (i = 0; i < cnt; i++) {
328 		wb_eeprom_getword(sc, off + i, &word);
329 		ptr = (u_int16_t *)(dest + (i * 2));
330 		if (swap)
331 			*ptr = ntohs(word);
332 		else
333 			*ptr = word;
334 	}
335 
336 	return;
337 }
338 
339 /*
340  * Sync the PHYs by setting data bit and strobing the clock 32 times.
341  */
342 static void wb_mii_sync(sc)
343 	struct wb_softc		*sc;
344 {
345 	int		i;
346 
347 	SIO_SET(WB_SIO_MII_DIR|WB_SIO_MII_DATAIN);
348 
349 	for (i = 0; i < 32; i++) {
350 		SIO_SET(WB_SIO_MII_CLK);
351 		DELAY(1);
352 		SIO_CLR(WB_SIO_MII_CLK);
353 		DELAY(1);
354 	}
355 
356 	return;
357 }
358 
359 /*
360  * Clock a series of bits through the MII.
361  */
362 static void wb_mii_send(sc, bits, cnt)
363 	struct wb_softc		*sc;
364 	u_int32_t		bits;
365 	int			cnt;
366 {
367 	int			i;
368 
369 	SIO_CLR(WB_SIO_MII_CLK);
370 
371 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
372                 if (bits & i) {
373 			SIO_SET(WB_SIO_MII_DATAIN);
374                 } else {
375 			SIO_CLR(WB_SIO_MII_DATAIN);
376                 }
377 		DELAY(1);
378 		SIO_CLR(WB_SIO_MII_CLK);
379 		DELAY(1);
380 		SIO_SET(WB_SIO_MII_CLK);
381 	}
382 }
383 
384 /*
385  * Read an PHY register through the MII.
386  */
387 static int wb_mii_readreg(sc, frame)
388 	struct wb_softc		*sc;
389 	struct wb_mii_frame	*frame;
390 
391 {
392 	int			i, ack, s;
393 
394 	s = splimp();
395 
396 	/*
397 	 * Set up frame for RX.
398 	 */
399 	frame->mii_stdelim = WB_MII_STARTDELIM;
400 	frame->mii_opcode = WB_MII_READOP;
401 	frame->mii_turnaround = 0;
402 	frame->mii_data = 0;
403 
404 	CSR_WRITE_4(sc, WB_SIO, 0);
405 
406 	/*
407  	 * Turn on data xmit.
408 	 */
409 	SIO_SET(WB_SIO_MII_DIR);
410 
411 	wb_mii_sync(sc);
412 
413 	/*
414 	 * Send command/address info.
415 	 */
416 	wb_mii_send(sc, frame->mii_stdelim, 2);
417 	wb_mii_send(sc, frame->mii_opcode, 2);
418 	wb_mii_send(sc, frame->mii_phyaddr, 5);
419 	wb_mii_send(sc, frame->mii_regaddr, 5);
420 
421 	/* Idle bit */
422 	SIO_CLR((WB_SIO_MII_CLK|WB_SIO_MII_DATAIN));
423 	DELAY(1);
424 	SIO_SET(WB_SIO_MII_CLK);
425 	DELAY(1);
426 
427 	/* Turn off xmit. */
428 	SIO_CLR(WB_SIO_MII_DIR);
429 	/* Check for ack */
430 	SIO_CLR(WB_SIO_MII_CLK);
431 	DELAY(1);
432 	ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT;
433 	SIO_SET(WB_SIO_MII_CLK);
434 	DELAY(1);
435 	SIO_CLR(WB_SIO_MII_CLK);
436 	DELAY(1);
437 	SIO_SET(WB_SIO_MII_CLK);
438 	DELAY(1);
439 
440 	/*
441 	 * Now try reading data bits. If the ack failed, we still
442 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
443 	 */
444 	if (ack) {
445 		for(i = 0; i < 16; i++) {
446 			SIO_CLR(WB_SIO_MII_CLK);
447 			DELAY(1);
448 			SIO_SET(WB_SIO_MII_CLK);
449 			DELAY(1);
450 		}
451 		goto fail;
452 	}
453 
454 	for (i = 0x8000; i; i >>= 1) {
455 		SIO_CLR(WB_SIO_MII_CLK);
456 		DELAY(1);
457 		if (!ack) {
458 			if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT)
459 				frame->mii_data |= i;
460 			DELAY(1);
461 		}
462 		SIO_SET(WB_SIO_MII_CLK);
463 		DELAY(1);
464 	}
465 
466 fail:
467 
468 	SIO_CLR(WB_SIO_MII_CLK);
469 	DELAY(1);
470 	SIO_SET(WB_SIO_MII_CLK);
471 	DELAY(1);
472 
473 	splx(s);
474 
475 	if (ack)
476 		return(1);
477 	return(0);
478 }
479 
480 /*
481  * Write to a PHY register through the MII.
482  */
483 static int wb_mii_writereg(sc, frame)
484 	struct wb_softc		*sc;
485 	struct wb_mii_frame	*frame;
486 
487 {
488 	int			s;
489 
490 	s = splimp();
491 	/*
492 	 * Set up frame for TX.
493 	 */
494 
495 	frame->mii_stdelim = WB_MII_STARTDELIM;
496 	frame->mii_opcode = WB_MII_WRITEOP;
497 	frame->mii_turnaround = WB_MII_TURNAROUND;
498 
499 	/*
500  	 * Turn on data output.
501 	 */
502 	SIO_SET(WB_SIO_MII_DIR);
503 
504 	wb_mii_sync(sc);
505 
506 	wb_mii_send(sc, frame->mii_stdelim, 2);
507 	wb_mii_send(sc, frame->mii_opcode, 2);
508 	wb_mii_send(sc, frame->mii_phyaddr, 5);
509 	wb_mii_send(sc, frame->mii_regaddr, 5);
510 	wb_mii_send(sc, frame->mii_turnaround, 2);
511 	wb_mii_send(sc, frame->mii_data, 16);
512 
513 	/* Idle bit. */
514 	SIO_SET(WB_SIO_MII_CLK);
515 	DELAY(1);
516 	SIO_CLR(WB_SIO_MII_CLK);
517 	DELAY(1);
518 
519 	/*
520 	 * Turn off xmit.
