xref: /dragonfly/sys/dev/netif/wi/if_wi.c (revision 1bf4b486)
1 /*	$NetBSD: wi.c,v 1.109 2003/01/09 08:52:19 dyoung Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/dev/wi/if_wi.c,v 1.166 2004/04/01 00:38:45 sam Exp $
35  * $DragonFly: src/sys/dev/netif/wi/if_wi.c,v 1.29 2005/07/03 16:47:20 joerg Exp $
36  */
37 
38 /*
39  * Lucent WaveLAN/IEEE 802.11 PCMCIA driver.
40  *
41  * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Electrical Engineering Department
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
48  * from Lucent. Unlike the older cards, the new ones are programmed
49  * entirely via a firmware-driven controller called the Hermes.
50  * Unfortunately, Lucent will not release the Hermes programming manual
51  * without an NDA (if at all). What they do release is an API library
52  * called the HCF (Hardware Control Functions) which is supposed to
53  * do the device-specific operations of a device driver for you. The
54  * publically available version of the HCF library (the 'HCF Light') is
55  * a) extremely gross, b) lacks certain features, particularly support
56  * for 802.11 frames, and c) is contaminated by the GNU Public License.
57  *
58  * This driver does not use the HCF or HCF Light at all. Instead, it
59  * programs the Hermes controller directly, using information gleaned
60  * from the HCF Light code and corresponding documentation.
61  *
62  * This driver supports the ISA, PCMCIA and PCI versions of the Lucent
63  * WaveLan cards (based on the Hermes chipset), as well as the newer
64  * Prism 2 chipsets with firmware from Intersil and Symbol.
65  */
66 
67 #define WI_HERMES_AUTOINC_WAR	/* Work around data write autoinc bug. */
68 #define WI_HERMES_STATS_WAR	/* Work around stats counter bug. */
69 
70 #include <sys/param.h>
71 #include <sys/endian.h>
72 #include <sys/systm.h>
73 #include <sys/sockio.h>
74 #include <sys/mbuf.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/socket.h>
78 #include <sys/module.h>
79 #include <sys/bus.h>
80 #include <sys/random.h>
81 #include <sys/syslog.h>
82 #include <sys/sysctl.h>
83 #include <sys/thread2.h>
84 
85 #include <machine/bus.h>
86 #include <machine/resource.h>
87 #include <machine/atomic.h>
88 #include <sys/rman.h>
89 
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/ethernet.h>
93 #include <net/if_dl.h>
94 #include <net/if_media.h>
95 #include <net/if_types.h>
96 #include <net/ifq_var.h>
97 
98 #include <netproto/802_11/ieee80211_var.h>
99 #include <netproto/802_11/ieee80211_ioctl.h>
100 #include <netproto/802_11/ieee80211_radiotap.h>
101 #include <netproto/802_11/if_wavelan_ieee.h>
102 
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #include <netinet/if_ether.h>
108 
109 #include <net/bpf.h>
110 
111 #include <dev/netif/wi/if_wireg.h>
112 #include <dev/netif/wi/if_wivar.h>
113 
114 static void wi_start(struct ifnet *);
115 static int  wi_reset(struct wi_softc *);
116 static void wi_watchdog(struct ifnet *);
117 static int  wi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
118 static int  wi_media_change(struct ifnet *);
119 static void wi_media_status(struct ifnet *, struct ifmediareq *);
120 
121 static void wi_rx_intr(struct wi_softc *);
122 static void wi_tx_intr(struct wi_softc *);
123 static void wi_tx_ex_intr(struct wi_softc *);
124 static void wi_info_intr(struct wi_softc *);
125 
126 static int  wi_get_cfg(struct ifnet *, u_long, caddr_t, struct ucred *);
127 static int  wi_set_cfg(struct ifnet *, u_long, caddr_t);
128 static int  wi_write_txrate(struct wi_softc *);
129 static int  wi_write_wep(struct wi_softc *);
130 static int  wi_write_multi(struct wi_softc *);
131 static int  wi_alloc_fid(struct wi_softc *, int, int *);
132 static void wi_read_nicid(struct wi_softc *);
133 static int  wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
134 
135 static int  wi_cmd(struct wi_softc *, int, int, int, int);
136 static int  wi_seek_bap(struct wi_softc *, int, int);
137 static int  wi_read_bap(struct wi_softc *, int, int, void *, int);
138 static int  wi_write_bap(struct wi_softc *, int, int, void *, int);
139 static int  wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
140 static int  wi_read_rid(struct wi_softc *, int, void *, int *);
141 static int  wi_write_rid(struct wi_softc *, int, void *, int);
142 
143 static int  wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
144 
145 static int  wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
146 static void wi_scan_result(struct wi_softc *, int, int);
147 
148 static void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
149 
150 static int wi_get_debug(struct wi_softc *, struct wi_req *);
151 static int wi_set_debug(struct wi_softc *, struct wi_req *);
152 
153 /* support to download firmware for symbol CF card */
154 static int wi_symbol_write_firm(struct wi_softc *, const void *, int,
155 		const void *, int);
156 static int wi_symbol_set_hcr(struct wi_softc *, int);
157 #ifdef DEVICE_POLLING
158 static void wi_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
159 #endif
160 
161 static __inline int
162 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
163 {
164 
165 	val = htole16(val);
166 	return wi_write_rid(sc, rid, &val, sizeof(val));
167 }
168 
169 SYSCTL_NODE(_hw, OID_AUTO, wi, CTLFLAG_RD, 0, "Wireless driver parameters");
170 
171 static	struct timeval lasttxerror;	/* time of last tx error msg */
172 static	int curtxeps;			/* current tx error msgs/sec */
173 static	int wi_txerate = 0;		/* tx error rate: max msgs/sec */
174 SYSCTL_INT(_hw_wi, OID_AUTO, txerate, CTLFLAG_RW, &wi_txerate,
175 	    0, "max tx error msgs/sec; 0 to disable msgs");
176 
177 #define	WI_DEBUG
178 #ifdef WI_DEBUG
179 static	int wi_debug = 0;
180 SYSCTL_INT(_hw_wi, OID_AUTO, debug, CTLFLAG_RW, &wi_debug,
181 	    0, "control debugging printfs");
182 
183 #define	DPRINTF(X)	if (wi_debug) if_printf X
184 #define	DPRINTF2(X)	if (wi_debug > 1) if_printf X
185 #define	IFF_DUMPPKTS(_ifp) \
186 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
187 #else
188 #define	DPRINTF(X)
189 #define	DPRINTF2(X)
190 #define	IFF_DUMPPKTS(_ifp)	0
191 #endif
192 
193 #define WI_INTRS	(WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
194 
195 struct wi_card_ident wi_card_ident[] = {
196 	/* CARD_ID			CARD_NAME		FIRM_TYPE */
197 	{ WI_NIC_LUCENT_ID,		WI_NIC_LUCENT_STR,	WI_LUCENT },
198 	{ WI_NIC_SONY_ID,		WI_NIC_SONY_STR,	WI_LUCENT },
199 	{ WI_NIC_LUCENT_EMB_ID,		WI_NIC_LUCENT_EMB_STR,	WI_LUCENT },
200 	{ WI_NIC_EVB2_ID,		WI_NIC_EVB2_STR,	WI_INTERSIL },
201 	{ WI_NIC_HWB3763_ID,		WI_NIC_HWB3763_STR,	WI_INTERSIL },
202 	{ WI_NIC_HWB3163_ID,		WI_NIC_HWB3163_STR,	WI_INTERSIL },
203 	{ WI_NIC_HWB3163B_ID,		WI_NIC_HWB3163B_STR,	WI_INTERSIL },
204 	{ WI_NIC_EVB3_ID,		WI_NIC_EVB3_STR,	WI_INTERSIL },
205 	{ WI_NIC_HWB1153_ID,		WI_NIC_HWB1153_STR,	WI_INTERSIL },
206 	{ WI_NIC_P2_SST_ID,		WI_NIC_P2_SST_STR,	WI_INTERSIL },
207 	{ WI_NIC_EVB2_SST_ID,		WI_NIC_EVB2_SST_STR,	WI_INTERSIL },
208 	{ WI_NIC_3842_EVA_ID,		WI_NIC_3842_EVA_STR,	WI_INTERSIL },
209 	{ WI_NIC_3842_PCMCIA_AMD_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
210 	{ WI_NIC_3842_PCMCIA_SST_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
211 	{ WI_NIC_3842_PCMCIA_ATL_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
212 	{ WI_NIC_3842_PCMCIA_ATS_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
213 	{ WI_NIC_3842_MINI_AMD_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
214 	{ WI_NIC_3842_MINI_SST_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
215 	{ WI_NIC_3842_MINI_ATL_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
216 	{ WI_NIC_3842_MINI_ATS_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
217 	{ WI_NIC_3842_PCI_AMD_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
218 	{ WI_NIC_3842_PCI_SST_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
219 	{ WI_NIC_3842_PCI_ATS_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
220 	{ WI_NIC_3842_PCI_ATL_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
221 	{ WI_NIC_P3_PCMCIA_AMD_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
222 	{ WI_NIC_P3_PCMCIA_SST_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
223 	{ WI_NIC_P3_PCMCIA_ATL_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
224 	{ WI_NIC_P3_PCMCIA_ATS_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
225 	{ WI_NIC_P3_MINI_AMD_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
226 	{ WI_NIC_P3_MINI_SST_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
227 	{ WI_NIC_P3_MINI_ATL_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
228 	{ WI_NIC_P3_MINI_ATS_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
229 	{ 0,	NULL,	0 },
230 };
231 
232 devclass_t wi_devclass;
233 
234 int
235 wi_attach(device_t dev)
236 {
237 	struct wi_softc	*sc = device_get_softc(dev);
238 	struct ieee80211com *ic = &sc->sc_ic;
239 	struct ifnet *ifp = &ic->ic_if;
240 	int i, nrates, buflen;
241 	u_int16_t val;
242 	u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
243 	struct ieee80211_rateset *rs;
244 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
245 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
246 	};
247 	int error;
248 
249 	ifp->if_softc = sc;
250 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
251 
252 	sc->wi_cmd_count = 500;
253 	/* Reset the NIC. */
254 	error = wi_reset(sc);
255 	if (error)
256 		goto fail;
257 
258 	/*
259 	 * Read the station address.
260 	 * And do it twice. I've seen PRISM-based cards that return
261 	 * an error when trying to read it the first time, which causes
262 	 * the probe to fail.
263 	 */
264 	buflen = IEEE80211_ADDR_LEN;
265 	error = wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen);
266 	if (error != 0) {
267 		buflen = IEEE80211_ADDR_LEN;
268 		error = wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen);
269 	}
270 	if (error) {
271 		device_printf(dev, "mac read failed %d\n", error);
272 		goto fail;
273 	}
274 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
275 		device_printf(dev, "mac read failed (all zeros)\n");
276 		error = ENXIO;
277 		goto fail;
278 	}
279 
280 	/* Read NIC identification */
281 	wi_read_nicid(sc);
282 
283 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
284 	ifp->if_ioctl = wi_ioctl;
285 	ifp->if_start = wi_start;
286 	ifp->if_watchdog = wi_watchdog;
287 	ifp->if_init = wi_init;
288 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
289 	ifq_set_ready(&ifp->if_snd);
290 #ifdef DEVICE_POLLING
291 	ifp->if_poll = wi_poll;
292 #endif
293 	ifp->if_capenable = ifp->if_capabilities;
294 
295 	ic->ic_phytype = IEEE80211_T_DS;
296 	ic->ic_opmode = IEEE80211_M_STA;
297 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_AHDEMO;
298 	ic->ic_state = IEEE80211_S_INIT;
299 
300 	/*
301 	 * Query the card for available channels and setup the
302 	 * channel table.  We assume these are all 11b channels.
303 	 */
304 	buflen = sizeof(val);
305 	if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
306 		val = htole16(0x1fff);	/* assume 1-11 */
307 	KASSERT(val != 0, ("wi_attach: no available channels listed!"));
308 
309 	val <<= 1;			/* shift for base 1 indices */
310 	for (i = 1; i < 16; i++) {
311 		if (isset((u_int8_t*)&val, i)) {
312 			ic->ic_channels[i].ic_freq =
313 				ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
314 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
315 		}
316 	}
317 
318 	/*
319 	 * Read the default channel from the NIC. This may vary
320 	 * depending on the country where the NIC was purchased, so
321 	 * we can't hard-code a default and expect it to work for
322 	 * everyone.
323 	 *
324 	 * If no channel is specified, let the 802.11 code select.
325 	 */
326 	buflen = sizeof(val);
327 	if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0) {
328 		val = le16toh(val);
329 		KASSERT(val < IEEE80211_CHAN_MAX &&
330 			ic->ic_channels[val].ic_flags != 0,
331 			("wi_attach: invalid own channel %u!", val));
332 		ic->ic_ibss_chan = &ic->ic_channels[val];
333 	} else {
334 		device_printf(dev,
335 			"WI_RID_OWN_CHNL failed, using first channel!\n");
336 		ic->ic_ibss_chan = &ic->ic_channels[0];
337 	}
338 
339 	/*
340 	 * Set flags based on firmware version.
341 	 */
342 	switch (sc->sc_firmware_type) {
343 	case WI_LUCENT:
344 		sc->sc_ntxbuf = 1;
345 		sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
346 #ifdef WI_HERMES_AUTOINC_WAR
347 		/* XXX: not confirmed, but never seen for recent firmware */
348 		if (sc->sc_sta_firmware_ver <  40000) {
349 			sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
350 		}
351 #endif
352 		if (sc->sc_sta_firmware_ver >= 60000)
353 			sc->sc_flags |= WI_FLAGS_HAS_MOR;
354 		if (sc->sc_sta_firmware_ver >= 60006) {
355 			ic->ic_caps |= IEEE80211_C_IBSS;
356 			ic->ic_caps |= IEEE80211_C_MONITOR;
357 		}
358 		sc->sc_ibss_port = htole16(1);
359 
360 		sc->sc_min_rssi = WI_LUCENT_MIN_RSSI;
361 		sc->sc_max_rssi = WI_LUCENT_MAX_RSSI;
362 		sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
363 		break;
364 
365 	case WI_INTERSIL:
366 		sc->sc_ntxbuf = WI_NTXBUF;
367 		sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
368 		sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
369 		sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
370 		/*
371 		 * Old firmware are slow, so give peace a chance.
