xref: /dragonfly/sys/dev/netif/wb/if_wb.c (revision 6bd457ed)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_wb.c,v 1.26.2.6 2003/03/05 18:42:34 njl Exp $
33  * $DragonFly: src/sys/dev/netif/wb/if_wb.c,v 1.30 2005/06/14 14:19:22 joerg Exp $
34  */
35 
36 /*
37  * Winbond fast ethernet PCI NIC driver
38  *
39  * Supports various cheap network adapters based on the Winbond W89C840F
40  * fast ethernet controller chip. This includes adapters manufactured by
41  * Winbond itself and some made by Linksys.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The Winbond W89C840F chip is a bus master; in some ways it resembles
50  * a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
51  * one major difference which is that while the registers do many of
52  * the same things as a tulip adapter, the offsets are different: where
53  * tulip registers are typically spaced 8 bytes apart, the Winbond
54  * registers are spaced 4 bytes apart. The receiver filter is also
55  * programmed differently.
56  *
57  * Like the tulip, the Winbond chip uses small descriptors containing
58  * a status word, a control word and 32-bit areas that can either be used
59  * to point to two external data blocks, or to point to a single block
60  * and another descriptor in a linked list. Descriptors can be grouped
61  * together in blocks to form fixed length rings or can be chained
62  * together in linked lists. A single packet may be spread out over
63  * several descriptors if necessary.
64  *
65  * For the receive ring, this driver uses a linked list of descriptors,
66  * each pointing to a single mbuf cluster buffer, which us large enough
67  * to hold an entire packet. The link list is looped back to created a
68  * closed ring.
69  *
70  * For transmission, the driver creates a linked list of 'super descriptors'
71  * which each contain several individual descriptors linked toghether.
72  * Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
73  * abuse as fragment pointers. This allows us to use a buffer managment
74  * scheme very similar to that used in the ThunderLAN and Etherlink XL
75  * drivers.
76  *
77  * Autonegotiation is performed using the external PHY via the MII bus.
78  * The sample boards I have all use a Davicom PHY.
79  *
80  * Note: the author of the Linux driver for the Winbond chip alludes
81  * to some sort of flaw in the chip's design that seems to mandate some
82  * drastic workaround which signigicantly impairs transmit performance.
83  * I have no idea what he's on about: transmit performance with all
84  * three of my test boards seems fine.
85  */
86 
87 #include "opt_bdg.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/queue.h>
97 #include <sys/thread2.h>
98 
99 #include <net/if.h>
100 #include <net/ifq_var.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 
106 #include <net/bpf.h>
107 
108 #include <vm/vm.h>              /* for vtophys */
109 #include <vm/pmap.h>            /* for vtophys */
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114 
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117 
118 #include <dev/netif/mii_layer/mii.h>
119 #include <dev/netif/mii_layer/miivar.h>
120 
121 /* "controller miibus0" required.  See GENERIC if you get errors here. */
122 #include "miibus_if.h"
123 
124 #define WB_USEIOSPACE
125 
126 #include "if_wbreg.h"
127 
128 /*
129  * Various supported device vendors/types and their names.
130  */
131 static struct wb_type wb_devs[] = {
132 	{ WB_VENDORID, WB_DEVICEID_840F,
133 		"Winbond W89C840F 10/100BaseTX" },
134 	{ CP_VENDORID, CP_DEVICEID_RL100,
135 		"Compex RL100-ATX 10/100baseTX" },
136 	{ 0, 0, NULL }
137 };
138 
139 static int	wb_probe(device_t);
140 static int	wb_attach(device_t);
141 static int	wb_detach(device_t);
142 
143 static void	wb_bfree(void *);
144 static int	wb_newbuf(struct wb_softc *, struct wb_chain_onefrag *,
145 			  struct mbuf *);
146 static int	wb_encap(struct wb_softc *, struct wb_chain *, struct mbuf *);
147 
148 static void	wb_rxeof(struct wb_softc *);
149 static void	wb_rxeoc(struct wb_softc *);
150 static void	wb_txeof(struct wb_softc *);
151 static void	wb_txeoc(struct wb_softc *);
152 static void	wb_intr(void *);
153 static void	wb_tick(void *);
154 static void	wb_start(struct ifnet *);
155 static int	wb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
156 static void	wb_init(void *);
157 static void	wb_stop(struct wb_softc *);
158 static void	wb_watchdog(struct ifnet *);
159 static void	wb_shutdown(device_t);
160 static int	wb_ifmedia_upd(struct ifnet *);
161 static void	wb_ifmedia_sts(struct ifnet *, struct ifmediareq *);
162 
163 static void	wb_eeprom_putbyte(struct wb_softc *, int);
164 static void	wb_eeprom_getword(struct wb_softc *, int, uint16_t *);
165 static void	wb_read_eeprom(struct wb_softc *, caddr_t, int, int);
166 static void	wb_mii_sync(struct wb_softc *);
167 static void	wb_mii_send(struct wb_softc *, uint32_t, int);
168 static int	wb_mii_readreg(struct wb_softc *, struct wb_mii_frame *);
169 static int	wb_mii_writereg(struct wb_softc *, struct wb_mii_frame *);
170 
171 static void	wb_setcfg(struct wb_softc *, uint32_t);
172 static void	wb_setmulti(struct wb_softc *);
173 static void	wb_reset(struct wb_softc *);
174 static void	wb_fixmedia(struct wb_softc *);
175 static int	wb_list_rx_init(struct wb_softc *);
176 static int	wb_list_tx_init(struct wb_softc *);
177 
178 static int	wb_miibus_readreg(device_t, int, int);
179 static int	wb_miibus_writereg(device_t, int, int, int);
180 static void	wb_miibus_statchg(device_t);
181 
182 #ifdef WB_USEIOSPACE
183 #define WB_RES			SYS_RES_IOPORT
184 #define WB_RID			WB_PCI_LOIO
185 #else
186 #define WB_RES			SYS_RES_MEMORY
187 #define WB_RID			WB_PCI_LOMEM
188 #endif
189 
190 static device_method_t wb_methods[] = {
191 	/* Device interface */
192 	DEVMETHOD(device_probe,		wb_probe),
193 	DEVMETHOD(device_attach,	wb_attach),
194 	DEVMETHOD(device_detach,	wb_detach),
195 	DEVMETHOD(device_shutdown,	wb_shutdown),
196 
197 	/* bus interface, for miibus */
198 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
199 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
200 
201 	/* MII interface */
202 	DEVMETHOD(miibus_readreg,	wb_miibus_readreg),
203 	DEVMETHOD(miibus_writereg,	wb_miibus_writereg),
204 	DEVMETHOD(miibus_statchg,	wb_miibus_statchg),
205 	{ 0, 0 }
206 };
207 
208 static DEFINE_CLASS_0(wb, wb_driver, wb_methods, sizeof(struct wb_softc));
209 static devclass_t wb_devclass;
210 
211 DECLARE_DUMMY_MODULE(if_wb);
212 DRIVER_MODULE(if_wb, pci, wb_driver, wb_devclass, 0, 0);
213 DRIVER_MODULE(miibus, wb, miibus_driver, miibus_devclass, 0, 0);
214 
215 #define WB_SETBIT(sc, reg, x)				\
216 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
217 
218 #define WB_CLRBIT(sc, reg, x)				\
219 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
220 
221 #define SIO_SET(x)					\
222 	CSR_WRITE_4(sc, WB_SIO,	CSR_READ_4(sc, WB_SIO) | (x))
223 
224 #define SIO_CLR(x)					\
225 	CSR_WRITE_4(sc, WB_SIO, CSR_READ_4(sc, WB_SIO) & ~(x))
226 
227 /*
228  * Send a read command and address to the EEPROM, check for ACK.