521 	 */
522 	SIO_CLR(WB_SIO_MII_DIR);
523 
524 	splx(s);
525 
526 	return(0);
527 }
528 
529 static int wb_miibus_readreg(dev, phy, reg)
530 	device_t		dev;
531 	int			phy, reg;
532 {
533 	struct wb_softc		*sc;
534 	struct wb_mii_frame	frame;
535 
536 	sc = device_get_softc(dev);
537 
538 	bzero((char *)&frame, sizeof(frame));
539 
540 	frame.mii_phyaddr = phy;
541 	frame.mii_regaddr = reg;
542 	wb_mii_readreg(sc, &frame);
543 
544 	return(frame.mii_data);
545 }
546 
547 static int wb_miibus_writereg(dev, phy, reg, data)
548 	device_t		dev;
549 	int			phy, reg, data;
550 {
551 	struct wb_softc		*sc;
552 	struct wb_mii_frame	frame;
553 
554 	sc = device_get_softc(dev);
555 
556 	bzero((char *)&frame, sizeof(frame));
557 
558 	frame.mii_phyaddr = phy;
559 	frame.mii_regaddr = reg;
560 	frame.mii_data = data;
561 
562 	wb_mii_writereg(sc, &frame);
563 
564 	return(0);
565 }
566 
567 static void wb_miibus_statchg(dev)
568 	device_t		dev;
569 {
570 	struct wb_softc		*sc;
571 	struct mii_data		*mii;
572 
573 	sc = device_get_softc(dev);
574 	mii = device_get_softc(sc->wb_miibus);
575 	wb_setcfg(sc, mii->mii_media_active);
576 
577 	return;
578 }
579 
580 static u_int8_t wb_calchash(addr)
581 	caddr_t			addr;
582 {
583 	u_int32_t		crc, carry;
584 	int			i, j;
585 	u_int8_t		c;
586 
587 	/* Compute CRC for the address value. */
588 	crc = 0xFFFFFFFF; /* initial value */
589 
590 	for (i = 0; i < 6; i++) {
591 		c = *(addr + i);
592 		for (j = 0; j < 8; j++) {
593 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
594 			crc <<= 1;
595 			c >>= 1;
596 			if (carry)
597 				crc = (crc ^ 0x04c11db6) | carry;
598 		}
599 	}
600 
601 	/*
602 	 * return the filter bit position
603 	 * Note: I arrived at the following nonsense
604 	 * through experimentation. It's not the usual way to
605 	 * generate the bit position but it's the only thing
606 	 * I could come up with that works.
607 	 */
608 	return(~(crc >> 26) & 0x0000003F);
609 }
610 
611 /*
612  * Program the 64-bit multicast hash filter.
613  */
614 static void wb_setmulti(sc)
615 	struct wb_softc		*sc;
616 {
617 	struct ifnet		*ifp;
618 	int			h = 0;
619 	u_int32_t		hashes[2] = { 0, 0 };
620 	struct ifmultiaddr	*ifma;
621 	u_int32_t		rxfilt;
622 	int			mcnt = 0;
623 
624 	ifp = &sc->arpcom.ac_if;
625 
626 	rxfilt = CSR_READ_4(sc, WB_NETCFG);
627 
628 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
629 		rxfilt |= WB_NETCFG_RX_MULTI;
630 		CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
631 		CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
632 		CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
633 		return;
634 	}
635 
636 	/* first, zot all the existing hash bits */
637 	CSR_WRITE_4(sc, WB_MAR0, 0);
638 	CSR_WRITE_4(sc, WB_MAR1, 0);
639 
640 	/* now program new ones */
641 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
642 				ifma = ifma->ifma_link.le_next) {
643 		if (ifma->ifma_addr->sa_family != AF_LINK)
644 			continue;
645 		h = wb_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
646 		if (h < 32)
647 			hashes[0] |= (1 << h);
648 		else
649 			hashes[1] |= (1 << (h - 32));
650 		mcnt++;
651 	}
652 
653 	if (mcnt)
654 		rxfilt |= WB_NETCFG_RX_MULTI;
655 	else
656 		rxfilt &= ~WB_NETCFG_RX_MULTI;
657 
658 	CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
659 	CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
660 	CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
661 
662 	return;
663 }
664 
665 /*
666  * The Winbond manual states that in order to fiddle with the
667  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
668  * first have to put the transmit and/or receive logic in the idle state.
669  */
670 static void wb_setcfg(sc, media)
671 	struct wb_softc		*sc;
672 	u_int32_t		media;
673 {
674 	int			i, restart = 0;
675 
676 	if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON)) {
677 		restart = 1;
678 		WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON));
679 
680 		for (i = 0; i < WB_TIMEOUT; i++) {
681 			DELAY(10);
682 			if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
683 				(CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
684 				break;
685 		}
686 
687 		if (i == WB_TIMEOUT)
688 			printf("wb%d: failed to force tx and "
689 				"rx to idle state\n", sc->wb_unit);
690 	}
691 
692 	if (IFM_SUBTYPE(media) == IFM_10_T)
693 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
694 	else
695 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
696 
697 	if ((media & IFM_GMASK) == IFM_FDX)
698 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
699 	else
700 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
701 
702 	if (restart)
703 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON|WB_NETCFG_RX_ON);
704 
705 	return;
706 }
707 
708 static void wb_reset(sc)
709 	struct wb_softc		*sc;
710 {
711 	int		i;
712 	struct mii_data		*mii;
713 
714 	CSR_WRITE_4(sc, WB_NETCFG, 0);
715 	CSR_WRITE_4(sc, WB_BUSCTL, 0);
716 	CSR_WRITE_4(sc, WB_TXADDR, 0);
717 	CSR_WRITE_4(sc, WB_RXADDR, 0);
718 
719 	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
720 	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
721 
722 	for (i = 0; i < WB_TIMEOUT; i++) {
723 		DELAY(10);
724 		if (!(CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET))
725 			break;
726 	}
727 	if (i == WB_TIMEOUT)
728 		printf("wb%d: reset never completed!\n", sc->wb_unit);
729 
730 	/* Wait a little while for the chip to get its brains in order. */
731 	DELAY(1000);
732 
733 	if (sc->wb_miibus == NULL)
734 		return;
735 
736 	mii = device_get_softc(sc->wb_miibus);
737 	if (mii == NULL)
738 		return;
739 
740         if (mii->mii_instance) {
741                 struct mii_softc        *miisc;
742                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
743                                 miisc = LIST_NEXT(miisc, mii_list))
744                         mii_phy_reset(miisc);
745         }
746 
747         return;
748 }
749 
750 static void wb_fixmedia(sc)
751 	struct wb_softc		*sc;
752 {
753 	struct mii_data		*mii = NULL;
754 	struct ifnet		*ifp;
755 	u_int32_t		media;
756 
757 	if (sc->wb_miibus == NULL)
758 		return;
759 
760 	mii = device_get_softc(sc->wb_miibus);
761 	ifp = &sc->arpcom.ac_if;
762 
763 	mii_pollstat(mii);
764 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
765 		media = mii->mii_media_active & ~IFM_10_T;
766 		media |= IFM_100_TX;
767 	} else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
768 		media = mii->mii_media_active & ~IFM_100_TX;
769 		media |= IFM_10_T;
770 	} else
771 		return;
772 
773 	ifmedia_set(&mii->mii_media, media);
774 
775 	return;
776 }
777 
778 /*
779  * Probe for a Winbond chip. Check the PCI vendor and device
780  * IDs against our list and return a device name if we find a match.
