xref: /dragonfly/sys/dev/netif/wpi/if_wpi.c (revision 7d84b73d)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_done) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include "opt_wlan.h"
62 #include "opt_wpi.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #if defined(__DragonFly__)
81 /* empty */
82 #else
83 #include <machine/bus.h>
84 #include <machine/resource.h>
85 #endif
86 #include <sys/rman.h>
87 
88 #include <bus/pci/pcireg.h>
89 #include <bus/pci/pcivar.h>
90 
91 #include <net/bpf.h>
92 #include <net/if.h>
93 #include <net/if_var.h>
94 #include <net/if_arp.h>
95 #include <net/ethernet.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_types.h>
99 
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/if_ether.h>
104 #include <netinet/ip.h>
105 
106 #include <netproto/802_11/ieee80211_var.h>
107 #include <netproto/802_11/ieee80211_radiotap.h>
108 #include <netproto/802_11/ieee80211_regdomain.h>
109 #include <netproto/802_11/ieee80211_ratectl.h>
110 
111 #include <dev/netif/wpi/if_wpireg.h>
112 #include <dev/netif/wpi/if_wpivar.h>
113 #include <dev/netif/wpi/if_wpi_debug.h>
114 
115 struct wpi_ident {
116 	uint16_t	vendor;
117 	uint16_t	device;
118 	uint16_t	subdevice;
119 	const char	*name;
120 };
121 
122 static const struct wpi_ident wpi_ident_table[] = {
123 	/* The below entries support ABG regardless of the subid */
124 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
125 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
126 	/* The below entries only support BG */
127 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
128 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
129 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
130 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
131 	{ 0, 0, 0, NULL }
132 };
133 
134 static int	wpi_probe(device_t);
135 static int	wpi_attach(device_t);
136 static void	wpi_radiotap_attach(struct wpi_softc *);
137 static void	wpi_sysctlattach(struct wpi_softc *);
138 static void	wpi_init_beacon(struct wpi_vap *);
139 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	wpi_vap_delete(struct ieee80211vap *);
144 static int	wpi_detach(device_t);
145 static int	wpi_shutdown(device_t);
146 static int	wpi_suspend(device_t);
147 static int	wpi_resume(device_t);
148 static int	wpi_nic_lock(struct wpi_softc *);
149 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
150 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
151 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
152 		    void **, bus_size_t, bus_size_t);
153 static void	wpi_dma_contig_free(struct wpi_dma_info *);
154 static int	wpi_alloc_shared(struct wpi_softc *);
155 static void	wpi_free_shared(struct wpi_softc *);
156 static int	wpi_alloc_fwmem(struct wpi_softc *);
157 static void	wpi_free_fwmem(struct wpi_softc *);
158 static int	wpi_alloc_rx_ring(struct wpi_softc *);
159 static void	wpi_update_rx_ring(struct wpi_softc *);
160 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
161 static void	wpi_reset_rx_ring(struct wpi_softc *);
162 static void	wpi_free_rx_ring(struct wpi_softc *);
163 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
164 		    uint8_t);
165 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
166 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
167 		    struct wpi_tx_ring *);
168 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
169 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
170 static int	wpi_read_eeprom(struct wpi_softc *,
171 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
172 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
173 static void	wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *,
174 		    struct ieee80211_channel[]);
175 static int	wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
176 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
177 		    struct ieee80211_channel *);
178 static void	wpi_getradiocaps(struct ieee80211com *, int, int *,
179 		    struct ieee80211_channel[]);
180 static int	wpi_setregdomain(struct ieee80211com *,
181 		    struct ieee80211_regdomain *, int,
182 		    struct ieee80211_channel[]);
183 static int	wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
184 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
185 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
186 static void	wpi_node_free(struct ieee80211_node *);
187 static void	wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
188 		    const struct ieee80211_rx_stats *,
189 		    int, int);
190 static void	wpi_restore_node(void *, struct ieee80211_node *);
191 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
192 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
193 static void	wpi_calib_timeout(void *);
194 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
195 		    struct wpi_rx_data *);
196 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
197 		    struct wpi_rx_data *);
198 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
199 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
200 static void	wpi_notif_intr(struct wpi_softc *);
201 static void	wpi_wakeup_intr(struct wpi_softc *);
202 #ifdef WPI_DEBUG
203 static void	wpi_debug_registers(struct wpi_softc *);
204 #endif
205 static void	wpi_fatal_intr(struct wpi_softc *);
206 static void	wpi_intr(void *);
207 static void	wpi_free_txfrags(struct wpi_softc *, uint16_t);
208 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
209 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
210 		    struct ieee80211_node *);
211 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
212 		    struct ieee80211_node *,
213 		    const struct ieee80211_bpf_params *);
214 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
215 		    const struct ieee80211_bpf_params *);
216 static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
217 static void	wpi_watchdog_rfkill(void *);
218 static void	wpi_scan_timeout(void *);
219 static void	wpi_tx_timeout(void *);
220 static void	wpi_parent(struct ieee80211com *);
221 static int	wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
222 		    int);
223 static int	wpi_mrr_setup(struct wpi_softc *);
224 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
225 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
226 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
227 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
228 static int	wpi_updateedca(struct ieee80211com *);
229 static void	wpi_set_promisc(struct wpi_softc *);
230 static void	wpi_update_promisc(struct ieee80211com *);
231 static void	wpi_update_mcast(struct ieee80211com *);
232 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
233 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
234 static void	wpi_power_calibration(struct wpi_softc *);
235 static int	wpi_set_txpower(struct wpi_softc *, int);
236 static int	wpi_get_power_index(struct wpi_softc *,
237 		    struct wpi_power_group *, uint8_t, int, int);
238 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
239 static int	wpi_send_btcoex(struct wpi_softc *);
240 static int	wpi_send_rxon(struct wpi_softc *, int, int);
241 static int	wpi_config(struct wpi_softc *);
242 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
243 		    struct ieee80211_channel *, uint8_t);
244 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
245 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
246 		    struct ieee80211_channel *);
247 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
248 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
249 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
250 static int	wpi_config_beacon(struct wpi_vap *);
251 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
252 static void	wpi_update_beacon(struct ieee80211vap *, int);
253 static void	wpi_newassoc(struct ieee80211_node *, int);
254 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
255 static int	wpi_load_key(struct ieee80211_node *,
256 		    const struct ieee80211_key *);
257 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
258 static int	wpi_set_global_keys(struct ieee80211_node *);
259 static int	wpi_del_key(struct ieee80211_node *,
260 		    const struct ieee80211_key *);
261 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
262 static int	wpi_process_key(struct ieee80211vap *,
263 		    const struct ieee80211_key *, int);
264 static int	wpi_key_set(struct ieee80211vap *,
265 		    const struct ieee80211_key *);
266 static int	wpi_key_delete(struct ieee80211vap *,
267 		    const struct ieee80211_key *);
268 static int	wpi_post_alive(struct wpi_softc *);
269 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
270 		    uint32_t);
271 static int	wpi_load_firmware(struct wpi_softc *);
272 static int	wpi_read_firmware(struct wpi_softc *);
273 static void	wpi_unload_firmware(struct wpi_softc *);
274 static int	wpi_clock_wait(struct wpi_softc *);
275 static int	wpi_apm_init(struct wpi_softc *);
276 static void	wpi_apm_stop_master(struct wpi_softc *);
277 static void	wpi_apm_stop(struct wpi_softc *);
278 static void	wpi_nic_config(struct wpi_softc *);
279 static int	wpi_hw_init(struct wpi_softc *);
280 static void	wpi_hw_stop(struct wpi_softc *);
281 static void	wpi_radio_on(void *, int);
282 static void	wpi_radio_off(void *, int);
283 static int	wpi_init(struct wpi_softc *);
284 static void	wpi_stop_locked(struct wpi_softc *);
285 static void	wpi_stop(struct wpi_softc *);
286 static void	wpi_scan_start(struct ieee80211com *);
287 static void	wpi_scan_end(struct ieee80211com *);
288 static void	wpi_set_channel(struct ieee80211com *);
289 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
290 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
291 
292 static device_method_t wpi_methods[] = {
293 	/* Device interface */
294 	DEVMETHOD(device_probe,		wpi_probe),
295 	DEVMETHOD(device_attach,	wpi_attach),
296 	DEVMETHOD(device_detach,	wpi_detach),
297 	DEVMETHOD(device_shutdown,	wpi_shutdown),
298 	DEVMETHOD(device_suspend,	wpi_suspend),
299 	DEVMETHOD(device_resume,	wpi_resume),
300 
301 	DEVMETHOD_END
302 };
303 
304 static driver_t wpi_driver = {
305 	"wpi",
306 	wpi_methods,
307 	sizeof (struct wpi_softc)
308 };
309 static devclass_t wpi_devclass;
310 
311 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
312 
313 MODULE_VERSION(wpi, 1);
314 
315 MODULE_DEPEND(wpi, pci,  1, 1, 1);
316 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
317 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
318 
319 static int
320 wpi_probe(device_t dev)
321 {
322 	const struct wpi_ident *ident;
323 
324 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
325 		if (pci_get_vendor(dev) == ident->vendor &&
326 		    pci_get_device(dev) == ident->device) {
327 			device_set_desc(dev, ident->name);
328 			return (BUS_PROBE_DEFAULT);
329 		}
330 	}
331 	return ENXIO;
332 }
333 
334 static int
335 wpi_attach(device_t dev)
336 {
337 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
338 	struct ieee80211com *ic;
339 	uint8_t i;
340 	int error, rid;
341 #ifdef WPI_DEBUG
342 	int supportsa = 1;
343 	const struct wpi_ident *ident;
344 #endif
345 #if defined(__DragonFly__)
346 	int irq_flags;
347 #endif
348 
349 	sc->sc_dev = dev;
350 
351 #ifdef WPI_DEBUG
352 	error = resource_int_value(device_get_name(sc->sc_dev),
353 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
354 	if (error != 0)
355 		sc->sc_debug = 0;
356 #else
357 	sc->sc_debug = 0;
358 #endif
359 
360 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
361 
362 	/*
363 	 * Get the offset of the PCI Express Capability Structure in PCI
364 	 * Configuration Space.
365 	 */
366 #if defined(__DragonFly__)
367 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
368 #else
369 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
370 #endif
371 	if (error != 0) {
372 		device_printf(dev, "PCIe capability structure not found!\n");
373 		return error;
374 	}
375 
376 	/*
377 	 * Some card's only support 802.11b/g not a, check to see if
378 	 * this is one such card. A 0x0 in the subdevice table indicates
379 	 * the entire subdevice range is to be ignored.
380 	 */
381 #ifdef WPI_DEBUG
382 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
383 		if (ident->subdevice &&
384 		    pci_get_subdevice(dev) == ident->subdevice) {
385 		    supportsa = 0;
386 		    break;
387 		}
388 	}
389 #endif
390 
391 	/* Clear device-specific "PCI retry timeout" register (41h). */
392 	pci_write_config(dev, 0x41, 0, 1);
393 
394 	/* Enable bus-mastering. */
395 	pci_enable_busmaster(dev);
396 
397 	rid = PCIR_BAR(0);
398 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
399 	    RF_ACTIVE);
400 	if (sc->mem == NULL) {
401 		device_printf(dev, "can't map mem space\n");
402 		return ENOMEM;
403 	}
404 	sc->sc_st = rman_get_bustag(sc->mem);
405 	sc->sc_sh = rman_get_bushandle(sc->mem);
406 
407 #if defined(__DragonFly__)
408 	pci_alloc_1intr(dev, 1, &rid, &irq_flags);
409 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, irq_flags);
410 #else
411 	rid = 1;
412 	if (pci_alloc_msi(dev, &rid) == 0)
413 		rid = 1;
414 	else
415 		rid = 0;
416 	/* Install interrupt handler. */
417 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
418 	    (rid != 0 ? 0 : RF_SHAREABLE));
419 #endif
420 	if (sc->irq == NULL) {
421 		device_printf(dev, "can't map interrupt\n");
422 		error = ENOMEM;
423 		goto fail;
424 	}
425 
426 	WPI_LOCK_INIT(sc);
427 	WPI_TX_LOCK_INIT(sc);
428 	WPI_RXON_LOCK_INIT(sc);
429 	WPI_NT_LOCK_INIT(sc);
430 	WPI_TXQ_LOCK_INIT(sc);
431 	WPI_TXQ_STATE_LOCK_INIT(sc);
432 
433 	/* Allocate DMA memory for firmware transfers. */
434 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
435 		device_printf(dev,
436 		    "could not allocate memory for firmware, error %d\n",
437 		    error);
438 		goto fail;
439 	}
440 
441 	/* Allocate shared page. */
442 	if ((error = wpi_alloc_shared(sc)) != 0) {
443 		device_printf(dev, "could not allocate shared page\n");
444 		goto fail;
445 	}
446 
447 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
448 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
449 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
450 			device_printf(dev,
451 			    "could not allocate TX ring %d, error %d\n", i,
452 			    error);
453 			goto fail;
454 		}
455 	}
456 
457 	/* Allocate RX ring. */
458 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
459 		device_printf(dev, "could not allocate RX ring, error %d\n",
460 		    error);
461 		goto fail;
462 	}
463 
464 	/* Clear pending interrupts. */
465 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
466 
467 	ic = &sc->sc_ic;
468 	ic->ic_softc = sc;
469 	ic->ic_name = device_get_nameunit(dev);
470 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
471 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
472 
473 	/* Set device capabilities. */
474 	ic->ic_caps =
475 		  IEEE80211_C_STA		/* station mode supported */
476 		| IEEE80211_C_IBSS		/* IBSS mode supported */
477 		| IEEE80211_C_HOSTAP		/* Host access point mode */
478 		| IEEE80211_C_MONITOR		/* monitor mode supported */
479 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
480 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
481 		| IEEE80211_C_TXFRAG		/* handle tx frags */
482 		| IEEE80211_C_TXPMGT		/* tx power management */
483 		| IEEE80211_C_SHSLOT		/* short slot time supported */
484 		| IEEE80211_C_WPA		/* 802.11i */
485 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
486 		| IEEE80211_C_WME		/* 802.11e */
487 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
488 		;
489 
490 	ic->ic_cryptocaps =
491 		  IEEE80211_CRYPTO_AES_CCM;
492 
493 	/*
494 	 * Read in the eeprom and also setup the channels for
495 	 * net80211. We don't set the rates as net80211 does this for us
496 	 */
497 	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
498 		device_printf(dev, "could not read EEPROM, error %d\n",
499 		    error);
500 		goto fail;
501 	}
502 
503 #ifdef WPI_DEBUG
504 	if (bootverbose) {
505 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
506 		    sc->domain);
507 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
508 		    sc->type > 1 ? 'B': '?');
509 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
510 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
511 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
512 		    supportsa ? "does" : "does not");
513 
514 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
515 		   check what sc->rev really represents - benjsc 20070615 */
516 	}
517 #endif
518 
519 	ieee80211_ifattach(ic);
520 	ic->ic_vap_create = wpi_vap_create;
521 	ic->ic_vap_delete = wpi_vap_delete;
522 	ic->ic_parent = wpi_parent;
523 	ic->ic_raw_xmit = wpi_raw_xmit;
524 	ic->ic_transmit = wpi_transmit;
525 	ic->ic_node_alloc = wpi_node_alloc;
526 	sc->sc_node_free = ic->ic_node_free;
527 	ic->ic_node_free = wpi_node_free;
528 	ic->ic_wme.wme_update = wpi_updateedca;
529 	ic->ic_update_promisc = wpi_update_promisc;
530 	ic->ic_update_mcast = wpi_update_mcast;
531 	ic->ic_newassoc = wpi_newassoc;
532 	ic->ic_scan_start = wpi_scan_start;
533 	ic->ic_scan_end = wpi_scan_end;
534 	ic->ic_set_channel = wpi_set_channel;
535 	ic->ic_scan_curchan = wpi_scan_curchan;
536 	ic->ic_scan_mindwell = wpi_scan_mindwell;
537 	ic->ic_getradiocaps = wpi_getradiocaps;
538 	ic->ic_setregdomain = wpi_setregdomain;
539 
540 	sc->sc_update_rx_ring = wpi_update_rx_ring;
541 	sc->sc_update_tx_ring = wpi_update_tx_ring;
542 
543 	wpi_radiotap_attach(sc);
544 
545 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
546 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
547 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
548 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
549 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
550 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
551 
552 	wpi_sysctlattach(sc);
553 
554 	/*
555 	 * Hook our interrupt after all initialization is complete.