229  */
230 static void
231 wb_eeprom_putbyte(struct wb_softc *sc, int addr)
232 {
233 	int d, i;
234 
235 	d = addr | WB_EECMD_READ;
236 
237 	/*
238 	 * Feed in each bit and stobe the clock.
239 	 */
240 	for (i = 0x400; i; i >>= 1) {
241 		if (d & i)
242 			SIO_SET(WB_SIO_EE_DATAIN);
243 		else
244 			SIO_CLR(WB_SIO_EE_DATAIN);
245 		DELAY(100);
246 		SIO_SET(WB_SIO_EE_CLK);
247 		DELAY(150);
248 		SIO_CLR(WB_SIO_EE_CLK);
249 		DELAY(100);
250 	}
251 }
252 
253 /*
254  * Read a word of data stored in the EEPROM at address 'addr.'
255  */
256 static void
257 wb_eeprom_getword(struct wb_softc *sc, int addr, uint16_t *dest)
258 {
259 	int i;
260 	uint16_t word = 0;
261 
262 	/* Enter EEPROM access mode. */
263 	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
264 
265 	/*
266 	 * Send address of word we want to read.
267 	 */
268 	wb_eeprom_putbyte(sc, addr);
269 
270 	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
271 
272 	/*
273 	 * Start reading bits from EEPROM.
274 	 */
275 	for (i = 0x8000; i; i >>= 1) {
276 		SIO_SET(WB_SIO_EE_CLK);
277 		DELAY(100);
278 		if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
279 			word |= i;
280 		SIO_CLR(WB_SIO_EE_CLK);
281 		DELAY(100);
282 	}
283 
284 	/* Turn off EEPROM access mode. */
285 	CSR_WRITE_4(sc, WB_SIO, 0);
286 
287 	*dest = word;
288 }
289 
290 /*
291  * Read a sequence of words from the EEPROM.
292  */
293 static void
294 wb_read_eeprom(struct wb_softc *sc, caddr_t dest, int off, int cnt)
295 {
296 	int i;
297 	uint16_t word = 0, *ptr;
298 
299 	for (i = 0; i < cnt; i++) {
300 		wb_eeprom_getword(sc, off + i, &word);
301 		ptr = (uint16_t *)(dest + (i * 2));
302 		*ptr = word;
303 	}
304 }
305 
306 /*
307  * Sync the PHYs by setting data bit and strobing the clock 32 times.
308  */
309 static void
310 wb_mii_sync(struct wb_softc *sc)
311 {
312 	int i;
313 
314 	SIO_SET(WB_SIO_MII_DIR | WB_SIO_MII_DATAIN);
315 
316 	for (i = 0; i < 32; i++) {
317 		SIO_SET(WB_SIO_MII_CLK);
318 		DELAY(1);
319 		SIO_CLR(WB_SIO_MII_CLK);
320 		DELAY(1);
321 	}
322 }
323 
324 /*
325  * Clock a series of bits through the MII.
326  */
327 static void
328 wb_mii_send(struct wb_softc *sc, uint32_t bits, int cnt)
329 {
330 	int i;
331 
332 	SIO_CLR(WB_SIO_MII_CLK);
333 
334 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
335                 if (bits & i)
336 			SIO_SET(WB_SIO_MII_DATAIN);
337                 else
338 			SIO_CLR(WB_SIO_MII_DATAIN);
339 		DELAY(1);
340 		SIO_CLR(WB_SIO_MII_CLK);
341 		DELAY(1);
342 		SIO_SET(WB_SIO_MII_CLK);
343 	}
344 }
345 
346 /*
347  * Read an PHY register through the MII.
348  */
349 static int
350 wb_mii_readreg(struct wb_softc *sc, struct wb_mii_frame *frame)
351 {
352 	int ack, i;
353 
354 	crit_enter();
355 
356 	/*
357 	 * Set up frame for RX.
358 	 */
359 	frame->mii_stdelim = WB_MII_STARTDELIM;
360 	frame->mii_opcode = WB_MII_READOP;
361 	frame->mii_turnaround = 0;
362 	frame->mii_data = 0;
363 
364 	CSR_WRITE_4(sc, WB_SIO, 0);
365 
366 	/*
367  	 * Turn on data xmit.
368 	 */
369 	SIO_SET(WB_SIO_MII_DIR);
370 
371 	wb_mii_sync(sc);
372 
373 	/*
374 	 * Send command/address info.