372 		 */
373 		if (sc->sc_sta_firmware_ver < 10000)
374 			sc->wi_cmd_count = 5000;
375 		if (sc->sc_sta_firmware_ver > 10101)
376 			sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
377 		if (sc->sc_sta_firmware_ver >= 800) {
378 			ic->ic_caps |= IEEE80211_C_IBSS;
379 			ic->ic_caps |= IEEE80211_C_MONITOR;
380 		}
381 		/*
382 		 * version 0.8.3 and newer are the only ones that are known
383 		 * to currently work.  Earlier versions can be made to work,
384 		 * at least according to the Linux driver.
385 		 */
386 		if (sc->sc_sta_firmware_ver >= 803)
387 			ic->ic_caps |= IEEE80211_C_HOSTAP;
388 		sc->sc_ibss_port = htole16(0);
389 
390 		sc->sc_min_rssi = WI_PRISM_MIN_RSSI;
391 		sc->sc_max_rssi = WI_PRISM_MAX_RSSI;
392 		sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
393 		break;
394 
395 	case WI_SYMBOL:
396 		sc->sc_ntxbuf = 1;
397 		sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
398 		if (sc->sc_sta_firmware_ver >= 25000)
399 			ic->ic_caps |= IEEE80211_C_IBSS;
400 		sc->sc_ibss_port = htole16(4);
401 
402 		sc->sc_min_rssi = WI_PRISM_MIN_RSSI;
403 		sc->sc_max_rssi = WI_PRISM_MAX_RSSI;
404 		sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
405 		break;
406 	}
407 
408 	/*
409 	 * Find out if we support WEP on this card.
410 	 */
411 	buflen = sizeof(val);
412 	if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
413 	    val != htole16(0))
414 		ic->ic_caps |= IEEE80211_C_WEP;
415 
416 	/* Find supported rates. */
417 	buflen = sizeof(ratebuf);
418 	rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
419 	if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
420 		nrates = le16toh(*(u_int16_t *)ratebuf);
421 		if (nrates > IEEE80211_RATE_MAXSIZE)
422 			nrates = IEEE80211_RATE_MAXSIZE;
423 		rs->rs_nrates = 0;
424 		for (i = 0; i < nrates; i++)
425 			if (ratebuf[2+i])
426 				rs->rs_rates[rs->rs_nrates++] = ratebuf[2+i];
427 	} else {
428 		/* XXX fallback on error? */
429 		rs->rs_nrates = 0;
430 	}
431 
432 	buflen = sizeof(val);
433 	if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
434 	    wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
435 		sc->sc_dbm_offset = le16toh(val);
436 	}
437 
438 	sc->sc_max_datalen = 2304;
439 	sc->sc_system_scale = 1;
440 	sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
441 	sc->sc_roaming_mode = 1;
442 
443 	sc->sc_portnum = WI_DEFAULT_PORT;
444 	sc->sc_authtype = WI_DEFAULT_AUTHTYPE;
445 
446 	bzero(sc->sc_nodename, sizeof(sc->sc_nodename));
447 	sc->sc_nodelen = sizeof(WI_DEFAULT_NODENAME) - 1;
448 	bcopy(WI_DEFAULT_NODENAME, sc->sc_nodename, sc->sc_nodelen);
449 
450 	bzero(sc->sc_net_name, sizeof(sc->sc_net_name));
451 	bcopy(WI_DEFAULT_NETNAME, sc->sc_net_name,
452 	    sizeof(WI_DEFAULT_NETNAME) - 1);
453 
454 	/*
455 	 * Call MI attach routine.
456 	 */
457 	ieee80211_ifattach(ifp);
458 	/* override state transition method */
459 	sc->sc_newstate = ic->ic_newstate;
460 	ic->ic_newstate = wi_newstate;
461 	ieee80211_media_init(ifp, wi_media_change, wi_media_status);
462 
463 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
464 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
465 		&sc->sc_drvbpf);
466 	/*
467 	 * Initialize constant fields.
468 	 * XXX make header lengths a multiple of 32-bits so subsequent
469 	 *     headers are properly aligned; this is a kludge to keep
470 	 *     certain applications happy.
471 	 *
472 	 * NB: the channel is setup each time we transition to the
473 	 *     RUN state to avoid filling it in for each frame.
474 	 */
475 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
476 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
477 	sc->sc_tx_th.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT);
478 
479 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
480 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
481 	sc->sc_rx_th.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT);
482 
483 
484 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
485 			       wi_intr, sc, &sc->wi_intrhand, NULL);
486 	if (error) {
487 		ieee80211_ifdetach(ifp);
488 		device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
489 		goto fail;
490 	}
491 
492 	return(0);
493 
494 fail:
495 	wi_free(dev);
496 	return(error);
497 }
498 
499 int
500 wi_detach(device_t dev)
501 {
502 	struct wi_softc	*sc = device_get_softc(dev);
503 	struct ifnet *ifp = &sc->sc_ic.ic_if;
504 	WI_LOCK_DECL();
505 
506 	WI_LOCK(sc);
507 
508 	/* check if device was removed */
509 	sc->wi_gone |= !bus_child_present(dev);
510 
511 	wi_stop(ifp, 0);
512 
513 	ieee80211_ifdetach(ifp);
514 	wi_free(dev);
515 	WI_UNLOCK(sc);
516 	return (0);
517 }
518 
519 void
520 wi_shutdown(device_t dev)
521 {
522 	struct wi_softc *sc = device_get_softc(dev);
523 
524 	wi_stop(&sc->sc_if, 1);
525 }
526 
527 #ifdef DEVICE_POLLING
528 
529 static void
530 wi_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
531 {
532 	struct wi_softc *sc = ifp->if_softc;
533 	uint16_t status;
534 
535 	switch(cmd) {
536 	case POLL_REGISTER:
537 		/* disable interruptds */
538 		CSR_WRITE_2(sc, WI_INT_EN, 0);
539 		break;
540 	case POLL_DEREGISTER:
541 		/* enable interrupts */
542 		CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
543 		break;
544 	default:
545 		status = CSR_READ_2(sc, WI_EVENT_STAT);
546 
547 		if (status & WI_EV_RX)
548 			wi_rx_intr(sc);
549 		if (status & WI_EV_ALLOC)
550 			wi_tx_intr(sc);
551 		if (status & WI_EV_INFO)
552 			wi_info_intr(sc);
553 
554 		if (cmd == POLL_AND_CHECK_STATUS) {
555 			if (status & WI_EV_INFO)
556 				wi_info_intr(sc);
557 		}
558 
559 		if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
560 		    (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 && !ifq_is_empty(&ifp->if_snd)) {
561 			wi_start(ifp);
562 		}
563 		break;
564 	}
565 }
566 #endif /* DEVICE_POLLING */
567 
568 void
569 wi_intr(void *arg)
570 {
571 	struct wi_softc *sc = arg;
572 	struct ifnet *ifp = &sc->sc_ic.ic_if;
573 	u_int16_t status;
574 	WI_LOCK_DECL();
575 
576 	if (sc->wi_gone || !sc->sc_enabled || (ifp->if_flags & IFF_UP) == 0) {
577 		CSR_WRITE_2(sc, WI_INT_EN, 0);
578 		CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
579 		return;
580 	}
581 
582 	WI_LOCK(sc);
583 
584 	/* Disable interrupts. */
585 	CSR_WRITE_2(sc, WI_INT_EN, 0);
586 
587 	status = CSR_READ_2(sc, WI_EVENT_STAT);
588 	if (status & WI_EV_RX)
589 		wi_rx_intr(sc);
590 	if (status & WI_EV_ALLOC)
591 		wi_tx_intr(sc);
592 	if (status & WI_EV_TX_EXC)
593 		wi_tx_ex_intr(sc);
594 	if (status & WI_EV_INFO)
595 		wi_info_intr(sc);
596 	if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
597 	    (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
598 	    !ifq_is_empty(&ifp->if_snd))
599 		wi_start(ifp);
600 
601 	/* Re-enable interrupts. */
602 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
603 
604 	WI_UNLOCK(sc);
605 
606 	return;
607 }
608 
609 void
610 wi_init(void *arg)
611 {
612 	struct wi_softc *sc = arg;
613 	struct ifnet *ifp = &sc->sc_if;
614 	struct ieee80211com *ic = &sc->sc_ic;
615 	struct wi_joinreq join;
616 	int i;
617 	int error = 0, wasenabled;
618 	WI_LOCK_DECL();
619 
620 	WI_LOCK(sc);
621 
622 	if (sc->wi_gone) {
623 		WI_UNLOCK(sc);
624 		return;
625 	}
626 
627 	if ((wasenabled = sc->sc_enabled))
628 		wi_stop(ifp, 1);
629 	wi_reset(sc);
630 
631 	/* common 802.11 configuration */
632 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
633 	sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
634 	switch (ic->ic_opmode) {
635 	case IEEE80211_M_STA:
636 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
637 		break;
638 	case IEEE80211_M_IBSS:
639 		wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
640 		ic->ic_flags |= IEEE80211_F_IBSSON;
641 		break;
642 	case IEEE80211_M_AHDEMO:
643 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
644 		break;
645 	case IEEE80211_M_HOSTAP:
646 		/*
647 		 * For PRISM cards, override the empty SSID, because in
648 		 * HostAP mode the controller will lock up otherwise.
649 		 */
650 		if (sc->sc_firmware_type == WI_INTERSIL &&
651 		    ic->ic_des_esslen == 0) {
652 			ic->ic_des_essid[0] = ' ';
653 			ic->ic_des_esslen = 1;
654 		}
655 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
656 		break;
657 	case IEEE80211_M_MONITOR:
658 		if (sc->sc_firmware_type == WI_LUCENT)
659 			wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
660 		wi_cmd(sc, WI_CMD_DEBUG | (WI_TEST_MONITOR << 8), 0, 0, 0);
661 		break;
662 	}
663 
664 	/* Intersil interprets this RID as joining ESS even in IBSS mode */
665 	if (sc->sc_firmware_type == WI_LUCENT &&
666 	    (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
667 		wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
668 	else
669 		wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
670 	wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
671 	wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
672 	    ic->ic_des_esslen);
673 	wi_write_val(sc, WI_RID_OWN_CHNL,
674 		ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
675 	wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
676 
677 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
678 	wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
679 
680 	wi_write_val(sc, WI_RID_PM_ENABLED,
681 	    (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
682 
683 	/* not yet common 802.11 configuration */
684 	wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
685 	wi_write_val(sc, WI_RID_RTS_THRESH, ic->ic_rtsthreshold);
686 	if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
687 		wi_write_val(sc, WI_RID_FRAG_THRESH, ic->ic_fragthreshold);
688 
689 	/* driver specific 802.11 configuration */
690 	if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
691 		wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
692 	if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
693 		wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
694 	if (sc->sc_flags & WI_FLAGS_HAS_MOR)
695 		wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
696 	wi_write_txrate(sc);
697 	wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
698 
699 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
700 	    sc->sc_firmware_type == WI_INTERSIL) {
701 		wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
702 		wi_write_val(sc, WI_RID_BASIC_RATE, 0x03);   /* 1, 2 */
703 		wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
704 		wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
705 	}
706 
707 	/*
708 	 * Initialize promisc mode.
709 	 *	Being in the Host-AP mode causes a great
710 	 *	deal of pain if primisc mode is set.
711 	 *	Therefore we avoid confusing the firmware
712 	 *	and always reset promisc mode in Host-AP
713 	 *	mode.  Host-AP sees all the packets anyway.
714 	 */
715 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
716 	    (ifp->if_flags & IFF_PROMISC) != 0) {
717 		wi_write_val(sc, WI_RID_PROMISC, 1);
718 	} else {
719 		wi_write_val(sc, WI_RID_PROMISC, 0);
720 	}
721 
722 	/* Configure WEP. */
723 	if (ic->ic_caps & IEEE80211_C_WEP)
724 		wi_write_wep(sc);
725 
726 	/* Set multicast filter. */
727 	wi_write_multi(sc);
728 
729 	/* Allocate fids for the card */
730 	if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
731 		sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
732 		if (sc->sc_firmware_type == WI_SYMBOL)
733 			sc->sc_buflen = 1585;	/* XXX */
734 		for (i = 0; i < sc->sc_ntxbuf; i++) {
735 			error = wi_alloc_fid(sc, sc->sc_buflen,
736 			    &sc->sc_txd[i].d_fid);
737 			if (error) {
738 				if_printf(ifp,
739 				    "tx buffer allocation failed (error %u)\n",
740 				    error);
741 				goto out;
742 			}
743 			sc->sc_txd[i].d_len = 0;
744 		}
745 	}
746 	sc->sc_txcur = sc->sc_txnext = 0;
747 
748 	/* Enable desired port */
749 	wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
750 
751 	sc->sc_enabled = 1;
752 	ifp->if_flags |= IFF_RUNNING;
753 	ifp->if_flags &= ~IFF_OACTIVE;
754 	if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
755 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
756 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
757 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
758 
759 	/* Enable interrupts if not polling */
760 #ifdef DEVICE_POLLING
761 	if ((ifp->if_flags & IFF_POLLING) == 0)
762 #endif
763 		CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
764 
765 	if (!wasenabled &&
766 	    ic->ic_opmode == IEEE80211_M_HOSTAP &&
767 	    sc->sc_firmware_type == WI_INTERSIL) {
768 		/* XXX: some card need to be re-enabled for hostap */
769 		wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
770 		wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
771 	}
772 
773 	if (ic->ic_opmode == IEEE80211_M_STA &&
774 	    ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
775 	    ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
776 		memset(&join, 0, sizeof(join));
777 		if (ic->ic_flags & IEEE80211_F_DESBSSID)
778 			IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
779 		if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
780 			join.wi_chan = htole16(
781 				ieee80211_chan2ieee(ic, ic->ic_des_chan));
782 		/* Lucent firmware does not support the JOIN RID. */
783 		if (sc->sc_firmware_type != WI_LUCENT)
784 			wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
785 	}
786 
787 	WI_UNLOCK(sc);
788 	return;
789 out:
790 	if (error) {
791 		if_printf(ifp, "interface not running\n");
792 		wi_stop(ifp, 1);
793 	}
794 	WI_UNLOCK(sc);
795 	DPRINTF((ifp, "wi_init: return %d\n", error));
796 	return;
797 }
798 
799 void
800 wi_stop(struct ifnet *ifp, int disable)
801 {
802 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
803 	struct wi_softc *sc = ifp->if_softc;
804 	WI_LOCK_DECL();
805 
806 	WI_LOCK(sc);
807 
808 	DELAY(100000);
809 
810 	ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
811 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
812 	if (sc->sc_enabled && !sc->wi_gone) {
813 		CSR_WRITE_2(sc, WI_INT_EN, 0);
814 		wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
815 		if (disable) {
816 #ifdef __NetBSD__
817 			if (sc->sc_disable)
818 				(*sc->sc_disable)(sc);
819 #endif
820 			sc->sc_enabled = 0;
821 		}
822 	} else if (sc->wi_gone && disable)	/* gone --> not enabled */
823 	    sc->sc_enabled = 0;
824 
825 	sc->sc_tx_timer = 0;
826 	sc->sc_scan_timer = 0;
827 	sc->sc_syn_timer = 0;
828 	sc->sc_false_syns = 0;
829 	sc->sc_naps = 0;
830 	ifp->if_timer = 0;
831 
832 	WI_UNLOCK(sc);
833 }
834 
835 static void
836 wi_start(struct ifnet *ifp)
837 {
838 	struct wi_softc	*sc = ifp->if_softc;
839 	struct ieee80211com *ic = &sc->sc_ic;
840 	struct ieee80211_node *ni;
841 	struct ieee80211_frame *wh;
842 	struct mbuf *m0;
843 	struct wi_frame frmhdr;
844 	int cur, fid, off, error;
845 	WI_LOCK_DECL();
846 
847 	WI_LOCK(sc);
848 
849 	if (sc->wi_gone) {
850 		WI_UNLOCK(sc);
851 		return;
852 	}
853 	if (sc->sc_flags & WI_FLAGS_OUTRANGE) {
854 		WI_UNLOCK(sc);
855 		return;
856 	}
857 
858 	memset(&frmhdr, 0, sizeof(frmhdr));
859 	cur = sc->sc_txnext;
860 	for (;;) {
861 		IF_POLL(&ic->ic_mgtq, m0);
862 		if (m0 != NULL) {
863 			if (sc->sc_txd[cur].d_len != 0) {
864 				ifp->if_flags |= IFF_OACTIVE;
865 				break;
866 			}
867 			IF_DEQUEUE(&ic->ic_mgtq, m0);
868 			/*
869 			 * Hack!  The referenced node pointer is in the
870 			 * rcvif field of the packet header.  This is
871 			 * placed there by ieee80211_mgmt_output because
872 			 * we need to hold the reference with the frame
873 			 * and there's no other way (other than packet
874 			 * tags which we consider too expensive to use)
875 			 * to pass it along.