556 	 */
557 #if defined(__DragonFly__)
558 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
559 	    wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
560 #else
561 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
562 	    NULL, wpi_intr, sc, &sc->sc_ih);
563 #endif
564 	if (error != 0) {
565 		device_printf(dev, "can't establish interrupt, error %d\n",
566 		    error);
567 		goto fail;
568 	}
569 
570 	if (bootverbose)
571 		ieee80211_announce(ic);
572 
573 #ifdef WPI_DEBUG
574 	if (sc->sc_debug & WPI_DEBUG_HW)
575 		ieee80211_announce_channels(ic);
576 #endif
577 
578 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
579 	return 0;
580 
581 fail:	wpi_detach(dev);
582 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
583 	return error;
584 }
585 
586 /*
587  * Attach the interface to 802.11 radiotap.
588  */
589 static void
590 wpi_radiotap_attach(struct wpi_softc *sc)
591 {
592 	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
593 	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
594 
595 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
596 	ieee80211_radiotap_attach(&sc->sc_ic,
597 	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
598 	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
599 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
600 }
601 
602 static void
603 wpi_sysctlattach(struct wpi_softc *sc)
604 {
605 #ifdef WPI_DEBUG
606 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
607 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
608 
609 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
610 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
611 		"control debugging printfs");
612 #endif
613 }
614 
615 static void
616 wpi_init_beacon(struct wpi_vap *wvp)
617 {
618 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
619 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
620 
621 	cmd->id = WPI_ID_BROADCAST;
622 	cmd->ofdm_mask = 0xff;
623 	cmd->cck_mask = 0x0f;
624 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
625 
626 	/*
627 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
628 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
629 	 */
630 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
631 
632 	bcn->code = WPI_CMD_SET_BEACON;
633 	bcn->ac = WPI_CMD_QUEUE_NUM;
634 	bcn->size = sizeof(struct wpi_cmd_beacon);
635 }
636 
637 static struct ieee80211vap *
638 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
639     enum ieee80211_opmode opmode, int flags,
640     const uint8_t bssid[IEEE80211_ADDR_LEN],
641     const uint8_t mac[IEEE80211_ADDR_LEN])
642 {
643 	struct wpi_vap *wvp;
644 	struct ieee80211vap *vap;
645 
646 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
647 		return NULL;
648 
649 	wvp = kmalloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
650 	vap = &wvp->wv_vap;
651 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
652 
653 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
654 		WPI_VAP_LOCK_INIT(wvp);
655 		wpi_init_beacon(wvp);
656 	}
657 
658 	/* Override with driver methods. */
659 	vap->iv_key_set = wpi_key_set;
660 	vap->iv_key_delete = wpi_key_delete;
661 	if (opmode == IEEE80211_M_IBSS) {
662 		wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
663 		vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
664 	}
665 	wvp->wv_newstate = vap->iv_newstate;
666 	vap->iv_newstate = wpi_newstate;
667 	vap->iv_update_beacon = wpi_update_beacon;
668 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
669 
670 	ieee80211_ratectl_init(vap);
671 	/* Complete setup. */
672 	ieee80211_vap_attach(vap, ieee80211_media_change,
673 	    ieee80211_media_status, mac);
674 	ic->ic_opmode = opmode;
675 	return vap;
676 }
677 
678 static void
679 wpi_vap_delete(struct ieee80211vap *vap)
680 {
681 	struct wpi_vap *wvp = WPI_VAP(vap);
682 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
683 	enum ieee80211_opmode opmode = vap->iv_opmode;
684 
685 	ieee80211_ratectl_deinit(vap);
686 	ieee80211_vap_detach(vap);
687 
688 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
689 		if (bcn->m != NULL)
690 			m_freem(bcn->m);
691 
692 		WPI_VAP_LOCK_DESTROY(wvp);
693 	}
694 
695 	kfree(wvp, M_80211_VAP);
696 }
697 
698 static int
699 wpi_detach(device_t dev)
700 {
701 	struct wpi_softc *sc = device_get_softc(dev);
702 	struct ieee80211com *ic = &sc->sc_ic;
703 	uint8_t qid;
704 
705 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
706 
707 	if (ic->ic_vap_create == wpi_vap_create) {
708 		ieee80211_draintask(ic, &sc->sc_radioon_task);
709 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
710 
711 		wpi_stop(sc);
712 
713 		callout_drain(&sc->watchdog_rfkill);
714 		callout_drain(&sc->tx_timeout);
715 		callout_drain(&sc->scan_timeout);
716 		callout_drain(&sc->calib_to);
717 		ieee80211_ifdetach(ic);
718 	}
719 
720 	/* Uninstall interrupt handler. */
721 	if (sc->irq != NULL) {
722 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
723 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
724 		    sc->irq);
725 		pci_release_msi(dev);
726 	}
727 
728 	if (sc->txq[0].data_dmat) {
729 		/* Free DMA resources. */
730 		for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
731 			wpi_free_tx_ring(sc, &sc->txq[qid]);
732 
733 		wpi_free_rx_ring(sc);
734 		wpi_free_shared(sc);
735 	}
736 
737 	if (sc->fw_dma.tag)
738 		wpi_free_fwmem(sc);
739 
740 	if (sc->mem != NULL)
741 		bus_release_resource(dev, SYS_RES_MEMORY,
742 		    rman_get_rid(sc->mem), sc->mem);
743 
744 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
745 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
746 	WPI_TXQ_LOCK_DESTROY(sc);
747 	WPI_NT_LOCK_DESTROY(sc);
748 	WPI_RXON_LOCK_DESTROY(sc);
749 	WPI_TX_LOCK_DESTROY(sc);
750 	WPI_LOCK_DESTROY(sc);
751 	return 0;
752 }
753 
754 static int
755 wpi_shutdown(device_t dev)
756 {
757 	struct wpi_softc *sc = device_get_softc(dev);
758 
759 	wpi_stop(sc);
760 	return 0;
761 }
762 
763 static int
764 wpi_suspend(device_t dev)
765 {
766 	struct wpi_softc *sc = device_get_softc(dev);
767 	struct ieee80211com *ic = &sc->sc_ic;
768 
769 	ieee80211_suspend_all(ic);
770 	return 0;
771 }
772 
773 static int
774 wpi_resume(device_t dev)
775 {
776 	struct wpi_softc *sc = device_get_softc(dev);
777 	struct ieee80211com *ic = &sc->sc_ic;
778 
779 	/* Clear device-specific "PCI retry timeout" register (41h). */
780 	pci_write_config(dev, 0x41, 0, 1);
781 
782 	ieee80211_resume_all(ic);
783 	return 0;
784 }
785 
786 /*
787  * Grab exclusive access to NIC memory.
788  */
789 static int
790 wpi_nic_lock(struct wpi_softc *sc)
791 {
792 	int ntries;
793 
794 	/* Request exclusive access to NIC. */
795 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
796 
797 	/* Spin until we actually get the lock. */
798 	for (ntries = 0; ntries < 1000; ntries++) {
799 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
800 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
801 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
802 			return 0;
803 		DELAY(10);
804 	}
805 
806 	device_printf(sc->sc_dev, "could not lock memory\n");
807 
808 	return ETIMEDOUT;
809 }
810 
811 /*
812  * Release lock on NIC memory.
813  */
814 static __inline void
815 wpi_nic_unlock(struct wpi_softc *sc)
816 {
817 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
818 }
819 
820 static __inline uint32_t
821 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
822 {
823 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
824 	WPI_BARRIER_READ_WRITE(sc);
825 	return WPI_READ(sc, WPI_PRPH_RDATA);
826 }
827 
828 static __inline void
829 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
830 {
831 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
832 	WPI_BARRIER_WRITE(sc);
833 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
834 }
835 
836 static __inline void
837 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
838 {
839 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
840 }
841 
842 static __inline void
843 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
844 {
845 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
846 }
847 
848 static __inline void
849 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
850     const uint32_t *data, uint32_t count)
851 {
852 	for (; count != 0; count--, data++, addr += 4)
853 		wpi_prph_write(sc, addr, *data);
854 }
855 
856 static __inline uint32_t
857 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
858 {
859 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
860 	WPI_BARRIER_READ_WRITE(sc);
861 	return WPI_READ(sc, WPI_MEM_RDATA);
862 }
863 
864 static __inline void
865 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
866     int count)
867 {
868 	for (; count > 0; count--, addr += 4)
869 		*data++ = wpi_mem_read(sc, addr);
870 }
871 
872 static int
873 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
874 {
875 	uint8_t *out = data;
876 	uint32_t val;
877 	int error, ntries;
878 
879 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
880 
881 	if ((error = wpi_nic_lock(sc)) != 0)
882 		return error;
883 
884 	for (; count > 0; count -= 2, addr++) {
885 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
886 		for (ntries = 0; ntries < 10; ntries++) {
887 			val = WPI_READ(sc, WPI_EEPROM);
888 			if (val & WPI_EEPROM_READ_VALID)
889 				break;
890 			DELAY(5);
891 		}
892 		if (ntries == 10) {
893 			device_printf(sc->sc_dev,
894 			    "timeout reading ROM at 0x%x\n", addr);
895 			return ETIMEDOUT;
896 		}
897 		*out++= val >> 16;
898 		if (count > 1)
899 			*out ++= val >> 24;
900 	}
901 
902 	wpi_nic_unlock(sc);
903 
904 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
905 
906 	return 0;
907 }
908 
909 static void
910 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
911 {
912 	if (error != 0)
913 		return;
914 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
915 	*(bus_addr_t *)arg = segs[0].ds_addr;
916 }
917 
918 /*
919  * Allocates a contiguous block of dma memory of the requested size and
920  * alignment.
921  */
922 static int
923 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
924     void **kvap, bus_size_t size, bus_size_t alignment)
925 {
926 	int error;
927 
928 	dma->tag = NULL;
929 	dma->size = size;
930 
931 #if defined(__DragonFly__)
932 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
933 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, size,
934 	    1, size, 0, &dma->tag);
935 #else
936 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
937 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
938 	    1, size, 0, NULL, NULL, &dma->tag);
939 #endif
940 	if (error != 0)
941 		goto fail;
942 
943 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
944 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
945 	if (error != 0)
946 		goto fail;
947 
948 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
949 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
950 	if (error != 0)
951 		goto fail;
952 
953 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
954 
955 	if (kvap != NULL)
956 		*kvap = dma->vaddr;
957 
958 	return 0;
959 
960 fail:	wpi_dma_contig_free(dma);
961 	return error;
962 }
963 
964 static void
965 wpi_dma_contig_free(struct wpi_dma_info *dma)
966 {
967 	if (dma->vaddr != NULL) {
968 		bus_dmamap_sync(dma->tag, dma->map,
969 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
970 		bus_dmamap_unload(dma->tag, dma->map);
971 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
972 		dma->vaddr = NULL;
973 	}
974 	if (dma->tag != NULL) {
975 		bus_dma_tag_destroy(dma->tag);
976 		dma->tag = NULL;
977 	}
978 }
979 
980 /*
981  * Allocate a shared page between host and NIC.
982  */
983 static int
984 wpi_alloc_shared(struct wpi_softc *sc)
985 {
986 	/* Shared buffer must be aligned on a 4KB boundary. */
987 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
988 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
989 }
990 
991 static void
992 wpi_free_shared(struct wpi_softc *sc)
993 {
994 	wpi_dma_contig_free(&sc->shared_dma);
995 }
996 
997 /*
998  * Allocate DMA-safe memory for firmware transfer.
999  */
1000 static int
1001 wpi_alloc_fwmem(struct wpi_softc *sc)
1002 {
1003 	/* Must be aligned on a 16-byte boundary. */
1004 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1005 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
1006 }
1007 
1008 static void
1009 wpi_free_fwmem(struct wpi_softc *sc)
1010 {
1011 	wpi_dma_contig_free(&sc->fw_dma);
1012 }
1013 
1014 static int
1015 wpi_alloc_rx_ring(struct wpi_softc *sc)
1016 {
1017 	struct wpi_rx_ring *ring = &sc->rxq;
1018 	bus_size_t size;
1019 	int i, error;
1020 
1021 	ring->cur = 0;
1022 	ring->update = 0;
1023 
1024 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1025 
1026 	/* Allocate RX descriptors (16KB aligned.) */
1027 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1028 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1029 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1030 	if (error != 0) {
1031 		device_printf(sc->sc_dev,
1032 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1033 		    __func__, error);
1034 		goto fail;
1035 	}
1036 
1037 	/* Create RX buffer DMA tag. */
1038 #if defined(__DragonFly__)
1039 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1040 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1041 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, &ring->data_dmat);
1042 #else
1043 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1044 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1045 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
1046 #endif
1047 	if (error != 0) {
1048 		device_printf(sc->sc_dev,
1049 		    "%s: could not create RX buf DMA tag, error %d\n",
1050 		    __func__, error);
1051 		goto fail;
1052 	}
1053 
1054 	/*
1055 	 * Allocate and map RX buffers.