781  */
782 static int wb_probe(dev)
783 	device_t		dev;
784 {
785 	struct wb_type		*t;
786 
787 	t = wb_devs;
788 
789 	while(t->wb_name != NULL) {
790 		if ((pci_get_vendor(dev) == t->wb_vid) &&
791 		    (pci_get_device(dev) == t->wb_did)) {
792 			device_set_desc(dev, t->wb_name);
793 			return(0);
794 		}
795 		t++;
796 	}
797 
798 	return(ENXIO);
799 }
800 
801 /*
802  * Attach the interface. Allocate softc structures, do ifmedia
803  * setup and ethernet/BPF attach.
804  */
805 static int wb_attach(dev)
806 	device_t		dev;
807 {
808 	int			s;
809 	u_char			eaddr[ETHER_ADDR_LEN];
810 	u_int32_t		command;
811 	struct wb_softc		*sc;
812 	struct ifnet		*ifp;
813 	int			unit, error = 0, rid;
814 
815 	s = splimp();
816 
817 	sc = device_get_softc(dev);
818 	unit = device_get_unit(dev);
819 
820 	/*
821 	 * Handle power management nonsense.
822 	 */
823 
824 	command = pci_read_config(dev, WB_PCI_CAPID, 4) & 0x000000FF;
825 	if (command == 0x01) {
826 
827 		command = pci_read_config(dev, WB_PCI_PWRMGMTCTRL, 4);
828 		if (command & WB_PSTATE_MASK) {
829 			u_int32_t		iobase, membase, irq;
830 
831 			/* Save important PCI config data. */
832 			iobase = pci_read_config(dev, WB_PCI_LOIO, 4);
833 			membase = pci_read_config(dev, WB_PCI_LOMEM, 4);
834 			irq = pci_read_config(dev, WB_PCI_INTLINE, 4);
835 
836 			/* Reset the power state. */
837 			printf("wb%d: chip is in D%d power mode "
838 			"-- setting to D0\n", unit, command & WB_PSTATE_MASK);
839 			command &= 0xFFFFFFFC;
840 			pci_write_config(dev, WB_PCI_PWRMGMTCTRL, command, 4);
841 
842 			/* Restore PCI config data. */
843 			pci_write_config(dev, WB_PCI_LOIO, iobase, 4);
844 			pci_write_config(dev, WB_PCI_LOMEM, membase, 4);
845 			pci_write_config(dev, WB_PCI_INTLINE, irq, 4);
846 		}
847 	}
848 
849 	/*
850 	 * Map control/status registers.
851 	 */
852 	command = pci_read_config(dev, PCIR_COMMAND, 4);
853 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
854 	pci_write_config(dev, PCIR_COMMAND, command, 4);
855 	command = pci_read_config(dev, PCIR_COMMAND, 4);
856 
857 #ifdef WB_USEIOSPACE
858 	if (!(command & PCIM_CMD_PORTEN)) {
859 		printf("wb%d: failed to enable I/O ports!\n", unit);
860 		error = ENXIO;
861 		goto fail;
862 	}
863 #else
864 	if (!(command & PCIM_CMD_MEMEN)) {
865 		printf("wb%d: failed to enable memory mapping!\n", unit);
866 		error = ENXIO;
867 		goto fail;
868 	}
869 #endif
870 
871 	rid = WB_RID;
872 	sc->wb_res = bus_alloc_resource(dev, WB_RES, &rid,
873 	    0, ~0, 1, RF_ACTIVE);
874 
875 	if (sc->wb_res == NULL) {
876 		printf("wb%d: couldn't map ports/memory\n", unit);
877 		error = ENXIO;
878 		goto fail;
879 	}
880 
881 	sc->wb_btag = rman_get_bustag(sc->wb_res);
882 	sc->wb_bhandle = rman_get_bushandle(sc->wb_res);
883 
884 	/* Allocate interrupt */
885 	rid = 0;
886 	sc->wb_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
887 	    RF_SHAREABLE | RF_ACTIVE);
888 
889 	if (sc->wb_irq == NULL) {
890 		printf("wb%d: couldn't map interrupt\n", unit);
891 		bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
892 		error = ENXIO;
893 		goto fail;
894 	}
895 
896 	error = bus_setup_intr(dev, sc->wb_irq, INTR_TYPE_NET,
897 	    wb_intr, sc, &sc->wb_intrhand);
898 
899 	if (error) {
900 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
901 		bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
902 		printf("wb%d: couldn't set up irq\n", unit);
903 		goto fail;
904 	}
905 
906 	/* Save the cache line size. */
907 	sc->wb_cachesize = pci_read_config(dev, WB_PCI_CACHELEN, 4) & 0xFF;
908 
909 	/* Reset the adapter. */
910 	wb_reset(sc);
911 
912 	/*
913 	 * Get station address from the EEPROM.