375 	 */
376 	wb_mii_send(sc, frame->mii_stdelim, 2);
377 	wb_mii_send(sc, frame->mii_opcode, 2);
378 	wb_mii_send(sc, frame->mii_phyaddr, 5);
379 	wb_mii_send(sc, frame->mii_regaddr, 5);
380 
381 	/* Idle bit */
382 	SIO_CLR((WB_SIO_MII_CLK | WB_SIO_MII_DATAIN));
383 	DELAY(1);
384 	SIO_SET(WB_SIO_MII_CLK);
385 	DELAY(1);
386 
387 	/* Turn off xmit. */
388 	SIO_CLR(WB_SIO_MII_DIR);
389 	/* Check for ack */
390 	SIO_CLR(WB_SIO_MII_CLK);
391 	DELAY(1);
392 	ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT;
393 	SIO_SET(WB_SIO_MII_CLK);
394 	DELAY(1);
395 	SIO_CLR(WB_SIO_MII_CLK);
396 	DELAY(1);
397 	SIO_SET(WB_SIO_MII_CLK);
398 	DELAY(1);
399 
400 	/*
401 	 * Now try reading data bits. If the ack failed, we still
402 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
403 	 */
404 	if (ack) {
405 		for(i = 0; i < 16; i++) {
406 			SIO_CLR(WB_SIO_MII_CLK);
407 			DELAY(1);
408 			SIO_SET(WB_SIO_MII_CLK);
409 			DELAY(1);
410 		}
411 		goto fail;
412 	}
413 
414 	for (i = 0x8000; i; i >>= 1) {
415 		SIO_CLR(WB_SIO_MII_CLK);
416 		DELAY(1);
417 		if (!ack) {
418 			if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT)
419 				frame->mii_data |= i;
420 			DELAY(1);
421 		}
422 		SIO_SET(WB_SIO_MII_CLK);
423 		DELAY(1);
424 	}
425 
426 fail:
427 
428 	SIO_CLR(WB_SIO_MII_CLK);
429 	DELAY(1);
430 	SIO_SET(WB_SIO_MII_CLK);
431 	DELAY(1);
432 
433 	crit_exit();
434 
435 	if (ack)
436 		return(1);
437 	return(0);
438 }
439 
440 /*
441  * Write to a PHY register through the MII.
442  */
443 static int
444 wb_mii_writereg(struct wb_softc *sc, struct wb_mii_frame *frame)
445 {
446 
447 	crit_enter();
448 	/*
449 	 * Set up frame for TX.
450 	 */
451 
452 	frame->mii_stdelim = WB_MII_STARTDELIM;
453 	frame->mii_opcode = WB_MII_WRITEOP;
454 	frame->mii_turnaround = WB_MII_TURNAROUND;
455 
456 	/*
457  	 * Turn on data output.
458 	 */
459 	SIO_SET(WB_SIO_MII_DIR);
460 
461 	wb_mii_sync(sc);
462 
463 	wb_mii_send(sc, frame->mii_stdelim, 2);
464 	wb_mii_send(sc, frame->mii_opcode, 2);
465 	wb_mii_send(sc, frame->mii_phyaddr, 5);
466 	wb_mii_send(sc, frame->mii_regaddr, 5);
467 	wb_mii_send(sc, frame->mii_turnaround, 2);
468 	wb_mii_send(sc, frame->mii_data, 16);
469 
470 	/* Idle bit. */
471 	SIO_SET(WB_SIO_MII_CLK);
472 	DELAY(1);
473 	SIO_CLR(WB_SIO_MII_CLK);
474 	DELAY(1);
475 
476 	/*
477 	 * Turn off xmit.
478 	 */
479 	SIO_CLR(WB_SIO_MII_DIR);
480 
481 	crit_exit();
482 
483 	return(0);
484 }
485 
486 static int
487 wb_miibus_readreg(device_t dev, int phy, int reg)
488 {
489 	struct wb_softc *sc = device_get_softc(dev);
490 	struct wb_mii_frame frame;
491 
492 	bzero(&frame, sizeof(frame));
493 
494 	frame.mii_phyaddr = phy;
495 	frame.mii_regaddr = reg;
496 	wb_mii_readreg(sc, &frame);
497 
498 	return(frame.mii_data);
499 }
500 
501 static int
502 wb_miibus_writereg(device_t dev, int phy, int reg, int data)
503 {
504 	struct wb_softc *sc = device_get_softc(dev);
505 	struct wb_mii_frame frame;
506 
507 	bzero(&frame, sizeof(frame));
508 
509 	frame.mii_phyaddr = phy;
510 	frame.mii_regaddr = reg;
511 	frame.mii_data = data;
512 
513 	wb_mii_writereg(sc, &frame);
514 
515 	return(0);
516 }
517 
518 static void
519 wb_miibus_statchg(device_t dev)
520 {
521 	struct wb_softc *sc = device_get_softc(dev);
522 	struct mii_data *mii;
523 
524 	mii = device_get_softc(sc->wb_miibus);
525 	wb_setcfg(sc, mii->mii_media_active);
526 }
527 
528 /*
529  * Program the 64-bit multicast hash filter.
530  */
531 static void
532 wb_setmulti(struct wb_softc *sc)
533 {
534 	struct ifnet *ifp = &sc->arpcom.ac_if;
535 	int h = 0, mcnt = 0;
536 	uint32_t hashes[2] = { 0, 0 };
537 	struct ifmultiaddr *ifma;
538 	uint32_t rxfilt;
539 
540 	rxfilt = CSR_READ_4(sc, WB_NETCFG);
541 
542 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
543 		rxfilt |= WB_NETCFG_RX_MULTI;
544 		CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
545 		CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
546 		CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
547 		return;
548 	}
549 
550 	/* first, zot all the existing hash bits */
551 	CSR_WRITE_4(sc, WB_MAR0, 0);
552 	CSR_WRITE_4(sc, WB_MAR1, 0);
553 
554 	/* now program new ones */
555 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
556 		if (ifma->ifma_addr->sa_family != AF_LINK)
557 			continue;
558 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
559 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
560 		if (h < 32)
561 			hashes[0] |= (1 << h);
562 		else
563 			hashes[1] |= (1 << (h - 32));
564 		mcnt++;
565 	}
566 
567 	if (mcnt)
568 		rxfilt |= WB_NETCFG_RX_MULTI;
569 	else
570 		rxfilt &= ~WB_NETCFG_RX_MULTI;
571 
572 	CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
573 	CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
574 	CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
575 }
576 
577 /*
578  * The Winbond manual states that in order to fiddle with the
579  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
580  * first have to put the transmit and/or receive logic in the idle state.
