xref: /dragonfly/sys/dev/netif/wpi/if_wpi.c (revision 0ca59c34)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include "opt_wlan.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #include <sys/stdbool.h>
81 #include <sys/rman.h>
82 
83 #include <bus/pci/pcireg.h>
84 #include <bus/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 #include <net/ifq_var.h>
95 
96 #include <netproto/802_11/ieee80211_var.h>
97 #include <netproto/802_11/ieee80211_radiotap.h>
98 #include <netproto/802_11/ieee80211_regdomain.h>
99 #include <netproto/802_11/ieee80211_ratectl.h>
100 
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip.h>
105 #include <netinet/if_ether.h>
106 
107 #include <dev/netif/wpi/if_wpireg.h>
108 #include <dev/netif/wpi/if_wpivar.h>
109 
110 #define WPI_DEBUG
111 
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)	do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)	do { if (wpi_debug & n) kprintf x; } while (0)
115 #define	WPI_DEBUG_SET	(wpi_debug != 0)
116 
117 enum {
118 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130 	WPI_DEBUG_ANY		= 0xffffffff
131 };
132 
133 static int wpi_debug;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136 
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET	0
141 #endif
142 
143 struct wpi_ident {
144 	uint16_t	vendor;
145 	uint16_t	device;
146 	uint16_t	subdevice;
147 	const char	*name;
148 };
149 
150 static const struct wpi_ident wpi_ident_table[] = {
151 	/* The below entries support ABG regardless of the subid */
152 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154 	/* The below entries only support BG */
155 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159 	{ 0, 0, 0, NULL }
160 };
161 
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
164 		    const uint8_t [IEEE80211_ADDR_LEN],
165 		    const uint8_t [IEEE80211_ADDR_LEN]);
166 static void	wpi_vap_delete(struct ieee80211vap *);
167 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 		    void **, bus_size_t, bus_size_t, int);
169 static void	wpi_dma_contig_free(struct wpi_dma_info *);
170 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int	wpi_alloc_shared(struct wpi_softc *);
172 static void	wpi_free_shared(struct wpi_softc *);
173 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 		    int, int);
178 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
181 static void	wpi_mem_lock(struct wpi_softc *);
182 static void	wpi_mem_unlock(struct wpi_softc *);
183 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
184 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
185 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
186 		    const uint32_t *, int);
187 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
188 static int	wpi_alloc_fwmem(struct wpi_softc *);
189 static void	wpi_free_fwmem(struct wpi_softc *);
190 static int	wpi_load_firmware(struct wpi_softc *);
191 static void	wpi_unload_firmware(struct wpi_softc *);
192 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
193 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
194 		    struct wpi_rx_data *);
195 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
196 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
197 static void	wpi_notif_intr(struct wpi_softc *);
198 static void	wpi_intr(void *);
199 static uint8_t	wpi_plcp_signal(int);
200 static void	wpi_watchdog(void *);
201 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202 		    struct ieee80211_node *, int);
203 static void	wpi_start(struct ifnet *, struct ifaltq_subque *);
204 static void	wpi_start_locked(struct ifnet *);
205 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
206 		    const struct ieee80211_bpf_params *);
207 static void	wpi_scan_start(struct ieee80211com *);
208 static void	wpi_scan_end(struct ieee80211com *);
209 static void	wpi_set_channel(struct ieee80211com *);
210 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
211 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
212 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
213 static void	wpi_read_eeprom(struct wpi_softc *,
214 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
215 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
216 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
217 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
218 static int	wpi_wme_update(struct ieee80211com *);
219 static int	wpi_mrr_setup(struct wpi_softc *);
220 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
221 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
222 #if 0
223 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
224 #endif
225 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
226 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
227 static int	wpi_scan(struct wpi_softc *);
228 static int	wpi_config(struct wpi_softc *);
229 static void	wpi_stop_master(struct wpi_softc *);
230 static int	wpi_power_up(struct wpi_softc *);
231 static int	wpi_reset(struct wpi_softc *);
232 static void	wpi_hwreset(void *, int);
233 static void	wpi_rfreset(void *, int);
234 static void	wpi_hw_config(struct wpi_softc *);
235 static void	wpi_init(void *);
236 static void	wpi_init_locked(struct wpi_softc *, int);
237 static void	wpi_stop(struct wpi_softc *);
238 static void	wpi_stop_locked(struct wpi_softc *);
239 
240 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
241 		    int);
242 static void	wpi_calib_timeout(void *);
243 static void	wpi_power_calibration(struct wpi_softc *, int);
244 static int	wpi_get_power_index(struct wpi_softc *,
245 		    struct wpi_power_group *, struct ieee80211_channel *, int);
246 #ifdef WPI_DEBUG
247 static const char *wpi_cmd_str(int);
248 #endif
249 static int wpi_probe(device_t);
250 static int wpi_attach(device_t);
251 static int wpi_detach(device_t);
252 static int wpi_shutdown(device_t);
253 static int wpi_suspend(device_t);
254 static int wpi_resume(device_t);
255 
256 #if defined(__DragonFly__)
257 static int  wpi_sleep(struct wpi_softc *sc, void *wchan,
258 		int flags, const char *wmsg, int timo);
259 #endif
260 
261 static device_method_t wpi_methods[] = {
262 	/* Device interface */
263 	DEVMETHOD(device_probe,		wpi_probe),
264 	DEVMETHOD(device_attach,	wpi_attach),
265 	DEVMETHOD(device_detach,	wpi_detach),
266 	DEVMETHOD(device_shutdown,	wpi_shutdown),
267 	DEVMETHOD(device_suspend,	wpi_suspend),
268 	DEVMETHOD(device_resume,	wpi_resume),
269 
270 	DEVMETHOD_END
271 };
272 
273 static driver_t wpi_driver = {
274 	"wpi",
275 	wpi_methods,
276 	sizeof (struct wpi_softc)
277 };
278 
279 static devclass_t wpi_devclass;
280 
281 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282 
283 MODULE_VERSION(wpi, 1);
284 
285 static const uint8_t wpi_ridx_to_plcp[] = {
286 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
287 	/* R1-R4 (ral/ural is R4-R1) */
288 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
289 	/* CCK: device-dependent */
290 	10, 20, 55, 110
291 };
292 
293 static const uint8_t wpi_ridx_to_rate[] = {
294 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
295 	2, 4, 11, 22 /*CCK */
296 };
297 
298 static int
299 wpi_probe(device_t dev)
300 {
301 	const struct wpi_ident *ident;
302 
303 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
304 		if (pci_get_vendor(dev) == ident->vendor &&
305 		    pci_get_device(dev) == ident->device) {
306 			device_set_desc(dev, ident->name);
307 			return (BUS_PROBE_DEFAULT);
308 		}
309 	}
310 	return ENXIO;
311 }
312 
313 /**
314  * Load the firmare image from disk to the allocated dma buffer.
315  * we also maintain the reference to the firmware pointer as there
316  * is times where we may need to reload the firmware but we are not
317  * in a context that can access the filesystem (ie taskq cause by restart)
318  *
319  * @return 0 on success, an errno on failure
320  */
321 static int
322 wpi_load_firmware(struct wpi_softc *sc)
323 {
324 	const struct firmware *fp;
325 	struct wpi_dma_info *dma = &sc->fw_dma;
326 	const struct wpi_firmware_hdr *hdr;
327 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
328 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
329 	int error;
330 
331 	DPRINTFN(WPI_DEBUG_FIRMWARE,
332 	    ("Attempting Loading Firmware from wpi_fw module\n"));
333 
334 	WPI_UNLOCK(sc);
335 
336 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337 		device_printf(sc->sc_dev,
338 		    "could not load firmware image 'wpifw'\n");
339 		error = ENOENT;
340 		WPI_LOCK(sc);
341 		goto fail;
342 	}
343 
344 	fp = sc->fw_fp;
345 
346 	WPI_LOCK(sc);
347 
348 	/* Validate the firmware is minimum a particular version */
349 	if (fp->version < WPI_FW_MINVERSION) {
350 	    device_printf(sc->sc_dev,
351 			   "firmware version is too old. Need %d, got %d\n",
352 			   WPI_FW_MINVERSION,
353 			   fp->version);
354 	    error = ENXIO;
355 	    goto fail;
356 	}
357 
358 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
359 		device_printf(sc->sc_dev,
360 		    "firmware file too short: %zu bytes\n", fp->datasize);
361 		error = ENXIO;
362 		goto fail;
363 	}
364 
365 	hdr = (const struct wpi_firmware_hdr *)fp->data;
366 
367 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
368 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
369 
370 	rtextsz = le32toh(hdr->rtextsz);
371 	rdatasz = le32toh(hdr->rdatasz);
372 	itextsz = le32toh(hdr->itextsz);
373 	idatasz = le32toh(hdr->idatasz);
374 	btextsz = le32toh(hdr->btextsz);
375 
376 	/* check that all firmware segments are present */
377 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
378 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
379 		device_printf(sc->sc_dev,
380 		    "firmware file too short: %zu bytes\n", fp->datasize);
381 		error = ENXIO; /* XXX appropriate error code? */
382 		goto fail;
383 	}
384 
385 	/* get pointers to firmware segments */
386 	rtext = (const uint8_t *)(hdr + 1);
387 	rdata = rtext + rtextsz;
388 	itext = rdata + rdatasz;
389 	idata = itext + itextsz;
390 	btext = idata + idatasz;
391 
392 	DPRINTFN(WPI_DEBUG_FIRMWARE,
393 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
394 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
395 	     (le32toh(hdr->version) & 0xff000000) >> 24,
396 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
397 	     (le32toh(hdr->version) & 0x0000ffff),
398 	     rtextsz, rdatasz,
399 	     itextsz, idatasz, btextsz));
400 
401 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
402 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
403 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
404 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
405 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
406 
407 	/* sanity checks */
408 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
409 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
410 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
411 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
412 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
413 	    (btextsz & 3) != 0) {
414 		device_printf(sc->sc_dev, "firmware invalid\n");
415 		error = EINVAL;
416 		goto fail;
417 	}
418 
419 	/* copy initialization images into pre-allocated DMA-safe memory */
420 	memcpy(dma->vaddr, idata, idatasz);
421 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
422 
423 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
424 
425 	/* tell adapter where to find initialization images */
426 	wpi_mem_lock(sc);
427 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
428 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
429 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
430 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
431 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
432 	wpi_mem_unlock(sc);
433 
434 	/* load firmware boot code */
435 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
436 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
437 	    goto fail;
438 	}
439 
440 	/* now press "execute" */
441 	WPI_WRITE(sc, WPI_RESET, 0);
442 
443 	/* wait at most one second for the first alive notification */
444 #if defined(__DragonFly__)
445 	if ((error = wpi_sleep(sc, sc, PCATCH, "wpiinit", hz)) != 0) {
446 		device_printf(sc->sc_dev,
447 		    "timeout waiting for adapter to initialize\n");
448 		goto fail;
449 	}
450 #else
451 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
452 		device_printf(sc->sc_dev,
453 		    "timeout waiting for adapter to initialize\n");
454 		goto fail;
455 	}
456 #endif
457 
458 	/* copy runtime images into pre-allocated DMA-sage memory */
459 	memcpy(dma->vaddr, rdata, rdatasz);
460 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
461 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
462 
463 	/* tell adapter where to find runtime images */
464 	wpi_mem_lock(sc);
465 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
466 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
467 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
468 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
469 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
470 	wpi_mem_unlock(sc);
471 
472 	/* wait at most one second for the first alive notification */
473 #if defined(__DragonFly__)
474 	if ((error = wpi_sleep(sc, sc, PCATCH, "wpiinit", hz)) != 0) {
475 		device_printf(sc->sc_dev,
476 		    "timeout waiting for adapter to initialize2\n");
477 		goto fail;
478 	}
479 #else
480 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
481 		device_printf(sc->sc_dev,
482 		    "timeout waiting for adapter to initialize2\n");
483 		goto fail;
484 	}
485 #endif
486 
487 	DPRINTFN(WPI_DEBUG_FIRMWARE,
488 	    ("Firmware loaded to driver successfully\n"));
489 	return error;
490 fail:
491 	wpi_unload_firmware(sc);
492 	return error;
493 }
494 
495 /**
496  * Free the referenced firmware image
497  */
498 static void
499 wpi_unload_firmware(struct wpi_softc *sc)
500 {
501 
502 	if (sc->fw_fp) {
503 		WPI_UNLOCK(sc);
504 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
505 		WPI_LOCK(sc);
506 		sc->fw_fp = NULL;
507 	}
508 }
509 
510 static int
511 wpi_attach(device_t dev)
512 {
513 	struct wpi_softc *sc = device_get_softc(dev);
514 	struct ifnet *ifp;
515 	struct ieee80211com *ic;
516 	int ac, error, rid, supportsa = 1;
517 	uint32_t tmp;
518 	const struct wpi_ident *ident;
519 	uint8_t macaddr[IEEE80211_ADDR_LEN];
520 
521 	sc->sc_dev = dev;
522 
523 	if (bootverbose || WPI_DEBUG_SET)
524 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
525 
526 	/*
527 	 * Some card's only support 802.11b/g not a, check to see if
528 	 * this is one such card. A 0x0 in the subdevice table indicates
529 	 * the entire subdevice range is to be ignored.
530 	 */
531 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
532 		if (ident->subdevice &&
533 		    pci_get_subdevice(dev) == ident->subdevice) {
534 		    supportsa = 0;
535 		    break;
536 		}
537 	}
538 
539 	/* Create the tasks that can be queued */
540 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
541 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
542 
543 	WPI_LOCK_INIT(sc);
544 
545 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
546 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
547 
548 	/* disable the retry timeout register */
549 	pci_write_config(dev, 0x41, 0, 1);
550 
551 	/* enable bus-mastering */
552 	pci_enable_busmaster(dev);
553 
554 	rid = PCIR_BAR(0);
555 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
556 	    RF_ACTIVE);
557 	if (sc->mem == NULL) {
558 		device_printf(dev, "could not allocate memory resource\n");
559 		error = ENOMEM;
560 		goto fail;
561 	}
562 
563 	sc->sc_st = rman_get_bustag(sc->mem);
564 	sc->sc_sh = rman_get_bushandle(sc->mem);
565 
566 	rid = 0;
567 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
568 	    RF_ACTIVE | RF_SHAREABLE);
569 	if (sc->irq == NULL) {
570 		device_printf(dev, "could not allocate interrupt resource\n");
571 		error = ENOMEM;
572 		goto fail;
573 	}
574 
575 	/*
576 	 * Allocate DMA memory for firmware transfers.