914 	 */
915 	wb_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 0);
916 
917 	/*
918 	 * A Winbond chip was detected. Inform the world.
919 	 */
920 	printf("wb%d: Ethernet address: %6D\n", unit, eaddr, ":");
921 
922 	sc->wb_unit = unit;
923 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
924 
925 	sc->wb_ldata = contigmalloc(sizeof(struct wb_list_data) + 8, M_DEVBUF,
926 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
927 
928 	if (sc->wb_ldata == NULL) {
929 		printf("wb%d: no memory for list buffers!\n", unit);
930 		bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
931 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
932 		bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
933 		error = ENXIO;
934 		goto fail;
935 	}
936 
937 	bzero(sc->wb_ldata, sizeof(struct wb_list_data));
938 
939 	ifp = &sc->arpcom.ac_if;
940 	ifp->if_softc = sc;
941 	if_initname(ifp, "wb", unit);
942 	ifp->if_mtu = ETHERMTU;
943 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
944 	ifp->if_ioctl = wb_ioctl;
945 	ifp->if_output = ether_output;
946 	ifp->if_start = wb_start;
947 	ifp->if_watchdog = wb_watchdog;
948 	ifp->if_init = wb_init;
949 	ifp->if_baudrate = 10000000;
950 	ifp->if_snd.ifq_maxlen = WB_TX_LIST_CNT - 1;
951 
952 	/*
953 	 * Do MII setup.
954 	 */
955 	if (mii_phy_probe(dev, &sc->wb_miibus,
956 	    wb_ifmedia_upd, wb_ifmedia_sts)) {
957 		contigfree(sc->wb_ldata_ptr, sizeof(struct wb_list_data) + 8,
958 		    M_DEVBUF);
959 		bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
960 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
961 		bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
962 		error = ENXIO;
963 		goto fail;
964 	}
965 
966 	/*
967 	 * Call MI attach routine.
968 	 */
969 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
970 
971 fail:
972 	if (error)
973 		device_delete_child(dev, sc->wb_miibus);
974 	splx(s);
975 
976 	return(error);
977 }
978 
979 static int wb_detach(dev)
980 	device_t		dev;
981 {
982 	struct wb_softc		*sc;
983 	struct ifnet		*ifp;
984 	int			s;
985 
986 	s = splimp();
987 
988 	sc = device_get_softc(dev);
989 	ifp = &sc->arpcom.ac_if;
990 
991 	wb_stop(sc);
992 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
993 
994 	/* Delete any miibus and phy devices attached to this interface */
995 	bus_generic_detach(dev);
996 	device_delete_child(dev, sc->wb_miibus);
997 
998 	bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
999 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
1000 	bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
1001 
1002 	contigfree(sc->wb_ldata_ptr, sizeof(struct wb_list_data) + 8,
1003 	    M_DEVBUF);
1004 
1005 	splx(s);
1006 
1007 	return(0);
1008 }
1009 
1010 /*
1011  * Initialize the transmit descriptors.
1012  */
1013 static int wb_list_tx_init(sc)
1014 	struct wb_softc		*sc;
1015 {
1016 	struct wb_chain_data	*cd;
1017 	struct wb_list_data	*ld;
1018 	int			i;
1019 
1020 	cd = &sc->wb_cdata;
1021 	ld = sc->wb_ldata;
1022 
1023 	for (i = 0; i < WB_TX_LIST_CNT; i++) {
1024 		cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
1025 		if (i == (WB_TX_LIST_CNT - 1)) {
1026 			cd->wb_tx_chain[i].wb_nextdesc =
1027 				&cd->wb_tx_chain[0];
1028 		} else {
1029 			cd->wb_tx_chain[i].wb_nextdesc =
1030 				&cd->wb_tx_chain[i + 1];
1031 		}
1032 	}
1033 
1034 	cd->wb_tx_free = &cd->wb_tx_chain[0];
1035 	cd->wb_tx_tail = cd->wb_tx_head = NULL;
1036 
1037 	return(0);
1038 }
1039 
1040 
1041 /*
1042  * Initialize the RX descriptors and allocate mbufs for them. Note that
1043  * we arrange the descriptors in a closed ring, so that the last descriptor
1044  * points back to the first.
1045  */
1046 static int wb_list_rx_init(sc)
1047 	struct wb_softc		*sc;
1048 {
1049 	struct wb_chain_data	*cd;
1050 	struct wb_list_data	*ld;
1051 	int			i;
1052 
1053 	cd = &sc->wb_cdata;
1054 	ld = sc->wb_ldata;
1055 
1056 	for (i = 0; i < WB_RX_LIST_CNT; i++) {
1057 		cd->wb_rx_chain[i].wb_ptr =
1058 			(struct wb_desc *)&ld->wb_rx_list[i];
1059 		cd->wb_rx_chain[i].wb_buf = (void *)&ld->wb_rxbufs[i];
1060 		if (wb_newbuf(sc, &cd->wb_rx_chain[i], NULL) == ENOBUFS)
1061 			return(ENOBUFS);
1062 		if (i == (WB_RX_LIST_CNT - 1)) {
1063 			cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[0];
1064 			ld->wb_rx_list[i].wb_next =
1065 					vtophys(&ld->wb_rx_list[0]);
1066 		} else {
1067 			cd->wb_rx_chain[i].wb_nextdesc =
1068 					&cd->wb_rx_chain[i + 1];
1069 			ld->wb_rx_list[i].wb_next =
1070 					vtophys(&ld->wb_rx_list[i + 1]);
1071 		}
1072 	}
1073 
1074 	cd->wb_rx_head = &cd->wb_rx_chain[0];
1075 
1076 	return(0);
1077 }
1078 
1079 static void wb_bfree(buf, size)
1080 	caddr_t			buf;
1081 	u_int			size;
1082 {
1083 	return;
1084 }
1085 
1086 /*
1087  * Initialize an RX descriptor and attach an MBUF cluster.