1056 	 */
1057 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1058 		struct wpi_rx_data *data = &ring->data[i];
1059 		bus_addr_t paddr;
1060 
1061 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1062 		if (error != 0) {
1063 			device_printf(sc->sc_dev,
1064 			    "%s: could not create RX buf DMA map, error %d\n",
1065 			    __func__, error);
1066 			goto fail;
1067 		}
1068 
1069 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1070 		if (data->m == NULL) {
1071 			device_printf(sc->sc_dev,
1072 			    "%s: could not allocate RX mbuf\n", __func__);
1073 			error = ENOBUFS;
1074 			goto fail;
1075 		}
1076 
1077 		error = bus_dmamap_load(ring->data_dmat, data->map,
1078 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1079 		    &paddr, BUS_DMA_NOWAIT);
1080 		if (error != 0 && error != EFBIG) {
1081 			device_printf(sc->sc_dev,
1082 			    "%s: can't map mbuf (error %d)\n", __func__,
1083 			    error);
1084 			goto fail;
1085 		}
1086 
1087 		/* Set physical address of RX buffer. */
1088 		ring->desc[i] = htole32(paddr);
1089 	}
1090 
1091 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1092 	    BUS_DMASYNC_PREWRITE);
1093 
1094 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1095 
1096 	return 0;
1097 
1098 fail:	wpi_free_rx_ring(sc);
1099 
1100 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1101 
1102 	return error;
1103 }
1104 
1105 static void
1106 wpi_update_rx_ring(struct wpi_softc *sc)
1107 {
1108 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1109 }
1110 
1111 static void
1112 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1113 {
1114 	struct wpi_rx_ring *ring = &sc->rxq;
1115 
1116 	if (ring->update != 0) {
1117 		/* Wait for INT_WAKEUP event. */
1118 		return;
1119 	}
1120 
1121 	WPI_TXQ_LOCK(sc);
1122 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1123 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1124 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1125 		    __func__);
1126 		ring->update = 1;
1127 	} else {
1128 		wpi_update_rx_ring(sc);
1129 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1130 	}
1131 	WPI_TXQ_UNLOCK(sc);
1132 }
1133 
1134 static void
1135 wpi_reset_rx_ring(struct wpi_softc *sc)
1136 {
1137 	struct wpi_rx_ring *ring = &sc->rxq;
1138 	int ntries;
1139 
1140 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1141 
1142 	if (wpi_nic_lock(sc) == 0) {
1143 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1144 		for (ntries = 0; ntries < 1000; ntries++) {
1145 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1146 			    WPI_FH_RX_STATUS_IDLE)
1147 				break;
1148 			DELAY(10);
1149 		}
1150 		wpi_nic_unlock(sc);
1151 	}
1152 
1153 	ring->cur = 0;
1154 	ring->update = 0;
1155 }
1156 
1157 static void
1158 wpi_free_rx_ring(struct wpi_softc *sc)
1159 {
1160 	struct wpi_rx_ring *ring = &sc->rxq;
1161 	int i;
1162 
1163 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1164 
1165 	wpi_dma_contig_free(&ring->desc_dma);
1166 
1167 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1168 		struct wpi_rx_data *data = &ring->data[i];
1169 
1170 		if (data->m != NULL) {
1171 			bus_dmamap_sync(ring->data_dmat, data->map,
1172 			    BUS_DMASYNC_POSTREAD);
1173 			bus_dmamap_unload(ring->data_dmat, data->map);
1174 			m_freem(data->m);
1175 			data->m = NULL;
1176 		}
1177 		if (data->map != NULL)
1178 			bus_dmamap_destroy(ring->data_dmat, data->map);
1179 	}
1180 	if (ring->data_dmat != NULL) {
1181 		bus_dma_tag_destroy(ring->data_dmat);
1182 		ring->data_dmat = NULL;
1183 	}
1184 }
1185 
1186 static int
1187 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1188 {
1189 	bus_addr_t paddr;
1190 	bus_size_t size;
1191 	int i, error;
1192 
1193 	ring->qid = qid;
1194 	ring->queued = 0;
1195 	ring->cur = 0;
1196 	ring->pending = 0;
1197 	ring->update = 0;
1198 
1199 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1200 
1201 	/* Allocate TX descriptors (16KB aligned.) */
1202 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1203 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1204 	    size, WPI_RING_DMA_ALIGN);
1205 	if (error != 0) {
1206 		device_printf(sc->sc_dev,
1207 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1208 		    __func__, error);
1209 		goto fail;
1210 	}
1211 
1212 	/* Update shared area with ring physical address. */
1213 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1214 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1215 	    BUS_DMASYNC_PREWRITE);
1216 
1217 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1218 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1219 	    size, 4);
1220 	if (error != 0) {
1221 		device_printf(sc->sc_dev,
1222 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1223 		    __func__, error);
1224 		goto fail;
1225 	}
1226 
1227 #if defined(__DragonFly__)
1228 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1229 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, MCLBYTES,
1230 	    WPI_MAX_SCATTER - 1, MCLBYTES, 0, &ring->data_dmat);
1231 #else
1232 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1233 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1234 	    WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
1235 #endif
1236 	if (error != 0) {
1237 		device_printf(sc->sc_dev,
1238 		    "%s: could not create TX buf DMA tag, error %d\n",
1239 		    __func__, error);
1240 		goto fail;
1241 	}
1242 
1243 	paddr = ring->cmd_dma.paddr;
1244 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1245 		struct wpi_tx_data *data = &ring->data[i];
1246 
1247 		data->cmd_paddr = paddr;
1248 		paddr += sizeof (struct wpi_tx_cmd);
1249 
1250 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1251 		if (error != 0) {
1252 			device_printf(sc->sc_dev,
1253 			    "%s: could not create TX buf DMA map, error %d\n",
1254 			    __func__, error);
1255 			goto fail;
1256 		}
1257 	}
1258 
1259 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1260 
1261 	return 0;
1262 
1263 fail:	wpi_free_tx_ring(sc, ring);
1264 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1265 	return error;
1266 }
1267 
1268 static void
1269 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1270 {
1271 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1272 }
1273 
1274 static void
1275 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1276 {
1277 
1278 	if (ring->update != 0) {
1279 		/* Wait for INT_WAKEUP event. */
1280 		return;
1281 	}
1282 
1283 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1284 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1285 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1286 		    __func__, ring->qid);
1287 		ring->update = 1;
1288 	} else {
1289 		wpi_update_tx_ring(sc, ring);
1290 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1291 	}
1292 }
1293 
1294 static void
1295 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1296 {
1297 	int i;
1298 
1299 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1300 
1301 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1302 		struct wpi_tx_data *data = &ring->data[i];
1303 
1304 		if (data->m != NULL) {
1305 			bus_dmamap_sync(ring->data_dmat, data->map,
1306 			    BUS_DMASYNC_POSTWRITE);
1307 			bus_dmamap_unload(ring->data_dmat, data->map);
1308 			m_freem(data->m);
1309 			data->m = NULL;
1310 		}
1311 		if (data->ni != NULL) {
1312 			ieee80211_free_node(data->ni);
1313 			data->ni = NULL;
1314 		}
1315 	}
1316 	/* Clear TX descriptors. */
1317 	memset(ring->desc, 0, ring->desc_dma.size);
1318 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1319 	    BUS_DMASYNC_PREWRITE);
1320 	ring->queued = 0;
1321 	ring->cur = 0;
1322 	ring->pending = 0;
1323 	ring->update = 0;
1324 }
1325 
1326 static void
1327 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1328 {
1329 	int i;
1330 
1331 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1332 
1333 	wpi_dma_contig_free(&ring->desc_dma);
1334 	wpi_dma_contig_free(&ring->cmd_dma);
1335 
1336 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1337 		struct wpi_tx_data *data = &ring->data[i];
1338 
1339 		if (data->m != NULL) {
1340 			bus_dmamap_sync(ring->data_dmat, data->map,
1341 			    BUS_DMASYNC_POSTWRITE);
1342 			bus_dmamap_unload(ring->data_dmat, data->map);
1343 			m_freem(data->m);
1344 		}
1345 		if (data->map != NULL)
1346 			bus_dmamap_destroy(ring->data_dmat, data->map);
1347 	}
1348 	if (ring->data_dmat != NULL) {
1349 		bus_dma_tag_destroy(ring->data_dmat);
1350 		ring->data_dmat = NULL;
1351 	}
1352 }
1353 
1354 /*
1355  * Extract various information from EEPROM.
1356  */
1357 static int
1358 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1359 {
1360 #define WPI_CHK(res) do {		\
1361 	if ((error = res) != 0)		\
1362 		goto fail;		\
1363 } while (0)
1364 	uint8_t i;
1365 	int error;
1366 
1367 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1368 
1369 	/* Adapter has to be powered on for EEPROM access to work. */
1370 	if ((error = wpi_apm_init(sc)) != 0) {
1371 		device_printf(sc->sc_dev,
1372 		    "%s: could not power ON adapter, error %d\n", __func__,
1373 		    error);
1374 		return error;
1375 	}
1376 
1377 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1378 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1379 		error = EIO;
1380 		goto fail;
1381 	}
1382 	/* Clear HW ownership of EEPROM. */
1383 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1384 
1385 	/* Read the hardware capabilities, revision and SKU type. */
1386 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1387 	    sizeof(sc->cap)));
1388 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1389 	    sizeof(sc->rev)));
1390 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1391 	    sizeof(sc->type)));
1392 
1393 	sc->rev = le16toh(sc->rev);
1394 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1395 	    sc->rev, sc->type);
1396 
1397 	/* Read the regulatory domain (4 ASCII characters.) */
1398 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1399 	    sizeof(sc->domain)));
1400 
1401 	/* Read MAC address. */
1402 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1403 	    IEEE80211_ADDR_LEN));
1404 
1405 	/* Read the list of authorized channels. */
1406 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1407 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1408 
1409 	/* Read the list of TX power groups. */
1410 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1411 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1412 
1413 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1414 
1415 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1416 	    __func__);
1417 
1418 	return error;
1419 #undef WPI_CHK
1420 }
1421 
1422 /*
1423  * Translate EEPROM flags to net80211.
1424  */
1425 static uint32_t
1426 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1427 {
1428 	uint32_t nflags;
1429 
1430 	nflags = 0;
1431 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1432 		nflags |= IEEE80211_CHAN_PASSIVE;
1433 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1434 		nflags |= IEEE80211_CHAN_NOADHOC;
1435 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1436 		nflags |= IEEE80211_CHAN_DFS;
1437 		/* XXX apparently IBSS may still be marked */
1438 		nflags |= IEEE80211_CHAN_NOADHOC;
1439 	}
1440 
1441 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1442 	if (nflags & IEEE80211_CHAN_NOADHOC)
1443 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1444 
1445 	return nflags;
1446 }
1447 
1448 static void
1449 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans,
1450     int *nchans, struct ieee80211_channel chans[])
1451 {
1452 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1453 	const struct wpi_chan_band *band = &wpi_bands[n];
1454 	uint32_t nflags;
1455 	uint8_t bands[IEEE80211_MODE_BYTES];
1456 	uint8_t chan, i;
1457 	int error;
1458 
1459 	memset(bands, 0, sizeof(bands));
1460 
1461 	if (n == 0) {
1462 		setbit(bands, IEEE80211_MODE_11B);
1463 		setbit(bands, IEEE80211_MODE_11G);
1464 	} else
1465 		setbit(bands, IEEE80211_MODE_11A);
1466 
1467 	for (i = 0; i < band->nchan; i++) {
1468 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1469 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1470 			    "Channel Not Valid: %d, band %d\n",
1471 			     band->chan[i],n);
1472 			continue;
1473 		}
1474 
1475 		chan = band->chan[i];
1476 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1477 		error = ieee80211_add_channel(chans, maxchans, nchans,
1478 		    chan, 0, channels[i].maxpwr, nflags, bands);
1479 		if (error != 0)
1480 			break;
1481 
1482 		/* Save maximum allowed TX power for this channel. */
1483 		sc->maxpwr[chan] = channels[i].maxpwr;
1484 
1485 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1486 		    "adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
1487 		    chan, channels[i].flags, sc->maxpwr[chan], *nchans);
1488 	}
1489 }
1490 
1491 /**
1492  * Read the eeprom to find out what channels are valid for the given
1493  * band and update net80211 with what we find.
1494  */
1495 static int
1496 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1497 {
1498 	struct ieee80211com *ic = &sc->sc_ic;
1499 	const struct wpi_chan_band *band = &wpi_bands[n];
1500 	int error;
1501 
1502 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1503 
1504 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1505 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1506 	if (error != 0) {
1507 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1508 		return error;
1509 	}
1510 
1511 	wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
1512 	    ic->ic_channels);
1513 
1514 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1515 
1516 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1517 
1518 	return 0;
1519 }
1520 
1521 static struct wpi_eeprom_chan *
1522 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1523 {
1524 	int i, j;
1525 
1526 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1527 		for (i = 0; i < wpi_bands[j].nchan; i++)
1528 			if (wpi_bands[j].chan[i] == c->ic_ieee &&
1529 			    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
1530 				return &sc->eeprom_channels[j][i];
1531 
1532 	return NULL;
1533 }
1534 
1535 static void
1536 wpi_getradiocaps(struct ieee80211com *ic,
1537     int maxchans, int *nchans, struct ieee80211_channel chans[])
1538 {
1539 	struct wpi_softc *sc = ic->ic_softc;
1540 	int i;
1541 
1542 	/* Parse the list of authorized channels. */
1543 	for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++)
1544 		wpi_read_eeprom_band(sc, i, maxchans, nchans, chans);
1545 }
1546 
1547 /*
1548  * Enforce flags read from EEPROM.
1549  */
1550 static int
1551 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1552     int nchan, struct ieee80211_channel chans[])
1553 {
1554 	struct wpi_softc *sc = ic->ic_softc;
1555 	int i;
1556 
1557 	for (i = 0; i < nchan; i++) {
1558 		struct ieee80211_channel *c = &chans[i];
1559 		struct wpi_eeprom_chan *channel;
1560 
1561 		channel = wpi_find_eeprom_channel(sc, c);
1562 		if (channel == NULL) {
1563 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1564 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1565 			return EINVAL;
1566 		}
1567 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 static int
1574 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1575 {
1576 	struct wpi_power_group *group = &sc->groups[n];
1577 	struct wpi_eeprom_group rgroup;
1578 	int i, error;
1579 
1580 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1581 
1582 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1583 	    &rgroup, sizeof rgroup)) != 0) {
1584 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1585 		return error;
1586 	}
1587 
1588 	/* Save TX power group information. */
1589 	group->chan   = rgroup.chan;
1590 	group->maxpwr = rgroup.maxpwr;
1591 	/* Retrieve temperature at which the samples were taken. */
1592 	group->temp   = (int16_t)le16toh(rgroup.temp);
1593 
1594 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1595 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1596 	    group->maxpwr, group->temp);
1597 
1598 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1599 		group->samples[i].index = rgroup.samples[i].index;
1600 		group->samples[i].power = rgroup.samples[i].power;
1601 
1602 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1603 		    "\tsample %d: index=%d power=%d\n", i,
1604 		    group->samples[i].index, group->samples[i].power);
1605 	}
1606 
1607 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1608 
1609 	return 0;
1610 }
1611 
1612 static __inline uint8_t
1613 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1614 {
1615 	uint8_t newid = WPI_ID_IBSS_MIN;
1616 
1617 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1618 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1619 			sc->nodesmsk |= 1 << newid;
1620 			return newid;
1621 		}
1622 	}
1623 
1624 	return WPI_ID_UNDEFINED;
1625 }
1626 
1627 static __inline uint8_t
1628 wpi_add_node_entry_sta(struct wpi_softc *sc)
1629 {
1630 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1631 
1632 	return WPI_ID_BSS;
1633 }
1634 
1635 static __inline int
1636 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1637 {
1638 	if (id == WPI_ID_UNDEFINED)
1639 		return 0;
1640 
1641 	return (sc->nodesmsk >> id) & 1;
1642 }
1643 
1644 static __inline void
1645 wpi_clear_node_table(struct wpi_softc *sc)
1646 {
1647 	sc->nodesmsk = 0;
1648 }
1649 
1650 static __inline void
1651 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1652 {
1653 	sc->nodesmsk &= ~(1 << id);
1654 }
1655 
1656 static struct ieee80211_node *
1657 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1658 {
1659 	struct wpi_node *wn;
1660 
1661 	wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE,
1662 	    M_INTWAIT | M_ZERO);
1663 
1664 	if (wn == NULL)
1665 		return NULL;
1666 
1667 	wn->id = WPI_ID_UNDEFINED;
1668 
1669 	return &wn->ni;
1670 }
1671 
1672 static void
1673 wpi_node_free(struct ieee80211_node *ni)
1674 {
1675 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1676 	struct wpi_node *wn = WPI_NODE(ni);
1677 
1678 	if (wn->id != WPI_ID_UNDEFINED) {
1679 		WPI_NT_LOCK(sc);
1680 		if (wpi_check_node_entry(sc, wn->id)) {
1681 			wpi_del_node_entry(sc, wn->id);
1682 			wpi_del_node(sc, ni);
1683 		}
1684 		WPI_NT_UNLOCK(sc);
1685 	}
1686 
1687 	sc->sc_node_free(ni);
1688 }
1689 
1690 static __inline int
1691 wpi_check_bss_filter(struct wpi_softc *sc)
1692 {
1693 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1694 }
1695 
1696 static void
1697 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1698     const struct ieee80211_rx_stats *rxs,
1699     int rssi, int nf)
1700 {
1701 	struct ieee80211vap *vap = ni->ni_vap;
1702 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1703 	struct wpi_vap *wvp = WPI_VAP(vap);
1704 	uint64_t ni_tstamp, rx_tstamp;
1705 
1706 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1707 
1708 	if (vap->iv_state == IEEE80211_S_RUN &&
1709 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1710 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1711 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1712 		rx_tstamp = le64toh(sc->rx_tstamp);
1713 
1714 		if (ni_tstamp >= rx_tstamp) {
1715 			DPRINTF(sc, WPI_DEBUG_STATE,
1716 			    "ibss merge, tsf %ju tstamp %ju\n",
1717 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1718 			(void) ieee80211_ibss_merge(ni);
1719 		}
1720 	}
1721 }
1722 
1723 static void
1724 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1725 {
1726 	struct wpi_softc *sc = arg;
1727 	struct wpi_node *wn = WPI_NODE(ni);
1728 	int error;
1729 
1730 	WPI_NT_LOCK(sc);
1731 	if (wn->id != WPI_ID_UNDEFINED) {
1732 		wn->id = WPI_ID_UNDEFINED;
1733 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1734 			device_printf(sc->sc_dev,
1735 			    "%s: could not add IBSS node, error %d\n",
1736 			    __func__, error);
1737 		}
1738 	}
1739 	WPI_NT_UNLOCK(sc);
1740 }
1741 
1742 static void
1743 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1744 {
1745 	struct ieee80211com *ic = &sc->sc_ic;
1746 
1747 	/* Set group keys once. */
1748 	WPI_NT_LOCK(sc);
1749 	wvp->wv_gtk = 0;
1750 	WPI_NT_UNLOCK(sc);
1751 
1752 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1753 	ieee80211_crypto_reload_keys(ic);
1754 }
1755 
1756 /**
1757  * Called by net80211 when ever there is a change to 80211 state machine
1758  */
1759 static int
1760 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1761 {
1762 	struct wpi_vap *wvp = WPI_VAP(vap);
1763 	struct ieee80211com *ic = vap->iv_ic;
1764 	struct wpi_softc *sc = ic->ic_softc;
1765 	int error = 0;
1766 
1767 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1768 
1769 	WPI_TXQ_LOCK(sc);
1770 	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1771 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1772 		WPI_TXQ_UNLOCK(sc);
1773 
1774 		return ENXIO;
1775 	}
1776 	WPI_TXQ_UNLOCK(sc);
1777 
1778 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1779 		ieee80211_state_name[vap->iv_state],
1780 		ieee80211_state_name[nstate]);
1781 
1782 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1783 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1784 			device_printf(sc->sc_dev,
1785 			    "%s: could not set power saving level\n",
1786 			    __func__);
1787 			return error;
1788 		}
1789 
1790 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1791 	}
1792 
1793 	switch (nstate) {
1794 	case IEEE80211_S_SCAN:
1795 		WPI_RXON_LOCK(sc);
1796 		if (wpi_check_bss_filter(sc) != 0) {
1797 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1798 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1799 				device_printf(sc->sc_dev,
1800 				    "%s: could not send RXON\n", __func__);
1801 			}
1802 		}
1803 		WPI_RXON_UNLOCK(sc);
1804 		break;
1805 
1806 	case IEEE80211_S_ASSOC:
1807 		if (vap->iv_state != IEEE80211_S_RUN)
1808 			break;
1809 		/* FALLTHROUGH */
1810 	case IEEE80211_S_AUTH:
1811 		/*
1812 		 * NB: do not optimize AUTH -> AUTH state transmission -
1813 		 * this will break powersave with non-QoS AP!