577 	 */
578 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
579 		kprintf(": could not allocate firmware memory\n");
580 		error = ENOMEM;
581 		goto fail;
582 	}
583 
584 	/*
585 	 * Put adapter into a known state.
586 	 */
587 	if ((error = wpi_reset(sc)) != 0) {
588 		device_printf(dev, "could not reset adapter\n");
589 		goto fail;
590 	}
591 
592 	wpi_mem_lock(sc);
593 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
594 	if (bootverbose || WPI_DEBUG_SET)
595 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
596 
597 	wpi_mem_unlock(sc);
598 
599 	/* Allocate shared page */
600 	if ((error = wpi_alloc_shared(sc)) != 0) {
601 		device_printf(dev, "could not allocate shared page\n");
602 		goto fail;
603 	}
604 
605 	/* tx data queues  - 4 for QoS purposes */
606 	for (ac = 0; ac < WME_NUM_AC; ac++) {
607 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
608 		if (error != 0) {
609 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
610 		    goto fail;
611 		}
612 	}
613 
614 	/* command queue to talk to the card's firmware */
615 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
616 	if (error != 0) {
617 		device_printf(dev, "could not allocate command ring\n");
618 		goto fail;
619 	}
620 
621 	/* receive data queue */
622 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
623 	if (error != 0) {
624 		device_printf(dev, "could not allocate Rx ring\n");
625 		goto fail;
626 	}
627 
628 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
629 	if (ifp == NULL) {
630 		device_printf(dev, "can not if_alloc()\n");
631 		error = ENOMEM;
632 		goto fail;
633 	}
634 	ic = ifp->if_l2com;
635 
636 	ic->ic_ifp = ifp;
637 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
638 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
639 
640 	/* set device capabilities */
641 	ic->ic_caps =
642 		  IEEE80211_C_STA		/* station mode supported */
643 		| IEEE80211_C_MONITOR		/* monitor mode supported */
644 		| IEEE80211_C_TXPMGT		/* tx power management */
645 		| IEEE80211_C_SHSLOT		/* short slot time supported */
646 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
647 		| IEEE80211_C_WPA		/* 802.11i */
648 /* XXX looks like WME is partly supported? */
649 #if 0
650 		| IEEE80211_C_IBSS		/* IBSS mode support */
651 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
652 		| IEEE80211_C_WME		/* 802.11e */
653 		| IEEE80211_C_HOSTAP		/* Host access point mode */
654 #endif
655 		;
656 
657 	/*
658 	 * Read in the eeprom and also setup the channels for
659 	 * net80211. We don't set the rates as net80211 does this for us
660 	 */
661 	wpi_read_eeprom(sc, macaddr);
662 
663 	if (bootverbose || WPI_DEBUG_SET) {
664 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
665 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
666 			  sc->type > 1 ? 'B': '?');
667 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
668 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
669 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
670 			  supportsa ? "does" : "does not");
671 
672 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
673 	       what sc->rev really represents - benjsc 20070615 */
674 	}
675 
676 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
677 	ifp->if_softc = sc;
678 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679 	ifp->if_init = wpi_init;
680 	ifp->if_ioctl = wpi_ioctl;
681 	ifp->if_start = wpi_start;
682 #if defined(__DragonFly__)
683 	ifp->if_nmbjclusters = WPI_RX_RING_COUNT;
684 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
685 #else
686 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
687 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
688 	IFQ_SET_READY(&ifp->if_snd);
689 #endif
690 
691 	/* ieee80211_ifattach() assumes that WLAN serializer is held */
692 	wlan_serialize_enter();
693 	ieee80211_ifattach(ic, macaddr);
694 	wlan_serialize_exit();
695 	/* override default methods */
696 	ic->ic_raw_xmit = wpi_raw_xmit;
697 	ic->ic_wme.wme_update = wpi_wme_update;
698 	ic->ic_scan_start = wpi_scan_start;
699 	ic->ic_scan_end = wpi_scan_end;
700 	ic->ic_set_channel = wpi_set_channel;
701 	ic->ic_scan_curchan = wpi_scan_curchan;
702 	ic->ic_scan_mindwell = wpi_scan_mindwell;
703 
704 	ic->ic_vap_create = wpi_vap_create;
705 	ic->ic_vap_delete = wpi_vap_delete;
706 
707 	ieee80211_radiotap_attach(ic,
708 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
709 		WPI_TX_RADIOTAP_PRESENT,
710 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
711 		WPI_RX_RADIOTAP_PRESENT);
712 
713 	/*
714 	 * Hook our interrupt after all initialization is complete.
715 	 */
716 #if defined (__DragonFly__)
717 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
718 	    wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
719 #else
720 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
721 	    NULL, wpi_intr, sc, &sc->sc_ih);
722 #endif
723 	if (error != 0) {
724 		device_printf(dev, "could not set up interrupt\n");
725 		goto fail;
726 	}
727 
728 	if (bootverbose)
729 		ieee80211_announce(ic);
730 #ifdef XXX_DEBUG
731 	ieee80211_announce_channels(ic);
732 #endif
733 	return 0;
734 
735 fail:	wpi_detach(dev);
736 	return ENXIO;
737 }
738 
739 static int
740 wpi_detach(device_t dev)
741 {
742 	struct wpi_softc *sc = device_get_softc(dev);
743 	struct ifnet *ifp = sc->sc_ifp;
744 	struct ieee80211com *ic;
745 	int ac;
746 
747 	if (sc->irq != NULL)
748 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
749 
750 	if (ifp != NULL) {
751 		ic = ifp->if_l2com;
752 
753 		ieee80211_draintask(ic, &sc->sc_restarttask);
754 		ieee80211_draintask(ic, &sc->sc_radiotask);
755 		wpi_stop(sc);
756 		callout_drain(&sc->watchdog_to);
757 		callout_drain(&sc->calib_to);
758 		ieee80211_ifdetach(ic);
759 	}
760 
761 	WPI_LOCK(sc);
762 	if (sc->txq[0].data_dmat) {
763 		for (ac = 0; ac < WME_NUM_AC; ac++)
764 			wpi_free_tx_ring(sc, &sc->txq[ac]);
765 
766 		wpi_free_tx_ring(sc, &sc->cmdq);
767 		wpi_free_rx_ring(sc, &sc->rxq);
768 		wpi_free_shared(sc);
769 	}
770 
771 	if (sc->fw_fp != NULL) {
772 		wpi_unload_firmware(sc);
773 	}
774 
775 	if (sc->fw_dma.tag)
776 		wpi_free_fwmem(sc);
777 	WPI_UNLOCK(sc);
778 
779 	if (sc->irq != NULL)
780 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
781 		    sc->irq);
782 	if (sc->mem != NULL)
783 		bus_release_resource(dev, SYS_RES_MEMORY,
784 		    rman_get_rid(sc->mem), sc->mem);
785 
786 	if (ifp != NULL)
787 		if_free(ifp);
788 
789 	WPI_LOCK_DESTROY(sc);
790 
791 	return 0;
792 }
793 
794 static struct ieee80211vap *
795 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
796     enum ieee80211_opmode opmode, int flags,
797     const uint8_t bssid[IEEE80211_ADDR_LEN],
798     const uint8_t mac[IEEE80211_ADDR_LEN])
799 {
800 	struct wpi_vap *wvp;
801 	struct ieee80211vap *vap;
802 
803 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
804 		return NULL;
805 	wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
806 	    M_80211_VAP, M_INTWAIT | M_ZERO);
807 	if (wvp == NULL)
808 		return NULL;
809 	vap = &wvp->vap;
810 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
811 	/* override with driver methods */
812 	wvp->newstate = vap->iv_newstate;
813 	vap->iv_newstate = wpi_newstate;
814 
815 	ieee80211_ratectl_init(vap);
816 	/* complete setup */
817 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
818 	ic->ic_opmode = opmode;
819 	return vap;
820 }
821 
822 static void
823 wpi_vap_delete(struct ieee80211vap *vap)
824 {
825 	struct wpi_vap *wvp = WPI_VAP(vap);
826 
827 	ieee80211_ratectl_deinit(vap);
828 	ieee80211_vap_detach(vap);
829 	kfree(wvp, M_80211_VAP);
830 }
831 
832 static void
833 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
834 {
835 	if (error != 0)
836 		return;
837 
838 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
839 
840 	*(bus_addr_t *)arg = segs[0].ds_addr;
841 }
842 
843 /*
844  * Allocates a contiguous block of dma memory of the requested size and
845  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
846  * allocations greater than 4096 may fail. Hence if the requested alignment is
847  * greater we allocate 'alignment' size extra memory and shift the vaddr and
848  * paddr after the dma load. This bypasses the problem at the cost of a little
849  * more memory.
850  */
851 static int
852 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
853     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
854 {
855 	int error;
856 	bus_size_t align;
857 	bus_size_t reqsize;
858 
859 	DPRINTFN(WPI_DEBUG_DMA,
860 	    ("Size: %zd - alignment %zd\n", size, alignment));
861 
862 	dma->size = size;
863 	dma->tag = NULL;
864 
865 	if (alignment > 4096) {
866 		align = PAGE_SIZE;
867 		reqsize = size + alignment;
868 	} else {
869 		align = alignment;
870 		reqsize = size;
871 	}
872 #if defined(__DragonFly__)
873 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
874 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
875 	    NULL, NULL, reqsize,
876 	    1, reqsize, flags,
877 	    &dma->tag);
878 #else
879 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
880 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
881 	    NULL, NULL, reqsize,
882 	    1, reqsize, flags,
883 	    NULL, NULL, &dma->tag);
884 #endif
885 	if (error != 0) {
886 		device_printf(sc->sc_dev,
887 		    "could not create shared page DMA tag\n");
888 		goto fail;
889 	}
890 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
891 	    flags | BUS_DMA_ZERO, &dma->map);
892 	if (error != 0) {
893 		device_printf(sc->sc_dev,
894 		    "could not allocate shared page DMA memory\n");
895 		goto fail;
896 	}
897 
898 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
899 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
900 
901 	/* Save the original pointers so we can free all the memory */
902 	dma->paddr = dma->paddr_start;
903 	dma->vaddr = dma->vaddr_start;
904 
905 	/*
906 	 * Check the alignment and increment by 4096 until we get the
907 	 * requested alignment. Fail if can't obtain the alignment
908 	 * we requested.
909 	 */
910 	if ((dma->paddr & (alignment -1 )) != 0) {
911 		int i;
912 
913 		for (i = 0; i < alignment / 4096; i++) {
914 			if ((dma->paddr & (alignment - 1 )) == 0)
915 				break;
916 			dma->paddr += 4096;
917 			dma->vaddr += 4096;
918 		}
919 		if (i == alignment / 4096) {
920 			device_printf(sc->sc_dev,
921 			    "alignment requirement was not satisfied\n");
922 			goto fail;
923 		}
924 	}
925 
926 	if (error != 0) {
927 		device_printf(sc->sc_dev,
928 		    "could not load shared page DMA map\n");
929 		goto fail;
930 	}
931 
932 	if (kvap != NULL)
933 		*kvap = dma->vaddr;
934 
935 	return 0;
936 
937 fail:
938 	wpi_dma_contig_free(dma);
939 	return error;
940 }
941 
942 static void
943 wpi_dma_contig_free(struct wpi_dma_info *dma)
944 {
945 	if (dma->tag) {
946 		if (dma->vaddr_start != NULL) {
947 			if (dma->paddr_start != 0) {
948 				bus_dmamap_sync(dma->tag, dma->map,
949 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
950 				bus_dmamap_unload(dma->tag, dma->map);
951 			}
952 			bus_dmamem_free(dma->tag, dma->vaddr_start, dma->map);
953 		}
954 		bus_dma_tag_destroy(dma->tag);
955 	}
956 }
957 
958 /*
959  * Allocate a shared page between host and NIC.
960  */
961 static int
962 wpi_alloc_shared(struct wpi_softc *sc)
963 {
964 	int error;
965 
966 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
967 	    (void **)&sc->shared, sizeof (struct wpi_shared),
968 	    PAGE_SIZE,
969 	    BUS_DMA_NOWAIT);
970 
971 	if (error != 0) {
972 		device_printf(sc->sc_dev,
973 		    "could not allocate shared area DMA memory\n");
974 	}
975 
976 	return error;
977 }
978 
979 static void
980 wpi_free_shared(struct wpi_softc *sc)
981 {
982 	wpi_dma_contig_free(&sc->shared_dma);
983 }
984 
985 static int
986 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
987 {
988 
989 	int i, error;
990 
991 	ring->cur = 0;
992 
993 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
994 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
995 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
996 
997 	if (error != 0) {
998 		device_printf(sc->sc_dev,
999 		    "%s: could not allocate rx ring DMA memory, error %d\n",
1000 		    __func__, error);
1001 		goto fail;
1002 	}
1003 
1004 #if defined(__DragonFly__)
1005         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1006 	    BUS_SPACE_MAXADDR_32BIT,
1007             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1008             MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1009 #else
1010         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1011 	    BUS_SPACE_MAXADDR_32BIT,
1012             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1013             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
1014 #endif
1015         if (error != 0) {
1016                 device_printf(sc->sc_dev,
1017 		    "%s: bus_dma_tag_create_failed, error %d\n",
1018 		    __func__, error);
1019                 goto fail;
1020         }
1021 
1022 	/*
1023 	 * Setup Rx buffers.