1088  */
1089 static int wb_newbuf(sc, c, m)
1090 	struct wb_softc		*sc;
1091 	struct wb_chain_onefrag	*c;
1092 	struct mbuf		*m;
1093 {
1094 	struct mbuf		*m_new = NULL;
1095 
1096 	if (m == NULL) {
1097 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1098 		if (m_new == NULL)
1099 			return(ENOBUFS);
1100 
1101 		m_new->m_data = m_new->m_ext.ext_buf = c->wb_buf;
1102 		m_new->m_flags |= M_EXT;
1103 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
1104 		    m_new->m_len = WB_BUFBYTES;
1105 		m_new->m_ext.ext_free = wb_bfree;
1106 		m_new->m_ext.ext_ref = wb_bfree;
1107 	} else {
1108 		m_new = m;
1109 		m_new->m_len = m_new->m_pkthdr.len = WB_BUFBYTES;
1110 		m_new->m_data = m_new->m_ext.ext_buf;
1111 	}
1112 
1113 	m_adj(m_new, sizeof(u_int64_t));
1114 
1115 	c->wb_mbuf = m_new;
1116 	c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t));
1117 	c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | 1536;
1118 	c->wb_ptr->wb_status = WB_RXSTAT;
1119 
1120 	return(0);
1121 }
1122 
1123 /*
1124  * A frame has been uploaded: pass the resulting mbuf chain up to
1125  * the higher level protocols.
1126  */
1127 static void wb_rxeof(sc)
1128 	struct wb_softc		*sc;
1129 {
1130         struct ether_header	*eh;
1131         struct mbuf		*m = NULL;
1132         struct ifnet		*ifp;
1133 	struct wb_chain_onefrag	*cur_rx;
1134 	int			total_len = 0;
1135 	u_int32_t		rxstat;
1136 
1137 	ifp = &sc->arpcom.ac_if;
1138 
1139 	while(!((rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status) &
1140 							WB_RXSTAT_OWN)) {
1141 		struct mbuf		*m0 = NULL;
1142 
1143 		cur_rx = sc->wb_cdata.wb_rx_head;
1144 		sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
1145 
1146 		m = cur_rx->wb_mbuf;
1147 
1148 		if ((rxstat & WB_RXSTAT_MIIERR) ||
1149 		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) < WB_MIN_FRAMELEN) ||
1150 		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) > 1536) ||
1151 		    !(rxstat & WB_RXSTAT_LASTFRAG) ||
1152 		    !(rxstat & WB_RXSTAT_RXCMP)) {
1153 			ifp->if_ierrors++;
1154 			wb_newbuf(sc, cur_rx, m);
1155 			printf("wb%x: receiver babbling: possible chip "
1156 				"bug, forcing reset\n", sc->wb_unit);
1157 			wb_fixmedia(sc);
1158 			wb_reset(sc);
1159 			wb_init(sc);
1160 			return;
1161 		}
1162 
1163 		if (rxstat & WB_RXSTAT_RXERR) {
1164 			ifp->if_ierrors++;
1165 			wb_newbuf(sc, cur_rx, m);
1166 			break;
1167 		}
1168 
1169 		/* No errors; receive the packet. */
1170 		total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
1171 
1172 		/*
1173 		 * XXX The Winbond chip includes the CRC with every
1174 		 * received frame, and there's no way to turn this
1175 		 * behavior off (at least, I can't find anything in
1176 	 	 * the manual that explains how to do it) so we have
1177 		 * to trim off the CRC manually.
1178 		 */
1179 		total_len -= ETHER_CRC_LEN;
1180 
1181 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1182 		     total_len + ETHER_ALIGN, 0, ifp, NULL);
1183 		wb_newbuf(sc, cur_rx, m);
1184 		if (m0 == NULL) {
1185 			ifp->if_ierrors++;
1186 			break;
1187 		}
1188 		m_adj(m0, ETHER_ALIGN);
1189 		m = m0;
1190 
1191 		ifp->if_ipackets++;
1192 		eh = mtod(m, struct ether_header *);
1193 
1194 		/* Remove header from mbuf and pass it on. */
1195 		m_adj(m, sizeof(struct ether_header));
1196 		ether_input(ifp, eh, m);
1197 	}
1198 }
1199 
1200 void wb_rxeoc(sc)
1201 	struct wb_softc		*sc;
1202 {
1203 	wb_rxeof(sc);
1204 
1205 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1206 	CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
1207 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1208 	if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
1209 		CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1210 
1211 	return;
1212 }
1213 
1214 /*
1215  * A frame was downloaded to the chip. It's safe for us to clean up
1216  * the list buffers.
1217  */
1218 static void wb_txeof(sc)
1219 	struct wb_softc		*sc;
1220 {
1221 	struct wb_chain		*cur_tx;
1222 	struct ifnet		*ifp;
1223 
1224 	ifp = &sc->arpcom.ac_if;
1225 
1226 	/* Clear the timeout timer. */
1227 	ifp->if_timer = 0;
1228 
1229 	if (sc->wb_cdata.wb_tx_head == NULL)
1230 		return;
1231 
1232 	/*
1233 	 * Go through our tx list and free mbufs for those
1234 	 * frames that have been transmitted.
1235 	 */
1236 	while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
1237 		u_int32_t		txstat;
1238 
1239 		cur_tx = sc->wb_cdata.wb_tx_head;
1240 		txstat = WB_TXSTATUS(cur_tx);
1241 
1242 		if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
1243 			break;
1244 
1245 		if (txstat & WB_TXSTAT_TXERR) {
1246 			ifp->if_oerrors++;
1247 			if (txstat & WB_TXSTAT_ABORT)
1248 				ifp->if_collisions++;
1249 			if (txstat & WB_TXSTAT_LATECOLL)
1250 				ifp->if_collisions++;
1251 		}
1252 
1253 		ifp->if_collisions += (txstat & WB_TXSTAT_COLLCNT) >> 3;
1254 
1255 		ifp->if_opackets++;
1256 		m_freem(cur_tx->wb_mbuf);
1257 		cur_tx->wb_mbuf = NULL;
1258 
1259 		if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
1260 			sc->wb_cdata.wb_tx_head = NULL;
1261 			sc->wb_cdata.wb_tx_tail = NULL;
1262 			break;
1263 		}
1264 
1265 		sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
1266 	}
1267 
1268 	return;
1269 }
1270 
1271 /*
1272  * TX 'end of channel' interrupt handler.