581  */
582 static void
583 wb_setcfg(struct wb_softc *sc, uint32_t media)
584 {
585 	int i, restart = 0;
586 
587 	if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON | WB_NETCFG_RX_ON)) {
588 		restart = 1;
589 		WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON | WB_NETCFG_RX_ON));
590 
591 		for (i = 0; i < WB_TIMEOUT; i++) {
592 			DELAY(10);
593 			if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
594 				(CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
595 				break;
596 		}
597 
598 		if (i == WB_TIMEOUT) {
599 			if_printf(&sc->arpcom.ac_if, "failed to force tx and "
600 				  "rx to idle state\n");
601 		}
602 	}
603 
604 	if (IFM_SUBTYPE(media) == IFM_10_T)
605 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
606 	else
607 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
608 
609 	if ((media & IFM_GMASK) == IFM_FDX)
610 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
611 	else
612 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
613 
614 	if (restart)
615 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON | WB_NETCFG_RX_ON);
616 }
617 
618 static void
619 wb_reset(struct wb_softc *sc)
620 {
621 	int i;
622 	struct mii_data *mii;
623 
624 	CSR_WRITE_4(sc, WB_NETCFG, 0);
625 	CSR_WRITE_4(sc, WB_BUSCTL, 0);
626 	CSR_WRITE_4(sc, WB_TXADDR, 0);
627 	CSR_WRITE_4(sc, WB_RXADDR, 0);
628 
629 	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
630 	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
631 
632 	for (i = 0; i < WB_TIMEOUT; i++) {
633 		DELAY(10);
634 		if ((CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET) == 0)
635 			break;
636 	}
637 	if (i == WB_TIMEOUT)
638 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
639 
640 	/* Wait a little while for the chip to get its brains in order. */
641 	DELAY(1000);
642 
643 	if (sc->wb_miibus == NULL)
644 		return;
645 
646 	mii = device_get_softc(sc->wb_miibus);
647 	if (mii == NULL)
648 		return;
649 
650         if (mii->mii_instance) {
651 		struct mii_softc *miisc;
652 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
653                         mii_phy_reset(miisc);
654         }
655 }
656 
657 static void
658 wb_fixmedia(struct wb_softc *sc)
659 {
660 	struct mii_data *mii;
661 	uint32_t media;
662 
663 	if (sc->wb_miibus == NULL)
664 		return;
665 
666 	mii = device_get_softc(sc->wb_miibus);
667 
668 	mii_pollstat(mii);
669 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
670 		media = mii->mii_media_active & ~IFM_10_T;
671 		media |= IFM_100_TX;
672 	} else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
673 		media = mii->mii_media_active & ~IFM_100_TX;
674 		media |= IFM_10_T;
675 	} else
676 		return;
677 
678 	ifmedia_set(&mii->mii_media, media);
679 }
680 
681 /*
682  * Probe for a Winbond chip. Check the PCI vendor and device
683  * IDs against our list and return a device name if we find a match.
684  */
685 static int wb_probe(device_t dev)
686 {
687 	struct wb_type *t;
688 	uint16_t vendor, product;
689 
690 	vendor = pci_get_vendor(dev);
691 	product = pci_get_device(dev);
692 
693 	for (t = wb_devs; t->wb_name != NULL; t++) {
694 		if (vendor == t->wb_vid && product == t->wb_did) {
695 			device_set_desc(dev, t->wb_name);
696 			return(0);
697 		}
698 	}
699 
700 	return(ENXIO);
701 }
702 
703 /*
704  * Attach the interface. Allocate softc structures, do ifmedia
705  * setup and ethernet/BPF attach.
706  */
707 static int
708 wb_attach(device_t dev)
709 {
710 	u_char eaddr[ETHER_ADDR_LEN];
711 	struct wb_softc *sc;
712 	struct ifnet *ifp;
713 	int error = 0, rid;
714 
715 	sc = device_get_softc(dev);
716 	callout_init(&sc->wb_stat_timer);
717 
718 	/*
719 	 * Handle power management nonsense.
720 	 */
721 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
722 		uint32_t iobase, membase, irq;
723 
724 		/* Save important PCI config data. */
725 		iobase = pci_read_config(dev, WB_PCI_LOIO, 4);
726 		membase = pci_read_config(dev, WB_PCI_LOMEM, 4);
727 		irq = pci_read_config(dev, WB_PCI_INTLINE, 4);
728 
729 		/* Reset the power state. */
730 		device_printf(dev, "chip is in D%d power mode "
731 		"-- setting to D0\n", pci_get_powerstate(dev));
732 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
733 
734 		/* Restore PCI config data. */
735 		pci_write_config(dev, WB_PCI_LOIO, iobase, 4);
736 		pci_write_config(dev, WB_PCI_LOMEM, membase, 4);
737 		pci_write_config(dev, WB_PCI_INTLINE, irq, 4);
738 	}
739 
740 	pci_enable_busmaster(dev);
741 
742 	rid = WB_RID;
743 	sc->wb_res = bus_alloc_resource_any(dev, WB_RES, &rid, RF_ACTIVE);
744 
745 	if (sc->wb_res == NULL) {
746 		device_printf(dev, "couldn't map ports/memory\n");
747 		error = ENXIO;
748 		goto fail;
749 	}
750 
751 	sc->wb_btag = rman_get_bustag(sc->wb_res);
752 	sc->wb_bhandle = rman_get_bushandle(sc->wb_res);
753 
754 	/* Allocate interrupt */
755 	rid = 0;
756 	sc->wb_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
757 	    RF_SHAREABLE | RF_ACTIVE);
758 
759 	if (sc->wb_irq == NULL) {
760 		device_printf(dev, "couldn't map interrupt\n");
761 		error = ENXIO;
762 		goto fail;
763 	}
764 
765 	/* Save the cache line size. */
766 	sc->wb_cachesize = pci_read_config(dev, WB_PCI_CACHELEN, 4) & 0xFF;
767 
768 	ifp = &sc->arpcom.ac_if;
769 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
770 
771 	/* Reset the adapter. */
772 	wb_reset(sc);
773 
774 	/*
775 	 * Get station address from the EEPROM.
776 	 */
777 	wb_read_eeprom(sc, (caddr_t)&eaddr, 0, 3);
778 
779 	sc->wb_ldata = contigmalloc(sizeof(struct wb_list_data) + 8, M_DEVBUF,
780 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
781 
782 	if (sc->wb_ldata == NULL) {
783 		device_printf(dev, "no memory for list buffers!\n");
784 		error = ENXIO;
785 		goto fail;
786 	}
787 
788 	bzero(sc->wb_ldata, sizeof(struct wb_list_data));
789 
790 	ifp->if_softc = sc;
791 	ifp->if_mtu = ETHERMTU;
792 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
793 	ifp->if_ioctl = wb_ioctl;
794 	ifp->if_start = wb_start;
795 	ifp->if_watchdog = wb_watchdog;
796 	ifp->if_init = wb_init;
797 	ifp->if_baudrate = 10000000;
798 	ifq_set_maxlen(&ifp->if_snd, WB_TX_LIST_CNT - 1);
799 	ifq_set_ready(&ifp->if_snd);
800 
801 	/*
802 	 * Do MII setup.
803 	 */
804 	if (mii_phy_probe(dev, &sc->wb_miibus,
805 	    wb_ifmedia_upd, wb_ifmedia_sts)) {
806 		error = ENXIO;
807 		goto fail;
808 	}
809 
810 	/*
811 	 * Call MI attach routine.