1024 	 */
1025 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1026 		struct wpi_rx_data *data = &ring->data[i];
1027 		struct mbuf *m;
1028 		bus_addr_t paddr;
1029 
1030 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1031 		if (error != 0) {
1032 			device_printf(sc->sc_dev,
1033 			    "%s: bus_dmamap_create failed, error %d\n",
1034 			    __func__, error);
1035 			goto fail;
1036 		}
1037 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1038 		if (m == NULL) {
1039 			device_printf(sc->sc_dev,
1040 			   "%s: could not allocate rx mbuf\n", __func__);
1041 			error = ENOMEM;
1042 			goto fail;
1043 		}
1044 		/* map page */
1045 		error = bus_dmamap_load(ring->data_dmat, data->map,
1046 		    mtod(m, caddr_t), MJUMPAGESIZE,
1047 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1048 		if (error != 0 && error != EFBIG) {
1049 			device_printf(sc->sc_dev,
1050 			    "%s: bus_dmamap_load failed, error %d\n",
1051 			    __func__, error);
1052 			m_freem(m);
1053 			error = ENOMEM;	/* XXX unique code */
1054 			goto fail;
1055 		}
1056 		bus_dmamap_sync(ring->data_dmat, data->map,
1057 		    BUS_DMASYNC_PREWRITE);
1058 
1059 		data->m = m;
1060 		ring->desc[i] = htole32(paddr);
1061 	}
1062 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1063 	    BUS_DMASYNC_PREWRITE);
1064 	return 0;
1065 fail:
1066 	wpi_free_rx_ring(sc, ring);
1067 	return error;
1068 }
1069 
1070 static void
1071 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1072 {
1073 	int ntries;
1074 
1075 	wpi_mem_lock(sc);
1076 
1077 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1078 
1079 	for (ntries = 0; ntries < 100; ntries++) {
1080 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1081 			break;
1082 		DELAY(10);
1083 	}
1084 
1085 	wpi_mem_unlock(sc);
1086 
1087 #ifdef WPI_DEBUG
1088 	if (ntries == 100 && wpi_debug > 0)
1089 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1090 #endif
1091 
1092 	ring->cur = 0;
1093 }
1094 
1095 static void
1096 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1097 {
1098 	int i;
1099 
1100 	wpi_dma_contig_free(&ring->desc_dma);
1101 
1102 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1103 		struct wpi_rx_data *data = &ring->data[i];
1104 
1105 		if (data->m != NULL) {
1106 			bus_dmamap_sync(ring->data_dmat, data->map,
1107 			    BUS_DMASYNC_POSTREAD);
1108 			bus_dmamap_unload(ring->data_dmat, data->map);
1109 			m_freem(data->m);
1110 		}
1111 		if (data->map != NULL)
1112 			bus_dmamap_destroy(ring->data_dmat, data->map);
1113 	}
1114 }
1115 
1116 static int
1117 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1118 	int qid)
1119 {
1120 	struct wpi_tx_data *data;
1121 	int i, error;
1122 
1123 	ring->qid = qid;
1124 	ring->count = count;
1125 	ring->queued = 0;
1126 	ring->cur = 0;
1127 	ring->data = NULL;
1128 
1129 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1130 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1131 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1132 
1133 	if (error != 0) {
1134 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1135 	    goto fail;
1136 	}
1137 
1138 	/* update shared page with ring's base address */
1139 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1140 
1141 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1142 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1143 		BUS_DMA_NOWAIT);
1144 
1145 	if (error != 0) {
1146 		device_printf(sc->sc_dev,
1147 		    "could not allocate tx command DMA memory\n");
1148 		goto fail;
1149 	}
1150 
1151 	ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1152 	    M_INTWAIT | M_ZERO);
1153 	if (ring->data == NULL) {
1154 		device_printf(sc->sc_dev,
1155 		    "could not allocate tx data slots\n");
1156 		goto fail;
1157 	}
1158 
1159 #if defined(__DragonFly__)
1160 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1161 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1162 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT,
1163 	    &ring->data_dmat);
1164 #else
1165 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1166 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1167 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1168 	    &ring->data_dmat);
1169 #endif
1170 	if (error != 0) {
1171 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1172 		goto fail;
1173 	}
1174 
1175 	for (i = 0; i < count; i++) {
1176 		data = &ring->data[i];
1177 
1178 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1179 		if (error != 0) {
1180 			device_printf(sc->sc_dev,
1181 			    "could not create tx buf DMA map\n");
1182 			goto fail;
1183 		}
1184 		bus_dmamap_sync(ring->data_dmat, data->map,
1185 		    BUS_DMASYNC_PREWRITE);
1186 	}
1187 
1188 	return 0;
1189 
1190 fail:
1191 	wpi_free_tx_ring(sc, ring);
1192 	return error;
1193 }
1194 
1195 static void
1196 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1197 {
1198 	struct wpi_tx_data *data;
1199 	int i, ntries;
1200 
1201 	wpi_mem_lock(sc);
1202 
1203 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1204 	for (ntries = 0; ntries < 100; ntries++) {
1205 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1206 			break;
1207 		DELAY(10);
1208 	}
1209 #ifdef WPI_DEBUG
1210 	if (ntries == 100 && wpi_debug > 0)
1211 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1212 		    ring->qid);
1213 #endif
1214 	wpi_mem_unlock(sc);
1215 
1216 	for (i = 0; i < ring->count; i++) {
1217 		data = &ring->data[i];
1218 
1219 		if (data->m != NULL) {
1220 			bus_dmamap_unload(ring->data_dmat, data->map);
1221 			m_freem(data->m);
1222 			data->m = NULL;
1223 		}
1224 	}
1225 
1226 	ring->queued = 0;
1227 	ring->cur = 0;
1228 }
1229 
1230 static void
1231 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1232 {
1233 	struct wpi_tx_data *data;
1234 	int i;
1235 
1236 	wpi_dma_contig_free(&ring->desc_dma);
1237 	wpi_dma_contig_free(&ring->cmd_dma);
1238 
1239 	if (ring->data != NULL) {
1240 		for (i = 0; i < ring->count; i++) {
1241 			data = &ring->data[i];
1242 
1243 			if (data->m != NULL) {
1244 				bus_dmamap_sync(ring->data_dmat, data->map,
1245 				    BUS_DMASYNC_POSTWRITE);
1246 				bus_dmamap_unload(ring->data_dmat, data->map);
1247 				m_freem(data->m);
1248 				data->m = NULL;
1249 			}
1250 		}
1251 		kfree(ring->data, M_DEVBUF);
1252 	}
1253 
1254 	if (ring->data_dmat != NULL)
1255 		bus_dma_tag_destroy(ring->data_dmat);
1256 }
1257 
1258 static int
1259 wpi_shutdown(device_t dev)
1260 {
1261 	struct wpi_softc *sc = device_get_softc(dev);
1262 
1263 	WPI_LOCK(sc);
1264 	wpi_stop_locked(sc);
1265 	wpi_unload_firmware(sc);
1266 	WPI_UNLOCK(sc);
1267 
1268 	return 0;
1269 }
1270 
1271 static int
1272 wpi_suspend(device_t dev)
1273 {
1274 	struct wpi_softc *sc = device_get_softc(dev);
1275 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1276 
1277 	ieee80211_suspend_all(ic);
1278 	return 0;
1279 }
1280 
1281 static int
1282 wpi_resume(device_t dev)
1283 {
1284 	struct wpi_softc *sc = device_get_softc(dev);
1285 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1286 
1287 	pci_write_config(dev, 0x41, 0, 1);
1288 
1289 	ieee80211_resume_all(ic);
1290 	return 0;
1291 }
1292 
1293 /**
1294  * Called by net80211 when ever there is a change to 80211 state machine
1295  */
1296 static int
1297 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1298 {
1299 	struct wpi_vap *wvp = WPI_VAP(vap);
1300 	struct ieee80211com *ic = vap->iv_ic;
1301 	struct ifnet *ifp = ic->ic_ifp;
1302 	struct wpi_softc *sc = ifp->if_softc;
1303 	int error;
1304 
1305 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1306 		ieee80211_state_name[vap->iv_state],
1307 		ieee80211_state_name[nstate], sc->flags));
1308 
1309 	IEEE80211_UNLOCK(ic);
1310 	WPI_LOCK(sc);
1311 	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1312 		/*
1313 		 * On !INIT -> SCAN transitions, we need to clear any possible
1314 		 * knowledge about associations.
1315 		 */
1316 		error = wpi_config(sc);
1317 		if (error != 0) {
1318 			device_printf(sc->sc_dev,
1319 			    "%s: device config failed, error %d\n",
1320 			    __func__, error);
1321 		}
1322 	}
1323 	if (nstate == IEEE80211_S_AUTH ||
1324 	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1325 		/*
1326 		 * The node must be registered in the firmware before auth.
1327 		 * Also the associd must be cleared on RUN -> ASSOC
1328 		 * transitions.
1329 		 */
1330 		error = wpi_auth(sc, vap);
1331 		if (error != 0) {
1332 			device_printf(sc->sc_dev,
1333 			    "%s: could not move to auth state, error %d\n",
1334 			    __func__, error);
1335 		}
1336 	}
1337 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1338 		error = wpi_run(sc, vap);
1339 		if (error != 0) {
1340 			device_printf(sc->sc_dev,
1341 			    "%s: could not move to run state, error %d\n",
1342 			    __func__, error);
1343 		}
1344 	}
1345 	if (nstate == IEEE80211_S_RUN) {
1346 		/* RUN -> RUN transition; just restart the timers */
1347 		wpi_calib_timeout(sc);
1348 		/* XXX split out rate control timer */
1349 	}
1350 	WPI_UNLOCK(sc);
1351 	IEEE80211_LOCK(ic);
1352 	return wvp->newstate(vap, nstate, arg);
1353 }
1354 
1355 /*
1356  * Grab exclusive access to NIC memory.
1357  */
1358 static void
1359 wpi_mem_lock(struct wpi_softc *sc)
1360 {
1361 	int ntries;
1362 	uint32_t tmp;
1363 
1364 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1365 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1366 
1367 	/* spin until we actually get the lock */
1368 	for (ntries = 0; ntries < 100; ntries++) {
1369 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1370 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1371 			break;
1372 		DELAY(10);
1373 	}
1374 	if (ntries == 100)
1375 		device_printf(sc->sc_dev, "could not lock memory\n");
1376 }
1377 
1378 /*
1379  * Release lock on NIC memory.
1380  */
1381 static void
1382 wpi_mem_unlock(struct wpi_softc *sc)
1383 {
1384 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1385 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1386 }
1387 
1388 static uint32_t
1389 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1390 {
1391 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1392 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1393 }
1394 
1395 static void
1396 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1397 {
1398 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1399 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1400 }
1401 
1402 static void
1403 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1404     const uint32_t *data, int wlen)
1405 {
1406 	for (; wlen > 0; wlen--, data++, addr+=4)
1407 		wpi_mem_write(sc, addr, *data);
1408 }
1409 
1410 /*
1411  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1412  * using the traditional bit-bang method. Data is read up until len bytes have
1413  * been obtained.
1414  */
1415 static uint16_t
1416 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1417 {
1418 	int ntries;
1419 	uint32_t val;
1420 	uint8_t *out = data;
1421 
1422 	wpi_mem_lock(sc);
1423 
1424 	for (; len > 0; len -= 2, addr++) {
1425 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1426 
1427 		for (ntries = 0; ntries < 10; ntries++) {
1428 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1429 				break;
1430 			DELAY(5);
1431 		}
1432 
1433 		if (ntries == 10) {
1434 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1435 			return ETIMEDOUT;
1436 		}
1437 
1438 		*out++= val >> 16;
1439 		if (len > 1)
1440 			*out ++= val >> 24;
1441 	}
1442 
1443 	wpi_mem_unlock(sc);
1444 
1445 	return 0;
1446 }
1447 
1448 /*
1449  * The firmware text and data segments are transferred to the NIC using DMA.
1450  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1451  * where to find it.  Once the NIC has copied the firmware into its internal
1452  * memory, we can free our local copy in the driver.