876 			 */
877 			ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif;
878 			m0->m_pkthdr.rcvif = NULL;
879 
880 			m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
881 			    (caddr_t)&frmhdr.wi_ehdr);
882 			frmhdr.wi_ehdr.ether_type = 0;
883                         wh = mtod(m0, struct ieee80211_frame *);
884 		} else {
885 			if (ic->ic_state != IEEE80211_S_RUN)
886 				break;
887 			m0 = ifq_poll(&ifp->if_snd);
888 			if (m0 == NULL)
889 				break;
890 			if (sc->sc_txd[cur].d_len != 0) {
891 				ifp->if_flags |= IFF_OACTIVE;
892 				break;
893 			}
894 			m0 = ifq_dequeue(&ifp->if_snd);
895 			ifp->if_opackets++;
896 			m_copydata(m0, 0, ETHER_HDR_LEN,
897 			    (caddr_t)&frmhdr.wi_ehdr);
898 			BPF_MTAP(ifp, m0);
899 
900 			m0 = ieee80211_encap(ifp, m0, &ni);
901 			if (m0 == NULL) {
902 				ifp->if_oerrors++;
903 				continue;
904 			}
905                         wh = mtod(m0, struct ieee80211_frame *);
906 			if (ic->ic_flags & IEEE80211_F_WEPON)
907 				wh->i_fc[1] |= IEEE80211_FC1_WEP;
908 
909 		}
910 
911 		if (ic->ic_rawbpf != NULL)
912 			bpf_mtap(ic->ic_rawbpf, m0);
913 
914 		frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX);
915 		if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
916 		    (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
917 			if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
918 				ifp->if_oerrors++;
919 				if (ni && ni != ic->ic_bss)
920 					ieee80211_free_node(ic, ni);
921 				continue;
922 			}
923 			frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
924 		}
925 
926 		if (sc->sc_drvbpf) {
927 			sc->sc_tx_th.wt_rate =
928 				ni->ni_rates.rs_rates[ni->ni_txrate];
929 			bpf_ptap(sc->sc_drvbpf, m0, &sc->sc_tx_th,
930 				 sc->sc_tx_th_len);
931 		}
932 
933 		m_copydata(m0, 0, sizeof(struct ieee80211_frame),
934 		    (caddr_t)&frmhdr.wi_whdr);
935 		m_adj(m0, sizeof(struct ieee80211_frame));
936 		frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
937 		if (IFF_DUMPPKTS(ifp))
938 			wi_dump_pkt(&frmhdr, NULL, -1);
939 		fid = sc->sc_txd[cur].d_fid;
940 		off = sizeof(frmhdr);
941 		error = wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0
942 		     || wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0;
943 		m_freem(m0);
944 		if (ni && ni != ic->ic_bss)
945 			ieee80211_free_node(ic, ni);
946 		if (error) {
947 			ifp->if_oerrors++;
948 			continue;
949 		}
950 		sc->sc_txd[cur].d_len = off;
951 		if (sc->sc_txcur == cur) {
952 			if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
953 				if_printf(ifp, "xmit failed\n");
954 				sc->sc_txd[cur].d_len = 0;
955 				continue;
956 			}
957 			sc->sc_tx_timer = 5;
958 			ifp->if_timer = 1;
959 		}
960 		sc->sc_txnext = cur = (cur + 1) % sc->sc_ntxbuf;
961 	}
962 
963 	WI_UNLOCK(sc);
964 }
965 
966 static int
967 wi_reset(struct wi_softc *sc)
968 {
969 	struct ieee80211com *ic = &sc->sc_ic;
970 	struct ifnet *ifp = &ic->ic_if;
971 #define WI_INIT_TRIES 3
972 	int i;
973 	int error = 0;
974 	int tries;
975 
976 	/* Symbol firmware cannot be initialized more than once */
977 	if (sc->sc_firmware_type == WI_SYMBOL && sc->sc_reset)
978 		return (0);
979 	if (sc->sc_firmware_type == WI_SYMBOL)
980 		tries = 1;
981 	else
982 		tries = WI_INIT_TRIES;
983 
984 	for (i = 0; i < tries; i++) {
985 		if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
986 			break;
987 		DELAY(WI_DELAY * 1000);
988 	}
989 	sc->sc_reset = 1;
990 
991 	if (i == tries) {
992 		if_printf(ifp, "init failed\n");
993 		return (error);
994 	}
995 
996 	CSR_WRITE_2(sc, WI_INT_EN, 0);
997 	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
998 
999 	/* Calibrate timer. */
1000 	wi_write_val(sc, WI_RID_TICK_TIME, 8);
1001 
1002 	return (0);
1003 #undef WI_INIT_TRIES
1004 }
1005 
1006 static void
1007 wi_watchdog(struct ifnet *ifp)
1008 {
1009 	struct wi_softc	*sc = ifp->if_softc;
1010 
1011 	ifp->if_timer = 0;
1012 	if (!sc->sc_enabled)
1013 		return;
1014 
1015 	if (sc->sc_tx_timer) {
1016 		if (--sc->sc_tx_timer == 0) {
1017 			if_printf(ifp, "device timeout\n");
1018 			ifp->if_oerrors++;
1019 			wi_init(ifp->if_softc);
1020 			return;
1021 		}
1022 		ifp->if_timer = 1;
1023 	}
1024 
1025 	if (sc->sc_scan_timer) {
1026 		if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1027 		    sc->sc_firmware_type == WI_INTERSIL) {
1028 			DPRINTF((ifp, "wi_watchdog: inquire scan\n"));
1029 			wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1030 		}
1031 		if (sc->sc_scan_timer)
1032 			ifp->if_timer = 1;
1033 	}
1034 
1035 	if (sc->sc_syn_timer) {
1036 		if (--sc->sc_syn_timer == 0) {
1037 			struct ieee80211com *ic = (struct ieee80211com *) ifp;
1038 			DPRINTF2((ifp, "wi_watchdog: %d false syns\n",
1039 			    sc->sc_false_syns));
1040 			sc->sc_false_syns = 0;
1041 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1042 			sc->sc_syn_timer = 5;
1043 		}
1044 		ifp->if_timer = 1;
1045 	}
1046 
1047 	/* TODO: rate control */
1048 	ieee80211_watchdog(ifp);
1049 }
1050 
1051 static int
1052 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1053 {
1054 	struct wi_softc *sc = ifp->if_softc;
1055 	struct ieee80211com *ic = &sc->sc_ic;
1056 	struct ifreq *ifr = (struct ifreq *)data;
1057 	struct ieee80211req *ireq;
1058 	u_int8_t nodename[IEEE80211_NWID_LEN];
1059 	int error = 0;
1060 	struct wi_req wreq;
1061 	WI_LOCK_DECL();
1062 
1063 	WI_LOCK(sc);
1064 
1065 	if (sc->wi_gone) {
1066 		error = ENODEV;
1067 		goto out;
1068 	}
1069 
1070 	switch (cmd) {
1071 	case SIOCSIFFLAGS:
1072 		/*
1073 		 * Can't do promisc and hostap at the same time.  If all that's
1074 		 * changing is the promisc flag, try to short-circuit a call to
1075 		 * wi_init() by just setting PROMISC in the hardware.
1076 		 */
1077 		if (ifp->if_flags & IFF_UP) {
1078 			if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1079 			    ifp->if_flags & IFF_RUNNING) {
1080 				if (ifp->if_flags & IFF_PROMISC &&
1081 				    !(sc->sc_if_flags & IFF_PROMISC)) {
1082 					wi_write_val(sc, WI_RID_PROMISC, 1);
1083 				} else if (!(ifp->if_flags & IFF_PROMISC) &&
1084 				    sc->sc_if_flags & IFF_PROMISC) {
1085 					wi_write_val(sc, WI_RID_PROMISC, 0);
1086 				} else {
1087 					wi_init(sc);
1088 				}
1089 			} else {
1090 				wi_init(sc);
1091 			}
1092 		} else {
1093 			if (ifp->if_flags & IFF_RUNNING) {
1094 				wi_stop(ifp, 1);
1095 			}
1096 			sc->wi_gone = 0;
1097 		}
1098 		sc->sc_if_flags = ifp->if_flags;
1099 		error = 0;
1100 		break;
1101 	case SIOCADDMULTI:
1102 	case SIOCDELMULTI:
1103 		error = wi_write_multi(sc);
1104 		break;
1105 	case SIOCGIFGENERIC:
1106 		error = wi_get_cfg(ifp, cmd, data, cr);
1107 		break;
1108 	case SIOCSIFGENERIC:
1109 		error = suser_cred(cr, NULL_CRED_OKAY);
1110 		if (error)
1111 			break;
1112 		error = wi_set_cfg(ifp, cmd, data);
1113 		break;
1114 	case SIOCGPRISM2DEBUG:
1115 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1116 		if (error)
1117 			break;
1118 		if (!(ifp->if_flags & IFF_RUNNING) ||
1119 		    sc->sc_firmware_type == WI_LUCENT) {
1120 			error = EIO;
1121 			break;
1122 		}
1123 		error = wi_get_debug(sc, &wreq);
1124 		if (error == 0)
1125 			error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1126 		break;
1127 	case SIOCSPRISM2DEBUG:
1128 		if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1129 			goto out;
1130 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1131 		if (error)
1132 			break;
1133 		error = wi_set_debug(sc, &wreq);
1134 		break;
1135 	case SIOCG80211:
1136 		ireq = (struct ieee80211req *) data;
1137 		switch (ireq->i_type) {
1138 		case IEEE80211_IOC_STATIONNAME:
1139 			ireq->i_len = sc->sc_nodelen + 1;
1140 			error = copyout(sc->sc_nodename, ireq->i_data,
1141 					ireq->i_len);
1142 			break;
1143 		default:
1144 			error = ieee80211_ioctl(ifp, cmd, data, cr);
1145 			break;
1146 		}
1147 		break;
1148 	case SIOCS80211:
1149 		error = suser_cred(cr, NULL_CRED_OKAY);
1150 		if (error)
1151 			break;
1152 		ireq = (struct ieee80211req *) data;
1153 		switch (ireq->i_type) {
1154 		case IEEE80211_IOC_STATIONNAME:
1155 			if (ireq->i_val != 0 ||
1156 			    ireq->i_len > IEEE80211_NWID_LEN) {
1157 				error = EINVAL;
1158 				break;
1159 			}
1160 			memset(nodename, 0, IEEE80211_NWID_LEN);
1161 			error = copyin(ireq->i_data, nodename, ireq->i_len);
1162 			if (error)
1163 				break;
1164 			if (sc->sc_enabled) {
1165 				error = wi_write_ssid(sc, WI_RID_NODENAME,
1166 					nodename, ireq->i_len);
1167 				if (error)
1168 					break;
1169 			}
1170 			memcpy(sc->sc_nodename, nodename, IEEE80211_NWID_LEN);
1171 			sc->sc_nodelen = ireq->i_len;
1172 			break;
1173 		default:
1174 			error = ieee80211_ioctl(ifp, cmd, data, cr);
1175 			break;
1176 		}
1177 		break;
1178 	case SIOCSIFCAP:
1179 		if (ifp->if_flags & IFF_RUNNING)
1180 			wi_init(sc);
1181 		break;
1182 	default:
1183 		error = ieee80211_ioctl(ifp, cmd, data, cr);
1184 		break;
1185 	}
1186 	if (error == ENETRESET) {
1187 		if (sc->sc_enabled)
1188 			wi_init(sc);	/* XXX no error return */
1189 		error = 0;
1190 	}
1191 out:
1192 	WI_UNLOCK(sc);
1193 
1194 	return (error);
1195 }
1196 
1197 static int
1198 wi_media_change(struct ifnet *ifp)
1199 {
1200 	struct wi_softc *sc = ifp->if_softc;
1201 	int error;
1202 
1203 	error = ieee80211_media_change(ifp);
1204 	if (error == ENETRESET) {
1205 		if (sc->sc_enabled)
1206 			wi_init(sc);	/* XXX no error return */
1207 		error = 0;
1208 	}
1209 	return error;
1210 }
1211 
1212 static void
1213 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1214 {
1215 	struct wi_softc *sc = ifp->if_softc;
1216 	struct ieee80211com *ic = &sc->sc_ic;
1217 	u_int16_t val;
1218 	int rate, len;
1219 
1220 	if (sc->wi_gone || !sc->sc_enabled) {
1221 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1222 		imr->ifm_status = 0;
1223 		return;
1224 	}
1225 
1226 	imr->ifm_status = IFM_AVALID;
1227 	imr->ifm_active = IFM_IEEE80211;
1228 	if (ic->ic_state == IEEE80211_S_RUN &&
1229 	    (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1230 		imr->ifm_status |= IFM_ACTIVE;
1231 	len = sizeof(val);
1232 	if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1233 		rate = 0;
1234 	else {
1235 		/* convert to 802.11 rate */
1236 		rate = val * 2;
1237 		if (sc->sc_firmware_type == WI_LUCENT) {
1238 			if (rate == 4 * 2)
1239 				rate = 11;	/* 5.5Mbps */
1240 			else if (rate == 5 * 2)
1241 				rate = 22;	/* 11Mbps */
1242 		} else {
1243 			if (rate == 4*2)
1244 				rate = 11;	/* 5.5Mbps */
1245 			else if (rate == 8*2)
1246 				rate = 22;	/* 11Mbps */
1247 		}
1248 	}
1249 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1250 	switch (ic->ic_opmode) {
1251 	case IEEE80211_M_STA:
1252 		break;
1253 	case IEEE80211_M_IBSS:
1254 		imr->ifm_active |= IFM_IEEE80211_ADHOC;
1255 		break;
1256 	case IEEE80211_M_AHDEMO:
1257 		imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1258 		break;
1259 	case IEEE80211_M_HOSTAP:
1260 		imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1261 		break;
1262 	case IEEE80211_M_MONITOR:
1263 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
1264 		break;
1265 	}
1266 }
1267 
1268 static void
1269 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1270 {
1271 	struct ieee80211com *ic = &sc->sc_ic;
1272 	struct ieee80211_node *ni = ic->ic_bss;
1273 	struct ifnet *ifp = &ic->ic_if;
1274 
1275 	if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1276 		return;
1277 
1278 	DPRINTF((ifp, "wi_sync_bssid: bssid %6D -> %6D ?\n", ni->ni_bssid, ":",
1279 	    new_bssid, ":"));
1280 
1281 	/* In promiscuous mode, the BSSID field is not a reliable
1282 	 * indicator of the firmware's BSSID. Damp spurious
1283 	 * change-of-BSSID indications.