1273  */
1274 static void wb_txeoc(sc)
1275 	struct wb_softc		*sc;
1276 {
1277 	struct ifnet		*ifp;
1278 
1279 	ifp = &sc->arpcom.ac_if;
1280 
1281 	ifp->if_timer = 0;
1282 
1283 	if (sc->wb_cdata.wb_tx_head == NULL) {
1284 		ifp->if_flags &= ~IFF_OACTIVE;
1285 		sc->wb_cdata.wb_tx_tail = NULL;
1286 	} else {
1287 		if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
1288 			WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
1289 			ifp->if_timer = 5;
1290 			CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1291 		}
1292 	}
1293 
1294 	return;
1295 }
1296 
1297 static void wb_intr(arg)
1298 	void			*arg;
1299 {
1300 	struct wb_softc		*sc;
1301 	struct ifnet		*ifp;
1302 	u_int32_t		status;
1303 
1304 	sc = arg;
1305 	ifp = &sc->arpcom.ac_if;
1306 
1307 	if (!(ifp->if_flags & IFF_UP))
1308 		return;
1309 
1310 	/* Disable interrupts. */
1311 	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1312 
1313 	for (;;) {
1314 
1315 		status = CSR_READ_4(sc, WB_ISR);
1316 		if (status)
1317 			CSR_WRITE_4(sc, WB_ISR, status);
1318 
1319 		if ((status & WB_INTRS) == 0)
1320 			break;
1321 
1322 		if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
1323 			ifp->if_ierrors++;
1324 			wb_reset(sc);
1325 			if (status & WB_ISR_RX_ERR)
1326 				wb_fixmedia(sc);
1327 			wb_init(sc);
1328 			continue;
1329 		}
1330 
1331 		if (status & WB_ISR_RX_OK)
1332 			wb_rxeof(sc);
1333 
1334 		if (status & WB_ISR_RX_IDLE)
1335 			wb_rxeoc(sc);
1336 
1337 		if (status & WB_ISR_TX_OK)
1338 			wb_txeof(sc);
1339 
1340 		if (status & WB_ISR_TX_NOBUF)
1341 			wb_txeoc(sc);
1342 
1343 		if (status & WB_ISR_TX_IDLE) {
1344 			wb_txeof(sc);
1345 			if (sc->wb_cdata.wb_tx_head != NULL) {
1346 				WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1347 				CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1348 			}
1349 		}
1350 
1351 		if (status & WB_ISR_TX_UNDERRUN) {
1352 			ifp->if_oerrors++;
1353 			wb_txeof(sc);
1354 			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1355 			/* Jack up TX threshold */
1356 			sc->wb_txthresh += WB_TXTHRESH_CHUNK;
1357 			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1358 			WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1359 			WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1360 		}
1361 
1362 		if (status & WB_ISR_BUS_ERR) {
1363 			wb_reset(sc);
1364 			wb_init(sc);
1365 		}
1366 
1367 	}
1368 
1369 	/* Re-enable interrupts. */
1370 	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1371 
1372 	if (ifp->if_snd.ifq_head != NULL) {
1373 		wb_start(ifp);
1374 	}
1375 
1376 	return;
1377 }
1378 
1379 static void wb_tick(xsc)
1380 	void			*xsc;
1381 {
1382 	struct wb_softc		*sc;
1383 	struct mii_data		*mii;
1384 	int			s;
1385 
1386 	s = splimp();
1387 
1388 	sc = xsc;
1389 	mii = device_get_softc(sc->wb_miibus);
1390 
1391 	mii_tick(mii);
1392 
1393 	sc->wb_stat_ch = timeout(wb_tick, sc, hz);
1394 
1395 	splx(s);
1396 
1397 	return;
1398 }
1399 
1400 /*
1401  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1402  * pointers to the fragment pointers.
1403  */
1404 static int wb_encap(sc, c, m_head)
1405 	struct wb_softc		*sc;
1406 	struct wb_chain		*c;
1407 	struct mbuf		*m_head;
1408 {
1409 	int			frag = 0;
1410 	struct wb_desc		*f = NULL;
1411 	int			total_len;
1412 	struct mbuf		*m;
1413 
1414 	/*
1415  	 * Start packing the mbufs in this chain into
1416 	 * the fragment pointers. Stop when we run out
1417  	 * of fragments or hit the end of the mbuf chain.
1418 	 */
1419 	m = m_head;
1420 	total_len = 0;
1421 
1422 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1423 		if (m->m_len != 0) {
1424 			if (frag == WB_MAXFRAGS)
1425 				break;
1426 			total_len += m->m_len;
1427 			f = &c->wb_ptr->wb_frag[frag];
1428 			f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
1429 			if (frag == 0) {
1430 				f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
1431 				f->wb_status = 0;
1432 			} else
1433 				f->wb_status = WB_TXSTAT_OWN;
1434 			f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]);
1435 			f->wb_data = vtophys(mtod(m, vm_offset_t));
1436 			frag++;
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * Handle special case: we used up all 16 fragments,
1442 	 * but we have more mbufs left in the chain. Copy the
1443 	 * data into an mbuf cluster. Note that we don't
1444 	 * bother clearing the values in the other fragment
1445 	 * pointers/counters; it wouldn't gain us anything,
1446 	 * and would waste cycles.
1447 	 */
1448 	if (m != NULL) {
1449 		struct mbuf		*m_new = NULL;
1450 
1451 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1452 		if (m_new == NULL)
1453 			return(1);
1454 		if (m_head->m_pkthdr.len > MHLEN) {
1455 			MCLGET(m_new, M_DONTWAIT);
1456 			if (!(m_new->m_flags & M_EXT)) {
1457 				m_freem(m_new);
1458 				return(1);
1459 			}
1460 		}
1461 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1462 					mtod(m_new, caddr_t));
1463 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1464 		m_freem(m_head);
1465 		m_head = m_new;
1466 		f = &c->wb_ptr->wb_frag[0];
1467 		f->wb_status = 0;
1468 		f->wb_data = vtophys(mtod(m_new, caddr_t));
1469 		f->wb_ctl = total_len = m_new->m_len;
1470 		f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
1471 		frag = 1;
1472 	}
1473 
1474 	if (total_len < WB_MIN_FRAMELEN) {
1475 		f = &c->wb_ptr->wb_frag[frag];
1476 		f->wb_ctl = WB_MIN_FRAMELEN - total_len;
1477 		f->wb_data = vtophys(&sc->wb_cdata.wb_pad);
1478 		f->wb_ctl |= WB_TXCTL_TLINK;
1479 		f->wb_status = WB_TXSTAT_OWN;
1480 		frag++;
1481 	}
1482 
1483 	c->wb_mbuf = m_head;
1484 	c->wb_lastdesc = frag - 1;
1485 	WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
1486 	WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
1487 
1488 	return(0);
1489 }
1490 
1491 /*
1492  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1493  * to the mbuf data regions directly in the transmit lists. We also save a
1494  * copy of the pointers since the transmit list fragment pointers are
1495  * physical addresses.