1453  */
1454 static int
1455 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1456 {
1457 	int error, ntries;
1458 
1459 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1460 
1461 	size /= sizeof(uint32_t);
1462 
1463 	wpi_mem_lock(sc);
1464 
1465 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1466 	    (const uint32_t *)fw, size);
1467 
1468 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1469 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1470 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1471 
1472 	/* run microcode */
1473 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1474 
1475 	/* wait while the adapter is busy copying the firmware */
1476 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1477 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1478 		DPRINTFN(WPI_DEBUG_HW,
1479 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1480 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1481 		if (status & WPI_TX_IDLE(6)) {
1482 			DPRINTFN(WPI_DEBUG_HW,
1483 			    ("Status Match! - ntries = %d\n", ntries));
1484 			break;
1485 		}
1486 		DELAY(10);
1487 	}
1488 	if (ntries == 1000) {
1489 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1490 		error = ETIMEDOUT;
1491 	}
1492 
1493 	/* start the microcode executing */
1494 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1495 
1496 	wpi_mem_unlock(sc);
1497 
1498 	return (error);
1499 }
1500 
1501 static void
1502 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1503 	struct wpi_rx_data *data)
1504 {
1505 	struct ifnet *ifp = sc->sc_ifp;
1506 	struct ieee80211com *ic = ifp->if_l2com;
1507 	struct wpi_rx_ring *ring = &sc->rxq;
1508 	struct wpi_rx_stat *stat;
1509 	struct wpi_rx_head *head;
1510 	struct wpi_rx_tail *tail;
1511 	struct ieee80211_node *ni;
1512 	struct mbuf *m, *mnew;
1513 	bus_addr_t paddr;
1514 	int error;
1515 
1516 	stat = (struct wpi_rx_stat *)(desc + 1);
1517 
1518 	if (stat->len > WPI_STAT_MAXLEN) {
1519 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1520 #if defined(__DragonFly__)
1521 		IFNET_STAT_INC(ifp, ierrors, 1);
1522 #else
1523 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1524 #endif
1525 		return;
1526 	}
1527 
1528 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1529 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1530 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1531 
1532 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1533 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1534 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1535 	    (uintmax_t)le64toh(tail->tstamp)));
1536 
1537 	/* discard Rx frames with bad CRC early */
1538 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1539 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1540 		    le32toh(tail->flags)));
1541 #if defined(__DragonFly__)
1542 		IFNET_STAT_INC(ifp, ierrors, 1);
1543 #else
1544 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1545 #endif
1546 		return;
1547 	}
1548 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1549 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1550 		    le16toh(head->len)));
1551 #if defined(__DragonFly__)
1552 		IFNET_STAT_INC(ifp, ierrors, 1);
1553 #else
1554 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1555 #endif
1556 		return;
1557 	}
1558 
1559 	/* XXX don't need mbuf, just dma buffer */
1560 	mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1561 	if (mnew == NULL) {
1562 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1563 		    __func__));
1564 #if defined(__DragonFly__)
1565 		IFNET_STAT_INC(ifp, ierrors, 1);
1566 #else
1567 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1568 #endif
1569 		return;
1570 	}
1571 	bus_dmamap_unload(ring->data_dmat, data->map);
1572 
1573 	error = bus_dmamap_load(ring->data_dmat, data->map,
1574 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1575 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1576 	if (error != 0 && error != EFBIG) {
1577 		device_printf(sc->sc_dev,
1578 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1579 		m_freem(mnew);
1580 #if defined(__DragonFly__)
1581 		IFNET_STAT_INC(ifp, ierrors, 1);
1582 #else
1583 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1584 #endif
1585 		return;
1586 	}
1587 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1588 
1589 	/* finalize mbuf and swap in new one */
1590 	m = data->m;
1591 	m->m_pkthdr.rcvif = ifp;
1592 	m->m_data = (caddr_t)(head + 1);
1593 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1594 
1595 	data->m = mnew;
1596 	/* update Rx descriptor */
1597 	ring->desc[ring->cur] = htole32(paddr);
1598 
1599 	if (ieee80211_radiotap_active(ic)) {
1600 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1601 
1602 		tap->wr_flags = 0;
1603 		tap->wr_chan_freq =
1604 			htole16(ic->ic_channels[head->chan].ic_freq);
1605 		tap->wr_chan_flags =
1606 			htole16(ic->ic_channels[head->chan].ic_flags);
1607 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1608 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1609 		tap->wr_tsft = tail->tstamp;
1610 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1611 		switch (head->rate) {
1612 		/* CCK rates */
1613 		case  10: tap->wr_rate =   2; break;
1614 		case  20: tap->wr_rate =   4; break;
1615 		case  55: tap->wr_rate =  11; break;
1616 		case 110: tap->wr_rate =  22; break;
1617 		/* OFDM rates */
1618 		case 0xd: tap->wr_rate =  12; break;
1619 		case 0xf: tap->wr_rate =  18; break;
1620 		case 0x5: tap->wr_rate =  24; break;
1621 		case 0x7: tap->wr_rate =  36; break;
1622 		case 0x9: tap->wr_rate =  48; break;
1623 		case 0xb: tap->wr_rate =  72; break;
1624 		case 0x1: tap->wr_rate =  96; break;
1625 		case 0x3: tap->wr_rate = 108; break;
1626 		/* unknown rate: should not happen */
1627 		default:  tap->wr_rate =   0;
1628 		}
1629 		if (le16toh(head->flags) & 0x4)
1630 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1631 	}
1632 
1633 	WPI_UNLOCK(sc);
1634 
1635 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1636 	if (ni != NULL) {
1637 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1638 		ieee80211_free_node(ni);
1639 	} else
1640 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1641 
1642 	WPI_LOCK(sc);
1643 }
1644 
1645 static void
1646 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1647 {
1648 	struct ifnet *ifp = sc->sc_ifp;
1649 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1650 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1651 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1652 	struct ieee80211_node *ni = txdata->ni;
1653 	struct ieee80211vap *vap = ni->ni_vap;
1654 	int retrycnt = 0;
1655 
1656 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1657 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1658 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1659 	    le32toh(stat->status)));
1660 
1661 	/*
1662 	 * Update rate control statistics for the node.
1663 	 * XXX we should not count mgmt frames since they're always sent at
1664 	 * the lowest available bit-rate.
1665 	 * XXX frames w/o ACK shouldn't be used either
1666 	 */
1667 	if (stat->ntries > 0) {
1668 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1669 		retrycnt = 1;
1670 	}
1671 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1672 	    &retrycnt, NULL);
1673 
1674 	/* XXX oerrors should only count errors !maxtries */
1675 #if defined(__DragonFly__)
1676 	if ((le32toh(stat->status) & 0xff) != 1)
1677 		IFNET_STAT_INC(ifp, oerrors, 1);
1678 	else
1679 		IFNET_STAT_INC(ifp, opackets, 1);
1680 #else
1681 	if ((le32toh(stat->status) & 0xff) != 1)
1682 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1683 	else
1684 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1685 #endif
1686 
1687 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1688 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1689 	/* XXX handle M_TXCB? */
1690 	m_freem(txdata->m);
1691 	txdata->m = NULL;
1692 	ieee80211_free_node(txdata->ni);
1693 	txdata->ni = NULL;
1694 
1695 	ring->queued--;
1696 
1697 	sc->sc_tx_timer = 0;
1698 #if defined(__DragonFly__)
1699 	ifq_clr_oactive(&ifp->if_snd);
1700 #else
1701 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1702 #endif
1703 	wpi_start_locked(ifp);
1704 }
1705 
1706 static void
1707 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1708 {
1709 	struct wpi_tx_ring *ring = &sc->cmdq;
1710 	struct wpi_tx_data *data;
1711 
1712 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1713 				 "type=%s len=%d\n", desc->qid, desc->idx,
1714 				 desc->flags, wpi_cmd_str(desc->type),
1715 				 le32toh(desc->len)));
1716 
1717 	if ((desc->qid & 7) != 4)
1718 		return;	/* not a command ack */
1719 
1720 	data = &ring->data[desc->idx];
1721 
1722 	/* if the command was mapped in a mbuf, free it */
1723 	if (data->m != NULL) {
1724 		bus_dmamap_unload(ring->data_dmat, data->map);
1725 		m_freem(data->m);
1726 		data->m = NULL;
1727 	}
1728 
1729 	sc->flags &= ~WPI_FLAG_BUSY;
1730 	wakeup(&ring->cmd[desc->idx]);
1731 }
1732 
1733 static void
1734 wpi_notif_intr(struct wpi_softc *sc)
1735 {
1736 	struct ifnet *ifp = sc->sc_ifp;
1737 	struct ieee80211com *ic = ifp->if_l2com;
1738 	struct wpi_rx_desc *desc;
1739 	struct wpi_rx_data *data;
1740 	uint32_t hw;
1741 
1742 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1743 	    BUS_DMASYNC_POSTREAD);
1744 
1745 	hw = le32toh(sc->shared->next);
1746 	while (sc->rxq.cur != hw) {
1747 		data = &sc->rxq.data[sc->rxq.cur];
1748 
1749 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1750 		    BUS_DMASYNC_POSTREAD);
1751 		desc = (void *)data->m->m_ext.ext_buf;
1752 
1753 		DPRINTFN(WPI_DEBUG_NOTIFY,
1754 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1755 			  desc->qid,
1756 			  desc->idx,
1757 			  desc->flags,
1758 			  desc->type,
1759 			  le32toh(desc->len)));
1760 
1761 		if (!(desc->qid & 0x80))	/* reply to a command */
1762 			wpi_cmd_intr(sc, desc);
1763 
1764 		switch (desc->type) {
1765 		case WPI_RX_DONE:
1766 			/* a 802.11 frame was received */
1767 			wpi_rx_intr(sc, desc, data);
1768 			break;
1769 
1770 		case WPI_TX_DONE:
1771 			/* a 802.11 frame has been transmitted */
1772 			wpi_tx_intr(sc, desc);
1773 			break;
1774 
1775 		case WPI_UC_READY:
1776 		{
1777 			struct wpi_ucode_info *uc =
1778 				(struct wpi_ucode_info *)(desc + 1);
1779 
1780 			/* the microcontroller is ready */
1781 			DPRINTF(("microcode alive notification version %x "
1782 				"alive %x\n", le32toh(uc->version),
1783 				le32toh(uc->valid)));
1784 
1785 			if (le32toh(uc->valid) != 1) {
1786 				device_printf(sc->sc_dev,
1787 				    "microcontroller initialization failed\n");
1788 				wpi_stop_locked(sc);
1789 			}
1790 			break;
1791 		}
1792 		case WPI_STATE_CHANGED:
1793 		{
1794 			uint32_t *status = (uint32_t *)(desc + 1);
1795 
1796 			/* enabled/disabled notification */
1797 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1798 
1799 			if (le32toh(*status) & 1) {
1800 				device_printf(sc->sc_dev,
1801 				    "Radio transmitter is switched off\n");
1802 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1803 #if defined(__DragonFly__)
1804 				ifp->if_flags &= ~IFF_RUNNING;
1805 #else
1806 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1807 #endif
1808 				/* Disable firmware commands */
1809 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1810 			}
1811 			break;
1812 		}
1813 		case WPI_START_SCAN:
1814 		{
1815 #ifdef WPI_DEBUG
1816 			struct wpi_start_scan *scan =
1817 				(struct wpi_start_scan *)(desc + 1);
1818 #endif
1819 
1820 			DPRINTFN(WPI_DEBUG_SCANNING,
1821 				 ("scanning channel %d status %x\n",
1822 			    scan->chan, le32toh(scan->status)));
1823 			break;
1824 		}
1825 		case WPI_STOP_SCAN:
1826 		{
1827 #ifdef WPI_DEBUG
1828 			struct wpi_stop_scan *scan =
1829 				(struct wpi_stop_scan *)(desc + 1);
1830 #endif
1831 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1832 
1833 			DPRINTFN(WPI_DEBUG_SCANNING,
1834 			    ("scan finished nchan=%d status=%d chan=%d\n",
1835 			     scan->nchan, scan->status, scan->chan));
1836 
1837 			sc->sc_scan_timer = 0;
1838 			ieee80211_scan_next(vap);
1839 			break;
1840 		}
1841 		case WPI_MISSED_BEACON:
1842 		{
1843 			struct wpi_missed_beacon *beacon =
1844 				(struct wpi_missed_beacon *)(desc + 1);
1845 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1846 
1847 			if (le32toh(beacon->consecutive) >=
1848 			    vap->iv_bmissthreshold) {
1849 				DPRINTF(("Beacon miss: %u >= %u\n",
1850 					 le32toh(beacon->consecutive),
1851 					 vap->iv_bmissthreshold));
1852 				ieee80211_beacon_miss(ic);
1853 			}
1854 			break;
1855 		}
1856 		}
1857 
1858 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1859 	}
1860 
1861 	/* tell the firmware what we have processed */
1862 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1863 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1864 }
1865 
1866 static void
1867 wpi_intr(void *arg)
1868 {
1869 	struct wpi_softc *sc = arg;
1870 	uint32_t r;
1871 
1872 	WPI_LOCK(sc);
1873 
1874 	r = WPI_READ(sc, WPI_INTR);
1875 	if (r == 0 || r == 0xffffffff) {
1876 		WPI_UNLOCK(sc);
1877 		return;
1878 	}
1879 
1880 	/* disable interrupts */
1881 	WPI_WRITE(sc, WPI_MASK, 0);
1882 	/* ack interrupts */
1883 	WPI_WRITE(sc, WPI_INTR, r);
1884 
1885 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1886 		struct ifnet *ifp = sc->sc_ifp;
1887 		struct ieee80211com *ic = ifp->if_l2com;
1888 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1889 
1890 		device_printf(sc->sc_dev, "fatal firmware error\n");
1891 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1892 				"(Hardware Error)"));
1893 		if (vap != NULL)
1894 			ieee80211_cancel_scan(vap);
1895 		ieee80211_runtask(ic, &sc->sc_restarttask);
1896 		sc->flags &= ~WPI_FLAG_BUSY;
1897 		WPI_UNLOCK(sc);
1898 		return;
1899 	}
1900 
1901 	if (r & WPI_RX_INTR)
1902 		wpi_notif_intr(sc);
1903 
1904 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1905 		wakeup(sc);
1906 
1907 	/* re-enable interrupts */
1908 	if (sc->sc_ifp->if_flags & IFF_UP)
1909 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1910 
1911 	WPI_UNLOCK(sc);
1912 }
1913 
1914 static uint8_t
1915 wpi_plcp_signal(int rate)
1916 {
1917 	switch (rate) {
1918 	/* CCK rates (returned values are device-dependent) */
1919 	case 2:		return 10;
1920 	case 4:		return 20;
1921 	case 11:	return 55;
1922 	case 22:	return 110;
1923 
1924 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1925 	/* R1-R4 (ral/ural is R4-R1) */
1926 	case 12:	return 0xd;
1927 	case 18:	return 0xf;
1928 	case 24:	return 0x5;
1929 	case 36:	return 0x7;
1930 	case 48:	return 0x9;
1931 	case 72:	return 0xb;
1932 	case 96:	return 0x1;
1933 	case 108:	return 0x3;
1934 
1935 	/* unsupported rates (should not get there) */
1936 	default:	return 0;
1937 	}
1938 }
1939 
1940 /* quickly determine if a given rate is CCK or OFDM */
1941 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1942 
1943 /*
1944  * Construct the data packet for a transmit buffer and acutally put
1945  * the buffer onto the transmit ring, kicking the card to process the
1946  * the buffer.