1284 	 */
1285 	if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1286 	    sc->sc_false_syns >= WI_MAX_FALSE_SYNS)
1287 		return;
1288 
1289 	ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1290 }
1291 
1292 static void
1293 wi_rx_monitor(struct wi_softc *sc, int fid)
1294 {
1295 	struct ieee80211com *ic = &sc->sc_ic;
1296 	struct ifnet *ifp = &ic->ic_if;
1297 	struct wi_frame *rx_frame;
1298 	struct mbuf *m;
1299 	int datlen, hdrlen;
1300 
1301 	/* first allocate mbuf for packet storage */
1302 	m = m_getcl(MB_DONTWAIT, MT_DATA, 0);
1303 	if (m == NULL) {
1304 		ifp->if_ierrors++;
1305 		return;
1306 	}
1307 
1308 	m->m_pkthdr.rcvif = ifp;
1309 
1310 	/* now read wi_frame first so we know how much data to read */
1311 	if (wi_read_bap(sc, fid, 0, mtod(m, caddr_t), sizeof(*rx_frame))) {
1312 		ifp->if_ierrors++;
1313 		goto done;
1314 	}
1315 
1316 	rx_frame = mtod(m, struct wi_frame *);
1317 
1318 	switch ((rx_frame->wi_status & WI_STAT_MAC_PORT) >> 8) {
1319 	case 7:
1320 		switch (rx_frame->wi_whdr.i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1321 		case IEEE80211_FC0_TYPE_DATA:
1322 			hdrlen = WI_DATA_HDRLEN;
1323 			datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
1324 			break;
1325 		case IEEE80211_FC0_TYPE_MGT:
1326 			hdrlen = WI_MGMT_HDRLEN;
1327 			datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
1328 			break;
1329 		case IEEE80211_FC0_TYPE_CTL:
1330 			/*
1331 			 * prism2 cards don't pass control packets
1332 			 * down properly or consistently, so we'll only
1333 			 * pass down the header.
1334 			 */
1335 			hdrlen = WI_CTL_HDRLEN;
1336 			datlen = 0;
1337 			break;
1338 		default:
1339 			if_printf(ifp, "received packet of unknown type "
1340 				"on port 7\n");
1341 			ifp->if_ierrors++;
1342 			goto done;
1343 		}
1344 		break;
1345 	case 0:
1346 		hdrlen = WI_DATA_HDRLEN;
1347 		datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
1348 		break;
1349 	default:
1350 		if_printf(ifp, "received packet on invalid "
1351 		    "port (wi_status=0x%x)\n", rx_frame->wi_status);
1352 		ifp->if_ierrors++;
1353 		goto done;
1354 	}
1355 
1356 	if (hdrlen + datlen + 2 > MCLBYTES) {
1357 		if_printf(ifp, "oversized packet received "
1358 		    "(wi_dat_len=%d, wi_status=0x%x)\n",
1359 		    datlen, rx_frame->wi_status);
1360 		ifp->if_ierrors++;
1361 		goto done;
1362 	}
1363 
1364 	if (wi_read_bap(sc, fid, hdrlen, mtod(m, caddr_t) + hdrlen,
1365 	    datlen + 2) == 0) {
1366 		m->m_pkthdr.len = m->m_len = hdrlen + datlen;
1367 		ifp->if_ipackets++;
1368 		BPF_MTAP(ifp, m);	/* Handle BPF listeners. */
1369 	} else
1370 		ifp->if_ierrors++;
1371 done:
1372 	m_freem(m);
1373 }
1374 
1375 static void
1376 wi_rx_intr(struct wi_softc *sc)
1377 {
1378 	struct ieee80211com *ic = &sc->sc_ic;
1379 	struct ifnet *ifp = &ic->ic_if;
1380 	struct wi_frame frmhdr;
1381 	struct mbuf *m;
1382 	struct ieee80211_frame *wh;
1383 	struct ieee80211_node *ni;
1384 	int fid, len, off, rssi;
1385 	u_int8_t dir;
1386 	u_int16_t status;
1387 	u_int32_t rstamp;
1388 
1389 	fid = CSR_READ_2(sc, WI_RX_FID);
1390 
1391 	if (sc->wi_debug.wi_monitor) {
1392 		/*
1393 		 * If we are in monitor mode just
1394 		 * read the data from the device.
1395 		 */
1396 		wi_rx_monitor(sc, fid);
1397 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1398 		return;
1399 	}
1400 
1401 	/* First read in the frame header */
1402 	if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1403 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1404 		ifp->if_ierrors++;
1405 		DPRINTF((ifp, "wi_rx_intr: read fid %x failed\n", fid));
1406 		return;
1407 	}
1408 
1409 	if (IFF_DUMPPKTS(ifp))
1410 		wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1411 
1412 	/*
1413 	 * Drop undecryptable or packets with receive errors here
1414 	 */
1415 	status = le16toh(frmhdr.wi_status);
1416 	if (status & WI_STAT_ERRSTAT) {
1417 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1418 		ifp->if_ierrors++;
1419 		DPRINTF((ifp, "wi_rx_intr: fid %x error status %x\n",
1420 			 fid, status));
1421 		return;
1422 	}
1423 	rssi = frmhdr.wi_rx_signal;
1424 	rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1425 	    le16toh(frmhdr.wi_rx_tstamp1);
1426 
1427 	len = le16toh(frmhdr.wi_dat_len);
1428 	off = ALIGN(sizeof(struct ieee80211_frame));
1429 
1430 	/*
1431 	 * Sometimes the PRISM2.x returns bogusly large frames. Except
1432 	 * in monitor mode, just throw them away.
1433 	 */
1434 	if (off + len > MCLBYTES) {
1435 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1436 			CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1437 			ifp->if_ierrors++;
1438 			DPRINTF((ifp, "wi_rx_intr: oversized packet\n"));
1439 			return;
1440 		} else
1441 			len = 0;
1442 	}
1443 
1444 	m = m_getl(off + len, MB_DONTWAIT, MT_DATA, M_PKTHDR, NULL);
1445 	if (m == NULL) {
1446 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1447 		ifp->if_ierrors++;
1448 		DPRINTF((ifp, "wi_rx_intr: m_getl failed\n"));
1449 		return;
1450 	}
1451 
1452 	m->m_data += off - sizeof(struct ieee80211_frame);
1453 	memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1454 	wi_read_bap(sc, fid, sizeof(frmhdr),
1455 	    m->m_data + sizeof(struct ieee80211_frame), len);
1456 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1457 	m->m_pkthdr.rcvif = ifp;
1458 
1459 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1460 
1461 	if (sc->sc_drvbpf) {
1462 		/* XXX replace divide by table */
1463 		sc->sc_rx_th.wr_rate = frmhdr.wi_rx_rate / 5;
1464 		sc->sc_rx_th.wr_antsignal = frmhdr.wi_rx_signal;
1465 		sc->sc_rx_th.wr_antnoise = frmhdr.wi_rx_silence;
1466 		sc->sc_rx_th.wr_flags = 0;
1467 		if (frmhdr.wi_status & WI_STAT_PCF)
1468 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1469 		bpf_ptap(sc->sc_drvbpf, m, &sc->sc_rx_th, sc->sc_rx_th_len);
1470 	}
1471 
1472 	wh = mtod(m, struct ieee80211_frame *);
1473 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1474 		/*
1475 		 * WEP is decrypted by hardware. Clear WEP bit
1476 		 * header for ieee80211_input().
1477 		 */
1478 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1479 	}
1480 
1481 	/* synchronize driver's BSSID with firmware's BSSID */
1482 	dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1483 	if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1484 		wi_sync_bssid(sc, wh->i_addr3);
1485 
1486 	/*
1487 	 * Locate the node for sender, track state, and
1488 	 * then pass this node (referenced) up to the 802.11
1489 	 * layer for its use.  We are required to pass
1490 	 * something so we fallback to ic_bss when this frame
1491 	 * is from an unknown sender.
1492 	 */
1493 	if (ic->ic_opmode != IEEE80211_M_STA) {
1494 		ni = ieee80211_find_node(ic, wh->i_addr2);
1495 		if (ni == NULL)
1496 			ni = ieee80211_ref_node(ic->ic_bss);
1497 	} else
1498 		ni = ieee80211_ref_node(ic->ic_bss);
1499 	/*
1500 	 * Send frame up for processing.
1501 	 */
1502 	ieee80211_input(ifp, m, ni, rssi, rstamp);
1503 	/*
1504 	 * The frame may have caused the node to be marked for
1505 	 * reclamation (e.g. in response to a DEAUTH message)
1506 	 * so use free_node here instead of unref_node.
1507 	 */
1508 	if (ni == ic->ic_bss)
1509 		ieee80211_unref_node(&ni);
1510 	else
1511 		ieee80211_free_node(ic, ni);
1512 }
1513 
1514 static void
1515 wi_tx_ex_intr(struct wi_softc *sc)
1516 {
1517 	struct ieee80211com *ic = &sc->sc_ic;
1518 	struct ifnet *ifp = &ic->ic_if;
1519 	struct wi_frame frmhdr;
1520 	int fid;
1521 
1522 	fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1523 	/* Read in the frame header */
1524 	if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) == 0) {
1525 		u_int16_t status = le16toh(frmhdr.wi_status);
1526 
1527 		/*
1528 		 * Spontaneous station disconnects appear as xmit
1529 		 * errors.  Don't announce them and/or count them
1530 		 * as an output error.