1814 		 */
1815 
1816 		/*
1817 		 * The node must be registered in the firmware before auth.
1818 		 * Also the associd must be cleared on RUN -> ASSOC
1819 		 * transitions.
1820 		 */
1821 		if ((error = wpi_auth(sc, vap)) != 0) {
1822 			device_printf(sc->sc_dev,
1823 			    "%s: could not move to AUTH state, error %d\n",
1824 			    __func__, error);
1825 		}
1826 		break;
1827 
1828 	case IEEE80211_S_RUN:
1829 		/*
1830 		 * RUN -> RUN transition:
1831 		 * STA mode: Just restart the timers.
1832 		 * IBSS mode: Process IBSS merge.
1833 		 */
1834 		if (vap->iv_state == IEEE80211_S_RUN) {
1835 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1836 				WPI_RXON_LOCK(sc);
1837 				wpi_calib_timeout(sc);
1838 				WPI_RXON_UNLOCK(sc);
1839 				break;
1840 			} else {
1841 				/*
1842 				 * Drop the BSS_FILTER bit
1843 				 * (there is no another way to change bssid).
1844 				 */
1845 				WPI_RXON_LOCK(sc);
1846 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1847 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1848 					device_printf(sc->sc_dev,
1849 					    "%s: could not send RXON\n",
1850 					    __func__);
1851 				}
1852 				WPI_RXON_UNLOCK(sc);
1853 
1854 				/* Restore all what was lost. */
1855 				wpi_restore_node_table(sc, wvp);
1856 
1857 				/* XXX set conditionally? */
1858 				wpi_updateedca(ic);
1859 			}
1860 		}
1861 
1862 		/*
1863 		 * !RUN -> RUN requires setting the association id
1864 		 * which is done with a firmware cmd.  We also defer
1865 		 * starting the timers until that work is done.
1866 		 */
1867 		if ((error = wpi_run(sc, vap)) != 0) {
1868 			device_printf(sc->sc_dev,
1869 			    "%s: could not move to RUN state\n", __func__);
1870 		}
1871 		break;
1872 
1873 	default:
1874 		break;
1875 	}
1876 	if (error != 0) {
1877 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1878 		return error;
1879 	}
1880 
1881 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1882 
1883 	return wvp->wv_newstate(vap, nstate, arg);
1884 }
1885 
1886 static void
1887 wpi_calib_timeout(void *arg)
1888 {
1889 	struct wpi_softc *sc = arg;
1890 
1891 	if (wpi_check_bss_filter(sc) == 0)
1892 		return;
1893 
1894 	wpi_power_calibration(sc);
1895 
1896 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1897 }
1898 
1899 static __inline uint8_t
1900 rate2plcp(const uint8_t rate)
1901 {
1902 	switch (rate) {
1903 	case 12:	return 0xd;
1904 	case 18:	return 0xf;
1905 	case 24:	return 0x5;
1906 	case 36:	return 0x7;
1907 	case 48:	return 0x9;
1908 	case 72:	return 0xb;
1909 	case 96:	return 0x1;
1910 	case 108:	return 0x3;
1911 	case 2:		return 10;
1912 	case 4:		return 20;
1913 	case 11:	return 55;
1914 	case 22:	return 110;
1915 	default:	return 0;
1916 	}
1917 }
1918 
1919 static __inline uint8_t
1920 plcp2rate(const uint8_t plcp)
1921 {
1922 	switch (plcp) {
1923 	case 0xd:	return 12;
1924 	case 0xf:	return 18;
1925 	case 0x5:	return 24;
1926 	case 0x7:	return 36;
1927 	case 0x9:	return 48;
1928 	case 0xb:	return 72;
1929 	case 0x1:	return 96;
1930 	case 0x3:	return 108;
1931 	case 10:	return 2;
1932 	case 20:	return 4;
1933 	case 55:	return 11;
1934 	case 110:	return 22;
1935 	default:	return 0;
1936 	}
1937 }
1938 
1939 /* Quickly determine if a given rate is CCK or OFDM. */
1940 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1941 
1942 static void
1943 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1944     struct wpi_rx_data *data)
1945 {
1946 	struct ieee80211com *ic = &sc->sc_ic;
1947 	struct wpi_rx_ring *ring = &sc->rxq;
1948 	struct wpi_rx_stat *stat;
1949 	struct wpi_rx_head *head;
1950 	struct wpi_rx_tail *tail;
1951 	struct ieee80211_frame *wh;
1952 	struct ieee80211_node *ni;
1953 	struct mbuf *m, *m1;
1954 	bus_addr_t paddr;
1955 	uint32_t flags;
1956 	uint16_t len;
1957 	int error;
1958 
1959 	stat = (struct wpi_rx_stat *)(desc + 1);
1960 
1961 	if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1962 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1963 		goto fail1;
1964 	}
1965 
1966 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1967 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1968 	len = le16toh(head->len);
1969 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1970 	flags = le32toh(tail->flags);
1971 
1972 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1973 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1974 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1975 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1976 
1977 	/* Discard frames with a bad FCS early. */
1978 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1979 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1980 		    __func__, flags);
1981 		goto fail1;
1982 	}
1983 	/* Discard frames that are too short. */
1984 	if (len < sizeof (struct ieee80211_frame_ack)) {
1985 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1986 		    __func__, len);
1987 		goto fail1;
1988 	}
1989 
1990 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1991 	if (__predict_false(m1 == NULL)) {
1992 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1993 		    __func__);
1994 		goto fail1;
1995 	}
1996 	bus_dmamap_unload(ring->data_dmat, data->map);
1997 
1998 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1999 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2000 	if (__predict_false(error != 0 && error != EFBIG)) {
2001 		device_printf(sc->sc_dev,
2002 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2003 		m_freem(m1);
2004 
2005 		/* Try to reload the old mbuf. */
2006 		error = bus_dmamap_load(ring->data_dmat, data->map,
2007 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
2008 		    &paddr, BUS_DMA_NOWAIT);
2009 		if (error != 0 && error != EFBIG) {
2010 			panic("%s: could not load old RX mbuf", __func__);
2011 		}
2012 		/* Physical address may have changed. */
2013 		ring->desc[ring->cur] = htole32(paddr);
2014 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2015 		    BUS_DMASYNC_PREWRITE);
2016 		goto fail1;
2017 	}
2018 
2019 	m = data->m;
2020 	data->m = m1;
2021 	/* Update RX descriptor. */
2022 	ring->desc[ring->cur] = htole32(paddr);
2023 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2024 	    BUS_DMASYNC_PREWRITE);
2025 
2026 	/* Finalize mbuf. */
2027 	m->m_data = (caddr_t)(head + 1);
2028 	m->m_pkthdr.len = m->m_len = len;
2029 
2030 	/* Grab a reference to the source node. */
2031 	wh = mtod(m, struct ieee80211_frame *);
2032 
2033 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2034 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2035 		/* Check whether decryption was successful or not. */
2036 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2037 			DPRINTF(sc, WPI_DEBUG_RECV,
2038 			    "CCMP decryption failed 0x%x\n", flags);
2039 			goto fail2;
2040 		}
2041 		m->m_flags |= M_WEP;
2042 	}
2043 
2044 	if (len >= sizeof(struct ieee80211_frame_min))
2045 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2046 	else
2047 		ni = NULL;
2048 
2049 	sc->rx_tstamp = tail->tstamp;
2050 
2051 	if (ieee80211_radiotap_active(ic)) {
2052 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2053 
2054 		tap->wr_flags = 0;
2055 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2056 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2057 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2058 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2059 		tap->wr_tsft = tail->tstamp;
2060 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2061 		tap->wr_rate = plcp2rate(head->plcp);
2062 	}
2063 
2064 	WPI_UNLOCK(sc);
2065 
2066 	/* Send the frame to the 802.11 layer. */
2067 	if (ni != NULL) {
2068 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2069 		/* Node is no longer needed. */
2070 		ieee80211_free_node(ni);
2071 	} else
2072 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2073 
2074 	WPI_LOCK(sc);
2075 
2076 	return;
2077 
2078 fail2:	m_freem(m);
2079 
2080 #if defined(__DragonFly__)
2081 fail1:	; /* not implemented */
2082 #else
2083 fail1:	counter_u64_add(ic->ic_ierrors, 1);
2084 #endif
2085 }
2086 
2087 static void
2088 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2089     struct wpi_rx_data *data)
2090 {
2091 	/* Ignore */
2092 }
2093 
2094 static void
2095 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2096 {
2097 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2098 	struct wpi_tx_data *data = &ring->data[desc->idx];
2099 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2100 	struct mbuf *m;
2101 	struct ieee80211_node *ni;
2102 	struct ieee80211vap *vap;
2103 	uint32_t status = le32toh(stat->status);
2104 	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2105 
2106 	KASSERT(data->ni != NULL, ("no node"));
2107 	KASSERT(data->m != NULL, ("no mbuf"));
2108 
2109 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2110 
2111 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2112 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2113 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2114 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2115 
2116 	/* Unmap and free mbuf. */
2117 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2118 	bus_dmamap_unload(ring->data_dmat, data->map);
2119 	m = data->m, data->m = NULL;
2120 	ni = data->ni, data->ni = NULL;
2121 	vap = ni->ni_vap;
2122 
2123 	/*
2124 	 * Update rate control statistics for the node.
2125 	 */
2126 	if (status & WPI_TX_STATUS_FAIL) {
2127 		ieee80211_ratectl_tx_complete(vap, ni,
2128 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2129 	} else
2130 		ieee80211_ratectl_tx_complete(vap, ni,
2131 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2132 
2133 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2134 
2135 	WPI_TXQ_STATE_LOCK(sc);
2136 	if (--ring->queued > 0)
2137 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2138 	else
2139 		callout_stop(&sc->tx_timeout);
2140 	WPI_TXQ_STATE_UNLOCK(sc);
2141 
2142 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2143 }
2144 
2145 /*
2146  * Process a "command done" firmware notification.  This is where we wakeup
2147  * processes waiting for a synchronous command completion.
2148  */
2149 static void
2150 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2151 {
2152 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2153 	struct wpi_tx_data *data;
2154 	struct wpi_tx_cmd *cmd;
2155 
2156 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2157 				   "type %s len %d\n", desc->qid, desc->idx,
2158 				   desc->flags, wpi_cmd_str(desc->type),
2159 				   le32toh(desc->len));
2160 
2161 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2162 		return;	/* Not a command ack. */
2163 
2164 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2165 
2166 	data = &ring->data[desc->idx];
2167 	cmd = &ring->cmd[desc->idx];
2168 
2169 	/* If the command was mapped in an mbuf, free it. */
2170 	if (data->m != NULL) {
2171 		bus_dmamap_sync(ring->data_dmat, data->map,
2172 		    BUS_DMASYNC_POSTWRITE);
2173 		bus_dmamap_unload(ring->data_dmat, data->map);
2174 		m_freem(data->m);
2175 		data->m = NULL;
2176 	}
2177 
2178 	wakeup(cmd);
2179 
2180 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2181 		struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2182 
2183 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2184 		    BUS_DMASYNC_POSTREAD);
2185 
2186 		WPI_TXQ_LOCK(sc);
2187 		if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2188 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2189 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2190 		} else {
2191 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2192 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2193 		}
2194 		WPI_TXQ_UNLOCK(sc);
2195 	}
2196 }
2197 
2198 static void
2199 wpi_notif_intr(struct wpi_softc *sc)
2200 {
2201 	struct ieee80211com *ic = &sc->sc_ic;
2202 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2203 	uint32_t hw;
2204 
2205 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2206 	    BUS_DMASYNC_POSTREAD);
2207 
2208 	hw = le32toh(sc->shared->next) & 0xfff;
2209 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2210 
2211 	while (sc->rxq.cur != hw) {
2212 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2213 
2214 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2215 		struct wpi_rx_desc *desc;
2216 
2217 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2218 		    BUS_DMASYNC_POSTREAD);
2219 		desc = mtod(data->m, struct wpi_rx_desc *);
2220 
2221 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2222 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2223 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2224 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2225 
2226 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2227 			/* Reply to a command. */
2228 			wpi_cmd_done(sc, desc);
2229 		}
2230 
2231 		switch (desc->type) {
2232 		case WPI_RX_DONE:
2233 			/* An 802.11 frame has been received. */
2234 			wpi_rx_done(sc, desc, data);
2235 
2236 			if (__predict_false(sc->sc_running == 0)) {
2237 				/* wpi_stop() was called. */
2238 				return;
2239 			}
2240 
2241 			break;
2242 
2243 		case WPI_TX_DONE:
2244 			/* An 802.11 frame has been transmitted. */
2245 			wpi_tx_done(sc, desc);
2246 			break;
2247 
2248 		case WPI_RX_STATISTICS:
2249 		case WPI_BEACON_STATISTICS:
2250 			wpi_rx_statistics(sc, desc, data);
2251 			break;
2252 
2253 		case WPI_BEACON_MISSED:
2254 		{
2255 			struct wpi_beacon_missed *miss =
2256 			    (struct wpi_beacon_missed *)(desc + 1);
2257 			uint32_t expected, misses, received, threshold;
2258 
2259 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2260 			    BUS_DMASYNC_POSTREAD);
2261 
2262 			misses = le32toh(miss->consecutive);
2263 			expected = le32toh(miss->expected);
2264 			received = le32toh(miss->received);
2265 			threshold = MAX(2, vap->iv_bmissthreshold);
2266 
2267 			DPRINTF(sc, WPI_DEBUG_BMISS,
2268 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2269 			    __func__, misses, le32toh(miss->total), received,
2270 			    expected);
2271 
2272 			if (misses >= threshold ||
2273 			    (received == 0 && expected >= threshold)) {
2274 				WPI_RXON_LOCK(sc);
2275 				if (callout_pending(&sc->scan_timeout)) {
2276 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2277 					    0, 1);
2278 				}
2279 				WPI_RXON_UNLOCK(sc);
2280 				if (vap->iv_state == IEEE80211_S_RUN &&
2281 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2282 					ieee80211_beacon_miss(ic);
2283 			}
2284 
2285 			break;
2286 		}
2287 #ifdef WPI_DEBUG
2288 		case WPI_BEACON_SENT:
2289 		{
2290 			struct wpi_tx_stat *stat =
2291 			    (struct wpi_tx_stat *)(desc + 1);
2292 			uint64_t *tsf = (uint64_t *)(stat + 1);
2293 			uint32_t *mode = (uint32_t *)(tsf + 1);
2294 
2295 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2296 			    BUS_DMASYNC_POSTREAD);
2297 
2298 			DPRINTF(sc, WPI_DEBUG_BEACON,
2299 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2300 			    "duration %u, status %x, tsf %ju, mode %x\n",
2301 			    stat->rtsfailcnt, stat->ackfailcnt,
2302 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2303 			    le32toh(stat->status), le64toh(*tsf),
2304 			    le32toh(*mode));
2305 
2306 			break;
2307 		}
2308 #endif
2309 		case WPI_UC_READY:
2310 		{
2311 			struct wpi_ucode_info *uc =
2312 			    (struct wpi_ucode_info *)(desc + 1);
2313 
2314 			/* The microcontroller is ready. */
2315 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2316 			    BUS_DMASYNC_POSTREAD);
2317 			DPRINTF(sc, WPI_DEBUG_RESET,
2318 			    "microcode alive notification version=%d.%d "
2319 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2320 			    uc->subtype, le32toh(uc->valid));
2321 
2322 			if (le32toh(uc->valid) != 1) {
2323 				device_printf(sc->sc_dev,
2324 				    "microcontroller initialization failed\n");
2325 				wpi_stop_locked(sc);
2326 				return;
2327 			}
2328 			/* Save the address of the error log in SRAM. */
2329 			sc->errptr = le32toh(uc->errptr);
2330 			break;
2331 		}
2332 		case WPI_STATE_CHANGED:
2333 		{
2334 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2335 			    BUS_DMASYNC_POSTREAD);
2336 
2337 			uint32_t *status = (uint32_t *)(desc + 1);
2338 
2339 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2340 			    le32toh(*status));
2341 
2342 			if (le32toh(*status) & 1) {
2343 				WPI_NT_LOCK(sc);
2344 				wpi_clear_node_table(sc);
2345 				WPI_NT_UNLOCK(sc);
2346 				ieee80211_runtask(ic,
2347 				    &sc->sc_radiooff_task);
2348 				return;
2349 			}
2350 			break;
2351 		}
2352 #ifdef WPI_DEBUG
2353 		case WPI_START_SCAN:
2354 		{
2355 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2356 			    BUS_DMASYNC_POSTREAD);
2357 
2358 			struct wpi_start_scan *scan =
2359 			    (struct wpi_start_scan *)(desc + 1);
2360 			DPRINTF(sc, WPI_DEBUG_SCAN,
2361 			    "%s: scanning channel %d status %x\n",
2362 			    __func__, scan->chan, le32toh(scan->status));
2363 
2364 			break;
2365 		}
2366 #endif
2367 		case WPI_STOP_SCAN:
2368 		{
2369 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2370 			    BUS_DMASYNC_POSTREAD);
2371 
2372 			struct wpi_stop_scan *scan =
2373 			    (struct wpi_stop_scan *)(desc + 1);
2374 
2375 			DPRINTF(sc, WPI_DEBUG_SCAN,
2376 			    "scan finished nchan=%d status=%d chan=%d\n",
2377 			    scan->nchan, scan->status, scan->chan);
2378 
2379 			WPI_RXON_LOCK(sc);
2380 			callout_stop(&sc->scan_timeout);
2381 			WPI_RXON_UNLOCK(sc);
2382 			if (scan->status == WPI_SCAN_ABORTED)
2383 				ieee80211_cancel_scan(vap);
2384 			else
2385 				ieee80211_scan_next(vap);
2386 			break;
2387 		}
2388 		}
2389 
2390 		if (sc->rxq.cur % 8 == 0) {
2391 			/* Tell the firmware what we have processed. */
2392 			sc->sc_update_rx_ring(sc);
2393 		}
2394 	}
2395 }
2396 
2397 /*
2398  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2399  * from power-down sleep mode.