812 	 */
813 	ether_ifattach(ifp, eaddr);
814 
815 	error = bus_setup_intr(dev, sc->wb_irq, INTR_TYPE_NET,
816 			       wb_intr, sc, &sc->wb_intrhand, NULL);
817 
818 	if (error) {
819 		device_printf(dev, "couldn't set up irq\n");
820 		ether_ifdetach(ifp);
821 		goto fail;
822 	}
823 
824 	return(0);
825 
826 fail:
827 	wb_detach(dev);
828 	return(error);
829 }
830 
831 static int
832 wb_detach(device_t dev)
833 {
834 	struct wb_softc *sc = device_get_softc(dev);
835 	struct ifnet *ifp = &sc->arpcom.ac_if;
836 
837 	crit_enter();
838 
839 	if (device_is_attached(dev)) {
840 		if (bus_child_present(dev))
841 			wb_stop(sc);
842 		ether_ifdetach(ifp);
843 	}
844 
845 	if (sc->wb_miibus)
846 		device_delete_child(dev, sc->wb_miibus);
847 	bus_generic_detach(dev);
848 
849 	if (sc->wb_intrhand)
850 		bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
851 	crit_exit();
852 	if (sc->wb_irq);
853 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
854 	if (sc->wb_res)
855 		bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
856 	if (sc->wb_ldata_ptr) {
857 		contigfree(sc->wb_ldata_ptr, sizeof(struct wb_list_data) + 8,
858 		    M_DEVBUF);
859 	}
860 
861 	return(0);
862 }
863 
864 /*
865  * Initialize the transmit descriptors.
866  */
867 static int
868 wb_list_tx_init(struct wb_softc *sc)
869 {
870 	struct wb_chain_data *cd;
871 	struct wb_list_data *ld;
872 	int i, nexti;
873 
874 	cd = &sc->wb_cdata;
875 	ld = sc->wb_ldata;
876 
877 	for (i = 0; i < WB_TX_LIST_CNT; i++) {
878 		nexti = (i == WB_TX_LIST_CNT - 1) ? 0 : i + 1;
879 		cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
880 		cd->wb_tx_chain[i].wb_nextdesc = &cd->wb_tx_chain[nexti];
881 	}
882 
883 	cd->wb_tx_free = &cd->wb_tx_chain[0];
884 	cd->wb_tx_tail = cd->wb_tx_head = NULL;
885 
886 	return(0);
887 }
888 
889 /*
890  * Initialize the RX descriptors and allocate mbufs for them. Note that
891  * we arrange the descriptors in a closed ring, so that the last descriptor
892  * points back to the first.
893  */
894 static int
895 wb_list_rx_init(struct wb_softc *sc)
896 {
897 	struct wb_chain_data *cd;
898 	struct wb_list_data *ld;
899 	int i, nexti;
900 
901 	cd = &sc->wb_cdata;
902 	ld = sc->wb_ldata;
903 
904 	for (i = 0; i < WB_RX_LIST_CNT; i++) {
905 		cd->wb_rx_chain[i].wb_ptr = &ld->wb_rx_list[i];
906 		cd->wb_rx_chain[i].wb_buf = &ld->wb_rxbufs[i];
907 		if (wb_newbuf(sc, &cd->wb_rx_chain[i], NULL) == ENOBUFS)
908 			return(ENOBUFS);
909 		nexti = (WB_RX_LIST_CNT - 1) ? 0 : i + 1;
910 		cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[nexti];
911 		ld->wb_rx_list[i].wb_next =  vtophys(&ld->wb_rx_list[nexti]);
912 	}
913 
914 	cd->wb_rx_head = &cd->wb_rx_chain[0];
915 
916 	return(0);
917 }
918 
919 static void
920 wb_bfree(void *arg)
921 {
922 }
923 
924 /*
925  * Initialize an RX descriptor and attach an MBUF cluster.
926  */
927 static int
928 wb_newbuf(struct wb_softc *sc, struct wb_chain_onefrag *c, struct mbuf *m)
929 {
930 	struct mbuf *m_new = NULL;
931 
932 	if (m == NULL) {
933 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
934 		if (m_new == NULL)
935 			return(ENOBUFS);
936 
937 		m_new->m_data = m_new->m_ext.ext_buf = c->wb_buf;
938 		m_new->m_flags |= M_EXT;
939 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
940 		    m_new->m_len = WB_BUFBYTES;
941 		m_new->m_ext.ext_free = wb_bfree;
942 		m_new->m_ext.ext_ref = wb_bfree;
943 	} else {
944 		m_new = m;
945 		m_new->m_len = m_new->m_pkthdr.len = WB_BUFBYTES;
946 		m_new->m_data = m_new->m_ext.ext_buf;
947 	}
948 
949 	m_adj(m_new, sizeof(uint64_t));
950 
951 	c->wb_mbuf = m_new;
952 	c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t));
953 	c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | 1536;
954 	c->wb_ptr->wb_status = WB_RXSTAT;
955 
956 	return(0);
957 }
958 
959 /*
960  * A frame has been uploaded: pass the resulting mbuf chain up to
961  * the higher level protocols.
962  */
963 static void
964 wb_rxeof(struct wb_softc *sc)
965 {
966         struct ifnet *ifp = &sc->arpcom.ac_if;
967         struct mbuf *m, *m0;
968 	struct wb_chain_onefrag *cur_rx;
969 	int total_len = 0;
970 	uint32_t rxstat;
971 
972 	for (;;) {
973 		rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status;
974 		if ((rxstat & WB_RXSTAT_OWN) == 0)
975 			break;
976 
977 		cur_rx = sc->wb_cdata.wb_rx_head;
978 		sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
979 
980 		m = cur_rx->wb_mbuf;
981 
982 		if ((rxstat & WB_RXSTAT_MIIERR) ||
983 		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) < WB_MIN_FRAMELEN) ||
984 		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) > 1536) ||
985 		    (rxstat & WB_RXSTAT_LASTFRAG) == 0||
986 		    (rxstat & WB_RXSTAT_RXCMP) == 0) {
987 			ifp->if_ierrors++;
988 			wb_newbuf(sc, cur_rx, m);
989 			if_printf(ifp, "receiver babbling: possible chip "
990 				  "bug, forcing reset\n");
991 			wb_fixmedia(sc);
992 			wb_reset(sc);
993 			wb_init(sc);
994 			return;
995 		}
996 
997 		if (rxstat & WB_RXSTAT_RXERR) {
998 			ifp->if_ierrors++;
999 			wb_newbuf(sc, cur_rx, m);
1000 			break;
1001 		}
1002 
1003 		/* No errors; receive the packet. */
1004 		total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
1005 
1006 		/*
1007 		 * XXX The Winbond chip includes the CRC with every
1008 		 * received frame, and there's no way to turn this
1009 		 * behavior off (at least, I can't find anything in
1010 	 	 * the manual that explains how to do it) so we have
1011 		 * to trim off the CRC manually.