1531 		 */
1532 		if ((status & WI_TXSTAT_DISCONNECT) == 0) {
1533 			if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1534 				if_printf(ifp, "tx failed");
1535 				if (status & WI_TXSTAT_RET_ERR)
1536 					printf(", retry limit exceeded");
1537 				if (status & WI_TXSTAT_AGED_ERR)
1538 					printf(", max transmit lifetime exceeded");
1539 				if (status & WI_TXSTAT_DISCONNECT)
1540 					printf(", port disconnected");
1541 				if (status & WI_TXSTAT_FORM_ERR)
1542 					printf(", invalid format (data len %u src %6D)",
1543 						le16toh(frmhdr.wi_dat_len),
1544 						frmhdr.wi_ehdr.ether_shost, ":");
1545 				if (status & ~0xf)
1546 					printf(", status=0x%x", status);
1547 				printf("\n");
1548 			}
1549 			ifp->if_oerrors++;
1550 		} else {
1551 			DPRINTF((ifp, "port disconnected\n"));
1552 			ifp->if_collisions++;	/* XXX */
1553 		}
1554 	} else
1555 		DPRINTF((ifp, "wi_tx_ex_intr: read fid %x failed\n", fid));
1556 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
1557 }
1558 
1559 static void
1560 wi_tx_intr(struct wi_softc *sc)
1561 {
1562 	struct ieee80211com *ic = &sc->sc_ic;
1563 	struct ifnet *ifp = &ic->ic_if;
1564 	int fid, cur;
1565 
1566 	if (sc->wi_gone)
1567 		return;
1568 
1569 	fid = CSR_READ_2(sc, WI_ALLOC_FID);
1570 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1571 
1572 	cur = sc->sc_txcur;
1573 	if (sc->sc_txd[cur].d_fid != fid) {
1574 		if_printf(ifp, "bad alloc %x != %x, cur %d nxt %d\n",
1575 		    fid, sc->sc_txd[cur].d_fid, cur, sc->sc_txnext);
1576 		return;
1577 	}
1578 	sc->sc_tx_timer = 0;
1579 	sc->sc_txd[cur].d_len = 0;
1580 	sc->sc_txcur = cur = (cur + 1) % sc->sc_ntxbuf;
1581 	if (sc->sc_txd[cur].d_len == 0)
1582 		ifp->if_flags &= ~IFF_OACTIVE;
1583 	else {
1584 		if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1585 		    0, 0)) {
1586 			if_printf(ifp, "xmit failed\n");
1587 			sc->sc_txd[cur].d_len = 0;
1588 		} else {
1589 			sc->sc_tx_timer = 5;
1590 			ifp->if_timer = 1;
1591 		}
1592 	}
1593 }
1594 
1595 static void
1596 wi_info_intr(struct wi_softc *sc)
1597 {
1598 	struct ieee80211com *ic = &sc->sc_ic;
1599 	struct ifnet *ifp = &ic->ic_if;
1600 	int i, fid, len, off;
1601 	u_int16_t ltbuf[2];
1602 	u_int16_t stat;
1603 	u_int32_t *ptr;
1604 
1605 	fid = CSR_READ_2(sc, WI_INFO_FID);
1606 	wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1607 
1608 	switch (le16toh(ltbuf[1])) {
1609 
1610 	case WI_INFO_LINK_STAT:
1611 		wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1612 		DPRINTF((ifp, "wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1613 		switch (le16toh(stat)) {
1614 		case WI_INFO_LINK_STAT_CONNECTED:
1615 			sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1616 			if (ic->ic_state == IEEE80211_S_RUN &&
1617 			    ic->ic_opmode != IEEE80211_M_IBSS)
1618 				break;
1619 			/* FALLTHROUGH */
1620 		case WI_INFO_LINK_STAT_AP_CHG:
1621 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1622 			break;
1623 		case WI_INFO_LINK_STAT_AP_INR:
1624 			sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1625 			break;
1626 		case WI_INFO_LINK_STAT_AP_OOR:
1627 			if (sc->sc_firmware_type == WI_SYMBOL &&
1628 			    sc->sc_scan_timer > 0) {
1629 				if (wi_cmd(sc, WI_CMD_INQUIRE,
1630 				    WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1631 					sc->sc_scan_timer = 0;
1632 				break;
1633 			}
1634 			if (ic->ic_opmode == IEEE80211_M_STA)
1635 				sc->sc_flags |= WI_FLAGS_OUTRANGE;
1636 			break;
1637 		case WI_INFO_LINK_STAT_DISCONNECTED:
1638 		case WI_INFO_LINK_STAT_ASSOC_FAILED:
1639 			if (ic->ic_opmode == IEEE80211_M_STA)
1640 				ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1641 			break;
1642 		}
1643 		break;
1644 
1645 	case WI_INFO_COUNTERS:
1646 		/* some card versions have a larger stats structure */
1647 		len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1648 		ptr = (u_int32_t *)&sc->sc_stats;
1649 		off = sizeof(ltbuf);
1650 		for (i = 0; i < len; i++, off += 2, ptr++) {
1651 			wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1652 #ifdef WI_HERMES_STATS_WAR
1653 			if (stat & 0xf000)
1654 				stat = ~stat;
1655 #endif
1656 			*ptr += stat;
1657 		}
1658 		ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1659 		    sc->sc_stats.wi_tx_multi_retries +
1660 		    sc->sc_stats.wi_tx_retry_limit;
1661 		break;
1662 
1663 	case WI_INFO_SCAN_RESULTS:
1664 	case WI_INFO_HOST_SCAN_RESULTS:
1665 		wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1666 		break;
1667 
1668 	default:
1669 		DPRINTF((ifp, "wi_info_intr: got fid %x type %x len %d\n", fid,
1670 		    le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1671 		break;
1672 	}
1673 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1674 }
1675 
1676 static int
1677 wi_write_multi(struct wi_softc *sc)
1678 {
1679 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1680 	int n;
1681 	struct ifmultiaddr *ifma;
1682 	struct wi_mcast mlist;
1683 
1684 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1685 allmulti:
1686 		memset(&mlist, 0, sizeof(mlist));
1687 		return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1688 		    sizeof(mlist));
1689 	}
1690 
1691 	n = 0;
1692 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1693 		if (ifma->ifma_addr->sa_family != AF_LINK)
1694 			continue;
1695 		if (n >= 16)
1696 			goto allmulti;
1697 		IEEE80211_ADDR_COPY(&mlist.wi_mcast[n],
1698 		    (LLADDR((struct sockaddr_dl *)ifma->ifma_addr)));
1699 		n++;
1700 	}
1701 	return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1702 	    IEEE80211_ADDR_LEN * n);
1703 }
1704 
1705 static void
1706 wi_read_nicid(struct wi_softc *sc)
1707 {
1708 	struct wi_card_ident *id;
1709 	char *p;
1710 	int len;
1711 	u_int16_t ver[4];
1712 
1713 	/* getting chip identity */
1714 	memset(ver, 0, sizeof(ver));
1715 	len = sizeof(ver);
1716 	wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1717 	if_printf(&sc->sc_ic.ic_if, "using ");
1718 
1719 	sc->sc_firmware_type = WI_NOTYPE;
1720 	for (id = wi_card_ident; id->card_name != NULL; id++) {
1721 		if (le16toh(ver[0]) == id->card_id) {
1722 			printf("%s", id->card_name);
1723 			sc->sc_firmware_type = id->firm_type;
1724 			break;
1725 		}
1726 	}
1727 	if (sc->sc_firmware_type == WI_NOTYPE) {
1728 		if (le16toh(ver[0]) & 0x8000) {
1729 			printf("Unknown PRISM2 chip");
1730 			sc->sc_firmware_type = WI_INTERSIL;
1731 		} else {
1732 			printf("Unknown Lucent chip");
1733 			sc->sc_firmware_type = WI_LUCENT;
1734 		}
1735 	}
1736 
1737 	/* get primary firmware version (Only Prism chips) */
1738 	if (sc->sc_firmware_type != WI_LUCENT) {
1739 		memset(ver, 0, sizeof(ver));
1740 		len = sizeof(ver);
1741 		wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1742 		sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1743 		    le16toh(ver[3]) * 100 + le16toh(ver[1]);
1744 	}
1745 
1746 	/* get station firmware version */
1747 	memset(ver, 0, sizeof(ver));
1748 	len = sizeof(ver);
1749 	wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1750 	sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1751 	    le16toh(ver[3]) * 100 + le16toh(ver[1]);
1752 	if (sc->sc_firmware_type == WI_INTERSIL &&
1753 	    (sc->sc_sta_firmware_ver == 10102 ||
1754 	     sc->sc_sta_firmware_ver == 20102)) {
1755 		char ident[12];
1756 		memset(ident, 0, sizeof(ident));
1757 		len = sizeof(ident);
1758 		/* value should be the format like "V2.00-11" */
1759 		if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1760 		    *(p = (char *)ident) >= 'A' &&
1761 		    p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1762 			sc->sc_firmware_type = WI_SYMBOL;
1763 			sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1764 			    (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1765 			    (p[6] - '0') * 10 + (p[7] - '0');
1766 		}
1767 	}
1768 	printf("\n");
1769 	if_printf(&sc->sc_ic.ic_if, "%s Firmware: ",
1770 	     sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1771 	    (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1772 	if (sc->sc_firmware_type != WI_LUCENT)	/* XXX */
1773 		printf("Primary (%u.%u.%u), ",
1774 		    sc->sc_pri_firmware_ver / 10000,
1775 		    (sc->sc_pri_firmware_ver % 10000) / 100,
1776 		    sc->sc_pri_firmware_ver % 100);
1777 	printf("Station (%u.%u.%u)\n",
1778 	    sc->sc_sta_firmware_ver / 10000,
1779 	    (sc->sc_sta_firmware_ver % 10000) / 100,
1780 	    sc->sc_sta_firmware_ver % 100);
1781 }
1782 
1783 static int
1784 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1785 {
1786 	struct wi_ssid ssid;
1787 
1788 	if (buflen > IEEE80211_NWID_LEN)
1789 		return ENOBUFS;
1790 	memset(&ssid, 0, sizeof(ssid));
1791 	ssid.wi_len = htole16(buflen);
1792 	memcpy(ssid.wi_ssid, buf, buflen);
1793 	return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1794 }
1795 
1796 static int
1797 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1798 {
1799 	struct wi_softc *sc = ifp->if_softc;
1800 	struct ieee80211com *ic = &sc->sc_ic;
1801 	struct ifreq *ifr = (struct ifreq *)data;
1802 	struct wi_req wreq;
1803 	struct wi_scan_res *res;
1804 	size_t reslen;
1805 	int len, n, error, mif, val, off, i;
1806 
1807 	error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1808 	if (error)
1809 		return error;
1810 	len = (wreq.wi_len - 1) * 2;
1811 	if (len < sizeof(u_int16_t))
1812 		return ENOSPC;
1813 	if (len > sizeof(wreq.wi_val))
1814 		len = sizeof(wreq.wi_val);
1815 
1816 	switch (wreq.wi_type) {
1817 
1818 	case WI_RID_IFACE_STATS:
1819 		memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1820 		if (len < sizeof(sc->sc_stats))
1821 			error = ENOSPC;
1822 		else
1823 			len = sizeof(sc->sc_stats);
1824 		break;
1825 
1826 	case WI_RID_ENCRYPTION:
1827 	case WI_RID_TX_CRYPT_KEY:
1828 	case WI_RID_DEFLT_CRYPT_KEYS:
1829 	case WI_RID_TX_RATE:
1830 		return ieee80211_cfgget(ifp, cmd, data, cr);
1831 
1832 	case WI_RID_MICROWAVE_OVEN:
1833 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1834 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1835 			    &len);
1836 			break;
1837 		}
1838 		wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1839 		len = sizeof(u_int16_t);
1840 		break;
1841 
1842 	case WI_RID_DBM_ADJUST:
1843 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
1844 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1845 			    &len);
1846 			break;
1847 		}
1848 		wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
1849 		len = sizeof(u_int16_t);
1850 		break;
1851 
1852 	case WI_RID_ROAMING_MODE:
1853 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1854 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1855 			    &len);
1856 			break;
1857 		}
1858 		wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1859 		len = sizeof(u_int16_t);
1860 		break;
1861 
1862 	case WI_RID_SYSTEM_SCALE:
1863 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1864 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1865 			    &len);
1866 			break;
1867 		}
1868 		wreq.wi_val[0] = htole16(sc->sc_system_scale);
1869 		len = sizeof(u_int16_t);
1870 		break;
1871 
1872 	case WI_RID_FRAG_THRESH:
1873 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
1874 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1875 			    &len);
1876 			break;
1877 		}
1878 		wreq.wi_val[0] = htole16(ic->ic_fragthreshold);
1879 		len = sizeof(u_int16_t);
1880 		break;
1881 
1882 	case WI_RID_READ_APS:
1883 		if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1884 			return ieee80211_cfgget(ifp, cmd, data, cr);
1885 		if (sc->sc_scan_timer > 0) {
1886 			error = EINPROGRESS;
1887 			break;
1888 		}
1889 		n = sc->sc_naps;
1890 		if (len < sizeof(n)) {
1891 			error = ENOSPC;
1892 			break;
1893 		}
1894 		if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1895 			n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1896 		len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1897 		memcpy(wreq.wi_val, &n, sizeof(n));
1898 		memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1899 		    sizeof(struct wi_apinfo) * n);
1900 		break;
1901 
1902 	case WI_RID_PRISM2:
1903 		wreq.wi_val[0] = sc->sc_firmware_type != WI_LUCENT;
1904 		len = sizeof(u_int16_t);
1905 		break;
1906 
1907 	case WI_RID_MIF:
1908 		mif = wreq.wi_val[0];
1909 		error = wi_cmd(sc, WI_CMD_READMIF, mif, 0, 0);
1910 		val = CSR_READ_2(sc, WI_RESP0);
1911 		wreq.wi_val[0] = val;
1912 		len = sizeof(u_int16_t);
1913 		break;
1914 
1915 	case WI_RID_ZERO_CACHE:
1916 	case WI_RID_PROCFRAME:		/* ignore for compatibility */
1917 		/* XXX ??? */
1918 		break;
1919 
1920 	case WI_RID_READ_CACHE:
1921 		return ieee80211_cfgget(ifp, cmd, data, cr);
1922 
1923 	case WI_RID_SCAN_RES:		/* compatibility interface */
1924 		if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1925 			return ieee80211_cfgget(ifp, cmd, data, cr);
1926 		if (sc->sc_scan_timer > 0) {
1927 			error = EINPROGRESS;
1928 			break;
1929 		}
1930 		n = sc->sc_naps;
1931 		if (sc->sc_firmware_type == WI_LUCENT) {
1932 			off = 0;
1933 			reslen = WI_WAVELAN_RES_SIZE;
1934 		} else {
1935 			off = sizeof(struct wi_scan_p2_hdr);
1936 			reslen = WI_PRISM2_RES_SIZE;
1937 		}
1938 		if (len < off + reslen * n)
1939 			n = (len - off) / reslen;
1940 		len = off + reslen * n;
1941 		if (off != 0) {
1942 			struct wi_scan_p2_hdr *p2 = (struct wi_scan_p2_hdr *)wreq.wi_val;
1943 			/*
1944 			 * Prepend Prism-specific header.