2400  */
2401 static void
2402 wpi_wakeup_intr(struct wpi_softc *sc)
2403 {
2404 	int qid;
2405 
2406 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2407 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2408 
2409 	/* Wakeup RX and TX rings. */
2410 	if (sc->rxq.update) {
2411 		sc->rxq.update = 0;
2412 		wpi_update_rx_ring(sc);
2413 	}
2414 	WPI_TXQ_LOCK(sc);
2415 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2416 		struct wpi_tx_ring *ring = &sc->txq[qid];
2417 
2418 		if (ring->update) {
2419 			ring->update = 0;
2420 			wpi_update_tx_ring(sc, ring);
2421 		}
2422 	}
2423 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2424 	WPI_TXQ_UNLOCK(sc);
2425 }
2426 
2427 /*
2428  * This function prints firmware registers
2429  */
2430 #ifdef WPI_DEBUG
2431 static void
2432 wpi_debug_registers(struct wpi_softc *sc)
2433 {
2434 	size_t i;
2435 	static const uint32_t csr_tbl[] = {
2436 		WPI_HW_IF_CONFIG,
2437 		WPI_INT,
2438 		WPI_INT_MASK,
2439 		WPI_FH_INT,
2440 		WPI_GPIO_IN,
2441 		WPI_RESET,
2442 		WPI_GP_CNTRL,
2443 		WPI_EEPROM,
2444 		WPI_EEPROM_GP,
2445 		WPI_GIO,
2446 		WPI_UCODE_GP1,
2447 		WPI_UCODE_GP2,
2448 		WPI_GIO_CHICKEN,
2449 		WPI_ANA_PLL,
2450 		WPI_DBG_HPET_MEM,
2451 	};
2452 	static const uint32_t prph_tbl[] = {
2453 		WPI_APMG_CLK_CTRL,
2454 		WPI_APMG_PS,
2455 		WPI_APMG_PCI_STT,
2456 		WPI_APMG_RFKILL,
2457 	};
2458 
2459 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2460 
2461 	for (i = 0; i < nitems(csr_tbl); i++) {
2462 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2463 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2464 
2465 		if ((i + 1) % 2 == 0)
2466 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2467 	}
2468 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2469 
2470 	if (wpi_nic_lock(sc) == 0) {
2471 		for (i = 0; i < nitems(prph_tbl); i++) {
2472 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2473 			    wpi_get_prph_string(prph_tbl[i]),
2474 			    wpi_prph_read(sc, prph_tbl[i]));
2475 
2476 			if ((i + 1) % 2 == 0)
2477 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2478 		}
2479 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2480 		wpi_nic_unlock(sc);
2481 	} else {
2482 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2483 		    "Cannot access internal registers.\n");
2484 	}
2485 }
2486 #endif
2487 
2488 /*
2489  * Dump the error log of the firmware when a firmware panic occurs.  Although
2490  * we can't debug the firmware because it is neither open source nor free, it
2491  * can help us to identify certain classes of problems.
2492  */
2493 static void
2494 wpi_fatal_intr(struct wpi_softc *sc)
2495 {
2496 	struct wpi_fw_dump dump;
2497 	uint32_t i, offset, count;
2498 
2499 	/* Check that the error log address is valid. */
2500 	if (sc->errptr < WPI_FW_DATA_BASE ||
2501 	    sc->errptr + sizeof (dump) >
2502 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2503 		kprintf("%s: bad firmware error log address 0x%08x\n", __func__,
2504 		    sc->errptr);
2505 		return;
2506 	}
2507 	if (wpi_nic_lock(sc) != 0) {
2508 		kprintf("%s: could not read firmware error log\n", __func__);
2509 		return;
2510 	}
2511 	/* Read number of entries in the log. */
2512 	count = wpi_mem_read(sc, sc->errptr);
2513 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2514 		kprintf("%s: invalid count field (count = %u)\n", __func__,
2515 		    count);
2516 		wpi_nic_unlock(sc);
2517 		return;
2518 	}
2519 	/* Skip "count" field. */
2520 	offset = sc->errptr + sizeof (uint32_t);
2521 	kprintf("firmware error log (count = %u):\n", count);
2522 	for (i = 0; i < count; i++) {
2523 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2524 		    sizeof (dump) / sizeof (uint32_t));
2525 
2526 		kprintf("  error type = \"%s\" (0x%08X)\n",
2527 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2528 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2529 		    dump.desc);
2530 		kprintf("  error data      = 0x%08X\n",
2531 		    dump.data);
2532 		kprintf("  branch link     = 0x%08X%08X\n",
2533 		    dump.blink[0], dump.blink[1]);
2534 		kprintf("  interrupt link  = 0x%08X%08X\n",
2535 		    dump.ilink[0], dump.ilink[1]);
2536 		kprintf("  time            = %u\n", dump.time);
2537 
2538 		offset += sizeof (dump);
2539 	}
2540 	wpi_nic_unlock(sc);
2541 	/* Dump driver status (TX and RX rings) while we're here. */
2542 	kprintf("driver status:\n");
2543 	WPI_TXQ_LOCK(sc);
2544 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2545 		struct wpi_tx_ring *ring = &sc->txq[i];
2546 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2547 		    i, ring->qid, ring->cur, ring->queued);
2548 	}
2549 	WPI_TXQ_UNLOCK(sc);
2550 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
2551 }
2552 
2553 static void
2554 wpi_intr(void *arg)
2555 {
2556 	struct wpi_softc *sc = arg;
2557 	uint32_t r1, r2;
2558 
2559 	WPI_LOCK(sc);
2560 
2561 	/* Disable interrupts. */
2562 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2563 
2564 	r1 = WPI_READ(sc, WPI_INT);
2565 
2566 	if (__predict_false(r1 == 0xffffffff ||
2567 			   (r1 & 0xfffffff0) == 0xa5a5a5a0))
2568 		goto end;	/* Hardware gone! */
2569 
2570 	r2 = WPI_READ(sc, WPI_FH_INT);
2571 
2572 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2573 	    r1, r2);
2574 
2575 	if (r1 == 0 && r2 == 0)
2576 		goto done;	/* Interrupt not for us. */
2577 
2578 	/* Acknowledge interrupts. */
2579 	WPI_WRITE(sc, WPI_INT, r1);
2580 	WPI_WRITE(sc, WPI_FH_INT, r2);
2581 
2582 	if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2583 		struct ieee80211com *ic = &sc->sc_ic;
2584 
2585 		device_printf(sc->sc_dev, "fatal firmware error\n");
2586 #ifdef WPI_DEBUG
2587 		wpi_debug_registers(sc);
2588 #endif
2589 		wpi_fatal_intr(sc);
2590 		DPRINTF(sc, WPI_DEBUG_HW,
2591 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2592 		    "(Hardware Error)");
2593 		ieee80211_restart_all(ic);
2594 		goto end;
2595 	}
2596 
2597 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2598 	    (r2 & WPI_FH_INT_RX))
2599 		wpi_notif_intr(sc);
2600 
2601 	if (r1 & WPI_INT_ALIVE)
2602 		wakeup(sc);	/* Firmware is alive. */
2603 
2604 	if (r1 & WPI_INT_WAKEUP)
2605 		wpi_wakeup_intr(sc);
2606 
2607 done:
2608 	/* Re-enable interrupts. */
2609 	if (__predict_true(sc->sc_running))
2610 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2611 
2612 end:	WPI_UNLOCK(sc);
2613 }
2614 
2615 static void
2616 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
2617 {
2618 	struct wpi_tx_ring *ring;
2619 	struct wpi_tx_data *data;
2620 	uint8_t cur;
2621 
2622 	WPI_TXQ_LOCK(sc);
2623 	ring = &sc->txq[ac];
2624 
2625 	while (ring->pending != 0) {
2626 		ring->pending--;
2627 		cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2628 		data = &ring->data[cur];
2629 
2630 		bus_dmamap_sync(ring->data_dmat, data->map,
2631 		    BUS_DMASYNC_POSTWRITE);
2632 		bus_dmamap_unload(ring->data_dmat, data->map);
2633 		m_freem(data->m);
2634 		data->m = NULL;
2635 
2636 		ieee80211_node_decref(data->ni);
2637 		data->ni = NULL;
2638 	}
2639 
2640 	WPI_TXQ_UNLOCK(sc);
2641 }
2642 
2643 static int
2644 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2645 {
2646 	struct ieee80211_frame *wh;
2647 	struct wpi_tx_cmd *cmd;
2648 	struct wpi_tx_data *data;
2649 	struct wpi_tx_desc *desc;
2650 	struct wpi_tx_ring *ring;
2651 	struct mbuf *m1;
2652 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2653 	uint8_t cur, pad;
2654 	uint16_t hdrlen;
2655 	int error, i, nsegs, totlen, frag;
2656 
2657 	WPI_TXQ_LOCK(sc);
2658 
2659 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2660 
2661 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2662 
2663 	if (__predict_false(sc->sc_running == 0)) {
2664 		/* wpi_stop() was called */
2665 		error = ENETDOWN;
2666 		goto end;
2667 	}
2668 
2669 	wh = mtod(buf->m, struct ieee80211_frame *);
2670 	hdrlen = ieee80211_anyhdrsize(wh);
2671 	totlen = buf->m->m_pkthdr.len;
2672 	frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
2673 
2674 	if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2675 		error = EINVAL;
2676 		goto end;
2677 	}
2678 
2679 	if (hdrlen & 3) {
2680 		/* First segment length must be a multiple of 4. */
2681 		pad = 4 - (hdrlen & 3);
2682 	} else
2683 		pad = 0;
2684 
2685 	ring = &sc->txq[buf->ac];
2686 	cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2687 	desc = &ring->desc[cur];
2688 	data = &ring->data[cur];
2689 
2690 	/* Prepare TX firmware command. */
2691 	cmd = &ring->cmd[cur];
2692 	cmd->code = buf->code;
2693 	cmd->flags = 0;
2694 	cmd->qid = ring->qid;
2695 	cmd->idx = cur;
2696 
2697 	memcpy(cmd->data, buf->data, buf->size);
2698 
2699 	/* Save and trim IEEE802.11 header. */
2700 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2701 	m_adj(buf->m, hdrlen);
2702 
2703 #if defined(__DragonFly__)
2704 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, buf->m,
2705 	    segs, 1, &nsegs, BUS_DMA_NOWAIT);
2706 #else
2707 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2708 	    segs, &nsegs, BUS_DMA_NOWAIT);
2709 #endif
2710 	if (error != 0 && error != EFBIG) {
2711 		device_printf(sc->sc_dev,
2712 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2713 		goto end;
2714 	}
2715 	if (error != 0) {
2716 		/* Too many DMA segments, linearize mbuf. */
2717 #if defined(__DragonFly__)
2718 		m1 = m_defrag(buf->m, M_NOWAIT);
2719 #else
2720 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2721 #endif
2722 		if (m1 == NULL) {
2723 			device_printf(sc->sc_dev,
2724 			    "%s: could not defrag mbuf\n", __func__);
2725 			error = ENOBUFS;
2726 			goto end;
2727 		}
2728 		buf->m = m1;
2729 
2730 #if defined(__DragonFly__)
2731 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
2732 		    buf->m, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2733 #else
2734 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2735 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2736 #endif
2737 		if (__predict_false(error != 0)) {
2738 			/* XXX fix this (applicable to the iwn(4) too) */
2739 			/*
2740 			 * NB: Do not return error;
2741 			 * original mbuf does not exist anymore.
2742 			 */
2743 			device_printf(sc->sc_dev,
2744 			    "%s: can't map mbuf (error %d)\n", __func__,
2745 			    error);
2746 			if (ring->qid < WPI_CMD_QUEUE_NUM) {
2747 				if_inc_counter(buf->ni->ni_vap->iv_ifp,
2748 				    IFCOUNTER_OERRORS, 1);
2749 				if (!frag)
2750 					ieee80211_free_node(buf->ni);
2751 			}
2752 			m_freem(buf->m);
2753 			error = 0;
2754 			goto end;
2755 		}
2756 	}
2757 
2758 	KASSERT(nsegs < WPI_MAX_SCATTER,
2759 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2760 	     nsegs, WPI_MAX_SCATTER));
2761 
2762 	data->m = buf->m;
2763 	data->ni = buf->ni;
2764 
2765 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2766 	    __func__, ring->qid, cur, totlen, nsegs);
2767 
2768 	/* Fill TX descriptor. */
2769 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2770 	/* First DMA segment is used by the TX command. */
2771 	desc->segs[0].addr = htole32(data->cmd_paddr);
2772 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2773 	/* Other DMA segments are for data payload. */
2774 	seg = &segs[0];
2775 	for (i = 1; i <= nsegs; i++) {
2776 		desc->segs[i].addr = htole32(seg->ds_addr);
2777 		desc->segs[i].len  = htole32(seg->ds_len);
2778 		seg++;
2779 	}
2780 
2781 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2782 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2783 	    BUS_DMASYNC_PREWRITE);
2784 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2785 	    BUS_DMASYNC_PREWRITE);
2786 
2787 	ring->pending += 1;
2788 
2789 	if (!frag) {
2790 		if (ring->qid < WPI_CMD_QUEUE_NUM) {
2791 			WPI_TXQ_STATE_LOCK(sc);
2792 			ring->queued += ring->pending;
2793 			callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
2794 			    sc);
2795 			WPI_TXQ_STATE_UNLOCK(sc);
2796 		}
2797 
2798 		/* Kick TX ring. */
2799 		ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2800 		ring->pending = 0;
2801 		sc->sc_update_tx_ring(sc, ring);
2802 	} else
2803 		ieee80211_node_incref(data->ni);
2804 
2805 end:	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2806 	    __func__);
2807 
2808 	WPI_TXQ_UNLOCK(sc);
2809 
2810 	return (error);
2811 }
2812 
2813 /*
2814  * Construct the data packet for a transmit buffer.