1012 		 */
1013 		total_len -= ETHER_CRC_LEN;
1014 
1015 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1016 		     total_len + ETHER_ALIGN, 0, ifp, NULL);
1017 		wb_newbuf(sc, cur_rx, m);
1018 		if (m0 == NULL) {
1019 			ifp->if_ierrors++;
1020 			break;
1021 		}
1022 		m_adj(m0, ETHER_ALIGN);
1023 		m = m0;
1024 
1025 		ifp->if_ipackets++;
1026 		(*ifp->if_input)(ifp, m);
1027 	}
1028 }
1029 
1030 static void
1031 wb_rxeoc(struct wb_softc *sc)
1032 {
1033 	wb_rxeof(sc);
1034 
1035 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1036 	CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
1037 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1038 	if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
1039 		CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1040 }
1041 
1042 /*
1043  * A frame was downloaded to the chip. It's safe for us to clean up
1044  * the list buffers.
1045  */
1046 static void
1047 wb_txeof(struct wb_softc *sc)
1048 {
1049 	struct ifnet *ifp = &sc->arpcom.ac_if;
1050 	struct wb_chain *cur_tx;
1051 
1052 	/* Clear the timeout timer. */
1053 	ifp->if_timer = 0;
1054 
1055 	if (sc->wb_cdata.wb_tx_head == NULL)
1056 		return;
1057 
1058 	/*
1059 	 * Go through our tx list and free mbufs for those
1060 	 * frames that have been transmitted.
1061 	 */
1062 	while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
1063 		uint32_t txstat;
1064 
1065 		cur_tx = sc->wb_cdata.wb_tx_head;
1066 		txstat = WB_TXSTATUS(cur_tx);
1067 
1068 		if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
1069 			break;
1070 
1071 		if (txstat & WB_TXSTAT_TXERR) {
1072 			ifp->if_oerrors++;
1073 			if (txstat & WB_TXSTAT_ABORT)
1074 				ifp->if_collisions++;
1075 			if (txstat & WB_TXSTAT_LATECOLL)
1076 				ifp->if_collisions++;
1077 		}
1078 
1079 		ifp->if_collisions += (txstat & WB_TXSTAT_COLLCNT) >> 3;
1080 
1081 		ifp->if_opackets++;
1082 		m_freem(cur_tx->wb_mbuf);
1083 		cur_tx->wb_mbuf = NULL;
1084 
1085 		if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
1086 			sc->wb_cdata.wb_tx_head = NULL;
1087 			sc->wb_cdata.wb_tx_tail = NULL;
1088 			break;
1089 		}
1090 
1091 		sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
1092 	}
1093 }
1094 
1095 /*
1096  * TX 'end of channel' interrupt handler.
1097  */
1098 static void
1099 wb_txeoc(struct wb_softc *sc)
1100 {
1101 	struct ifnet *ifp = &sc->arpcom.ac_if;
1102 
1103 	ifp->if_timer = 0;
1104 
1105 	if (sc->wb_cdata.wb_tx_head == NULL) {
1106 		ifp->if_flags &= ~IFF_OACTIVE;
1107 		sc->wb_cdata.wb_tx_tail = NULL;
1108 	} else if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
1109 		WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
1110 		ifp->if_timer = 5;
1111 		CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1112 	}
1113 }
1114 
1115 static void
1116 wb_intr(void *arg)
1117 {
1118 	struct wb_softc *sc = arg;
1119 	struct ifnet *ifp = &sc->arpcom.ac_if;
1120 	uint32_t status;
1121 
1122 	if ((ifp->if_flags & IFF_UP) == 0)
1123 		return;
1124 
1125 	/* Disable interrupts. */
1126 	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1127 
1128 	for (;;) {
1129 		status = CSR_READ_4(sc, WB_ISR);
1130 		if (status)
1131 			CSR_WRITE_4(sc, WB_ISR, status);
1132 
1133 		if ((status & WB_INTRS) == 0)
1134 			break;
1135 
1136 		if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
1137 			ifp->if_ierrors++;
1138 			wb_reset(sc);
1139 			if (status & WB_ISR_RX_ERR)
1140 				wb_fixmedia(sc);
1141 			wb_init(sc);
1142 			continue;
1143 		}
1144 
1145 		if (status & WB_ISR_RX_OK)
1146 			wb_rxeof(sc);
1147 
1148 		if (status & WB_ISR_RX_IDLE)
1149 			wb_rxeoc(sc);
1150 
1151 		if (status & WB_ISR_TX_OK)
1152 			wb_txeof(sc);
1153 
1154 		if (status & WB_ISR_TX_NOBUF)
1155 			wb_txeoc(sc);
1156 
1157 		if (status & WB_ISR_TX_IDLE) {
1158 			wb_txeof(sc);
1159 			if (sc->wb_cdata.wb_tx_head != NULL) {
1160 				WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1161 				CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1162 			}
1163 		}
1164 
1165 		if (status & WB_ISR_TX_UNDERRUN) {
1166 			ifp->if_oerrors++;
1167 			wb_txeof(sc);
1168 			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1169 			/* Jack up TX threshold */
1170 			sc->wb_txthresh += WB_TXTHRESH_CHUNK;
1171 			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1172 			WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1173 			WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1174 		}
1175 
1176 		if (status & WB_ISR_BUS_ERR) {
1177 			wb_reset(sc);
1178 			wb_init(sc);
1179 		}
1180 	}
1181 
1182 	/* Re-enable interrupts. */
1183 	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1184 
1185 	if (!ifq_is_empty(&ifp->if_snd))
1186 		wb_start(ifp);
1187 }
1188 
1189 static void
1190 wb_tick(void *xsc)
1191 {
1192 	struct wb_softc *sc = xsc;
1193 	struct mii_data *mii = device_get_softc(sc->wb_miibus);
1194 
1195 	crit_enter();
1196 
1197 	mii_tick(mii);
1198 
1199 	callout_reset(&sc->wb_stat_timer, hz, wb_tick, sc);
1200 
1201 	crit_exit();
1202 }
1203 
1204 /*
1205  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1206  * pointers to the fragment pointers.
1207  */
1208 static int
1209 wb_encap(struct wb_softc *sc, struct wb_chain *c, struct mbuf *m_head)
1210 {
1211 	struct wb_desc *f = NULL;
1212 	struct mbuf *m;
1213 	int frag, total_len;
1214 
1215 	/*
1216  	 * Start packing the mbufs in this chain into
1217 	 * the fragment pointers. Stop when we run out
1218  	 * of fragments or hit the end of the mbuf chain.