1945 			 */
1946 			if (len < sizeof(struct wi_scan_p2_hdr)) {
1947 				error = ENOSPC;
1948 				break;
1949 			}
1950 			p2 = (struct wi_scan_p2_hdr *)wreq.wi_val;
1951 			p2->wi_rsvd = 0;
1952 			p2->wi_reason = n;	/* XXX */
1953 		}
1954 		for (i = 0; i < n; i++, off += reslen) {
1955 			const struct wi_apinfo *ap = &sc->sc_aps[i];
1956 
1957 			res = (struct wi_scan_res *)((char *)wreq.wi_val + off);
1958 			res->wi_chan = ap->channel;
1959 			res->wi_noise = ap->noise;
1960 			res->wi_signal = ap->signal;
1961 			IEEE80211_ADDR_COPY(res->wi_bssid, ap->bssid);
1962 			res->wi_interval = ap->interval;
1963 			res->wi_capinfo = ap->capinfo;
1964 			res->wi_ssid_len = ap->namelen;
1965 			memcpy(res->wi_ssid, ap->name,
1966 				IEEE80211_NWID_LEN);
1967 			if (sc->sc_firmware_type != WI_LUCENT) {
1968 				/* XXX not saved from Prism cards */
1969 				memset(res->wi_srates, 0,
1970 					sizeof(res->wi_srates));
1971 				res->wi_rate = ap->rate;
1972 				res->wi_rsvd = 0;
1973 			}
1974 		}
1975 		break;
1976 
1977 	default:
1978 		if (sc->sc_enabled) {
1979 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1980 			    &len);
1981 			break;
1982 		}
1983 		switch (wreq.wi_type) {
1984 		case WI_RID_MAX_DATALEN:
1985 			wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1986 			len = sizeof(u_int16_t);
1987 			break;
1988 		case WI_RID_RTS_THRESH:
1989 			wreq.wi_val[0] = htole16(ic->ic_rtsthreshold);
1990 			len = sizeof(u_int16_t);
1991 			break;
1992 		case WI_RID_CNFAUTHMODE:
1993 			wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1994 			len = sizeof(u_int16_t);
1995 			break;
1996 		case WI_RID_NODENAME:
1997 			if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
1998 				error = ENOSPC;
1999 				break;
2000 			}
2001 			len = sc->sc_nodelen + sizeof(u_int16_t);
2002 			wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2003 			memcpy(&wreq.wi_val[1], sc->sc_nodename,
2004 			    sc->sc_nodelen);
2005 			break;
2006 		default:
2007 			return ieee80211_cfgget(ifp, cmd, data, cr);
2008 		}
2009 		break;
2010 	}
2011 	if (error)
2012 		return error;
2013 	wreq.wi_len = (len + 1) / 2 + 1;
2014 	return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2015 }
2016 
2017 static int
2018 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2019 {
2020 	struct wi_softc *sc = ifp->if_softc;
2021 	struct ieee80211com *ic = &sc->sc_ic;
2022 	struct ifreq *ifr = (struct ifreq *)data;
2023 	struct wi_req wreq;
2024 	struct mbuf *m;
2025 	int i, len, error, mif, val;
2026 	struct ieee80211_rateset *rs;
2027 
2028 	error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2029 	if (error)
2030 		return error;
2031 	len = wreq.wi_len ? (wreq.wi_len - 1) * 2 : 0;
2032 	switch (wreq.wi_type) {
2033 	case WI_RID_DBM_ADJUST:
2034 		return ENODEV;
2035 
2036 	case WI_RID_NODENAME:
2037 		if (le16toh(wreq.wi_val[0]) * 2 > len ||
2038 		    le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2039 			error = ENOSPC;
2040 			break;
2041 		}
2042 		if (sc->sc_enabled) {
2043 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2044 			    len);
2045 			if (error)
2046 				break;
2047 		}
2048 		sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2049 		memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2050 		break;
2051 
2052 	case WI_RID_MICROWAVE_OVEN:
2053 	case WI_RID_ROAMING_MODE:
2054 	case WI_RID_SYSTEM_SCALE:
2055 	case WI_RID_FRAG_THRESH:
2056 		if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2057 		    (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2058 			break;
2059 		if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2060 		    (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2061 			break;
2062 		if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2063 		    (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2064 			break;
2065 		if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2066 		    (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2067 			break;
2068 		/* FALLTHROUGH */
2069 	case WI_RID_RTS_THRESH:
2070 	case WI_RID_CNFAUTHMODE:
2071 	case WI_RID_MAX_DATALEN:
2072 		if (sc->sc_enabled) {
2073 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2074 			    sizeof(u_int16_t));
2075 			if (error)
2076 				break;
2077 		}
2078 		switch (wreq.wi_type) {
2079 		case WI_RID_FRAG_THRESH:
2080 			ic->ic_fragthreshold = le16toh(wreq.wi_val[0]);
2081 			break;
2082 		case WI_RID_RTS_THRESH:
2083 			ic->ic_rtsthreshold = le16toh(wreq.wi_val[0]);
2084 			break;
2085 		case WI_RID_MICROWAVE_OVEN:
2086 			sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2087 			break;
2088 		case WI_RID_ROAMING_MODE:
2089 			sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2090 			break;
2091 		case WI_RID_SYSTEM_SCALE:
2092 			sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2093 			break;
2094 		case WI_RID_CNFAUTHMODE:
2095 			sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2096 			break;
2097 		case WI_RID_MAX_DATALEN:
2098 			sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2099 			break;
2100 		}
2101 		break;
2102 
2103 	case WI_RID_TX_RATE:
2104 		switch (le16toh(wreq.wi_val[0])) {
2105 		case 3:
2106 			ic->ic_fixed_rate = -1;
2107 			break;
2108 		default:
2109 			rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2110 			for (i = 0; i < rs->rs_nrates; i++) {
2111 				if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2112 				    / 2 == le16toh(wreq.wi_val[0]))
2113 					break;
2114 			}
2115 			if (i == rs->rs_nrates)
2116 				return EINVAL;
2117 			ic->ic_fixed_rate = i;
2118 		}
2119 		if (sc->sc_enabled)
2120 			error = wi_write_txrate(sc);
2121 		break;
2122 
2123 	case WI_RID_SCAN_APS:
2124 		if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2125 			error = wi_scan_ap(sc, 0x3fff, 0x000f);
2126 		break;
2127 
2128 	case WI_RID_SCAN_REQ:		/* compatibility interface */
2129 		if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2130 			error = wi_scan_ap(sc, wreq.wi_val[0], wreq.wi_val[1]);
2131 		break;
2132 
2133 	case WI_RID_MGMT_XMIT:
2134 		if (!sc->sc_enabled) {
2135 			error = ENETDOWN;
2136 			break;
2137 		}
2138 		if (ic->ic_mgtq.ifq_len > 5) {
2139 			error = EAGAIN;
2140 			break;
2141 		}
2142 		/* XXX wi_len looks in u_int8_t, not in u_int16_t */
2143 		m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2144 		if (m == NULL) {
2145 			error = ENOMEM;
2146 			break;
2147 		}
2148 		IF_ENQUEUE(&ic->ic_mgtq, m);
2149 		break;
2150 
2151 	case WI_RID_MIF:
2152 		mif = wreq.wi_val[0];
2153 		val = wreq.wi_val[1];
2154 		error = wi_cmd(sc, WI_CMD_WRITEMIF, mif, val, 0);
2155 		break;
2156 
2157 	case WI_RID_PROCFRAME:		/* ignore for compatibility */
2158 		break;
2159 
2160 	case WI_RID_OWN_SSID:
2161 		if (le16toh(wreq.wi_val[0]) * 2 > len ||
2162 		    le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN) {
2163 			error = ENOSPC;
2164 			break;
2165 		}
2166 		memset(ic->ic_des_essid, 0, IEEE80211_NWID_LEN);
2167 		ic->ic_des_esslen = le16toh(wreq.wi_val[0]) * 2;
2168 		memcpy(ic->ic_des_essid, &wreq.wi_val[1], ic->ic_des_esslen);
2169 		error = ENETRESET;
2170 		break;
2171 
2172 	default:
2173 		if (sc->sc_enabled) {
2174 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2175 			    len);
2176 			if (error)
2177 				break;
2178 		}
2179 		error = ieee80211_cfgset(ifp, cmd, data);
2180 		break;
2181 	}
2182 	return error;
2183 }
2184 
2185 static int
2186 wi_write_txrate(struct wi_softc *sc)
2187 {
2188 	struct ieee80211com *ic = &sc->sc_ic;
2189 	int i;
2190 	u_int16_t rate;
2191 
2192 	if (ic->ic_fixed_rate < 0)
2193 		rate = 0;	/* auto */
2194 	else
2195 		rate = (ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[ic->ic_fixed_rate] &
2196 		    IEEE80211_RATE_VAL) / 2;
2197 
2198 	/* rate: 0, 1, 2, 5, 11 */
2199 
2200 	switch (sc->sc_firmware_type) {
2201 	case WI_LUCENT:
2202 		switch (rate) {
2203 		case 0:			/* auto == 11mbps auto */
2204 			rate = 3;
2205 			break;
2206 		/* case 1, 2 map to 1, 2*/
2207 		case 5:			/* 5.5Mbps -> 4 */
2208 			rate = 4;
2209 			break;
2210 		case 11:		/* 11mbps -> 5 */
2211 			rate = 5;
2212 			break;
2213 		default:
2214 			break;
2215 		}
2216 		break;
2217 	default:
2218 		/* Choose a bit according to this table.
2219 		 *
2220 		 * bit | data rate
2221 		 * ----+-------------------
2222 		 * 0   | 1Mbps
2223 		 * 1   | 2Mbps
2224 		 * 2   | 5.5Mbps
2225 		 * 3   | 11Mbps
2226 		 */
2227 		for (i = 8; i > 0; i >>= 1) {
2228 			if (rate >= i)
2229 				break;
2230 		}
2231 		if (i == 0)
2232 			rate = 0xf;	/* auto */
2233 		else
2234 			rate = i;
2235 		break;
2236 	}
2237 	return wi_write_val(sc, WI_RID_TX_RATE, rate);
2238 }
2239 
2240 static int
2241 wi_write_wep(struct wi_softc *sc)
2242 {
2243 	struct ieee80211com *ic = &sc->sc_ic;
2244 	int error = 0;
2245 	int i, keylen;
2246 	u_int16_t val;
2247 	struct wi_key wkey[IEEE80211_WEP_NKID];
2248 
2249 	switch (sc->sc_firmware_type) {
2250 	case WI_LUCENT:
2251 		val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
2252 		error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2253 		if (error)
2254 			break;
2255 		error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
2256 		if (error)
2257 			break;
2258 		memset(wkey, 0, sizeof(wkey));
2259 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2260 			keylen = ic->ic_nw_keys[i].wk_len;
2261 			wkey[i].wi_keylen = htole16(keylen);
2262 			memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2263 			    keylen);
2264 		}
2265 		error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2266 		    wkey, sizeof(wkey));
2267 		break;
2268 
2269 	case WI_INTERSIL:
2270 	case WI_SYMBOL:
2271 		if (ic->ic_flags & IEEE80211_F_WEPON) {
2272 			/*
2273 			 * ONLY HWB3163 EVAL-CARD Firmware version
2274 			 * less than 0.8 variant2
2275 			 *
2276 			 *   If promiscuous mode disable, Prism2 chip
2277 			 *  does not work with WEP .
2278 			 * It is under investigation for details.
2279 			 * (ichiro@netbsd.org)
2280 			 */
2281 			if (sc->sc_firmware_type == WI_INTERSIL &&
2282 			    sc->sc_sta_firmware_ver < 802 ) {
2283 				/* firm ver < 0.8 variant 2 */
2284 				wi_write_val(sc, WI_RID_PROMISC, 1);
2285 			}
2286 			wi_write_val(sc, WI_RID_CNFAUTHMODE,
2287 			    sc->sc_cnfauthmode);
2288 			val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
2289 			/*
2290 			 * Encryption firmware has a bug for HostAP mode.
2291 			 */
2292 			if (sc->sc_firmware_type == WI_INTERSIL &&
2293 			    ic->ic_opmode == IEEE80211_M_HOSTAP)
2294 				val |= HOST_ENCRYPT;
2295 		} else {
2296 			wi_write_val(sc, WI_RID_CNFAUTHMODE,
2297 			    IEEE80211_AUTH_OPEN);
2298 			val = HOST_ENCRYPT | HOST_DECRYPT;
2299 		}
2300 		error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2301 		if (error)
2302 			break;
2303 		error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2304 		    ic->ic_wep_txkey);
2305 		if (error)
2306 			break;
2307 		/*
2308 		 * It seems that the firmware accept 104bit key only if
2309 		 * all the keys have 104bit length.  We get the length of
2310 		 * the transmit key and use it for all other keys.
2311 		 * Perhaps we should use software WEP for such situation.
2312 		 */
2313 		keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
2314 		if (keylen > IEEE80211_WEP_KEYLEN)
2315 			keylen = 13;	/* 104bit keys */
2316 		else
2317 			keylen = IEEE80211_WEP_KEYLEN;
2318 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2319 			error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2320 			    ic->ic_nw_keys[i].wk_key, keylen);
2321 			if (error)
2322 				break;
2323 		}
2324 		break;
2325 	}
2326 	return error;
2327 }
2328 
2329 static int
2330 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2331 {
2332 	int			i, s = 0;
2333 	static volatile int count  = 0;
2334 
2335 	if (sc->wi_gone)
2336 		return (ENODEV);
2337 
2338 	if (count > 0)
2339 		panic("Hey partner, hold on there!");
2340 	count++;
2341 
2342 	/* wait for the busy bit to clear */
2343 	for (i = sc->wi_cmd_count; i > 0; i--) {	/* 500ms */
2344 		if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
2345 			break;
2346 		DELAY(1*1000);	/* 1ms */
2347 	}
2348 	if (i == 0) {
2349 		if_printf(&sc->sc_ic.ic_if, "wi_cmd: busy bit won't clear.\n" );
2350 		sc->wi_gone = 1;
2351 		count--;
2352 		return(ETIMEDOUT);
2353 	}
2354 
2355 	CSR_WRITE_2(sc, WI_PARAM0, val0);
2356 	CSR_WRITE_2(sc, WI_PARAM1, val1);
2357 	CSR_WRITE_2(sc, WI_PARAM2, val2);
2358 	CSR_WRITE_2(sc, WI_COMMAND, cmd);
2359 
2360 	if (cmd == WI_CMD_INI) {
2361 		/* XXX: should sleep here. */
2362 		DELAY(100*1000);		/* 100ms delay for init */
2363 	}
2364 	for (i = 0; i < WI_TIMEOUT; i++) {
2365 		/*
2366 		 * Wait for 'command complete' bit to be
2367 		 * set in the event status register.