2815  */
2816 static int
2817 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2818 {
2819 	const struct ieee80211_txparam *tp;
2820 	struct ieee80211vap *vap = ni->ni_vap;
2821 	struct ieee80211com *ic = ni->ni_ic;
2822 	struct wpi_node *wn = WPI_NODE(ni);
2823 	struct ieee80211_channel *chan;
2824 	struct ieee80211_frame *wh;
2825 	struct ieee80211_key *k = NULL;
2826 	struct wpi_buf tx_data;
2827 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2828 	uint32_t flags;
2829 	uint16_t ac, qos;
2830 	uint8_t tid, type, rate;
2831 	int swcrypt, ismcast, totlen;
2832 
2833 	wh = mtod(m, struct ieee80211_frame *);
2834 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2835 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2836 	swcrypt = 1;
2837 
2838 	/* Select EDCA Access Category and TX ring for this frame. */
2839 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2840 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2841 		tid = qos & IEEE80211_QOS_TID;
2842 	} else {
2843 		qos = 0;
2844 		tid = 0;
2845 	}
2846 	ac = M_WME_GETAC(m);
2847 
2848 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2849 		ni->ni_chan : ic->ic_curchan;
2850 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2851 
2852 	/* Choose a TX rate index. */
2853 	if (type == IEEE80211_FC0_TYPE_MGT)
2854 		rate = tp->mgmtrate;
2855 	else if (ismcast)
2856 		rate = tp->mcastrate;
2857 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2858 		rate = tp->ucastrate;
2859 	else if (m->m_flags & M_EAPOL)
2860 		rate = tp->mgmtrate;
2861 	else {
2862 		/* XXX pass pktlen */
2863 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2864 		rate = ni->ni_txrate;
2865 	}
2866 
2867 	/* Encrypt the frame if need be. */
2868 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2869 		/* Retrieve key for TX. */
2870 		k = ieee80211_crypto_encap(ni, m);
2871 		if (k == NULL)
2872 			return (ENOBUFS);
2873 
2874 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2875 
2876 		/* 802.11 header may have moved. */
2877 		wh = mtod(m, struct ieee80211_frame *);
2878 	}
2879 	totlen = m->m_pkthdr.len;
2880 
2881 	if (ieee80211_radiotap_active_vap(vap)) {
2882 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2883 
2884 		tap->wt_flags = 0;
2885 		tap->wt_rate = rate;
2886 		if (k != NULL)
2887 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2888 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2889 			tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2890 
2891 		ieee80211_radiotap_tx(vap, m);
2892 	}
2893 
2894 	flags = 0;
2895 	if (!ismcast) {
2896 		/* Unicast frame, check if an ACK is expected. */
2897 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2898 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2899 			flags |= WPI_TX_NEED_ACK;
2900 	}
2901 
2902 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2903 		flags |= WPI_TX_AUTO_SEQ;
2904 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2905 		flags |= WPI_TX_MORE_FRAG;
2906 
2907 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2908 	if (!ismcast) {
2909 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2910 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2911 			flags |= WPI_TX_NEED_RTS;
2912 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2913 		    WPI_RATE_IS_OFDM(rate)) {
2914 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2915 				flags |= WPI_TX_NEED_CTS;
2916 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2917 				flags |= WPI_TX_NEED_RTS;
2918 		}
2919 
2920 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2921 			flags |= WPI_TX_FULL_TXOP;
2922 	}
2923 
2924 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2925 	if (type == IEEE80211_FC0_TYPE_MGT) {
2926 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2927 
2928 		/* Tell HW to set timestamp in probe responses. */
2929 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2930 			flags |= WPI_TX_INSERT_TSTAMP;
2931 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2932 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2933 			tx->timeout = htole16(3);
2934 		else
2935 			tx->timeout = htole16(2);
2936 	}
2937 
2938 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2939 		tx->id = WPI_ID_BROADCAST;
2940 	else {
2941 		if (wn->id == WPI_ID_UNDEFINED) {
2942 			device_printf(sc->sc_dev,
2943 			    "%s: undefined node id\n", __func__);
2944 			return (EINVAL);
2945 		}
2946 
2947 		tx->id = wn->id;
2948 	}
2949 
2950 	if (!swcrypt) {
2951 		switch (k->wk_cipher->ic_cipher) {
2952 		case IEEE80211_CIPHER_AES_CCM:
2953 			tx->security = WPI_CIPHER_CCMP;
2954 			break;
2955 
2956 		default:
2957 			break;
2958 		}
2959 
2960 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2961 	}
2962 
2963 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
2964 		struct mbuf *next = m->m_nextpkt;
2965 
2966 		tx->lnext = htole16(next->m_pkthdr.len);
2967 		tx->fnext = htole32(tx->security |
2968 				    (flags & WPI_TX_NEED_ACK) |
2969 				    WPI_NEXT_STA_ID(tx->id));
2970 	}
2971 
2972 	tx->len = htole16(totlen);
2973 	tx->flags = htole32(flags);
2974 	tx->plcp = rate2plcp(rate);
2975 	tx->tid = tid;
2976 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2977 	tx->ofdm_mask = 0xff;
2978 	tx->cck_mask = 0x0f;
2979 	tx->rts_ntries = 7;
2980 	tx->data_ntries = tp->maxretry;
2981 
2982 	tx_data.ni = ni;
2983 	tx_data.m = m;
2984 	tx_data.size = sizeof(struct wpi_cmd_data);
2985 	tx_data.code = WPI_CMD_TX_DATA;
2986 	tx_data.ac = ac;
2987 
2988 	return wpi_cmd2(sc, &tx_data);
2989 }
2990 
2991 static int
2992 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2993     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2994 {
2995 	struct ieee80211vap *vap = ni->ni_vap;
2996 	struct ieee80211_key *k = NULL;
2997 	struct ieee80211_frame *wh;
2998 	struct wpi_buf tx_data;
2999 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
3000 	uint32_t flags;
3001 	uint8_t ac, type, rate;
3002 	int swcrypt, totlen;
3003 
3004 	wh = mtod(m, struct ieee80211_frame *);
3005 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3006 	swcrypt = 1;
3007 
3008 	ac = params->ibp_pri & 3;
3009 
3010 	/* Choose a TX rate index. */
3011 	rate = params->ibp_rate0;
3012 
3013 	flags = 0;
3014 	if (!IEEE80211_QOS_HAS_SEQ(wh))
3015 		flags |= WPI_TX_AUTO_SEQ;
3016 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3017 		flags |= WPI_TX_NEED_ACK;
3018 	if (params->ibp_flags & IEEE80211_BPF_RTS)
3019 		flags |= WPI_TX_NEED_RTS;
3020 	if (params->ibp_flags & IEEE80211_BPF_CTS)
3021 		flags |= WPI_TX_NEED_CTS;
3022 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
3023 		flags |= WPI_TX_FULL_TXOP;
3024 
3025 	/* Encrypt the frame if need be. */
3026 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
3027 		/* Retrieve key for TX. */
3028 		k = ieee80211_crypto_encap(ni, m);
3029 		if (k == NULL)
3030 			return (ENOBUFS);
3031 
3032 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
3033 
3034 		/* 802.11 header may have moved. */
3035 		wh = mtod(m, struct ieee80211_frame *);
3036 	}
3037 	totlen = m->m_pkthdr.len;
3038 
3039 	if (ieee80211_radiotap_active_vap(vap)) {
3040 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
3041 
3042 		tap->wt_flags = 0;
3043 		tap->wt_rate = rate;
3044 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
3045 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3046 
3047 		ieee80211_radiotap_tx(vap, m);
3048 	}
3049 
3050 	memset(tx, 0, sizeof (struct wpi_cmd_data));
3051 	if (type == IEEE80211_FC0_TYPE_MGT) {
3052 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3053 
3054 		/* Tell HW to set timestamp in probe responses. */
3055 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3056 			flags |= WPI_TX_INSERT_TSTAMP;
3057 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3058 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3059 			tx->timeout = htole16(3);
3060 		else
3061 			tx->timeout = htole16(2);
3062 	}
3063 
3064 	if (!swcrypt) {
3065 		switch (k->wk_cipher->ic_cipher) {
3066 		case IEEE80211_CIPHER_AES_CCM:
3067 			tx->security = WPI_CIPHER_CCMP;
3068 			break;
3069 
3070 		default:
3071 			break;
3072 		}
3073 
3074 		memcpy(tx->key, k->wk_key, k->wk_keylen);
3075 	}
3076 
3077 	tx->len = htole16(totlen);
3078 	tx->flags = htole32(flags);
3079 	tx->plcp = rate2plcp(rate);
3080 	tx->id = WPI_ID_BROADCAST;
3081 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3082 	tx->rts_ntries = params->ibp_try1;
3083 	tx->data_ntries = params->ibp_try0;
3084 
3085 	tx_data.ni = ni;
3086 	tx_data.m = m;
3087 	tx_data.size = sizeof(struct wpi_cmd_data);
3088 	tx_data.code = WPI_CMD_TX_DATA;
3089 	tx_data.ac = ac;
3090 
3091 	return wpi_cmd2(sc, &tx_data);
3092 }
3093 
3094 static __inline int
3095 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
3096 {
3097 	struct wpi_tx_ring *ring = &sc->txq[ac];
3098 	int retval;
3099 
3100 	WPI_TXQ_STATE_LOCK(sc);
3101 	retval = WPI_TX_RING_HIMARK - ring->queued;
3102 	WPI_TXQ_STATE_UNLOCK(sc);
3103 
3104 	return retval;
3105 }
3106 
3107 static int
3108 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3109     const struct ieee80211_bpf_params *params)
3110 {
3111 	struct ieee80211com *ic = ni->ni_ic;
3112 	struct wpi_softc *sc = ic->ic_softc;
3113 	uint16_t ac;
3114 	int error = 0;
3115 
3116 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3117 
3118 	ac = M_WME_GETAC(m);
3119 
3120 	WPI_TX_LOCK(sc);
3121 
3122 	/* NB: no fragments here */
3123 	if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
3124 		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3125 		goto unlock;
3126 	}
3127 
3128 	if (params == NULL) {
3129 		/*
3130 		 * Legacy path; interpret frame contents to decide
3131 		 * precisely how to send the frame.
3132 		 */
3133 		error = wpi_tx_data(sc, m, ni);
3134 	} else {
3135 		/*
3136 		 * Caller supplied explicit parameters to use in
3137 		 * sending the frame.
3138 		 */
3139 		error = wpi_tx_data_raw(sc, m, ni, params);
3140 	}
3141 
3142 unlock:	WPI_TX_UNLOCK(sc);
3143 
3144 	if (error != 0) {
3145 		m_freem(m);
3146 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3147 
3148 		return error;
3149 	}
3150 
3151 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3152 
3153 	return 0;
3154 }
3155 
3156 static int
3157 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3158 {
3159 	struct wpi_softc *sc = ic->ic_softc;
3160 	struct ieee80211_node *ni;
3161 	struct mbuf *mnext;
3162 	uint16_t ac;
3163 	int error, nmbufs;
3164 
3165 	WPI_TX_LOCK(sc);
3166 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3167 
3168 	/* Check if interface is up & running. */
3169 	if (__predict_false(sc->sc_running == 0)) {
3170 		error = ENXIO;
3171 		goto unlock;
3172 	}
3173 
3174 	nmbufs = 1;
3175 	for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
3176 		nmbufs++;
3177 
3178 	/* Check for available space. */
3179 	ac = M_WME_GETAC(m);
3180 	if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
3181 		error = ENOBUFS;
3182 		goto unlock;
3183 	}
3184 
3185 	error = 0;
3186 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3187 	do {
3188 		mnext = m->m_nextpkt;
3189 		if (wpi_tx_data(sc, m, ni) != 0) {
3190 			/*
3191 			 * Breakout if error, but we will return 0 (no error)
3192 			 * for this case so we are responsible for freeing
3193 			 * the mbuf and the node.
3194 			 */
3195 			if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
3196 			    nmbufs);
3197 			wpi_free_txfrags(sc, ac);
3198 			ieee80211_free_mbuf(m);
3199 			ieee80211_free_node(ni);
3200 			break;
3201 		}
3202 	} while((m = mnext) != NULL);
3203 
3204 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3205 
3206 unlock:	WPI_TX_UNLOCK(sc);
3207 
3208 	return (error);
3209 }
3210 
3211 static void
3212 wpi_watchdog_rfkill(void *arg)
3213 {
3214 	struct wpi_softc *sc = arg;
3215 	struct ieee80211com *ic = &sc->sc_ic;
3216 
3217 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3218 
3219 	/* No need to lock firmware memory. */
3220 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3221 		/* Radio kill switch is still off. */
3222 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3223 		    sc);
3224 	} else
3225 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3226 }
3227 
3228 static void
3229 wpi_scan_timeout(void *arg)
3230 {
3231 	struct wpi_softc *sc = arg;
3232 	struct ieee80211com *ic = &sc->sc_ic;
3233 
3234 	ic_printf(ic, "scan timeout\n");
3235 	ieee80211_restart_all(ic);
3236 }
3237 
3238 static void
3239 wpi_tx_timeout(void *arg)
3240 {
3241 	struct wpi_softc *sc = arg;
3242 	struct ieee80211com *ic = &sc->sc_ic;
3243 
3244 	ic_printf(ic, "device timeout\n");
3245 	ieee80211_restart_all(ic);
3246 }
3247 
3248 static void
3249 wpi_parent(struct ieee80211com *ic)
3250 {
3251 	struct wpi_softc *sc = ic->ic_softc;
3252 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3253 
3254 	if (ic->ic_nrunning > 0) {
3255 		if (wpi_init(sc) == 0) {
3256 			ieee80211_notify_radio(ic, 1);
3257 			ieee80211_start_all(ic);
3258 		} else {
3259 			ieee80211_notify_radio(ic, 0);
3260 			ieee80211_stop(vap);
3261 		}
3262 	} else {
3263 		ieee80211_notify_radio(ic, 0);
3264 		wpi_stop(sc);
3265 	}
3266 }
3267 
3268 /*
3269  * Send a command to the firmware.
3270  */
3271 static int
3272 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3273     int async)
3274 {
3275 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3276 	struct wpi_tx_desc *desc;
3277 	struct wpi_tx_data *data;
3278 	struct wpi_tx_cmd *cmd;
3279 	struct mbuf *m;
3280 	bus_addr_t paddr;
3281 	uint16_t totlen;
3282 	int error;
3283 
3284 	WPI_TXQ_LOCK(sc);
3285 
3286 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3287 
3288 	if (__predict_false(sc->sc_running == 0)) {
3289 		/* wpi_stop() was called */
3290 		if (code == WPI_CMD_SCAN)
3291 			error = ENETDOWN;
3292 		else
3293 			error = 0;
3294 
3295 		goto fail;
3296 	}
3297 
3298 	if (async == 0)
3299 		WPI_LOCK_ASSERT(sc);
3300 
3301 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3302 	    __func__, wpi_cmd_str(code), size, async);
3303 
3304 	desc = &ring->desc[ring->cur];
3305 	data = &ring->data[ring->cur];
3306 	totlen = 4 + size;
3307 
3308 	if (size > sizeof cmd->data) {
3309 		/* Command is too large to fit in a descriptor. */
3310 		if (totlen > MCLBYTES) {
3311 			error = EINVAL;
3312 			goto fail;
3313 		}
3314 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3315 		if (m == NULL) {
3316 			error = ENOMEM;
3317 			goto fail;
3318 		}
3319 		cmd = mtod(m, struct wpi_tx_cmd *);
3320 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3321 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3322 		if (error != 0) {
3323 			m_freem(m);
3324 			goto fail;
3325 		}
3326 		data->m = m;
3327 	} else {
3328 		cmd = &ring->cmd[ring->cur];
3329 		paddr = data->cmd_paddr;
3330 	}
3331 
3332 	cmd->code = code;
3333 	cmd->flags = 0;
3334 	cmd->qid = ring->qid;
3335 	cmd->idx = ring->cur;
3336 	memcpy(cmd->data, buf, size);
3337 
3338 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3339 	desc->segs[0].addr = htole32(paddr);
3340 	desc->segs[0].len  = htole32(totlen);
3341 
3342 	if (size > sizeof cmd->data) {
3343 		bus_dmamap_sync(ring->data_dmat, data->map,
3344 		    BUS_DMASYNC_PREWRITE);
3345 	} else {
3346 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3347 		    BUS_DMASYNC_PREWRITE);
3348 	}
3349 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3350 	    BUS_DMASYNC_PREWRITE);
3351 
3352 	/* Kick command ring. */
3353 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3354 	sc->sc_update_tx_ring(sc, ring);
3355 
3356 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3357 
3358 	WPI_TXQ_UNLOCK(sc);
3359 
3360 #if defined(__DragonFly__)
3361 	return async ? 0 : lksleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3362 #else
3363 	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3364 #endif
3365 
3366 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3367 
3368 	WPI_TXQ_UNLOCK(sc);
3369 
3370 	return error;
3371 }
3372 
3373 /*
3374  * Configure HW multi-rate retries.