1947  */
1948 static int
1949 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1950 	int ac)
1951 {
1952 	struct ieee80211vap *vap = ni->ni_vap;
1953 	struct ifnet *ifp = sc->sc_ifp;
1954 	struct ieee80211com *ic = ifp->if_l2com;
1955 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1956 	struct wpi_tx_ring *ring = &sc->txq[ac];
1957 	struct wpi_tx_desc *desc;
1958 	struct wpi_tx_data *data;
1959 	struct wpi_tx_cmd *cmd;
1960 	struct wpi_cmd_data *tx;
1961 	struct ieee80211_frame *wh;
1962 	const struct ieee80211_txparam *tp;
1963 	struct ieee80211_key *k;
1964 	struct mbuf *mnew;
1965 	int i, error, nsegs, rate, hdrlen, ismcast;
1966 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1967 
1968 	desc = &ring->desc[ring->cur];
1969 	data = &ring->data[ring->cur];
1970 
1971 	wh = mtod(m0, struct ieee80211_frame *);
1972 
1973 	hdrlen = ieee80211_hdrsize(wh);
1974 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1975 
1976 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1977 		k = ieee80211_crypto_encap(ni, m0);
1978 		if (k == NULL) {
1979 			m_freem(m0);
1980 			return ENOBUFS;
1981 		}
1982 		/* packet header may have moved, reset our local pointer */
1983 		wh = mtod(m0, struct ieee80211_frame *);
1984 	}
1985 
1986 	cmd = &ring->cmd[ring->cur];
1987 	cmd->code = WPI_CMD_TX_DATA;
1988 	cmd->flags = 0;
1989 	cmd->qid = ring->qid;
1990 	cmd->idx = ring->cur;
1991 
1992 	tx = (struct wpi_cmd_data *)cmd->data;
1993 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1994 	tx->timeout = htole16(0);
1995 	tx->ofdm_mask = 0xff;
1996 	tx->cck_mask = 0x0f;
1997 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1998 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1999 	tx->len = htole16(m0->m_pkthdr.len);
2000 
2001 	if (!ismcast) {
2002 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
2003 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
2004 			tx->flags |= htole32(WPI_TX_NEED_ACK);
2005 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2006 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
2007 			tx->rts_ntries = 7;
2008 		}
2009 	}
2010 	/* pick a rate */
2011 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2012 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
2013 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2014 		/* tell h/w to set timestamp in probe responses */
2015 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2016 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
2017 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2018 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2019 			tx->timeout = htole16(3);
2020 		else
2021 			tx->timeout = htole16(2);
2022 		rate = tp->mgmtrate;
2023 	} else if (ismcast) {
2024 		rate = tp->mcastrate;
2025 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2026 		rate = tp->ucastrate;
2027 	} else {
2028 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2029 		rate = ni->ni_txrate;
2030 	}
2031 	tx->rate = wpi_plcp_signal(rate);
2032 
2033 	/* be very persistant at sending frames out */
2034 #if 0
2035 	tx->data_ntries = tp->maxretry;
2036 #else
2037 	tx->data_ntries = 15;		/* XXX way too high */
2038 #endif
2039 
2040 	if (ieee80211_radiotap_active_vap(vap)) {
2041 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2042 		tap->wt_flags = 0;
2043 		tap->wt_rate = rate;
2044 		tap->wt_hwqueue = ac;
2045 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2046 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2047 
2048 		ieee80211_radiotap_tx(vap, m0);
2049 	}
2050 
2051 	/* save and trim IEEE802.11 header */
2052 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
2053 	m_adj(m0, hdrlen);
2054 
2055 #if defined(__DragonFly__)
2056 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
2057 	    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2058 #else
2059 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2060 	    &nsegs, BUS_DMA_NOWAIT);
2061 #endif
2062 	if (error != 0 && error != EFBIG) {
2063 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
2064 		    error);
2065 		m_freem(m0);
2066 		return error;
2067 	}
2068 	if (error != 0) {
2069 		/* XXX use m_collapse */
2070 		mnew = m_defrag(m0, M_NOWAIT);
2071 		if (mnew == NULL) {
2072 			device_printf(sc->sc_dev,
2073 			    "could not defragment mbuf\n");
2074 			m_freem(m0);
2075 			return ENOBUFS;
2076 		}
2077 		m0 = mnew;
2078 
2079 #if defined(__DragonFly__)
2080 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
2081 		    data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2082 #else
2083 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2084 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
2085 #endif
2086 		if (error != 0) {
2087 			device_printf(sc->sc_dev,
2088 			    "could not map mbuf (error %d)\n", error);
2089 			m_freem(m0);
2090 			return error;
2091 		}
2092 	}
2093 
2094 	data->m = m0;
2095 	data->ni = ni;
2096 
2097 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2098 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2099 
2100 	/* first scatter/gather segment is used by the tx data command */
2101 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2102 	    (1 + nsegs) << 24);
2103 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2104 	    ring->cur * sizeof (struct wpi_tx_cmd));
2105 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2106 	for (i = 1; i <= nsegs; i++) {
2107 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2108 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2109 	}
2110 
2111 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2112 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2113 	    BUS_DMASYNC_PREWRITE);
2114 
2115 	ring->queued++;
2116 
2117 	/* kick ring */
2118 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2119 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2120 
2121 	return 0;
2122 }
2123 
2124 /**
2125  * Process data waiting to be sent on the IFNET output queue
2126  */
2127 static void
2128 wpi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2129 {
2130 	struct wpi_softc *sc = ifp->if_softc;
2131 
2132 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2133 
2134 	WPI_LOCK(sc);
2135 	wpi_start_locked(ifp);
2136 	WPI_UNLOCK(sc);
2137 }
2138 
2139 static void
2140 wpi_start_locked(struct ifnet *ifp)
2141 {
2142 	struct wpi_softc *sc = ifp->if_softc;
2143 	struct ieee80211_node *ni;
2144 	struct mbuf *m;
2145 	int ac;
2146 
2147 	WPI_LOCK_ASSERT(sc);
2148 
2149 #if defined(__DragonFly__)
2150 	if ((ifp->if_flags & IFF_RUNNING) == 0)
2151 		return;
2152 #else
2153 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2154 		return;
2155 #endif
2156 
2157 	for (;;) {
2158 #if defined(__DragonFly__)
2159 		m = ifq_dequeue(&ifp->if_snd);
2160 #else
2161 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2162 #endif
2163 		if (m == NULL)
2164 			break;
2165 		ac = M_WME_GETAC(m);
2166 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2167 			/* there is no place left in this ring */
2168 #if defined(__DragonFly__)
2169 			ifq_prepend(&ifp->if_snd, m);
2170 			ifq_set_oactive(&ifp->if_snd);
2171 #else
2172 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2173 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2174 #endif
2175 			break;
2176 		}
2177 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2178 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2179 			ieee80211_free_node(ni);
2180 #if defined(__DragonFly__)
2181 			IFNET_STAT_INC(ifp, oerrors, 1);
2182 #else
2183 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2184 #endif
2185 			break;
2186 		}
2187 		sc->sc_tx_timer = 5;
2188 	}
2189 }
2190 
2191 static int
2192 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2193 	const struct ieee80211_bpf_params *params)
2194 {
2195 	struct ieee80211com *ic = ni->ni_ic;
2196 	struct ifnet *ifp = ic->ic_ifp;
2197 	struct wpi_softc *sc = ifp->if_softc;
2198 
2199 	/* prevent management frames from being sent if we're not ready */
2200 #if defined(__DragonFly__)
2201 	if (!(ifp->if_flags & IFF_RUNNING)) {
2202 		m_freem(m);
2203 		ieee80211_free_node(ni);
2204 		return ENETDOWN;
2205 	}
2206 #else
2207 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2208 		m_freem(m);
2209 		ieee80211_free_node(ni);
2210 		return ENETDOWN;
2211 	}
2212 #endif
2213 	WPI_LOCK(sc);
2214 
2215 	/* management frames go into ring 0 */
2216 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2217 #if defined(__DragonFly__)
2218 		ifq_set_oactive(&ifp->if_snd);
2219 #else
2220 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2221 #endif
2222 		m_freem(m);
2223 		WPI_UNLOCK(sc);
2224 		ieee80211_free_node(ni);
2225 		return ENOBUFS;		/* XXX */
2226 	}
2227 
2228 #if defined(__DragonFly__)
2229 	IFNET_STAT_INC(ifp, opackets, 1);
2230 #else
2231 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2232 #endif
2233 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2234 		goto bad;
2235 	sc->sc_tx_timer = 5;
2236 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2237 
2238 	WPI_UNLOCK(sc);
2239 	return 0;
2240 bad:
2241 #if defined(__DragonFly__)
2242 	IFNET_STAT_INC(ifp, oerrors, 1);
2243 #else
2244 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2245 #endif
2246 	WPI_UNLOCK(sc);
2247 	ieee80211_free_node(ni);
2248 	return EIO;		/* XXX */
2249 }
2250 
2251 static int
2252 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,
2253     struct ucred *cred __unused)
2254 {
2255 	struct wpi_softc *sc = ifp->if_softc;
2256 	struct ieee80211com *ic = ifp->if_l2com;
2257 	struct ifreq *ifr = (struct ifreq *) data;
2258 	int error = 0, startall = 0;
2259 
2260 	switch (cmd) {
2261 	case SIOCSIFFLAGS:
2262 		WPI_LOCK(sc);
2263 #if defined(__DragonFly__)
2264 		if ((ifp->if_flags & IFF_UP)) {
2265 			if (!(ifp->if_flags & IFF_RUNNING)) {
2266 				wpi_init_locked(sc, 0);
2267 				startall = 1;
2268 			}
2269 		} else if ((ifp->if_flags & IFF_RUNNING) ||
2270 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2271 			wpi_stop_locked(sc);
2272 #else
2273 		if ((ifp->if_flags & IFF_UP)) {
2274 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2275 				wpi_init_locked(sc, 0);
2276 				startall = 1;
2277 			}
2278 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2279 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2280 			wpi_stop_locked(sc);
2281 #endif
2282 		WPI_UNLOCK(sc);
2283 		if (startall)
2284 			ieee80211_start_all(ic);
2285 		break;
2286 	case SIOCGIFMEDIA:
2287 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2288 		break;
2289 	case SIOCGIFADDR:
2290 		error = ether_ioctl(ifp, cmd, data);
2291 		break;
2292 	default:
2293 		error = EINVAL;
2294 		break;
2295 	}
2296 	return error;
2297 }
2298 
2299 /*
2300  * Extract various information from EEPROM.
2301  */
2302 static void
2303 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2304 {
2305 	int i;
2306 
2307 	/* read the hardware capabilities, revision and SKU type */
2308 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2309 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2310 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2311 
2312 	/* read the regulatory domain */
2313 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2314 
2315 	/* read in the hw MAC address */
2316 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2317 
2318 	/* read the list of authorized channels */
2319 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2320 		wpi_read_eeprom_channels(sc,i);
2321 
2322 	/* read the power level calibration info for each group */
2323 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2324 		wpi_read_eeprom_group(sc,i);
2325 }
2326 
2327 /*
2328  * Send a command to the firmware.
2329  */
2330 static int
2331 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2332 {
2333 	struct wpi_tx_ring *ring = &sc->cmdq;
2334 	struct wpi_tx_desc *desc;
2335 	struct wpi_tx_cmd *cmd;
2336 
2337 #ifdef WPI_DEBUG
2338 	if (!async) {
2339 		WPI_LOCK_ASSERT(sc);
2340 	}
2341 #endif
2342 
2343 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2344 		    async));
2345 
2346 	if (sc->flags & WPI_FLAG_BUSY) {
2347 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2348 		    __func__, code);
2349 		return EAGAIN;
2350 	}
2351 	sc->flags|= WPI_FLAG_BUSY;
2352 
2353 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2354 	    code, size));
2355 
2356 	desc = &ring->desc[ring->cur];
2357 	cmd = &ring->cmd[ring->cur];
2358 
2359 	cmd->code = code;
2360 	cmd->flags = 0;
2361 	cmd->qid = ring->qid;
2362 	cmd->idx = ring->cur;
2363 	memcpy(cmd->data, buf, size);
2364 
2365 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2366 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2367 		ring->cur * sizeof (struct wpi_tx_cmd));
2368 	desc->segs[0].len  = htole32(4 + size);
2369 
2370 	/* kick cmd ring */
2371 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2372 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2373 
2374 	if (async) {
2375 		sc->flags &= ~ WPI_FLAG_BUSY;
2376 		return 0;
2377 	}
2378 
2379 #if defined(__DragonFly__)
2380 	return wpi_sleep(sc, cmd, PCATCH, "wpicmd", hz);
2381 #else
2382 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2383 #endif
2384 }
2385 
2386 static int
2387 wpi_wme_update(struct ieee80211com *ic)
2388 {
2389 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2390 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2391 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2392 	const struct wmeParams *wmep;
2393 	struct wpi_wme_setup wme;
2394 	int ac;
2395 
2396 	/* don't override default WME values if WME is not actually enabled */
2397 	if (!(ic->ic_flags & IEEE80211_F_WME))
2398 		return 0;
2399 
2400 	wme.flags = 0;
2401 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2402 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2403 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2404 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2405 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2406 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2407 
2408 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2409 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2410 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2411 	}
2412 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2413 #undef WPI_USEC
2414 #undef WPI_EXP2
2415 }
2416 
2417 /*
2418  * Configure h/w multi-rate retries.
2419  */
2420 static int
2421 wpi_mrr_setup(struct wpi_softc *sc)
2422 {
2423 	struct ifnet *ifp = sc->sc_ifp;
2424 	struct ieee80211com *ic = ifp->if_l2com;
2425 	struct wpi_mrr_setup mrr;
2426 	int i, error;
2427 
2428 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2429 
2430 	/* CCK rates (not used with 802.11a) */
2431 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2432 		mrr.rates[i].flags = 0;
2433 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2434 		/* fallback to the immediate lower CCK rate (if any) */
2435 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2436 		/* try one time at this rate before falling back to "next" */
2437 		mrr.rates[i].ntries = 1;
2438 	}
2439 
2440 	/* OFDM rates (not used with 802.11b) */
2441 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2442 		mrr.rates[i].flags = 0;
2443 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2444 		/* fallback to the immediate lower OFDM rate (if any) */
2445 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2446 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2447 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2448 			WPI_OFDM6 : WPI_CCK2) :
2449 		    i - 1;
2450 		/* try one time at this rate before falling back to "next" */
2451 		mrr.rates[i].ntries = 1;
2452 	}
2453 
2454 	/* setup MRR for control frames */
2455 	mrr.which = WPI_MRR_CTL;
2456 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2457 	if (error != 0) {
2458 		device_printf(sc->sc_dev,
2459 		    "could not setup MRR for control frames\n");
2460 		return error;
2461 	}
2462 
2463 	/* setup MRR for data frames */
2464 	mrr.which = WPI_MRR_DATA;
2465 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2466 	if (error != 0) {
2467 		device_printf(sc->sc_dev,
2468 		    "could not setup MRR for data frames\n");
2469 		return error;
2470 	}
2471 
2472 	return 0;
2473 }
2474 
2475 static void
2476 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2477 {
2478 	struct wpi_cmd_led led;
2479 
2480 	led.which = which;
2481 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2482 	led.off = off;
2483 	led.on = on;
2484 
2485 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2486 }
2487 
2488 static void
2489 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2490 {
2491 	struct wpi_cmd_tsf tsf;
2492 	uint64_t val, mod;
2493 
2494 	memset(&tsf, 0, sizeof tsf);
2495 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2496 	tsf.bintval = htole16(ni->ni_intval);
2497 	tsf.lintval = htole16(10);
2498 
2499 	/* compute remaining time until next beacon */
2500 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2501 	mod = le64toh(tsf.tstamp) % val;
2502 	tsf.binitval = htole32((uint32_t)(val - mod));
2503 
2504 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2505 		device_printf(sc->sc_dev, "could not enable TSF\n");
2506 }
2507 
2508 #if 0
2509 /*
2510  * Build a beacon frame that the firmware will broadcast periodically in
2511  * IBSS or HostAP modes.