2368 		 */
2369 		s = CSR_READ_2(sc, WI_EVENT_STAT);
2370 		if (s & WI_EV_CMD) {
2371 			/* Ack the event and read result code. */
2372 			s = CSR_READ_2(sc, WI_STATUS);
2373 			CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2374 			if (s & WI_STAT_CMD_RESULT) {
2375 				count--;
2376 				return(EIO);
2377 			}
2378 			break;
2379 		}
2380 		DELAY(WI_DELAY);
2381 	}
2382 
2383 	count--;
2384 	if (i == WI_TIMEOUT) {
2385 		if_printf(&sc->sc_ic.ic_if,
2386 		    "timeout in wi_cmd 0x%04x; event status 0x%04x\n", cmd, s);
2387 		if (s == 0xffff)
2388 			sc->wi_gone = 1;
2389 		return(ETIMEDOUT);
2390 	}
2391 	return (0);
2392 }
2393 
2394 static int
2395 wi_seek_bap(struct wi_softc *sc, int id, int off)
2396 {
2397 	int i, status;
2398 
2399 	CSR_WRITE_2(sc, WI_SEL0, id);
2400 	CSR_WRITE_2(sc, WI_OFF0, off);
2401 
2402 	for (i = 0; ; i++) {
2403 		status = CSR_READ_2(sc, WI_OFF0);
2404 		if ((status & WI_OFF_BUSY) == 0)
2405 			break;
2406 		if (i == WI_TIMEOUT) {
2407 			if_printf(&sc->sc_ic.ic_if,
2408 				  "timeout in wi_seek to %x/%x\n", id, off);
2409 			sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2410 			if (status == 0xffff)
2411 				sc->wi_gone = 1;
2412 			return ETIMEDOUT;
2413 		}
2414 		DELAY(1);
2415 	}
2416 	if (status & WI_OFF_ERR) {
2417 		if_printf(&sc->sc_ic.ic_if, "failed in wi_seek to %x/%x\n",
2418 			  id, off);
2419 		sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2420 		return EIO;
2421 	}
2422 	sc->sc_bap_id = id;
2423 	sc->sc_bap_off = off;
2424 	return 0;
2425 }
2426 
2427 static int
2428 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2429 {
2430 	u_int16_t *ptr;
2431 	int i, error, cnt;
2432 
2433 	if (buflen == 0)
2434 		return 0;
2435 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2436 		if ((error = wi_seek_bap(sc, id, off)) != 0)
2437 			return error;
2438 	}
2439 	cnt = (buflen + 1) / 2;
2440 	ptr = (u_int16_t *)buf;
2441 	for (i = 0; i < cnt; i++)
2442 		*ptr++ = CSR_READ_2(sc, WI_DATA0);
2443 	sc->sc_bap_off += cnt * 2;
2444 	return 0;
2445 }
2446 
2447 static int
2448 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2449 {
2450 	u_int16_t *ptr;
2451 	int i, error, cnt;
2452 
2453 	if (buflen == 0)
2454 		return 0;
2455 
2456 #ifdef WI_HERMES_AUTOINC_WAR
2457   again:
2458 #endif
2459 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2460 		if ((error = wi_seek_bap(sc, id, off)) != 0)
2461 			return error;
2462 	}
2463 	cnt = (buflen + 1) / 2;
2464 	ptr = (u_int16_t *)buf;
2465 	for (i = 0; i < cnt; i++)
2466 		CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
2467 	sc->sc_bap_off += cnt * 2;
2468 
2469 #ifdef WI_HERMES_AUTOINC_WAR
2470 	/*
2471 	 * According to the comments in the HCF Light code, there is a bug
2472 	 * in the Hermes (or possibly in certain Hermes firmware revisions)
2473 	 * where the chip's internal autoincrement counter gets thrown off
2474 	 * during data writes:  the autoincrement is missed, causing one
2475 	 * data word to be overwritten and subsequent words to be written to
2476 	 * the wrong memory locations. The end result is that we could end
2477 	 * up transmitting bogus frames without realizing it. The workaround
2478 	 * for this is to write a couple of extra guard words after the end
2479 	 * of the transfer, then attempt to read then back. If we fail to
2480 	 * locate the guard words where we expect them, we preform the
2481 	 * transfer over again.
2482 	 */
2483 	if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2484 		CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2485 		CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2486 		wi_seek_bap(sc, id, sc->sc_bap_off);
2487 		sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2488 		if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2489 		    CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2490 			if_printf(&sc->sc_ic.ic_if,
2491 				  "detect auto increment bug, try again\n");
2492 			goto again;
2493 		}
2494 	}
2495 #endif
2496 	return 0;
2497 }
2498 
2499 static int
2500 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2501 {
2502 	int error, len;
2503 	struct mbuf *m;
2504 
2505 	for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2506 		if (m->m_len == 0)
2507 			continue;
2508 
2509 		len = min(m->m_len, totlen);
2510 
2511 		if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2512 			m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2513 			return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2514 			    totlen);
2515 		}
2516 
2517 		if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2518 			return error;
2519 
2520 		off += m->m_len;
2521 		totlen -= len;
2522 	}
2523 	return 0;
2524 }
2525 
2526 static int
2527 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2528 {
2529 	int i;
2530 
2531 	if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2532 		if_printf(&sc->sc_ic.ic_if,
2533 			  "failed to allocate %d bytes on NIC\n", len);
2534 		return ENOMEM;
2535 	}
2536 
2537 	for (i = 0; i < WI_TIMEOUT; i++) {
2538 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2539 			break;
2540 		if (i == WI_TIMEOUT) {
2541 			if_printf(&sc->sc_ic.ic_if, "timeout in alloc\n");
2542 			return ETIMEDOUT;
2543 		}
2544 		DELAY(1);
2545 	}
2546 	*idp = CSR_READ_2(sc, WI_ALLOC_FID);
2547 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2548 	return 0;
2549 }
2550 
2551 static int
2552 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2553 {
2554 	int error, len;
2555 	u_int16_t ltbuf[2];
2556 
2557 	/* Tell the NIC to enter record read mode. */
2558 	error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2559 	if (error)
2560 		return error;
2561 
2562 	error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2563 	if (error)
2564 		return error;
2565 
2566 	if (le16toh(ltbuf[1]) != rid) {
2567 		if_printf(&sc->sc_ic.ic_if,
2568 			  "record read mismatch, rid=%x, got=%x\n",
2569 			  rid, le16toh(ltbuf[1]));
2570 		return EIO;
2571 	}
2572 	len = (le16toh(ltbuf[0]) - 1) * 2;	 /* already got rid */
2573 	if (*buflenp < len) {
2574 		if_printf(&sc->sc_ic.ic_if, "record buffer is too small, "
2575 			  "rid=%x, size=%d, len=%d\n", rid, *buflenp, len);
2576 		return ENOSPC;
2577 	}
2578 	*buflenp = len;
2579 	return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2580 }
2581 
2582 static int
2583 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2584 {
2585 	int error;
2586 	u_int16_t ltbuf[2];
2587 
2588 	ltbuf[0] = htole16((buflen + 1) / 2 + 1);	 /* includes rid */
2589 	ltbuf[1] = htole16(rid);
2590 
2591 	error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2592 	if (error)
2593 		return error;
2594 	error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2595 	if (error)
2596 		return error;
2597 
2598 	return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2599 }
2600 
2601 static int
2602 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2603 {
2604 	struct ifnet *ifp = &ic->ic_if;
2605 	struct wi_softc *sc = ifp->if_softc;
2606 	struct ieee80211_node *ni = ic->ic_bss;
2607 	int buflen;
2608 	u_int16_t val;
2609 	struct wi_ssid ssid;
2610 	u_int8_t old_bssid[IEEE80211_ADDR_LEN];
2611 
2612 	DPRINTF((ifp, "%s: %s -> %s\n", __func__,
2613 		ieee80211_state_name[ic->ic_state],
2614 		ieee80211_state_name[nstate]));
2615 
2616 	switch (nstate) {
2617 	case IEEE80211_S_INIT:
2618 		ic->ic_flags &= ~IEEE80211_F_SIBSS;
2619 		sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2620 		return (*sc->sc_newstate)(ic, nstate, arg);
2621 
2622 	case IEEE80211_S_RUN:
2623 		sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2624 		buflen = IEEE80211_ADDR_LEN;
2625 		wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
2626 		IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
2627 		buflen = sizeof(val);
2628 		wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2629 		/* XXX validate channel */
2630 		ni->ni_chan = &ic->ic_channels[le16toh(val)];
2631 		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2632 			htole16(ni->ni_chan->ic_freq);
2633 		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2634 			htole16(ni->ni_chan->ic_flags);
2635 
2636 		if (IEEE80211_ADDR_EQ(old_bssid, ni->ni_bssid))
2637 			sc->sc_false_syns++;
2638 		else
2639 			sc->sc_false_syns = 0;
2640 
2641 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2642 			ni->ni_esslen = ic->ic_des_esslen;
2643 			memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2644 			ni->ni_rates = ic->ic_sup_rates[IEEE80211_MODE_11B];
2645 			ni->ni_intval = ic->ic_lintval;
2646 			ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2647 			if (ic->ic_flags & IEEE80211_F_WEPON)
2648 				ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2649 		} else {
2650 			/* XXX check return value */
2651 			buflen = sizeof(ssid);
2652 			wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2653 			ni->ni_esslen = le16toh(ssid.wi_len);
2654 			if (ni->ni_esslen > IEEE80211_NWID_LEN)
2655 				ni->ni_esslen = IEEE80211_NWID_LEN;	/*XXX*/
2656 			memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2657 		}
2658 		break;
2659 
2660 	case IEEE80211_S_SCAN:
2661 	case IEEE80211_S_AUTH:
2662 	case IEEE80211_S_ASSOC:
2663 		break;
2664 	}
2665 
2666 	ic->ic_state = nstate;		/* NB: skip normal ieee80211 handling */
2667 	return 0;
2668 }
2669 
2670 static int
2671 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
2672 {
2673 	int error = 0;
2674 	u_int16_t val[2];
2675 
2676 	if (!sc->sc_enabled)
2677 		return ENXIO;
2678 	switch (sc->sc_firmware_type) {
2679 	case WI_LUCENT:
2680 		(void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2681 		break;
2682 	case WI_INTERSIL:
2683 		val[0] = chanmask;	/* channel */
2684 		val[1] = txrate;	/* tx rate */
2685 		error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2686 		break;
2687 	case WI_SYMBOL:
2688 		/*
2689 		 * XXX only supported on 3.x ?
2690 		 */
2691 		val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2692 		error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2693 		    val, sizeof(val[0]));
2694 		break;
2695 	}
2696 	if (error == 0) {
2697 		sc->sc_scan_timer = WI_SCAN_WAIT;
2698 		sc->sc_ic.ic_if.if_timer = 1;
2699 		DPRINTF((&sc->sc_ic.ic_if, "wi_scan_ap: start scanning, "
2700 			"chamask 0x%x txrate 0x%x\n", chanmask, txrate));
2701 	}
2702 	return error;
2703 }
2704 
2705 static void
2706 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2707 {
2708 #define	N(a)	(sizeof (a) / sizeof (a[0]))
2709 	int i, naps, off, szbuf;
2710 	struct wi_scan_header ws_hdr;	/* Prism2 header */
2711 	struct wi_scan_data_p2 ws_dat;	/* Prism2 scantable*/
2712 	struct wi_apinfo *ap;
2713 
2714 	off = sizeof(u_int16_t) * 2;
2715 	memset(&ws_hdr, 0, sizeof(ws_hdr));
2716 	switch (sc->sc_firmware_type) {
2717 	case WI_INTERSIL:
2718 		wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2719 		off += sizeof(ws_hdr);
2720 		szbuf = sizeof(struct wi_scan_data_p2);
2721 		break;
2722 	case WI_SYMBOL:
2723 		szbuf = sizeof(struct wi_scan_data_p2) + 6;
2724 		break;
2725 	case WI_LUCENT:
2726 		szbuf = sizeof(struct wi_scan_data);
2727 		break;
2728 	default:
2729 		if_printf(&sc->sc_ic.ic_if,
2730 			  "wi_scan_result: unknown firmware type %u\n",
2731 			  sc->sc_firmware_type);
2732 		naps = 0;
2733 		goto done;
2734 	}
2735 	naps = (cnt * 2 + 2 - off) / szbuf;
2736 	if (naps > N(sc->sc_aps))
2737 		naps = N(sc->sc_aps);
2738 	sc->sc_naps = naps;
2739 	/* Read Data */
2740 	ap = sc->sc_aps;
2741 	memset(&ws_dat, 0, sizeof(ws_dat));
2742 	for (i = 0; i < naps; i++, ap++) {
2743 		wi_read_bap(sc, fid, off, &ws_dat,
2744 		    (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2745 		DPRINTF2((&sc->sc_ic.ic_if,
2746 			  "wi_scan_result: #%d: off %d bssid %6D\n",
2747 			  i, off, ws_dat.wi_bssid, ":"));
2748 		off += szbuf;
2749 		ap->scanreason = le16toh(ws_hdr.wi_reason);
2750 		memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2751 		ap->channel = le16toh(ws_dat.wi_chid);