3375  */
3376 static int
3377 wpi_mrr_setup(struct wpi_softc *sc)
3378 {
3379 	struct ieee80211com *ic = &sc->sc_ic;
3380 	struct wpi_mrr_setup mrr;
3381 	uint8_t i;
3382 	int error;
3383 
3384 	/* CCK rates (not used with 802.11a). */
3385 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3386 		mrr.rates[i].flags = 0;
3387 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3388 		/* Fallback to the immediate lower CCK rate (if any.) */
3389 		mrr.rates[i].next =
3390 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3391 		/* Try twice at this rate before falling back to "next". */
3392 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3393 	}
3394 	/* OFDM rates (not used with 802.11b). */
3395 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3396 		mrr.rates[i].flags = 0;
3397 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3398 		/* Fallback to the immediate lower rate (if any.) */
3399 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3400 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3401 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3402 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3403 		    i - 1;
3404 		/* Try twice at this rate before falling back to "next". */
3405 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3406 	}
3407 	/* Setup MRR for control frames. */
3408 	mrr.which = htole32(WPI_MRR_CTL);
3409 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3410 	if (error != 0) {
3411 		device_printf(sc->sc_dev,
3412 		    "could not setup MRR for control frames\n");
3413 		return error;
3414 	}
3415 	/* Setup MRR for data frames. */
3416 	mrr.which = htole32(WPI_MRR_DATA);
3417 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3418 	if (error != 0) {
3419 		device_printf(sc->sc_dev,
3420 		    "could not setup MRR for data frames\n");
3421 		return error;
3422 	}
3423 	return 0;
3424 }
3425 
3426 static int
3427 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3428 {
3429 	struct ieee80211com *ic = ni->ni_ic;
3430 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3431 	struct wpi_node *wn = WPI_NODE(ni);
3432 	struct wpi_node_info node;
3433 	int error;
3434 
3435 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3436 
3437 	if (wn->id == WPI_ID_UNDEFINED)
3438 		return EINVAL;
3439 
3440 	memset(&node, 0, sizeof node);
3441 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3442 	node.id = wn->id;
3443 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3444 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3445 	node.action = htole32(WPI_ACTION_SET_RATE);
3446 	node.antenna = WPI_ANTENNA_BOTH;
3447 
3448 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3449 	    wn->id, ether_sprintf(ni->ni_macaddr));
3450 
3451 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3452 	if (error != 0) {
3453 		device_printf(sc->sc_dev,
3454 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3455 		    error);
3456 		return error;
3457 	}
3458 
3459 	if (wvp->wv_gtk != 0) {
3460 		error = wpi_set_global_keys(ni);
3461 		if (error != 0) {
3462 			device_printf(sc->sc_dev,
3463 			    "%s: error while setting global keys\n", __func__);
3464 			return ENXIO;
3465 		}
3466 	}
3467 
3468 	return 0;
3469 }
3470 
3471 /*
3472  * Broadcast node is used to send group-addressed and management frames.
3473  */
3474 static int
3475 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3476 {
3477 	struct ieee80211com *ic = &sc->sc_ic;
3478 	struct wpi_node_info node;
3479 
3480 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3481 
3482 	memset(&node, 0, sizeof node);
3483 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3484 	node.id = WPI_ID_BROADCAST;
3485 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3486 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3487 	node.action = htole32(WPI_ACTION_SET_RATE);
3488 	node.antenna = WPI_ANTENNA_BOTH;
3489 
3490 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3491 
3492 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3493 }
3494 
3495 static int
3496 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3497 {
3498 	struct wpi_node *wn = WPI_NODE(ni);
3499 	int error;
3500 
3501 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3502 
3503 	wn->id = wpi_add_node_entry_sta(sc);
3504 
3505 	if ((error = wpi_add_node(sc, ni)) != 0) {
3506 		wpi_del_node_entry(sc, wn->id);
3507 		wn->id = WPI_ID_UNDEFINED;
3508 		return error;
3509 	}
3510 
3511 	return 0;
3512 }
3513 
3514 static int
3515 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3516 {
3517 	struct wpi_node *wn = WPI_NODE(ni);
3518 	int error;
3519 
3520 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3521 	    ("the node %d was added before", wn->id));
3522 
3523 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3524 
3525 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3526 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3527 		return ENOMEM;
3528 	}
3529 
3530 	if ((error = wpi_add_node(sc, ni)) != 0) {
3531 		wpi_del_node_entry(sc, wn->id);
3532 		wn->id = WPI_ID_UNDEFINED;
3533 		return error;
3534 	}
3535 
3536 	return 0;
3537 }
3538 
3539 static void
3540 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3541 {
3542 	struct wpi_node *wn = WPI_NODE(ni);
3543 	struct wpi_cmd_del_node node;
3544 	int error;
3545 
3546 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3547 
3548 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3549 
3550 	memset(&node, 0, sizeof node);
3551 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3552 	node.count = 1;
3553 
3554 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3555 	    wn->id, ether_sprintf(ni->ni_macaddr));
3556 
3557 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3558 	if (error != 0) {
3559 		device_printf(sc->sc_dev,
3560 		    "%s: could not delete node %u, error %d\n", __func__,
3561 		    wn->id, error);
3562 	}
3563 }
3564 
3565 static int
3566 wpi_updateedca(struct ieee80211com *ic)
3567 {
3568 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3569 	struct wpi_softc *sc = ic->ic_softc;
3570 	struct wpi_edca_params cmd;
3571 	int aci, error;
3572 
3573 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3574 
3575 	memset(&cmd, 0, sizeof cmd);
3576 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3577 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3578 		const struct wmeParams *ac =
3579 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3580 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3581 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3582 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3583 		cmd.ac[aci].txoplimit =
3584 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3585 
3586 		DPRINTF(sc, WPI_DEBUG_EDCA,
3587 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3588 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3589 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3590 		    cmd.ac[aci].txoplimit);
3591 	}
3592 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3593 
3594 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3595 
3596 	return error;
3597 #undef WPI_EXP2
3598 }
3599 
3600 static void
3601 wpi_set_promisc(struct wpi_softc *sc)
3602 {
3603 	struct ieee80211com *ic = &sc->sc_ic;
3604 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3605 	uint32_t promisc_filter;
3606 
3607 	promisc_filter = WPI_FILTER_CTL;
3608 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3609 		promisc_filter |= WPI_FILTER_PROMISC;
3610 
3611 	if (ic->ic_promisc > 0)
3612 		sc->rxon.filter |= htole32(promisc_filter);
3613 	else
3614 		sc->rxon.filter &= ~htole32(promisc_filter);
3615 }
3616 
3617 static void
3618 wpi_update_promisc(struct ieee80211com *ic)
3619 {
3620 	struct wpi_softc *sc = ic->ic_softc;
3621 
3622 	WPI_LOCK(sc);
3623 	if (sc->sc_running == 0) {
3624 		WPI_UNLOCK(sc);
3625 		return;
3626 	}
3627 	WPI_UNLOCK(sc);
3628 
3629 	WPI_RXON_LOCK(sc);
3630 	wpi_set_promisc(sc);
3631 
3632 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3633 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3634 		    __func__);
3635 	}
3636 	WPI_RXON_UNLOCK(sc);
3637 }
3638 
3639 static void
3640 wpi_update_mcast(struct ieee80211com *ic)
3641 {
3642 	/* Ignore */
3643 }
3644 
3645 static void
3646 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3647 {
3648 	struct wpi_cmd_led led;
3649 
3650 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3651 
3652 	led.which = which;
3653 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3654 	led.off = off;
3655 	led.on = on;
3656 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3657 }
3658 
3659 static int
3660 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3661 {
3662 	struct wpi_cmd_timing cmd;
3663 	uint64_t val, mod;
3664 
3665 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3666 
3667 	memset(&cmd, 0, sizeof cmd);
3668 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3669 	cmd.bintval = htole16(ni->ni_intval);
3670 	cmd.lintval = htole16(10);
3671 
3672 	/* Compute remaining time until next beacon. */
3673 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3674 	mod = le64toh(cmd.tstamp) % val;
3675 	cmd.binitval = htole32((uint32_t)(val - mod));
3676 
3677 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3678 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3679 
3680 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3681 }
3682 
3683 /*
3684  * This function is called periodically (every 60 seconds) to adjust output
3685  * power to temperature changes.
3686  */
3687 static void
3688 wpi_power_calibration(struct wpi_softc *sc)
3689 {
3690 	int temp;
3691 
3692 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3693 
3694 	/* Update sensor data. */
3695 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3696 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3697 
3698 	/* Sanity-check read value. */
3699 	if (temp < -260 || temp > 25) {
3700 		/* This can't be correct, ignore. */
3701 		DPRINTF(sc, WPI_DEBUG_TEMP,
3702 		    "out-of-range temperature reported: %d\n", temp);
3703 		return;
3704 	}
3705 
3706 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3707 
3708 	/* Adjust Tx power if need be. */
3709 	if (abs(temp - sc->temp) <= 6)
3710 		return;
3711 
3712 	sc->temp = temp;
3713 
3714 	if (wpi_set_txpower(sc, 1) != 0) {
3715 		/* just warn, too bad for the automatic calibration... */
3716 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3717 	}
3718 }
3719 
3720 /*
3721  * Set TX power for current channel.
3722  */
3723 static int
3724 wpi_set_txpower(struct wpi_softc *sc, int async)
3725 {
3726 	struct wpi_power_group *group;
3727 	struct wpi_cmd_txpower cmd;
3728 	uint8_t chan;
3729 	int idx, is_chan_5ghz, i;
3730 
3731 	/* Retrieve current channel from last RXON. */
3732 	chan = sc->rxon.chan;
3733 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3734 
3735 	/* Find the TX power group to which this channel belongs. */
3736 	if (is_chan_5ghz) {
3737 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3738 			if (chan <= group->chan)
3739 				break;
3740 	} else
3741 		group = &sc->groups[0];
3742 
3743 	memset(&cmd, 0, sizeof cmd);
3744 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3745 	cmd.chan = htole16(chan);
3746 
3747 	/* Set TX power for all OFDM and CCK rates. */
3748 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3749 		/* Retrieve TX power for this channel/rate. */
3750 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3751 
3752 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3753 
3754 		if (is_chan_5ghz) {
3755 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3756 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3757 		} else {
3758 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3759 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3760 		}
3761 		DPRINTF(sc, WPI_DEBUG_TEMP,
3762 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3763 	}
3764 
3765 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3766 }
3767 
3768 /*
3769  * Determine Tx power index for a given channel/rate combination.
3770  * This takes into account the regulatory information from EEPROM and the
3771  * current temperature.
3772  */
3773 static int
3774 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3775     uint8_t chan, int is_chan_5ghz, int ridx)
3776 {
3777 /* Fixed-point arithmetic division using a n-bit fractional part. */
3778 #define fdivround(a, b, n)	\
3779 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3780 
3781 /* Linear interpolation. */
3782 #define interpolate(x, x1, y1, x2, y2, n)	\
3783 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3784 
3785 	struct wpi_power_sample *sample;
3786 	int pwr, idx;
3787 
3788 	/* Default TX power is group maximum TX power minus 3dB. */
3789 	pwr = group->maxpwr / 2;
3790 
3791 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3792 	switch (ridx) {
3793 	case WPI_RIDX_OFDM36:
3794 		pwr -= is_chan_5ghz ?  5 : 0;
3795 		break;
3796 	case WPI_RIDX_OFDM48:
3797 		pwr -= is_chan_5ghz ? 10 : 7;
3798 		break;
3799 	case WPI_RIDX_OFDM54:
3800 		pwr -= is_chan_5ghz ? 12 : 9;
3801 		break;
3802 	}
3803 
3804 	/* Never exceed the channel maximum allowed TX power. */
3805 	pwr = min(pwr, sc->maxpwr[chan]);
3806 
3807 	/* Retrieve TX power index into gain tables from samples. */
3808 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3809 		if (pwr > sample[1].power)
3810 			break;
3811 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3812 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3813 	    sample[1].power, sample[1].index, 19);
3814 
3815 	/*-
3816 	 * Adjust power index based on current temperature:
3817 	 * - if cooler than factory-calibrated: decrease output power
3818 	 * - if warmer than factory-calibrated: increase output power
3819 	 */
3820 	idx -= (sc->temp - group->temp) * 11 / 100;
3821 
3822 	/* Decrease TX power for CCK rates (-5dB). */
3823 	if (ridx >= WPI_RIDX_CCK1)
3824 		idx += 10;
3825 
3826 	/* Make sure idx stays in a valid range. */
3827 	if (idx < 0)
3828 		return 0;
3829 	if (idx > WPI_MAX_PWR_INDEX)
3830 		return WPI_MAX_PWR_INDEX;
3831 	return idx;
3832 
3833 #undef interpolate
3834 #undef fdivround
3835 }
3836 
3837 /*
3838  * Set STA mode power saving level (between 0 and 5).
3839  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3840  */
3841 static int
3842 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3843 {
3844 	struct wpi_pmgt_cmd cmd;
3845 	const struct wpi_pmgt *pmgt;
3846 	uint32_t max, reg;
3847 	uint8_t skip_dtim;
3848 	int i;
3849 
3850 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3851 	    "%s: dtim=%d, level=%d, async=%d\n",
3852 	    __func__, dtim, level, async);
3853 
3854 	/* Select which PS parameters to use. */
3855 	if (dtim <= 10)
3856 		pmgt = &wpi_pmgt[0][level];
3857 	else
3858 		pmgt = &wpi_pmgt[1][level];
3859 
3860 	memset(&cmd, 0, sizeof cmd);
3861 	if (level != 0)	/* not CAM */
3862 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3863 	/* Retrieve PCIe Active State Power Management (ASPM). */
3864 #if defined(__DragonFly__)
3865 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINKCTRL, 1);
3866 	if (!(reg & PCIEM_LNKCTL_ASPM_L0S))	/* L0s Entry disabled. */
3867 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3868 #else
3869 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
3870 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
3871 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3872 #endif
3873 
3874 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3875 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3876 
3877 	if (dtim == 0) {
3878 		dtim = 1;
3879 		skip_dtim = 0;
3880 	} else
3881 		skip_dtim = pmgt->skip_dtim;
3882 
3883 	if (skip_dtim != 0) {
3884 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3885 		max = pmgt->intval[4];
3886 		if (max == (uint32_t)-1)
3887 			max = dtim * (skip_dtim + 1);
3888 		else if (max > dtim)
3889 			max = rounddown(max, dtim);
3890 	} else
3891 		max = dtim;
3892 
3893 	for (i = 0; i < 5; i++)
3894 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3895 
3896 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3897 }
3898 
3899 static int
3900 wpi_send_btcoex(struct wpi_softc *sc)
3901 {
3902 	struct wpi_bluetooth cmd;
3903 
3904 	memset(&cmd, 0, sizeof cmd);
3905 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3906 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3907 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3908 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3909 	    __func__);
3910 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3911 }
3912 
3913 static int
3914 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3915 {
3916 	int error;
3917 
3918 	if (async)
3919 		WPI_RXON_LOCK_ASSERT(sc);
3920 
3921 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3922 		struct wpi_assoc rxon_assoc;
3923 
3924 		rxon_assoc.flags = sc->rxon.flags;
3925 		rxon_assoc.filter = sc->rxon.filter;
3926 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3927 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3928 		rxon_assoc.reserved = 0;
3929 
3930 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3931 		    sizeof (struct wpi_assoc), async);
3932 		if (error != 0) {
3933 			device_printf(sc->sc_dev,
3934 			    "RXON_ASSOC command failed, error %d\n", error);
3935 			return error;
3936 		}
3937 	} else {
3938 		if (async) {
3939 			WPI_NT_LOCK(sc);
3940 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3941 			    sizeof (struct wpi_rxon), async);
3942 			if (error == 0)
3943 				wpi_clear_node_table(sc);
3944 			WPI_NT_UNLOCK(sc);
3945 		} else {
3946 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3947 			    sizeof (struct wpi_rxon), async);
3948 			if (error == 0)
3949 				wpi_clear_node_table(sc);
3950 		}
3951 
3952 		if (error != 0) {
3953 			device_printf(sc->sc_dev,
3954 			    "RXON command failed, error %d\n", error);
3955 			return error;
3956 		}
3957 
3958 		/* Add broadcast node. */
3959 		error = wpi_add_broadcast_node(sc, async);
3960 		if (error != 0) {
3961 			device_printf(sc->sc_dev,
3962 			    "could not add broadcast node, error %d\n", error);
3963 			return error;
3964 		}
3965 	}
3966 
3967 	/* Configuration has changed, set Tx power accordingly. */
3968 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3969 		device_printf(sc->sc_dev,
3970 		    "%s: could not set TX power, error %d\n", __func__, error);
3971 		return error;
3972 	}
3973 
3974 	return 0;
3975 }
3976 
3977 /**
3978  * Configure the card to listen to a particular channel, this transisions the
3979  * card in to being able to receive frames from remote devices.