2512  */
2513 static int
2514 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2515 {
2516 	struct ifnet *ifp = sc->sc_ifp;
2517 	struct ieee80211com *ic = ifp->if_l2com;
2518 	struct wpi_tx_ring *ring = &sc->cmdq;
2519 	struct wpi_tx_desc *desc;
2520 	struct wpi_tx_data *data;
2521 	struct wpi_tx_cmd *cmd;
2522 	struct wpi_cmd_beacon *bcn;
2523 	struct ieee80211_beacon_offsets bo;
2524 	struct mbuf *m0;
2525 	bus_addr_t physaddr;
2526 	int error;
2527 
2528 	desc = &ring->desc[ring->cur];
2529 	data = &ring->data[ring->cur];
2530 
2531 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2532 	if (m0 == NULL) {
2533 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2534 		return ENOMEM;
2535 	}
2536 
2537 	cmd = &ring->cmd[ring->cur];
2538 	cmd->code = WPI_CMD_SET_BEACON;
2539 	cmd->flags = 0;
2540 	cmd->qid = ring->qid;
2541 	cmd->idx = ring->cur;
2542 
2543 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2544 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2545 	bcn->id = WPI_ID_BROADCAST;
2546 	bcn->ofdm_mask = 0xff;
2547 	bcn->cck_mask = 0x0f;
2548 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2549 	bcn->len = htole16(m0->m_pkthdr.len);
2550 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2551 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2552 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2553 
2554 	/* save and trim IEEE802.11 header */
2555 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2556 	m_adj(m0, sizeof (struct ieee80211_frame));
2557 
2558 	/* assume beacon frame is contiguous */
2559 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2560 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2561 	if (error != 0) {
2562 		device_printf(sc->sc_dev, "could not map beacon\n");
2563 		m_freem(m0);
2564 		return error;
2565 	}
2566 
2567 	data->m = m0;
2568 
2569 	/* first scatter/gather segment is used by the beacon command */
2570 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2571 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2572 		ring->cur * sizeof (struct wpi_tx_cmd));
2573 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2574 	desc->segs[1].addr = htole32(physaddr);
2575 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2576 
2577 	/* kick cmd ring */
2578 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2579 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2580 
2581 	return 0;
2582 }
2583 #endif
2584 
2585 static int
2586 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2587 {
2588 	struct ieee80211com *ic = vap->iv_ic;
2589 	struct ieee80211_node *ni = vap->iv_bss;
2590 	struct wpi_node_info node;
2591 	int error;
2592 
2593 
2594 	/* update adapter's configuration */
2595 	sc->config.associd = 0;
2596 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2597 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2598 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2599 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2600 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2601 		    WPI_CONFIG_24GHZ);
2602 	} else {
2603 		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2604 		    WPI_CONFIG_24GHZ);
2605 	}
2606 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2607 		sc->config.cck_mask  = 0;
2608 		sc->config.ofdm_mask = 0x15;
2609 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2610 		sc->config.cck_mask  = 0x03;
2611 		sc->config.ofdm_mask = 0;
2612 	} else {
2613 		/* XXX assume 802.11b/g */
2614 		sc->config.cck_mask  = 0x0f;
2615 		sc->config.ofdm_mask = 0x15;
2616 	}
2617 
2618 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2619 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2620 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2621 		sizeof (struct wpi_config), 1);
2622 	if (error != 0) {
2623 		device_printf(sc->sc_dev, "could not configure\n");
2624 		return error;
2625 	}
2626 
2627 	/* configuration has changed, set Tx power accordingly */
2628 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2629 		device_printf(sc->sc_dev, "could not set Tx power\n");
2630 		return error;
2631 	}
2632 
2633 	/* add default node */
2634 	memset(&node, 0, sizeof node);
2635 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2636 	node.id = WPI_ID_BSS;
2637 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2638 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2639 	node.action = htole32(WPI_ACTION_SET_RATE);
2640 	node.antenna = WPI_ANTENNA_BOTH;
2641 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2642 	if (error != 0)
2643 		device_printf(sc->sc_dev, "could not add BSS node\n");
2644 
2645 	return (error);
2646 }
2647 
2648 static int
2649 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2650 {
2651 	struct ieee80211com *ic = vap->iv_ic;
2652 	struct ieee80211_node *ni = vap->iv_bss;
2653 	int error;
2654 
2655 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2656 		/* link LED blinks while monitoring */
2657 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2658 		return 0;
2659 	}
2660 
2661 	wpi_enable_tsf(sc, ni);
2662 
2663 	/* update adapter's configuration */
2664 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2665 	/* short preamble/slot time are negotiated when associating */
2666 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2667 	    WPI_CONFIG_SHSLOT);
2668 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2669 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2670 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2671 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2672 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2673 
2674 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2675 
2676 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2677 		    sc->config.flags));
2678 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2679 		    wpi_config), 1);
2680 	if (error != 0) {
2681 		device_printf(sc->sc_dev, "could not update configuration\n");
2682 		return error;
2683 	}
2684 
2685 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2686 	if (error != 0) {
2687 		device_printf(sc->sc_dev, "could set txpower\n");
2688 		return error;
2689 	}
2690 
2691 	/* link LED always on while associated */
2692 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2693 
2694 	/* start automatic rate control timer */
2695 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2696 
2697 	return (error);
2698 }
2699 
2700 /*
2701  * Send a scan request to the firmware.  Since this command is huge, we map it
2702  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2703  * much of this code is similar to that in wpi_cmd but because we must manually
2704  * construct the probe & channels, we duplicate what's needed here. XXX In the
2705  * future, this function should be modified to use wpi_cmd to help cleanup the
2706  * code base.
2707  */
2708 static int
2709 wpi_scan(struct wpi_softc *sc)
2710 {
2711 	struct ifnet *ifp = sc->sc_ifp;
2712 	struct ieee80211com *ic = ifp->if_l2com;
2713 	struct ieee80211_scan_state *ss = ic->ic_scan;
2714 	struct wpi_tx_ring *ring = &sc->cmdq;
2715 	struct wpi_tx_desc *desc;
2716 	struct wpi_tx_data *data;
2717 	struct wpi_tx_cmd *cmd;
2718 	struct wpi_scan_hdr *hdr;
2719 	struct wpi_scan_chan *chan;
2720 	struct ieee80211_frame *wh;
2721 	struct ieee80211_rateset *rs;
2722 	struct ieee80211_channel *c;
2723 	enum ieee80211_phymode mode;
2724 	uint8_t *frm;
2725 	int pktlen, error, i, nssid;
2726 	bus_addr_t physaddr;
2727 
2728 	desc = &ring->desc[ring->cur];
2729 	data = &ring->data[ring->cur];
2730 
2731 	data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2732 	if (data->m == NULL) {
2733 		device_printf(sc->sc_dev,
2734 		    "could not allocate mbuf for scan command\n");
2735 		return ENOMEM;
2736 	}
2737 
2738 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2739 	cmd->code = WPI_CMD_SCAN;
2740 	cmd->flags = 0;
2741 	cmd->qid = ring->qid;
2742 	cmd->idx = ring->cur;
2743 
2744 	hdr = (struct wpi_scan_hdr *)cmd->data;
2745 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2746 
2747 	/*
2748 	 * Move to the next channel if no packets are received within 5 msecs
2749 	 * after sending the probe request (this helps to reduce the duration
2750 	 * of active scans).
2751 	 */
2752 	hdr->quiet = htole16(5);
2753 	hdr->threshold = htole16(1);
2754 
2755 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2756 		/* send probe requests at 6Mbps */
2757 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2758 
2759 		/* Enable crc checking */
2760 		hdr->promotion = htole16(1);
2761 	} else {
2762 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2763 		/* send probe requests at 1Mbps */
2764 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2765 	}
2766 	hdr->tx.id = WPI_ID_BROADCAST;
2767 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2768 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2769 
2770 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2771 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2772 	for (i = 0; i < nssid; i++) {
2773 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2774 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
2775 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2776 		    hdr->scan_essids[i].esslen);
2777 #ifdef WPI_DEBUG
2778 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2779 			kprintf("Scanning Essid: ");
2780 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2781 			    hdr->scan_essids[i].esslen);
2782 			kprintf("\n");
2783 		}
2784 #endif
2785 	}
2786 
2787 	/*
2788 	 * Build a probe request frame.  Most of the following code is a
2789 	 * copy & paste of what is done in net80211.
2790 	 */
2791 	wh = (struct ieee80211_frame *)&hdr->scan_essids[WPI_SCAN_MAX_ESSIDS];
2792 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2793 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2794 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2795 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2796 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2797 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2798 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2799 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2800 
2801 	frm = (uint8_t *)(wh + 1);
2802 
2803 	mode = ieee80211_chan2mode(ic->ic_curchan);
2804 	rs = &ic->ic_sup_rates[mode];
2805 
2806 	frm = ieee80211_add_ssid(frm, NULL, 0);
2807 	frm = ieee80211_add_rates(frm, rs);
2808 	frm = ieee80211_add_xrates(frm, rs);
2809 
2810 	/* setup length of probe request */
2811 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2812 
2813 	/*
2814 	 * Construct information about the channel that we
2815 	 * want to scan. The firmware expects this to be directly
2816 	 * after the scan probe request
2817 	 */
2818 	c = ic->ic_curchan;
2819 	chan = (struct wpi_scan_chan *)frm;
2820 	chan->chan = ieee80211_chan2ieee(ic, c);
2821 	chan->flags = 0;
2822 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2823 		chan->flags |= WPI_CHAN_ACTIVE;
2824 		if (nssid != 0)
2825 			chan->flags |= WPI_CHAN_DIRECT;
2826 	}
2827 	chan->gain_dsp = 0x6e; /* Default level */
2828 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2829 		chan->active = htole16(10);
2830 		chan->passive = htole16(ss->ss_maxdwell);
2831 		chan->gain_radio = 0x3b;
2832 	} else {
2833 		chan->active = htole16(20);
2834 		chan->passive = htole16(ss->ss_maxdwell);
2835 		chan->gain_radio = 0x28;
2836 	}
2837 
2838 	DPRINTFN(WPI_DEBUG_SCANNING,
2839 	    ("Scanning %u Passive: %d\n",
2840 	     chan->chan,
2841 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2842 
2843 	hdr->nchan++;
2844 	chan++;
2845 
2846 	frm += sizeof (struct wpi_scan_chan);
2847 #if 0
2848 	// XXX All Channels....
2849 	for (c  = &ic->ic_channels[1];
2850 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2851 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2852 			continue;
2853 
2854 		chan->chan = ieee80211_chan2ieee(ic, c);
2855 		chan->flags = 0;
2856 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2857 		    chan->flags |= WPI_CHAN_ACTIVE;
2858 		    if (ic->ic_des_ssid[0].len != 0)
2859 			chan->flags |= WPI_CHAN_DIRECT;
2860 		}
2861 		chan->gain_dsp = 0x6e; /* Default level */
2862 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2863 			chan->active = htole16(10);
2864 			chan->passive = htole16(110);
2865 			chan->gain_radio = 0x3b;
2866 		} else {
2867 			chan->active = htole16(20);
2868 			chan->passive = htole16(120);
2869 			chan->gain_radio = 0x28;
2870 		}
2871 
2872 		DPRINTFN(WPI_DEBUG_SCANNING,
2873 			 ("Scanning %u Passive: %d\n",
2874 			  chan->chan,
2875 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2876 
2877 		hdr->nchan++;
2878 		chan++;
2879 
2880 		frm += sizeof (struct wpi_scan_chan);
2881 	}
2882 #endif
2883 
2884 	hdr->len = htole16(frm - (uint8_t *)hdr);
2885 	pktlen = frm - (uint8_t *)cmd;
2886 
2887 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2888 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2889 	if (error != 0) {
2890 		device_printf(sc->sc_dev, "could not map scan command\n");
2891 		m_freem(data->m);
2892 		data->m = NULL;
2893 		return error;
2894 	}
2895 
2896 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2897 	desc->segs[0].addr = htole32(physaddr);
2898 	desc->segs[0].len  = htole32(pktlen);
2899 
2900 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2901 	    BUS_DMASYNC_PREWRITE);
2902 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2903 
2904 	/* kick cmd ring */
2905 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2906 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2907 
2908 	sc->sc_scan_timer = 5;
2909 	return 0;	/* will be notified async. of failure/success */
2910 }
2911 
2912 /**
2913  * Configure the card to listen to a particular channel, this transisions the
2914  * card in to being able to receive frames from remote devices.