1219 	 */
1220 	total_len = 0;
1221 
1222 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1223 		if (m->m_len != 0) {
1224 			if (frag == WB_MAXFRAGS)
1225 				break;
1226 			total_len += m->m_len;
1227 			f = &c->wb_ptr->wb_frag[frag];
1228 			f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
1229 			if (frag == 0) {
1230 				f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
1231 				f->wb_status = 0;
1232 			} else {
1233 				f->wb_status = WB_TXSTAT_OWN;
1234 			}
1235 			f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]);
1236 			f->wb_data = vtophys(mtod(m, vm_offset_t));
1237 			frag++;
1238 		}
1239 	}
1240 
1241 	/*
1242 	 * Handle special case: we used up all 16 fragments,
1243 	 * but we have more mbufs left in the chain. Copy the
1244 	 * data into an mbuf cluster. Note that we don't
1245 	 * bother clearing the values in the other fragment
1246 	 * pointers/counters; it wouldn't gain us anything,
1247 	 * and would waste cycles.
1248 	 */
1249 	if (m != NULL) {
1250 		struct mbuf *m_new = NULL;
1251 
1252 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1253 		if (m_new == NULL)
1254 			return(1);
1255 		if (m_head->m_pkthdr.len > MHLEN) {
1256 			MCLGET(m_new, MB_DONTWAIT);
1257 			if ((m_new->m_flags & M_EXT) == 0) {
1258 				m_freem(m_new);
1259 				return(1);
1260 			}
1261 		}
1262 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1263 		    mtod(m_new, caddr_t));
1264 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1265 		m_freem(m_head);
1266 		m_head = m_new;
1267 		f = &c->wb_ptr->wb_frag[0];
1268 		f->wb_status = 0;
1269 		f->wb_data = vtophys(mtod(m_new, caddr_t));
1270 		f->wb_ctl = total_len = m_new->m_len;
1271 		f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
1272 		frag = 1;
1273 	}
1274 
1275 	if (total_len < WB_MIN_FRAMELEN) {
1276 		f = &c->wb_ptr->wb_frag[frag];
1277 		f->wb_ctl = WB_MIN_FRAMELEN - total_len;
1278 		f->wb_data = vtophys(&sc->wb_cdata.wb_pad);
1279 		f->wb_ctl |= WB_TXCTL_TLINK;
1280 		f->wb_status = WB_TXSTAT_OWN;
1281 		frag++;
1282 	}
1283 
1284 	c->wb_mbuf = m_head;
1285 	c->wb_lastdesc = frag - 1;
1286 	WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
1287 	WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
1288 
1289 	return(0);
1290 }
1291 
1292 /*
1293  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1294  * to the mbuf data regions directly in the transmit lists. We also save a
1295  * copy of the pointers since the transmit list fragment pointers are
1296  * physical addresses.
1297  */
1298 static void
1299 wb_start(struct ifnet *ifp)
1300 {
1301 	struct wb_softc *sc = ifp->if_softc;
1302 	struct mbuf *m_head = NULL;
1303 	struct wb_chain *cur_tx = NULL, *start_tx;
1304 
1305 	/*
1306 	 * Check for an available queue slot. If there are none,
1307 	 * punt.
1308 	 */
1309 	if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
1310 		ifp->if_flags |= IFF_OACTIVE;
1311 		return;
1312 	}
1313 
1314 	start_tx = sc->wb_cdata.wb_tx_free;
1315 
1316 	while (sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
1317 		m_head = ifq_dequeue(&ifp->if_snd);
1318 		if (m_head == NULL)
1319 			break;
1320 
1321 		/* Pick a descriptor off the free list. */
1322 		cur_tx = sc->wb_cdata.wb_tx_free;
1323 		sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
1324 
1325 		/* Pack the data into the descriptor. */
1326 		wb_encap(sc, cur_tx, m_head);
1327 
1328 		if (cur_tx != start_tx)
1329 			WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
1330 
1331 		BPF_MTAP(ifp, cur_tx->wb_mbuf);
1332 	}
1333 
1334 	/*
1335 	 * If there are no packets queued, bail.
1336 	 */
1337 	if (cur_tx == NULL)
1338 		return;
1339 
1340 	/*
1341 	 * Place the request for the upload interrupt
1342 	 * in the last descriptor in the chain. This way, if
1343 	 * we're chaining several packets at once, we'll only
1344 	 * get an interupt once for the whole chain rather than
1345 	 * once for each packet.
1346 	 */
1347 	WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
1348 	cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT;
1349 	sc->wb_cdata.wb_tx_tail = cur_tx;
1350 
1351 	if (sc->wb_cdata.wb_tx_head == NULL) {
1352 		sc->wb_cdata.wb_tx_head = start_tx;
1353 		WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
1354 		CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1355 	} else {
1356 		/*
1357 		 * We need to distinguish between the case where
1358 		 * the own bit is clear because the chip cleared it
1359 		 * and where the own bit is clear because we haven't
1360 		 * set it yet. The magic value WB_UNSET is just some
1361 		 * ramdomly chosen number which doesn't have the own
1362 	 	 * bit set. When we actually transmit the frame, the
1363 		 * status word will have _only_ the own bit set, so
1364 		 * the txeoc handler will be able to tell if it needs
1365 		 * to initiate another transmission to flush out pending
1366 		 * frames.
1367 		 */
1368 		WB_TXOWN(start_tx) = WB_UNSENT;
1369 	}
1370 
1371 	/*
1372 	 * Set a timeout in case the chip goes out to lunch.
1373 	 */
1374 	ifp->if_timer = 5;
1375 }
1376 
1377 static void
1378 wb_init(void *xsc)
1379 {
1380 	struct wb_softc *sc = xsc;
1381 	struct ifnet *ifp = &sc->arpcom.ac_if;
1382 	int i;
1383 	struct mii_data *mii;
1384 
1385 	crit_enter();
1386 
1387 	mii = device_get_softc(sc->wb_miibus);
1388 
1389 	/*
1390 	 * Cancel pending I/O and free all RX/TX buffers.
1391 	 */
1392 	wb_stop(sc);
1393 	wb_reset(sc);
1394 
1395 	sc->wb_txthresh = WB_TXTHRESH_INIT;
1396 
1397 	/*
1398 	 * Set cache alignment and burst length.