2752 		ap->signal  = le16toh(ws_dat.wi_signal);
2753 		ap->noise   = le16toh(ws_dat.wi_noise);
2754 		ap->quality = ap->signal - ap->noise;
2755 		ap->capinfo = le16toh(ws_dat.wi_capinfo);
2756 		ap->interval = le16toh(ws_dat.wi_interval);
2757 		ap->rate    = le16toh(ws_dat.wi_rate);
2758 		ap->namelen = le16toh(ws_dat.wi_namelen);
2759 		if (ap->namelen > sizeof(ap->name))
2760 			ap->namelen = sizeof(ap->name);
2761 		memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2762 	}
2763 done:
2764 	/* Done scanning */
2765 	sc->sc_scan_timer = 0;
2766 	DPRINTF((&sc->sc_ic.ic_if, "wi_scan_result: scan complete: ap %d\n",
2767 		 naps));
2768 #undef N
2769 }
2770 
2771 static void
2772 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
2773 {
2774 	ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
2775 	    ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL : -1, rssi);
2776 	printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
2777 		le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
2778 		le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
2779 	printf(" rx_signal %u rx_rate %u rx_flow %u\n",
2780 		wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
2781 	printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
2782 		wh->wi_tx_rtry, wh->wi_tx_rate,
2783 		le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
2784 	printf(" ehdr dst %6D src %6D type 0x%x\n",
2785 		wh->wi_ehdr.ether_dhost, ":", wh->wi_ehdr.ether_shost, ":",
2786 		wh->wi_ehdr.ether_type);
2787 }
2788 
2789 int
2790 wi_alloc(device_t dev, int rid)
2791 {
2792 	struct wi_softc	*sc = device_get_softc(dev);
2793 
2794 	if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
2795 		sc->iobase_rid = rid;
2796 		sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT,
2797 		    &sc->iobase_rid, 0, ~0, (1 << 6),
2798 		    rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
2799 		if (!sc->iobase) {
2800 			device_printf(dev, "No I/O space?!\n");
2801 			return (ENXIO);
2802 		}
2803 
2804 		sc->wi_io_addr = rman_get_start(sc->iobase);
2805 		sc->wi_btag = rman_get_bustag(sc->iobase);
2806 		sc->wi_bhandle = rman_get_bushandle(sc->iobase);
2807 	} else {
2808 		sc->mem_rid = rid;
2809 		sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2810 		    &sc->mem_rid, RF_ACTIVE);
2811 
2812 		if (!sc->mem) {
2813 			device_printf(dev, "No Mem space on prism2.5?\n");
2814 			return (ENXIO);
2815 		}
2816 
2817 		sc->wi_btag = rman_get_bustag(sc->mem);
2818 		sc->wi_bhandle = rman_get_bushandle(sc->mem);
2819 	}
2820 
2821 
2822 	sc->irq_rid = 0;
2823 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
2824 	    RF_ACTIVE |
2825 	    ((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
2826 
2827 	if (!sc->irq) {
2828 		wi_free(dev);
2829 		device_printf(dev, "No irq?!\n");
2830 		return (ENXIO);
2831 	}
2832 
2833 	return (0);
2834 }
2835 
2836 void
2837 wi_free(device_t dev)
2838 {
2839 	struct wi_softc	*sc = device_get_softc(dev);
2840 
2841 	if (sc->wi_intrhand != NULL) {
2842 		bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
2843 		sc->wi_intrhand = NULL;
2844 	}
2845 	if (sc->iobase != NULL) {
2846 		bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
2847 		sc->iobase = NULL;
2848 	}
2849 	if (sc->irq != NULL) {
2850 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
2851 		sc->irq = NULL;
2852 	}
2853 	if (sc->mem != NULL) {
2854 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
2855 		sc->mem = NULL;
2856 	}
2857 }
2858 
2859 static int
2860 wi_get_debug(struct wi_softc *sc, struct wi_req *wreq)
2861 {
2862 	int error = 0;
2863 
2864 	wreq->wi_len = 1;
2865 
2866 	switch (wreq->wi_type) {
2867 	case WI_DEBUG_SLEEP:
2868 		wreq->wi_len++;
2869 		wreq->wi_val[0] = sc->wi_debug.wi_sleep;
2870 		break;
2871 	case WI_DEBUG_DELAYSUPP:
2872 		wreq->wi_len++;
2873 		wreq->wi_val[0] = sc->wi_debug.wi_delaysupp;
2874 		break;
2875 	case WI_DEBUG_TXSUPP:
2876 		wreq->wi_len++;
2877 		wreq->wi_val[0] = sc->wi_debug.wi_txsupp;
2878 		break;
2879 	case WI_DEBUG_MONITOR:
2880 		wreq->wi_len++;
2881 		wreq->wi_val[0] = sc->wi_debug.wi_monitor;
2882 		break;
2883 	case WI_DEBUG_LEDTEST:
2884 		wreq->wi_len += 3;
2885 		wreq->wi_val[0] = sc->wi_debug.wi_ledtest;
2886 		wreq->wi_val[1] = sc->wi_debug.wi_ledtest_param0;
2887 		wreq->wi_val[2] = sc->wi_debug.wi_ledtest_param1;
2888 		break;
2889 	case WI_DEBUG_CONTTX:
2890 		wreq->wi_len += 2;
2891 		wreq->wi_val[0] = sc->wi_debug.wi_conttx;
2892 		wreq->wi_val[1] = sc->wi_debug.wi_conttx_param0;
2893 		break;
2894 	case WI_DEBUG_CONTRX:
2895 		wreq->wi_len++;
2896 		wreq->wi_val[0] = sc->wi_debug.wi_contrx;
2897 		break;
2898 	case WI_DEBUG_SIGSTATE:
2899 		wreq->wi_len += 2;
2900 		wreq->wi_val[0] = sc->wi_debug.wi_sigstate;
2901 		wreq->wi_val[1] = sc->wi_debug.wi_sigstate_param0;
2902 		break;
2903 	case WI_DEBUG_CONFBITS:
2904 		wreq->wi_len += 2;
2905 		wreq->wi_val[0] = sc->wi_debug.wi_confbits;
2906 		wreq->wi_val[1] = sc->wi_debug.wi_confbits_param0;
2907 		break;
2908 	default:
2909 		error = EIO;
2910 		break;
2911 	}
2912 
2913 	return (error);
2914 }
2915 
2916 static int
2917 wi_set_debug(struct wi_softc *sc, struct wi_req *wreq)
2918 {
2919 	int error = 0;
2920 	u_int16_t		cmd, param0 = 0, param1 = 0;
2921 
2922 	switch (wreq->wi_type) {
2923 	case WI_DEBUG_RESET:
2924 	case WI_DEBUG_INIT:
2925 	case WI_DEBUG_CALENABLE:
2926 		break;
2927 	case WI_DEBUG_SLEEP:
2928 		sc->wi_debug.wi_sleep = 1;
2929 		break;
2930 	case WI_DEBUG_WAKE:
2931 		sc->wi_debug.wi_sleep = 0;
2932 		break;
2933 	case WI_DEBUG_CHAN:
2934 		param0 = wreq->wi_val[0];
2935 		break;
2936 	case WI_DEBUG_DELAYSUPP:
2937 		sc->wi_debug.wi_delaysupp = 1;
2938 		break;
2939 	case WI_DEBUG_TXSUPP:
2940 		sc->wi_debug.wi_txsupp = 1;
2941 		break;
2942 	case WI_DEBUG_MONITOR:
2943 		sc->wi_debug.wi_monitor = 1;
2944 		break;
2945 	case WI_DEBUG_LEDTEST:
2946 		param0 = wreq->wi_val[0];
2947 		param1 = wreq->wi_val[1];
2948 		sc->wi_debug.wi_ledtest = 1;
2949 		sc->wi_debug.wi_ledtest_param0 = param0;
2950 		sc->wi_debug.wi_ledtest_param1 = param1;
2951 		break;
2952 	case WI_DEBUG_CONTTX:
2953 		param0 = wreq->wi_val[0];
2954 		sc->wi_debug.wi_conttx = 1;
2955 		sc->wi_debug.wi_conttx_param0 = param0;
2956 		break;
2957 	case WI_DEBUG_STOPTEST:
2958 		sc->wi_debug.wi_delaysupp = 0;
2959 		sc->wi_debug.wi_txsupp = 0;
2960 		sc->wi_debug.wi_monitor = 0;
2961 		sc->wi_debug.wi_ledtest = 0;
2962 		sc->wi_debug.wi_ledtest_param0 = 0;
2963 		sc->wi_debug.wi_ledtest_param1 = 0;
2964 		sc->wi_debug.wi_conttx = 0;
2965 		sc->wi_debug.wi_conttx_param0 = 0;
2966 		sc->wi_debug.wi_contrx = 0;
2967 		sc->wi_debug.wi_sigstate = 0;
2968 		sc->wi_debug.wi_sigstate_param0 = 0;
2969 		break;
2970 	case WI_DEBUG_CONTRX:
2971 		sc->wi_debug.wi_contrx = 1;
2972 		break;
2973 	case WI_DEBUG_SIGSTATE:
2974 		param0 = wreq->wi_val[0];
2975 		sc->wi_debug.wi_sigstate = 1;
2976 		sc->wi_debug.wi_sigstate_param0 = param0;
2977 		break;
2978 	case WI_DEBUG_CONFBITS:
2979 		param0 = wreq->wi_val[0];
2980 		param1 = wreq->wi_val[1];
2981 		sc->wi_debug.wi_confbits = param0;
2982 		sc->wi_debug.wi_confbits_param0 = param1;
2983 		break;
2984 	default:
2985 		error = EIO;
2986 		break;
2987 	}
2988 
2989 	if (error)
2990 		return (error);
2991 
2992 	cmd = WI_CMD_DEBUG | (wreq->wi_type << 8);
2993 	error = wi_cmd(sc, cmd, param0, param1, 0);
2994 
2995 	return (error);
2996 }
2997 
2998 /*
2999  * Special routines to download firmware for Symbol CF card.
3000  * XXX: This should be modified generic into any PRISM-2 based card.
3001  */
3002 
3003 #define	WI_SBCF_PDIADDR		0x3100
3004 
3005 /* unaligned load little endian */
3006 #define	GETLE32(p)	((p)[0] | ((p)[1]<<8) | ((p)[2]<<16) | ((p)[3]<<24))
3007 #define	GETLE16(p)	((p)[0] | ((p)[1]<<8))
3008 
3009 int
3010 wi_symbol_load_firm(struct wi_softc *sc, const void *primsym, int primlen,
3011     const void *secsym, int seclen)
3012 {
3013 	uint8_t ebuf[256];
3014 	int i;
3015 
3016 	/* load primary code and run it */
3017 	wi_symbol_set_hcr(sc, WI_HCR_EEHOLD);
3018 	if (wi_symbol_write_firm(sc, primsym, primlen, NULL, 0))
3019 		return EIO;
3020 	wi_symbol_set_hcr(sc, WI_HCR_RUN);
3021 	for (i = 0; ; i++) {
3022 		if (i == 10)
3023 			return ETIMEDOUT;
3024 		tsleep(sc, 0, "wiinit", 1);
3025 		if (CSR_READ_2(sc, WI_CNTL) == WI_CNTL_AUX_ENA_STAT)
3026 			break;
3027 		/* write the magic key value to unlock aux port */
3028 		CSR_WRITE_2(sc, WI_PARAM0, WI_AUX_KEY0);
3029 		CSR_WRITE_2(sc, WI_PARAM1, WI_AUX_KEY1);
3030 		CSR_WRITE_2(sc, WI_PARAM2, WI_AUX_KEY2);
3031 		CSR_WRITE_2(sc, WI_CNTL, WI_CNTL_AUX_ENA_CNTL);
3032 	}
3033 
3034 	/* issue read EEPROM command: XXX copied from wi_cmd() */
3035 	CSR_WRITE_2(sc, WI_PARAM0, 0);
3036 	CSR_WRITE_2(sc, WI_PARAM1, 0);
3037 	CSR_WRITE_2(sc, WI_PARAM2, 0);
3038 	CSR_WRITE_2(sc, WI_COMMAND, WI_CMD_READEE);
3039         for (i = 0; i < WI_TIMEOUT; i++) {
3040                 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
3041                         break;
3042                 DELAY(1);
3043         }
3044         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
3045 
3046 	CSR_WRITE_2(sc, WI_AUX_PAGE, WI_SBCF_PDIADDR / WI_AUX_PGSZ);
3047 	CSR_WRITE_2(sc, WI_AUX_OFFSET, WI_SBCF_PDIADDR % WI_AUX_PGSZ);
3048 	CSR_READ_MULTI_STREAM_2(sc, WI_AUX_DATA,
3049 	    (uint16_t *)ebuf, sizeof(ebuf) / 2);
3050 	if (GETLE16(ebuf) > sizeof(ebuf))
3051 		return EIO;
3052 	if (wi_symbol_write_firm(sc, secsym, seclen, ebuf + 4, GETLE16(ebuf)))
3053 		return EIO;
3054 	return 0;
3055 }
3056 
3057 static int
3058 wi_symbol_write_firm(struct wi_softc *sc, const void *buf, int buflen,
3059     const void *ebuf, int ebuflen)
3060 {
3061 	const uint8_t *p, *ep, *q, *eq;
3062 	char *tp;
3063 	uint32_t addr, id, eid;
3064 	int i, len, elen, nblk, pdrlen;
3065 
3066 	/*
3067 	 * Parse the header of the firmware image.
3068 	 */
3069 	p = buf;
3070 	ep = p + buflen;
3071 	while (p < ep && *p++ != ' ');	/* FILE: */
3072 	while (p < ep && *p++ != ' ');	/* filename */
3073 	while (p < ep && *p++ != ' ');	/* type of the firmware */
3074 	nblk = strtoul(p, &tp, 10);
3075 	p = tp;
3076 	pdrlen = strtoul(p + 1, &tp, 10);
3077 	p = tp;
3078 	while (p < ep && *p++ != 0x1a);	/* skip rest of header */
3079 
3080 	/*
3081 	 * Block records: address[4], length[2], data[length];
3082 	 */
3083 	for (i = 0; i < nblk; i++) {
3084 		addr = GETLE32(p);	p += 4;
3085 		len  = GETLE16(p);	p += 2;
3086 		CSR_WRITE_2(sc, WI_AUX_PAGE, addr / WI_AUX_PGSZ);
3087 		CSR_WRITE_2(sc, WI_AUX_OFFSET, addr % WI_AUX_PGSZ);
3088 		CSR_WRITE_MULTI_STREAM_2(sc, WI_AUX_DATA,
3089 		    (const uint16_t *)p, len / 2);
3090 		p += len;
3091 	}
3092 
3093 	/*
3094 	 * PDR: id[4], address[4], length[4];
3095 	 */
3096 	for (i = 0; i < pdrlen; ) {
3097 		id   = GETLE32(p);	p += 4; i += 4;
3098 		addr = GETLE32(p);	p += 4; i += 4;
3099 		len  = GETLE32(p);	p += 4; i += 4;
3100 		/* replace PDR entry with the values from EEPROM, if any */
3101 		for (q = ebuf, eq = q + ebuflen; q < eq; q += elen * 2) {
3102 			elen = GETLE16(q);	q += 2;
3103 			eid  = GETLE16(q);	q += 2;
3104 			elen--;		/* elen includes eid */
3105 			if (eid == 0)
3106 				break;
3107 			if (eid != id)
3108 				continue;
3109 			CSR_WRITE_2(sc, WI_AUX_PAGE, addr / WI_AUX_PGSZ);
3110 			CSR_WRITE_2(sc, WI_AUX_OFFSET, addr % WI_AUX_PGSZ);
3111 			CSR_WRITE_MULTI_STREAM_2(sc, WI_AUX_DATA,
3112 			    (const uint16_t *)q, len / 2);
3113 			break;
3114 		}
3115 	}
3116 	return 0;
3117 }
3118 
3119 static int
3120 wi_symbol_set_hcr(struct wi_softc *sc, int mode)
3121 {
3122 	uint16_t hcr;
3123 
3124 	CSR_WRITE_2(sc, WI_COR, WI_COR_RESET);
3125 	tsleep(sc, 0, "wiinit", 1);
3126 	hcr = CSR_READ_2(sc, WI_HCR);
3127 	hcr = (hcr & WI_HCR_4WIRE) | (mode & ~WI_HCR_4WIRE);
3128 	CSR_WRITE_2(sc, WI_HCR, hcr);
3129 	tsleep(sc, 0, "wiinit", 1);
3130 	CSR_WRITE_2(sc, WI_COR, WI_COR_IOMODE);
3131 	tsleep(sc, 0, "wiinit", 1);
3132 	return 0;
3133 }
3134