2915  */
2916 static int
2917 wpi_config(struct wpi_softc *sc)
2918 {
2919 	struct ifnet *ifp = sc->sc_ifp;
2920 	struct ieee80211com *ic = ifp->if_l2com;
2921 	struct wpi_power power;
2922 	struct wpi_bluetooth bluetooth;
2923 	struct wpi_node_info node;
2924 	int error;
2925 
2926 	/* set power mode */
2927 	memset(&power, 0, sizeof power);
2928 	power.flags = htole32(WPI_POWER_CAM|0x8);
2929 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2930 	if (error != 0) {
2931 		device_printf(sc->sc_dev, "could not set power mode\n");
2932 		return error;
2933 	}
2934 
2935 	/* configure bluetooth coexistence */
2936 	memset(&bluetooth, 0, sizeof bluetooth);
2937 	bluetooth.flags = 3;
2938 	bluetooth.lead = 0xaa;
2939 	bluetooth.kill = 1;
2940 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2941 	    0);
2942 	if (error != 0) {
2943 		device_printf(sc->sc_dev,
2944 		    "could not configure bluetooth coexistence\n");
2945 		return error;
2946 	}
2947 
2948 	/* configure adapter */
2949 	memset(&sc->config, 0, sizeof (struct wpi_config));
2950 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2951 	/*set default channel*/
2952 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2953 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2954 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2955 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2956 		    WPI_CONFIG_24GHZ);
2957 	}
2958 	sc->config.filter = 0;
2959 	switch (ic->ic_opmode) {
2960 	case IEEE80211_M_STA:
2961 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2962 		sc->config.mode = WPI_MODE_STA;
2963 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2964 		break;
2965 	case IEEE80211_M_IBSS:
2966 	case IEEE80211_M_AHDEMO:
2967 		sc->config.mode = WPI_MODE_IBSS;
2968 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2969 					     WPI_FILTER_MULTICAST);
2970 		break;
2971 	case IEEE80211_M_HOSTAP:
2972 		sc->config.mode = WPI_MODE_HOSTAP;
2973 		break;
2974 	case IEEE80211_M_MONITOR:
2975 		sc->config.mode = WPI_MODE_MONITOR;
2976 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2977 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2978 		break;
2979 	default:
2980 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2981 		return EINVAL;
2982 	}
2983 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2984 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2985 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2986 		sizeof (struct wpi_config), 0);
2987 	if (error != 0) {
2988 		device_printf(sc->sc_dev, "configure command failed\n");
2989 		return error;
2990 	}
2991 
2992 	/* configuration has changed, set Tx power accordingly */
2993 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2994 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2995 	    return error;
2996 	}
2997 
2998 	/* add broadcast node */
2999 	memset(&node, 0, sizeof node);
3000 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
3001 	node.id = WPI_ID_BROADCAST;
3002 	node.rate = wpi_plcp_signal(2);
3003 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3004 	if (error != 0) {
3005 		device_printf(sc->sc_dev, "could not add broadcast node\n");
3006 		return error;
3007 	}
3008 
3009 	/* Setup rate scalling */
3010 	error = wpi_mrr_setup(sc);
3011 	if (error != 0) {
3012 		device_printf(sc->sc_dev, "could not setup MRR\n");
3013 		return error;
3014 	}
3015 
3016 	return 0;
3017 }
3018 
3019 static void
3020 wpi_stop_master(struct wpi_softc *sc)
3021 {
3022 	uint32_t tmp;
3023 	int ntries;
3024 
3025 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
3026 
3027 	tmp = WPI_READ(sc, WPI_RESET);
3028 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
3029 
3030 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3031 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3032 		return;	/* already asleep */
3033 
3034 	for (ntries = 0; ntries < 100; ntries++) {
3035 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3036 			break;
3037 		DELAY(10);
3038 	}
3039 	if (ntries == 100) {
3040 		device_printf(sc->sc_dev, "timeout waiting for master\n");
3041 	}
3042 }
3043 
3044 static int
3045 wpi_power_up(struct wpi_softc *sc)
3046 {
3047 	uint32_t tmp;
3048 	int ntries;
3049 
3050 	wpi_mem_lock(sc);
3051 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3052 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3053 	wpi_mem_unlock(sc);
3054 
3055 	for (ntries = 0; ntries < 5000; ntries++) {
3056 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3057 			break;
3058 		DELAY(10);
3059 	}
3060 	if (ntries == 5000) {
3061 		device_printf(sc->sc_dev,
3062 		    "timeout waiting for NIC to power up\n");
3063 		return ETIMEDOUT;
3064 	}
3065 	return 0;
3066 }
3067 
3068 static int
3069 wpi_reset(struct wpi_softc *sc)
3070 {
3071 	uint32_t tmp;
3072 	int ntries;
3073 
3074 	DPRINTFN(WPI_DEBUG_HW,
3075 	    ("Resetting the card - clearing any uploaded firmware\n"));
3076 
3077 	/* clear any pending interrupts */
3078 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3079 
3080 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3081 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3082 
3083 	tmp = WPI_READ(sc, WPI_CHICKEN);
3084 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3085 
3086 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3087 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3088 
3089 	/* wait for clock stabilization */
3090 	for (ntries = 0; ntries < 25000; ntries++) {
3091 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3092 			break;
3093 		DELAY(10);
3094 	}
3095 	if (ntries == 25000) {
3096 		device_printf(sc->sc_dev,
3097 		    "timeout waiting for clock stabilization\n");
3098 		return ETIMEDOUT;
3099 	}
3100 
3101 	/* initialize EEPROM */
3102 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3103 
3104 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3105 		device_printf(sc->sc_dev, "EEPROM not found\n");
3106 		return EIO;
3107 	}
3108 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3109 
3110 	return 0;
3111 }
3112 
3113 static void
3114 wpi_hw_config(struct wpi_softc *sc)
3115 {
3116 	uint32_t rev, hw;
3117 
3118 	/* voodoo from the Linux "driver".. */
3119 	hw = WPI_READ(sc, WPI_HWCONFIG);
3120 
3121 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
3122 	if ((rev & 0xc0) == 0x40)
3123 		hw |= WPI_HW_ALM_MB;
3124 	else if (!(rev & 0x80))
3125 		hw |= WPI_HW_ALM_MM;
3126 
3127 	if (sc->cap == 0x80)
3128 		hw |= WPI_HW_SKU_MRC;
3129 
3130 	hw &= ~WPI_HW_REV_D;
3131 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3132 		hw |= WPI_HW_REV_D;
3133 
3134 	if (sc->type > 1)
3135 		hw |= WPI_HW_TYPE_B;
3136 
3137 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3138 }
3139 
3140 static void
3141 wpi_rfkill_resume(struct wpi_softc *sc)
3142 {
3143 	struct ifnet *ifp = sc->sc_ifp;
3144 	struct ieee80211com *ic = ifp->if_l2com;
3145 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3146 	int ntries;
3147 
3148 	/* enable firmware again */
3149 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3150 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3151 
3152 	/* wait for thermal sensors to calibrate */
3153 	for (ntries = 0; ntries < 1000; ntries++) {
3154 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3155 			break;
3156 		DELAY(10);
3157 	}
3158 
3159 	if (ntries == 1000) {
3160 		device_printf(sc->sc_dev,
3161 		    "timeout waiting for thermal calibration\n");
3162 		return;
3163 	}
3164 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3165 
3166 	if (wpi_config(sc) != 0) {
3167 		device_printf(sc->sc_dev, "device config failed\n");
3168 		return;
3169 	}
3170 
3171 #if defined(__DragonFly__)
3172 	ifq_clr_oactive(&ifp->if_snd);
3173 	ifp->if_flags |= IFF_RUNNING;
3174 #else
3175 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3176 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3177 #endif
3178 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3179 
3180 	if (vap != NULL) {
3181 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3182 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3183 				ieee80211_beacon_miss(ic);
3184 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3185 			} else
3186 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3187 		} else {
3188 			ieee80211_scan_next(vap);
3189 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3190 		}
3191 	}
3192 
3193 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3194 }
3195 
3196 static void
3197 wpi_init_locked(struct wpi_softc *sc, int force)
3198 {
3199 	struct ifnet *ifp = sc->sc_ifp;
3200 	uint32_t tmp;
3201 	int ntries, qid;
3202 
3203 	wpi_stop_locked(sc);
3204 	(void)wpi_reset(sc);
3205 
3206 	wpi_mem_lock(sc);
3207 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3208 	DELAY(20);
3209 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3210 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3211 	wpi_mem_unlock(sc);
3212 
3213 	(void)wpi_power_up(sc);
3214 	wpi_hw_config(sc);
3215 
3216 	/* init Rx ring */
3217 	wpi_mem_lock(sc);
3218 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3219 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3220 	    offsetof(struct wpi_shared, next));
3221 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3222 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3223 	wpi_mem_unlock(sc);
3224 
3225 	/* init Tx rings */
3226 	wpi_mem_lock(sc);
3227 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3228 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3229 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3230 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3231 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3232 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3233 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3234 
3235 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3236 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3237 
3238 	for (qid = 0; qid < 6; qid++) {
3239 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3240 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3241 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3242 	}
3243 	wpi_mem_unlock(sc);
3244 
3245 	/* clear "radio off" and "disable command" bits (reversed logic) */
3246 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3247 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3248 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3249 
3250 	/* clear any pending interrupts */
3251 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3252 
3253 	/* enable interrupts */
3254 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3255 
3256 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3257 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3258 
3259 	if ((wpi_load_firmware(sc)) != 0) {
3260 	    device_printf(sc->sc_dev,
3261 		"A problem occurred loading the firmware to the driver\n");
3262 	    return;
3263 	}
3264 
3265 	/* At this point the firmware is up and running. If the hardware
3266 	 * RF switch is turned off thermal calibration will fail, though
3267 	 * the card is still happy to continue to accept commands, catch
3268 	 * this case and schedule a task to watch for it to be turned on.
3269 	 */
3270 	wpi_mem_lock(sc);
3271 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3272 	wpi_mem_unlock(sc);
3273 
3274 	if (!(tmp & 0x1)) {
3275 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3276 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3277 		goto out;
3278 	}
3279 
3280 	/* wait for thermal sensors to calibrate */
3281 	for (ntries = 0; ntries < 1000; ntries++) {
3282 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3283 			break;
3284 		DELAY(10);
3285 	}
3286 
3287 	if (ntries == 1000) {
3288 		device_printf(sc->sc_dev,
3289 		    "timeout waiting for thermal sensors calibration\n");
3290 		return;
3291 	}
3292 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3293 
3294 	if (wpi_config(sc) != 0) {
3295 		device_printf(sc->sc_dev, "device config failed\n");
3296 		return;
3297 	}
3298 
3299 #if defined(__DragonFly__)
3300 	ifq_clr_oactive(&ifp->if_snd);
3301 	ifp->if_flags |= IFF_RUNNING;
3302 #else
3303 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3304 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3305 #endif
3306 out:
3307 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3308 }
3309 
3310 static void
3311 wpi_init(void *arg)
3312 {
3313 	struct wpi_softc *sc = arg;
3314 	struct ifnet *ifp = sc->sc_ifp;
3315 	struct ieee80211com *ic = ifp->if_l2com;
3316 
3317 	WPI_LOCK(sc);
3318 	wpi_init_locked(sc, 0);
3319 	WPI_UNLOCK(sc);
3320 
3321 #if defined(__DragonFly__)
3322 	if (ifp->if_flags & IFF_RUNNING)
3323 		ieee80211_start_all(ic);		/* start all vaps */
3324 #else
3325 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3326 		ieee80211_start_all(ic);		/* start all vaps */
3327 #endif
3328 }
3329 
3330 static void
3331 wpi_stop_locked(struct wpi_softc *sc)
3332 {
3333 	struct ifnet *ifp = sc->sc_ifp;
3334 	uint32_t tmp;
3335 	int ac;
3336 
3337 	sc->sc_tx_timer = 0;
3338 	sc->sc_scan_timer = 0;
3339 #if defined(__DragonFly__)
3340 	ifq_clr_oactive(&ifp->if_snd);
3341 	ifp->if_flags &= ~IFF_RUNNING;
3342 #else
3343 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3344 #endif
3345 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3346 	callout_stop_sync(&sc->watchdog_to);
3347 	callout_stop_sync(&sc->calib_to);
3348 
3349 	/* disable interrupts */
3350 	WPI_WRITE(sc, WPI_MASK, 0);
3351 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3352 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3353 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3354 
3355 	wpi_mem_lock(sc);
3356 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3357 	wpi_mem_unlock(sc);
3358 
3359 	/* reset all Tx rings */
3360 	for (ac = 0; ac < 4; ac++)
3361 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3362 	wpi_reset_tx_ring(sc, &sc->cmdq);
3363 
3364 	/* reset Rx ring */
3365 	wpi_reset_rx_ring(sc, &sc->rxq);
3366 
3367 	wpi_mem_lock(sc);
3368 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3369 	wpi_mem_unlock(sc);
3370 
3371 	DELAY(5);
3372 
3373 	wpi_stop_master(sc);
3374 
3375 	tmp = WPI_READ(sc, WPI_RESET);
3376 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3377 	sc->flags &= ~WPI_FLAG_BUSY;
3378 }
3379 
3380 static void
3381 wpi_stop(struct wpi_softc *sc)
3382 {
3383 	WPI_LOCK(sc);
3384 	wpi_stop_locked(sc);
3385 	WPI_UNLOCK(sc);
3386 }
3387 
3388 static void
3389 wpi_calib_timeout(void *arg)
3390 {
3391 	struct wpi_softc *sc = arg;
3392 	struct ifnet *ifp = sc->sc_ifp;
3393 	struct ieee80211com *ic = ifp->if_l2com;
3394 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3395 	int temp;
3396 
3397 	if (vap->iv_state != IEEE80211_S_RUN)
3398 		return;
3399 
3400 	/* update sensor data */
3401 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3402 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3403 
3404 	wpi_power_calibration(sc, temp);
3405 
3406 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3407 }
3408 
3409 /*
3410  * This function is called periodically (every 60 seconds) to adjust output
3411  * power to temperature changes.
3412  */
3413 static void
3414 wpi_power_calibration(struct wpi_softc *sc, int temp)
3415 {
3416 	struct ifnet *ifp = sc->sc_ifp;
3417 	struct ieee80211com *ic = ifp->if_l2com;
3418 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3419 
3420 	/* sanity-check read value */
3421 	if (temp < -260 || temp > 25) {
3422 		/* this can't be correct, ignore */
3423 		DPRINTFN(WPI_DEBUG_TEMP,
3424 		    ("out-of-range temperature reported: %d\n", temp));
3425 		return;
3426 	}
3427 
3428 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3429 
3430 	/* adjust Tx power if need be */
3431 	if (abs(temp - sc->temp) <= 6)
3432 		return;
3433 
3434 	sc->temp = temp;
3435 
3436 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3437 		/* just warn, too bad for the automatic calibration... */
3438 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3439 	}
3440 }
3441 
3442 /**
3443  * Read the eeprom to find out what channels are valid for the given
3444  * band and update net80211 with what we find.