1399 	 */
1400 #ifdef foo
1401 	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
1402 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1403 	WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1404 #endif
1405 
1406 	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_MUSTBEONE | WB_BUSCTL_ARBITRATION);
1407 	WB_SETBIT(sc, WB_BUSCTL, WB_BURSTLEN_16LONG);
1408 	switch(sc->wb_cachesize) {
1409 	case 32:
1410 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_32LONG);
1411 		break;
1412 	case 16:
1413 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_16LONG);
1414 		break;
1415 	case 8:
1416 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_8LONG);
1417 		break;
1418 	case 0:
1419 	default:
1420 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_NONE);
1421 		break;
1422 	}
1423 
1424 	/* This doesn't tend to work too well at 100Mbps. */
1425 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
1426 
1427 	/* Init our MAC address */
1428 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1429 		CSR_WRITE_1(sc, WB_NODE0 + i, sc->arpcom.ac_enaddr[i]);
1430 
1431 	/* Init circular RX list. */
1432 	if (wb_list_rx_init(sc) == ENOBUFS) {
1433 		if_printf(ifp, "initialization failed: no "
1434 			  "memory for rx buffers\n");
1435 		wb_stop(sc);
1436 		crit_exit();
1437 		return;
1438 	}
1439 
1440 	/* Init TX descriptors. */
1441 	wb_list_tx_init(sc);
1442 
1443 	/* If we want promiscuous mode, set the allframes bit. */
1444 	if (ifp->if_flags & IFF_PROMISC)
1445 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1446 	else
1447 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1448 
1449 	/*
1450 	 * Set capture broadcast bit to capture broadcast frames.
1451 	 */
1452 	if (ifp->if_flags & IFF_BROADCAST)
1453 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1454 	else
1455 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1456 
1457 	/*
1458 	 * Program the multicast filter, if necessary.
1459 	 */
1460 	wb_setmulti(sc);
1461 
1462 	/*
1463 	 * Load the address of the RX list.
1464 	 */
1465 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1466 	CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
1467 
1468 	/*
1469 	 * Enable interrupts.
1470 	 */
1471 	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1472 	CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
1473 
1474 	/* Enable receiver and transmitter. */
1475 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1476 	CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1477 
1478 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1479 	CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0]));
1480 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1481 
1482 	mii_mediachg(mii);
1483 
1484 	ifp->if_flags |= IFF_RUNNING;
1485 	ifp->if_flags &= ~IFF_OACTIVE;
1486 
1487 	crit_exit();
1488 
1489 	callout_reset(&sc->wb_stat_timer, hz, wb_tick, sc);
1490 }
1491 
1492 /*
1493  * Set media options.
1494  */
1495 static int
1496 wb_ifmedia_upd(struct ifnet *ifp)
1497 {
1498 	struct wb_softc *sc = ifp->if_softc;
1499 
1500 	if (ifp->if_flags & IFF_UP)
1501 		wb_init(sc);
1502 
1503 	return(0);
1504 }
1505 
1506 /*
1507  * Report current media status.
1508  */
1509 static void
1510 wb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1511 {
1512 	struct wb_softc *sc = ifp->if_softc;
1513 	struct mii_data *mii = device_get_softc(sc->wb_miibus);
1514 
1515 	mii_pollstat(mii);
1516 	ifmr->ifm_active = mii->mii_media_active;
1517 	ifmr->ifm_status = mii->mii_media_status;
1518 }
1519 
1520 static int
1521 wb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1522 {
1523 	struct wb_softc *sc = ifp->if_softc;
1524 	struct mii_data *mii;
1525 	struct ifreq *ifr = (struct ifreq *) data;
1526 	int error = 0;
1527 
1528 	crit_enter();
1529 
1530 	switch(command) {
1531 	case SIOCSIFFLAGS:
1532 		if (ifp->if_flags & IFF_UP)
1533 			wb_init(sc);
1534 		else if (ifp->if_flags & IFF_RUNNING)
1535 			wb_stop(sc);
1536 		error = 0;
1537 		break;
1538 	case SIOCADDMULTI:
1539 	case SIOCDELMULTI:
1540 		wb_setmulti(sc);
1541 		error = 0;
1542 		break;
1543 	case SIOCGIFMEDIA:
1544 	case SIOCSIFMEDIA:
1545 		mii = device_get_softc(sc->wb_miibus);
1546 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1547 		break;
1548 	default:
1549 		error = ether_ioctl(ifp, command, data);
1550 		break;
1551 	}
1552 
1553 	crit_exit();
1554 
1555 	return(error);
1556 }
1557 
1558 static void
1559 wb_watchdog(struct ifnet *ifp)
1560 {
1561 	struct wb_softc *sc = ifp->if_softc;
1562 
1563 	ifp->if_oerrors++;
1564 	if_printf(ifp, "watchdog timeout\n");
1565 #ifdef foo
1566 	if ((wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) == 0)
1567 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1568 #endif
1569 	wb_stop(sc);
1570 	wb_reset(sc);
1571 	wb_init(sc);
1572 
1573 	if (!ifq_is_empty(&ifp->if_snd))
1574 		wb_start(ifp);
1575 }
1576 
1577 /*
1578  * Stop the adapter and free any mbufs allocated to the
1579  * RX and TX lists.
1580  */
1581 static void
1582 wb_stop(struct wb_softc *sc)
1583 {
1584 	struct ifnet *ifp = &sc->arpcom.ac_if;
1585 	int i;
1586 
1587 	ifp->if_timer = 0;
1588 
1589 	callout_stop(&sc->wb_stat_timer);
1590 
1591 	WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON | WB_NETCFG_TX_ON));
1592 	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1593 	CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
1594 	CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
1595 
1596 	/*
1597 	 * Free data in the RX lists.
1598 	 */
1599 	for (i = 0; i < WB_RX_LIST_CNT; i++) {
1600 		if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) {
1601 			m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf);
1602 			sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL;
1603 		}
1604 	}
1605 	bzero(&sc->wb_ldata->wb_rx_list, sizeof(sc->wb_ldata->wb_rx_list));
1606 
1607 	/*
1608 	 * Free the TX list buffers.
1609 	 */
1610 	for (i = 0; i < WB_TX_LIST_CNT; i++) {
1611 		if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
1612 			m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
1613 			sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
1614 		}
1615 	}
1616 
1617 	bzero(&sc->wb_ldata->wb_tx_list, sizeof(sc->wb_ldata->wb_tx_list));
1618 
1619 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1620 }
1621 
1622 /*
1623  * Stop all chip I/O so that the kernel's probe routines don't
1624  * get confused by errant DMAs when rebooting.
1625  */
1626 static void
1627 wb_shutdown(device_t dev)
1628 {
1629 	struct wb_softc *sc = device_get_softc(dev);
1630 
1631 	wb_stop(sc);
1632 }
1633