1496  */
1497 
1498 static void wb_start(ifp)
1499 	struct ifnet		*ifp;
1500 {
1501 	struct wb_softc		*sc;
1502 	struct mbuf		*m_head = NULL;
1503 	struct wb_chain		*cur_tx = NULL, *start_tx;
1504 
1505 	sc = ifp->if_softc;
1506 
1507 	/*
1508 	 * Check for an available queue slot. If there are none,
1509 	 * punt.
1510 	 */
1511 	if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
1512 		ifp->if_flags |= IFF_OACTIVE;
1513 		return;
1514 	}
1515 
1516 	start_tx = sc->wb_cdata.wb_tx_free;
1517 
1518 	while(sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
1519 		IF_DEQUEUE(&ifp->if_snd, m_head);
1520 		if (m_head == NULL)
1521 			break;
1522 
1523 		/* Pick a descriptor off the free list. */
1524 		cur_tx = sc->wb_cdata.wb_tx_free;
1525 		sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
1526 
1527 		/* Pack the data into the descriptor. */
1528 		wb_encap(sc, cur_tx, m_head);
1529 
1530 		if (cur_tx != start_tx)
1531 			WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
1532 
1533 		/*
1534 		 * If there's a BPF listener, bounce a copy of this frame
1535 		 * to him.
1536 		 */
1537 		if (ifp->if_bpf)
1538 			bpf_mtap(ifp, cur_tx->wb_mbuf);
1539 	}
1540 
1541 	/*
1542 	 * If there are no packets queued, bail.
1543 	 */
1544 	if (cur_tx == NULL)
1545 		return;
1546 
1547 	/*
1548 	 * Place the request for the upload interrupt
1549 	 * in the last descriptor in the chain. This way, if
1550 	 * we're chaining several packets at once, we'll only
1551 	 * get an interupt once for the whole chain rather than
1552 	 * once for each packet.
1553 	 */
1554 	WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
1555 	cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT;
1556 	sc->wb_cdata.wb_tx_tail = cur_tx;
1557 
1558 	if (sc->wb_cdata.wb_tx_head == NULL) {
1559 		sc->wb_cdata.wb_tx_head = start_tx;
1560 		WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
1561 		CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1562 	} else {
1563 		/*
1564 		 * We need to distinguish between the case where
1565 		 * the own bit is clear because the chip cleared it
1566 		 * and where the own bit is clear because we haven't
1567 		 * set it yet. The magic value WB_UNSET is just some
1568 		 * ramdomly chosen number which doesn't have the own
1569 	 	 * bit set. When we actually transmit the frame, the
1570 		 * status word will have _only_ the own bit set, so
1571 		 * the txeoc handler will be able to tell if it needs
1572 		 * to initiate another transmission to flush out pending
1573 		 * frames.
1574 		 */
1575 		WB_TXOWN(start_tx) = WB_UNSENT;
1576 	}
1577 
1578 	/*
1579 	 * Set a timeout in case the chip goes out to lunch.
1580 	 */
1581 	ifp->if_timer = 5;
1582 
1583 	return;
1584 }
1585 
1586 static void wb_init(xsc)
1587 	void			*xsc;
1588 {
1589 	struct wb_softc		*sc = xsc;
1590 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1591 	int			s, i;
1592 	struct mii_data		*mii;
1593 
1594 	s = splimp();
1595 
1596 	mii = device_get_softc(sc->wb_miibus);
1597 
1598 	/*
1599 	 * Cancel pending I/O and free all RX/TX buffers.
1600 	 */
1601 	wb_stop(sc);
1602 	wb_reset(sc);
1603 
1604 	sc->wb_txthresh = WB_TXTHRESH_INIT;
1605 
1606 	/*
1607 	 * Set cache alignment and burst length.
1608 	 */
1609 #ifdef foo
1610 	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
1611 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1612 	WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1613 #endif
1614 
1615 	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_MUSTBEONE|WB_BUSCTL_ARBITRATION);
1616 	WB_SETBIT(sc, WB_BUSCTL, WB_BURSTLEN_16LONG);
1617 	switch(sc->wb_cachesize) {
1618 	case 32:
1619 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_32LONG);
1620 		break;
1621 	case 16:
1622 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_16LONG);
1623 		break;
1624 	case 8:
1625 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_8LONG);
1626 		break;
1627 	case 0:
1628 	default:
1629 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_NONE);
1630 		break;
1631 	}
1632 
1633 	/* This doesn't tend to work too well at 100Mbps. */
1634 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
1635 
1636 	/* Init our MAC address */
1637 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1638 		CSR_WRITE_1(sc, WB_NODE0 + i, sc->arpcom.ac_enaddr[i]);
1639 	}
1640 
1641 	/* Init circular RX list. */
1642 	if (wb_list_rx_init(sc) == ENOBUFS) {
1643 		printf("wb%d: initialization failed: no "
1644 			"memory for rx buffers\n", sc->wb_unit);
1645 		wb_stop(sc);
1646 		(void)splx(s);
1647 		return;
1648 	}
1649 
1650 	/* Init TX descriptors. */
1651 	wb_list_tx_init(sc);
1652 
1653 	/* If we want promiscuous mode, set the allframes bit. */
1654 	if (ifp->if_flags & IFF_PROMISC) {
1655 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1656 	} else {
1657 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1658 	}
1659 
1660 	/*
1661 	 * Set capture broadcast bit to capture broadcast frames.