3445  */
3446 static void
3447 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3448 {
3449 	struct ifnet *ifp = sc->sc_ifp;
3450 	struct ieee80211com *ic = ifp->if_l2com;
3451 	const struct wpi_chan_band *band = &wpi_bands[n];
3452 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3453 	struct ieee80211_channel *c;
3454 	int chan, i, passive;
3455 
3456 	wpi_read_prom_data(sc, band->addr, channels,
3457 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3458 
3459 	for (i = 0; i < band->nchan; i++) {
3460 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3461 			DPRINTFN(WPI_DEBUG_HW,
3462 			    ("Channel Not Valid: %d, band %d\n",
3463 			     band->chan[i],n));
3464 			continue;
3465 		}
3466 
3467 		passive = 0;
3468 		chan = band->chan[i];
3469 		c = &ic->ic_channels[ic->ic_nchans++];
3470 
3471 		/* is active scan allowed on this channel? */
3472 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3473 			passive = IEEE80211_CHAN_PASSIVE;
3474 		}
3475 
3476 		if (n == 0) {	/* 2GHz band */
3477 			c->ic_ieee = chan;
3478 			c->ic_freq = ieee80211_ieee2mhz(chan,
3479 			    IEEE80211_CHAN_2GHZ);
3480 			c->ic_flags = IEEE80211_CHAN_B | passive;
3481 
3482 			c = &ic->ic_channels[ic->ic_nchans++];
3483 			c->ic_ieee = chan;
3484 			c->ic_freq = ieee80211_ieee2mhz(chan,
3485 			    IEEE80211_CHAN_2GHZ);
3486 			c->ic_flags = IEEE80211_CHAN_G | passive;
3487 
3488 		} else {	/* 5GHz band */
3489 			/*
3490 			 * Some 3945ABG adapters support channels 7, 8, 11
3491 			 * and 12 in the 2GHz *and* 5GHz bands.
3492 			 * Because of limitations in our net80211(9) stack,
3493 			 * we can't support these channels in 5GHz band.
3494 			 * XXX not true; just need to map to proper frequency
3495 			 */
3496 			if (chan <= 14)
3497 				continue;
3498 
3499 			c->ic_ieee = chan;
3500 			c->ic_freq = ieee80211_ieee2mhz(chan,
3501 			    IEEE80211_CHAN_5GHZ);
3502 			c->ic_flags = IEEE80211_CHAN_A | passive;
3503 		}
3504 
3505 		/* save maximum allowed power for this channel */
3506 		sc->maxpwr[chan] = channels[i].maxpwr;
3507 
3508 #if 0
3509 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3510 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3511 		//ic->ic_channels[chan].ic_minpower...
3512 		//ic->ic_channels[chan].ic_maxregtxpower...
3513 #endif
3514 
3515 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3516 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3517 		    channels[i].flags, sc->maxpwr[chan],
3518 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3519 		    ic->ic_nchans));
3520 	}
3521 }
3522 
3523 static void
3524 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3525 {
3526 	struct wpi_power_group *group = &sc->groups[n];
3527 	struct wpi_eeprom_group rgroup;
3528 	int i;
3529 
3530 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3531 	    sizeof rgroup);
3532 
3533 	/* save power group information */
3534 	group->chan   = rgroup.chan;
3535 	group->maxpwr = rgroup.maxpwr;
3536 	/* temperature at which the samples were taken */
3537 	group->temp   = (int16_t)le16toh(rgroup.temp);
3538 
3539 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3540 		    group->chan, group->maxpwr, group->temp));
3541 
3542 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3543 		group->samples[i].index = rgroup.samples[i].index;
3544 		group->samples[i].power = rgroup.samples[i].power;
3545 
3546 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3547 			    group->samples[i].index, group->samples[i].power));
3548 	}
3549 }
3550 
3551 /*
3552  * Update Tx power to match what is defined for channel `c'.
3553  */
3554 static int
3555 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3556 {
3557 	struct ifnet *ifp = sc->sc_ifp;
3558 	struct ieee80211com *ic = ifp->if_l2com;
3559 	struct wpi_power_group *group;
3560 	struct wpi_cmd_txpower txpower;
3561 	u_int chan;
3562 	int i;
3563 
3564 	/* get channel number */
3565 	chan = ieee80211_chan2ieee(ic, c);
3566 
3567 	/* find the power group to which this channel belongs */
3568 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3569 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3570 			if (chan <= group->chan)
3571 				break;
3572 	} else
3573 		group = &sc->groups[0];
3574 
3575 	memset(&txpower, 0, sizeof txpower);
3576 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3577 	txpower.channel = htole16(chan);
3578 
3579 	/* set Tx power for all OFDM and CCK rates */
3580 	for (i = 0; i <= 11 ; i++) {
3581 		/* retrieve Tx power for this channel/rate combination */
3582 		int idx = wpi_get_power_index(sc, group, c,
3583 		    wpi_ridx_to_rate[i]);
3584 
3585 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3586 
3587 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3588 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3589 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3590 		} else {
3591 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3592 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3593 		}
3594 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3595 			    chan, wpi_ridx_to_rate[i], idx));
3596 	}
3597 
3598 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3599 }
3600 
3601 /*
3602  * Determine Tx power index for a given channel/rate combination.
3603  * This takes into account the regulatory information from EEPROM and the
3604  * current temperature.
3605  */
3606 static int
3607 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3608     struct ieee80211_channel *c, int rate)
3609 {
3610 /* fixed-point arithmetic division using a n-bit fractional part */
3611 #define fdivround(a, b, n)      \
3612 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3613 
3614 /* linear interpolation */
3615 #define interpolate(x, x1, y1, x2, y2, n)       \
3616 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3617 
3618 	struct ifnet *ifp = sc->sc_ifp;
3619 	struct ieee80211com *ic = ifp->if_l2com;
3620 	struct wpi_power_sample *sample;
3621 	int pwr, idx;
3622 	u_int chan;
3623 
3624 	/* get channel number */
3625 	chan = ieee80211_chan2ieee(ic, c);
3626 
3627 	/* default power is group's maximum power - 3dB */
3628 	pwr = group->maxpwr / 2;
3629 
3630 	/* decrease power for highest OFDM rates to reduce distortion */
3631 	switch (rate) {
3632 		case 72:	/* 36Mb/s */
3633 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3634 			break;
3635 		case 96:	/* 48Mb/s */
3636 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3637 			break;
3638 		case 108:	/* 54Mb/s */
3639 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3640 			break;
3641 	}
3642 
3643 	/* never exceed channel's maximum allowed Tx power */
3644 	pwr = min(pwr, sc->maxpwr[chan]);
3645 
3646 	/* retrieve power index into gain tables from samples */
3647 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3648 		if (pwr > sample[1].power)
3649 			break;
3650 	/* fixed-point linear interpolation using a 19-bit fractional part */
3651 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3652 	    sample[1].power, sample[1].index, 19);
3653 
3654 	/*
3655 	 *  Adjust power index based on current temperature
3656 	 *	- if colder than factory-calibrated: decreate output power
3657 	 *	- if warmer than factory-calibrated: increase output power
3658 	 */
3659 	idx -= (sc->temp - group->temp) * 11 / 100;
3660 
3661 	/* decrease power for CCK rates (-5dB) */
3662 	if (!WPI_RATE_IS_OFDM(rate))
3663 		idx += 10;
3664 
3665 	/* keep power index in a valid range */
3666 	if (idx < 0)
3667 		return 0;
3668 	if (idx > WPI_MAX_PWR_INDEX)
3669 		return WPI_MAX_PWR_INDEX;
3670 	return idx;
3671 
3672 #undef interpolate
3673 #undef fdivround
3674 }
3675 
3676 /**
3677  * Called by net80211 framework to indicate that a scan
3678  * is starting. This function doesn't actually do the scan,
3679  * wpi_scan_curchan starts things off. This function is more
3680  * of an early warning from the framework we should get ready
3681  * for the scan.
3682  */
3683 static void
3684 wpi_scan_start(struct ieee80211com *ic)
3685 {
3686 	struct ifnet *ifp = ic->ic_ifp;
3687 	struct wpi_softc *sc = ifp->if_softc;
3688 
3689 	WPI_LOCK(sc);
3690 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3691 	WPI_UNLOCK(sc);
3692 }
3693 
3694 /**
3695  * Called by the net80211 framework, indicates that the
3696  * scan has ended. If there is a scan in progress on the card
3697  * then it should be aborted.
3698  */
3699 static void
3700 wpi_scan_end(struct ieee80211com *ic)
3701 {
3702 	/* XXX ignore */
3703 }
3704 
3705 /**
3706  * Called by the net80211 framework to indicate to the driver
3707  * that the channel should be changed
3708  */
3709 static void
3710 wpi_set_channel(struct ieee80211com *ic)
3711 {
3712 	struct ifnet *ifp = ic->ic_ifp;
3713 	struct wpi_softc *sc = ifp->if_softc;
3714 	int error;
3715 
3716 	/*
3717 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3718 	 * are already taken care of by their respective firmware commands.
3719 	 */
3720 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3721 		WPI_LOCK(sc);
3722 		error = wpi_config(sc);
3723 		WPI_UNLOCK(sc);
3724 		if (error != 0)
3725 			device_printf(sc->sc_dev,
3726 			    "error %d settting channel\n", error);
3727 	}
3728 }
3729 
3730 /**
3731  * Called by net80211 to indicate that we need to scan the current
3732  * channel. The channel is previously be set via the wpi_set_channel
3733  * callback.
3734  */
3735 static void
3736 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3737 {
3738 	struct ieee80211vap *vap = ss->ss_vap;
3739 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3740 	struct wpi_softc *sc = ifp->if_softc;
3741 
3742 	WPI_LOCK(sc);
3743 	if (wpi_scan(sc))
3744 		ieee80211_cancel_scan(vap);
3745 	WPI_UNLOCK(sc);
3746 }
3747 
3748 /**
3749  * Called by the net80211 framework to indicate
3750  * the minimum dwell time has been met, terminate the scan.
3751  * We don't actually terminate the scan as the firmware will notify
3752  * us when it's finished and we have no way to interrupt it.
3753  */
3754 static void
3755 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3756 {
3757 	/* NB: don't try to abort scan; wait for firmware to finish */
3758 }
3759 
3760 static void
3761 wpi_hwreset(void *arg, int pending)
3762 {
3763 	struct wpi_softc *sc = arg;
3764 
3765 	WPI_LOCK(sc);
3766 	wpi_init_locked(sc, 0);
3767 	WPI_UNLOCK(sc);
3768 }
3769 
3770 static void
3771 wpi_rfreset(void *arg, int pending)
3772 {
3773 	struct wpi_softc *sc = arg;
3774 
3775 	WPI_LOCK(sc);
3776 	wpi_rfkill_resume(sc);
3777 	WPI_UNLOCK(sc);
3778 }
3779 
3780 /*
3781  * Allocate DMA-safe memory for firmware transfer.
3782  */
3783 static int
3784 wpi_alloc_fwmem(struct wpi_softc *sc)
3785 {
3786 	/* allocate enough contiguous space to store text and data */
3787 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3788 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3789 	    BUS_DMA_NOWAIT);
3790 }
3791 
3792 static void
3793 wpi_free_fwmem(struct wpi_softc *sc)
3794 {
3795 	wpi_dma_contig_free(&sc->fw_dma);
3796 }
3797 
3798 /**
3799  * Called every second, wpi_watchdog used by the watch dog timer
3800  * to check that the card is still alive
3801  */
3802 static void
3803 wpi_watchdog(void *arg)
3804 {
3805 	struct wpi_softc *sc = arg;
3806 	struct ifnet *ifp = sc->sc_ifp;
3807 	struct ieee80211com *ic = ifp->if_l2com;
3808 	uint32_t tmp;
3809 
3810 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3811 
3812 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3813 		/* No need to lock firmware memory */
3814 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3815 
3816 		if ((tmp & 0x1) == 0) {
3817 			/* Radio kill switch is still off */
3818 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3819 			return;
3820 		}
3821 
3822 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3823 		ieee80211_runtask(ic, &sc->sc_radiotask);
3824 		return;
3825 	}
3826 
3827 	if (sc->sc_tx_timer > 0) {
3828 		if (--sc->sc_tx_timer == 0) {
3829 			device_printf(sc->sc_dev,"device timeout\n");
3830 #if defined(__DragonFly__)
3831 			IFNET_STAT_INC(ifp, oerrors, 1);
3832 #else
3833 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3834 #endif
3835 			ieee80211_runtask(ic, &sc->sc_restarttask);
3836 		}
3837 	}
3838 	if (sc->sc_scan_timer > 0) {
3839 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3840 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3841 			device_printf(sc->sc_dev,"scan timeout\n");
3842 			ieee80211_cancel_scan(vap);
3843 			ieee80211_runtask(ic, &sc->sc_restarttask);
3844 		}
3845 	}
3846 
3847 #if defined(__DragonFly__)
3848 	if (ifp->if_flags & IFF_RUNNING)
3849 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3850 #else
3851 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3852 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3853 #endif
3854 }
3855 
3856 #if defined(__DragonFly__)
3857 static int
3858 wpi_sleep(struct wpi_softc *sc, void *wchan,
3859 	int flags, const char *wmsg, int timo)
3860 {
3861 	int iws;
3862 	int error;
3863 	iws = wlan_is_serialized();
3864 	if (iws)
3865 		wlan_serialize_exit();
3866 	error = lksleep(wchan, &sc->sc_mtx, flags, wmsg, timo);
3867 	if (iws)
3868 		wlan_serialize_enter();
3869 	return error;
3870 }
3871 #endif
3872 
3873 
3874 #ifdef WPI_DEBUG
3875 static const char *wpi_cmd_str(int cmd)
3876 {
3877 	switch (cmd) {
3878 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3879 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3880 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3881 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3882 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3883 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3884 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3885 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3886 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3887 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3888 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3889 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3890 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3891 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3892 
3893 	default:
3894 		KASSERT(1, ("Unknown Command: %d", cmd));
3895 		return "UNKNOWN CMD";	/* Make the compiler happy */
3896 	}
3897 }
3898 #endif
3899 
3900 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3901 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3902 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3903