1662 	 */
1663 	if (ifp->if_flags & IFF_BROADCAST) {
1664 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1665 	} else {
1666 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1667 	}
1668 
1669 	/*
1670 	 * Program the multicast filter, if necessary.
1671 	 */
1672 	wb_setmulti(sc);
1673 
1674 	/*
1675 	 * Load the address of the RX list.
1676 	 */
1677 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1678 	CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
1679 
1680 	/*
1681 	 * Enable interrupts.
1682 	 */
1683 	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1684 	CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
1685 
1686 	/* Enable receiver and transmitter. */
1687 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1688 	CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1689 
1690 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1691 	CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0]));
1692 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1693 
1694 	mii_mediachg(mii);
1695 
1696 	ifp->if_flags |= IFF_RUNNING;
1697 	ifp->if_flags &= ~IFF_OACTIVE;
1698 
1699 	(void)splx(s);
1700 
1701 	sc->wb_stat_ch = timeout(wb_tick, sc, hz);
1702 
1703 	return;
1704 }
1705 
1706 /*
1707  * Set media options.
1708  */
1709 static int wb_ifmedia_upd(ifp)
1710 	struct ifnet		*ifp;
1711 {
1712 	struct wb_softc		*sc;
1713 
1714 	sc = ifp->if_softc;
1715 
1716 	if (ifp->if_flags & IFF_UP)
1717 		wb_init(sc);
1718 
1719 	return(0);
1720 }
1721 
1722 /*
1723  * Report current media status.
1724  */
1725 static void wb_ifmedia_sts(ifp, ifmr)
1726 	struct ifnet		*ifp;
1727 	struct ifmediareq	*ifmr;
1728 {
1729 	struct wb_softc		*sc;
1730 	struct mii_data		*mii;
1731 
1732 	sc = ifp->if_softc;
1733 
1734 	mii = device_get_softc(sc->wb_miibus);
1735 
1736 	mii_pollstat(mii);
1737 	ifmr->ifm_active = mii->mii_media_active;
1738 	ifmr->ifm_status = mii->mii_media_status;
1739 
1740 	return;
1741 }
1742 
1743 static int wb_ioctl(ifp, command, data)
1744 	struct ifnet		*ifp;
1745 	u_long			command;
1746 	caddr_t			data;
1747 {
1748 	struct wb_softc		*sc = ifp->if_softc;
1749 	struct mii_data		*mii;
1750 	struct ifreq		*ifr = (struct ifreq *) data;
1751 	int			s, error = 0;
1752 
1753 	s = splimp();
1754 
1755 	switch(command) {
1756 	case SIOCSIFADDR:
1757 	case SIOCGIFADDR:
1758 	case SIOCSIFMTU:
1759 		error = ether_ioctl(ifp, command, data);
1760 		break;
1761 	case SIOCSIFFLAGS:
1762 		if (ifp->if_flags & IFF_UP) {
1763 			wb_init(sc);
1764 		} else {
1765 			if (ifp->if_flags & IFF_RUNNING)
1766 				wb_stop(sc);
1767 		}
1768 		error = 0;
1769 		break;
1770 	case SIOCADDMULTI:
1771 	case SIOCDELMULTI:
1772 		wb_setmulti(sc);
1773 		error = 0;
1774 		break;
1775 	case SIOCGIFMEDIA:
1776 	case SIOCSIFMEDIA:
1777 		mii = device_get_softc(sc->wb_miibus);
1778 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1779 		break;
1780 	default:
1781 		error = EINVAL;
1782 		break;
1783 	}
1784 
1785 	(void)splx(s);
1786 
1787 	return(error);
1788 }
1789 
1790 static void wb_watchdog(ifp)
1791 	struct ifnet		*ifp;
1792 {
1793 	struct wb_softc		*sc;
1794 
1795 	sc = ifp->if_softc;
1796 
1797 	ifp->if_oerrors++;
1798 	printf("wb%d: watchdog timeout\n", sc->wb_unit);
1799 #ifdef foo
1800 	if (!(wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1801 		printf("wb%d: no carrier - transceiver cable problem?\n",
1802 								sc->wb_unit);
1803 #endif
1804 	wb_stop(sc);
1805 	wb_reset(sc);
1806 	wb_init(sc);
1807 
1808 	if (ifp->if_snd.ifq_head != NULL)
1809 		wb_start(ifp);
1810 
1811 	return;
1812 }
1813 
1814 /*
1815  * Stop the adapter and free any mbufs allocated to the
1816  * RX and TX lists.
1817  */
1818 static void wb_stop(sc)
1819 	struct wb_softc		*sc;
1820 {
1821 	int		i;
1822 	struct ifnet		*ifp;
1823 
1824 	ifp = &sc->arpcom.ac_if;
1825 	ifp->if_timer = 0;
1826 
1827 	untimeout(wb_tick, sc, sc->wb_stat_ch);
1828 
1829 	WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON|WB_NETCFG_TX_ON));
1830 	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1831 	CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
1832 	CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
1833 
1834 	/*
1835 	 * Free data in the RX lists.
1836 	 */
1837 	for (i = 0; i < WB_RX_LIST_CNT; i++) {
1838 		if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) {
1839 			m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf);
1840 			sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL;
1841 		}
1842 	}
1843 	bzero((char *)&sc->wb_ldata->wb_rx_list,
1844 		sizeof(sc->wb_ldata->wb_rx_list));
1845 
1846 	/*
1847 	 * Free the TX list buffers.
1848 	 */
1849 	for (i = 0; i < WB_TX_LIST_CNT; i++) {
1850 		if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
1851 			m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
1852 			sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
1853 		}
1854 	}
1855 
1856 	bzero((char *)&sc->wb_ldata->wb_tx_list,
1857 		sizeof(sc->wb_ldata->wb_tx_list));
1858 
1859 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1860 
1861 	return;
1862 }
1863 
1864 /*
1865  * Stop all chip I/O so that the kernel's probe routines don't
1866  * get confused by errant DMAs when rebooting.
1867  */
1868 static void wb_shutdown(dev)
1869 	device_t		dev;
1870 {
1871 	struct wb_softc		*sc;
1872 
1873 	sc = device_get_softc(dev);
1874 	wb_stop(sc);
1875 
1876 	return;
1877 }
1878