3980  */
3981 static int
3982 wpi_config(struct wpi_softc *sc)
3983 {
3984 	struct ieee80211com *ic = &sc->sc_ic;
3985 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3986 	struct ieee80211_channel *c = ic->ic_curchan;
3987 	int error;
3988 
3989 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3990 
3991 	/* Set power saving level to CAM during initialization. */
3992 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3993 		device_printf(sc->sc_dev,
3994 		    "%s: could not set power saving level\n", __func__);
3995 		return error;
3996 	}
3997 
3998 	/* Configure bluetooth coexistence. */
3999 	if ((error = wpi_send_btcoex(sc)) != 0) {
4000 		device_printf(sc->sc_dev,
4001 		    "could not configure bluetooth coexistence\n");
4002 		return error;
4003 	}
4004 
4005 	/* Configure adapter. */
4006 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
4007 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
4008 
4009 	/* Set default channel. */
4010 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4011 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4012 	if (IEEE80211_IS_CHAN_2GHZ(c))
4013 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4014 
4015 	sc->rxon.filter = WPI_FILTER_MULTICAST;
4016 	switch (ic->ic_opmode) {
4017 	case IEEE80211_M_STA:
4018 		sc->rxon.mode = WPI_MODE_STA;
4019 		break;
4020 	case IEEE80211_M_IBSS:
4021 		sc->rxon.mode = WPI_MODE_IBSS;
4022 		sc->rxon.filter |= WPI_FILTER_BEACON;
4023 		break;
4024 	case IEEE80211_M_HOSTAP:
4025 		/* XXX workaround for beaconing */
4026 		sc->rxon.mode = WPI_MODE_IBSS;
4027 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
4028 		break;
4029 	case IEEE80211_M_AHDEMO:
4030 		sc->rxon.mode = WPI_MODE_HOSTAP;
4031 		break;
4032 	case IEEE80211_M_MONITOR:
4033 		sc->rxon.mode = WPI_MODE_MONITOR;
4034 		break;
4035 	default:
4036 		device_printf(sc->sc_dev, "unknown opmode %d\n",
4037 		    ic->ic_opmode);
4038 		return EINVAL;
4039 	}
4040 	sc->rxon.filter = htole32(sc->rxon.filter);
4041 	wpi_set_promisc(sc);
4042 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4043 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4044 
4045 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
4046 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4047 		    __func__);
4048 		return error;
4049 	}
4050 
4051 	/* Setup rate scalling. */
4052 	if ((error = wpi_mrr_setup(sc)) != 0) {
4053 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
4054 		    error);
4055 		return error;
4056 	}
4057 
4058 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4059 
4060 	return 0;
4061 }
4062 
4063 static uint16_t
4064 wpi_get_active_dwell_time(struct wpi_softc *sc,
4065     struct ieee80211_channel *c, uint8_t n_probes)
4066 {
4067 	/* No channel? Default to 2GHz settings. */
4068 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
4069 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
4070 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
4071 	}
4072 
4073 	/* 5GHz dwell time. */
4074 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4075 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4076 }
4077 
4078 /*
4079  * Limit the total dwell time.
4080  *
4081  * Returns the dwell time in milliseconds.
4082  */
4083 static uint16_t
4084 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4085 {
4086 	struct ieee80211com *ic = &sc->sc_ic;
4087 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4088 	uint16_t bintval = 0;
4089 
4090 	/* bintval is in TU (1.024mS) */
4091 	if (vap != NULL)
4092 		bintval = vap->iv_bss->ni_intval;
4093 
4094 	/*
4095 	 * If it's non-zero, we should calculate the minimum of
4096 	 * it and the DWELL_BASE.
4097 	 *
4098 	 * XXX Yes, the math should take into account that bintval
4099 	 * is 1.024mS, not 1mS..
4100 	 */
4101 	if (bintval > 0) {
4102 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4103 		    bintval);
4104 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4105 	}
4106 
4107 	/* No association context? Default. */
4108 	return dwell_time;
4109 }
4110 
4111 static uint16_t
4112 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4113 {
4114 	uint16_t passive;
4115 
4116 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4117 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4118 	else
4119 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4120 
4121 	/* Clamp to the beacon interval if we're associated. */
4122 	return (wpi_limit_dwell(sc, passive));
4123 }
4124 
4125 static uint32_t
4126 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4127 {
4128 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4129 	uint32_t nbeacons = time / bintval;
4130 
4131 	if (mod > WPI_PAUSE_MAX_TIME)
4132 		mod = WPI_PAUSE_MAX_TIME;
4133 
4134 	return WPI_PAUSE_SCAN(nbeacons, mod);
4135 }
4136 
4137 /*
4138  * Send a scan request to the firmware.
4139  */
4140 static int
4141 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4142 {
4143 	struct ieee80211com *ic = &sc->sc_ic;
4144 	struct ieee80211_scan_state *ss = ic->ic_scan;
4145 	struct ieee80211vap *vap = ss->ss_vap;
4146 	struct wpi_scan_hdr *hdr;
4147 	struct wpi_cmd_data *tx;
4148 	struct wpi_scan_essid *essids;
4149 	struct wpi_scan_chan *chan;
4150 	struct ieee80211_frame *wh;
4151 	struct ieee80211_rateset *rs;
4152 	uint16_t bintval, buflen, dwell_active, dwell_passive;
4153 	uint8_t *buf, *frm, i, nssid;
4154 	int bgscan, error;
4155 
4156 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4157 
4158 	/*
4159 	 * We are absolutely not allowed to send a scan command when another
4160 	 * scan command is pending.
4161 	 */
4162 	if (callout_pending(&sc->scan_timeout)) {
4163 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4164 		    __func__);
4165 		error = EAGAIN;
4166 		goto fail;
4167 	}
4168 
4169 	bgscan = wpi_check_bss_filter(sc);
4170 	bintval = vap->iv_bss->ni_intval;
4171 	if (bgscan != 0 &&
4172 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4173 		error = EOPNOTSUPP;
4174 		goto fail;
4175 	}
4176 
4177 	buf = kmalloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
4178 	if (buf == NULL) {
4179 		device_printf(sc->sc_dev,
4180 		    "%s: could not allocate buffer for scan command\n",
4181 		    __func__);
4182 		error = ENOMEM;
4183 		goto fail;
4184 	}
4185 	hdr = (struct wpi_scan_hdr *)buf;
4186 
4187 	/*
4188 	 * Move to the next channel if no packets are received within 10 msecs
4189 	 * after sending the probe request.
4190 	 */
4191 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4192 	hdr->quiet_threshold = htole16(1);
4193 
4194 	if (bgscan != 0) {
4195 		/*
4196 		 * Max needs to be greater than active and passive and quiet!
4197 		 * It's also in microseconds!
4198 		 */
4199 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4200 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4201 		    bintval));
4202 	}
4203 
4204 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4205 
4206 	tx = (struct wpi_cmd_data *)(hdr + 1);
4207 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4208 	tx->id = WPI_ID_BROADCAST;
4209 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4210 
4211 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4212 		/* Send probe requests at 6Mbps. */
4213 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4214 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4215 	} else {
4216 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4217 		/* Send probe requests at 1Mbps. */
4218 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4219 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4220 	}
4221 
4222 	essids = (struct wpi_scan_essid *)(tx + 1);
4223 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4224 	for (i = 0; i < nssid; i++) {
4225 		essids[i].id = IEEE80211_ELEMID_SSID;
4226 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4227 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4228 #ifdef WPI_DEBUG
4229 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4230 			kprintf("Scanning Essid: ");
4231 			ieee80211_print_essid(essids[i].data, essids[i].len);
4232 			kprintf("\n");
4233 		}
4234 #endif
4235 	}
4236 
4237 	/*
4238 	 * Build a probe request frame.  Most of the following code is a
4239 	 * copy & paste of what is done in net80211.
4240 	 */
4241 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4242 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4243 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4244 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4245 	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4246 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4247 	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4248 
4249 	frm = (uint8_t *)(wh + 1);
4250 	frm = ieee80211_add_ssid(frm, NULL, 0);
4251 	frm = ieee80211_add_rates(frm, rs);
4252 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4253 		frm = ieee80211_add_xrates(frm, rs);
4254 
4255 	/* Set length of probe request. */
4256 	tx->len = htole16(frm - (uint8_t *)wh);
4257 
4258 	/*
4259 	 * Construct information about the channel that we
4260 	 * want to scan. The firmware expects this to be directly
4261 	 * after the scan probe request
4262 	 */
4263 	chan = (struct wpi_scan_chan *)frm;
4264 	chan->chan = ieee80211_chan2ieee(ic, c);
4265 	chan->flags = 0;
4266 	if (nssid) {
4267 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4268 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4269 	} else
4270 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4271 
4272 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4273 		chan->flags |= WPI_CHAN_ACTIVE;
4274 
4275 	/*
4276 	 * Calculate the active/passive dwell times.
4277 	 */
4278 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4279 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4280 
4281 	/* Make sure they're valid. */
4282 	if (dwell_active > dwell_passive)
4283 		dwell_active = dwell_passive;
4284 
4285 	chan->active = htole16(dwell_active);
4286 	chan->passive = htole16(dwell_passive);
4287 
4288 	chan->dsp_gain = 0x6e;  /* Default level */
4289 
4290 	if (IEEE80211_IS_CHAN_5GHZ(c))
4291 		chan->rf_gain = 0x3b;
4292 	else
4293 		chan->rf_gain = 0x28;
4294 
4295 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4296 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4297 
4298 	hdr->nchan++;
4299 
4300 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4301 		/* XXX Force probe request transmission. */
4302 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4303 
4304 		chan++;
4305 
4306 		/* Reduce unnecessary delay. */
4307 		chan->flags = 0;
4308 		chan->passive = chan->active = hdr->quiet_time;
4309 
4310 		hdr->nchan++;
4311 	}
4312 
4313 	chan++;
4314 
4315 	buflen = (uint8_t *)chan - buf;
4316 	hdr->len = htole16(buflen);
4317 
4318 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4319 	    hdr->nchan);
4320 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4321 	kfree(buf, M_DEVBUF);
4322 
4323 	if (error != 0)
4324 		goto fail;
4325 
4326 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4327 
4328 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4329 
4330 	return 0;
4331 
4332 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4333 
4334 	return error;
4335 }
4336 
4337 static int
4338 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4339 {
4340 	struct ieee80211com *ic = vap->iv_ic;
4341 	struct ieee80211_node *ni = vap->iv_bss;
4342 	struct ieee80211_channel *c = ni->ni_chan;
4343 	int error;
4344 
4345 	WPI_RXON_LOCK(sc);
4346 
4347 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4348 
4349 	/* Update adapter configuration. */
4350 	sc->rxon.associd = 0;
4351 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4352 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4353 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4354 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4355 	if (IEEE80211_IS_CHAN_2GHZ(c))
4356 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4357 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4358 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4359 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4360 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4361 	if (IEEE80211_IS_CHAN_A(c)) {
4362 		sc->rxon.cck_mask  = 0;
4363 		sc->rxon.ofdm_mask = 0x15;
4364 	} else if (IEEE80211_IS_CHAN_B(c)) {
4365 		sc->rxon.cck_mask  = 0x03;
4366 		sc->rxon.ofdm_mask = 0;
4367 	} else {
4368 		/* Assume 802.11b/g. */
4369 		sc->rxon.cck_mask  = 0x0f;
4370 		sc->rxon.ofdm_mask = 0x15;
4371 	}
4372 
4373 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4374 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4375 	    sc->rxon.ofdm_mask);
4376 
4377 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4378 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4379 		    __func__);
4380 	}
4381 
4382 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4383 
4384 	WPI_RXON_UNLOCK(sc);
4385 
4386 	return error;
4387 }
4388 
4389 static int
4390 wpi_config_beacon(struct wpi_vap *wvp)
4391 {
4392 	struct ieee80211vap *vap = &wvp->wv_vap;
4393 	struct ieee80211com *ic = vap->iv_ic;
4394 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4395 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4396 	struct wpi_softc *sc = ic->ic_softc;
4397 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4398 	struct ieee80211_tim_ie *tie;
4399 	struct mbuf *m;
4400 	uint8_t *ptr;
4401 	int error;
4402 
4403 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4404 
4405 	WPI_VAP_LOCK_ASSERT(wvp);
4406 
4407 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4408 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4409 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4410 
4411 	/* XXX seems to be unused */
4412 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4413 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4414 		ptr = mtod(bcn->m, uint8_t *);
4415 
4416 		cmd->tim = htole16(bo->bo_tim - ptr);
4417 		cmd->timsz = tie->tim_len;
4418 	}
4419 
4420 	/* Necessary for recursion in ieee80211_beacon_update(). */
4421 	m = bcn->m;
4422 	bcn->m = m_dup(m, M_NOWAIT);
4423 	if (bcn->m == NULL) {
4424 		device_printf(sc->sc_dev,
4425 		    "%s: could not copy beacon frame\n", __func__);
4426 		error = ENOMEM;
4427 		goto end;
4428 	}
4429 
4430 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4431 		device_printf(sc->sc_dev,
4432 		    "%s: could not update beacon frame, error %d", __func__,
4433 		    error);
4434 		m_freem(bcn->m);
4435 	}
4436 
4437 	/* Restore mbuf. */
4438 end:	bcn->m = m;
4439 
4440 	return error;
4441 }
4442 
4443 static int
4444 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4445 {
4446 	struct ieee80211vap *vap = ni->ni_vap;
4447 	struct wpi_vap *wvp = WPI_VAP(vap);
4448 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4449 	struct mbuf *m;
4450 	int error;
4451 
4452 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4453 
4454 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4455 		return EINVAL;
4456 
4457 	m = ieee80211_beacon_alloc(ni);
4458 	if (m == NULL) {
4459 		device_printf(sc->sc_dev,
4460 		    "%s: could not allocate beacon frame\n", __func__);
4461 		return ENOMEM;
4462 	}
4463 
4464 	WPI_VAP_LOCK(wvp);
4465 	if (bcn->m != NULL)
4466 		m_freem(bcn->m);
4467 
4468 	bcn->m = m;
4469 
4470 	error = wpi_config_beacon(wvp);
4471 	WPI_VAP_UNLOCK(wvp);
4472 
4473 	return error;
4474 }
4475 
4476 static void
4477 wpi_update_beacon(struct ieee80211vap *vap, int item)
4478 {
4479 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4480 	struct wpi_vap *wvp = WPI_VAP(vap);
4481 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4482 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4483 	struct ieee80211_node *ni = vap->iv_bss;
4484 	int mcast = 0;
4485 
4486 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4487 
4488 	WPI_VAP_LOCK(wvp);
4489 	if (bcn->m == NULL) {
4490 		bcn->m = ieee80211_beacon_alloc(ni);
4491 		if (bcn->m == NULL) {
4492 			device_printf(sc->sc_dev,
4493 			    "%s: could not allocate beacon frame\n", __func__);
4494 
4495 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4496 			    __func__);
4497 
4498 			WPI_VAP_UNLOCK(wvp);
4499 			return;
4500 		}
4501 	}
4502 	WPI_VAP_UNLOCK(wvp);
4503 
4504 	if (item == IEEE80211_BEACON_TIM)
4505 		mcast = 1;	/* TODO */
4506 
4507 	setbit(bo->bo_flags, item);
4508 	ieee80211_beacon_update(ni, bcn->m, mcast);
4509 
4510 	WPI_VAP_LOCK(wvp);
4511 	wpi_config_beacon(wvp);
4512 	WPI_VAP_UNLOCK(wvp);
4513 
4514 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4515 }
4516 
4517 static void
4518 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4519 {
4520 	struct ieee80211vap *vap = ni->ni_vap;
4521 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4522 	struct wpi_node *wn = WPI_NODE(ni);
4523 	int error;
4524 
4525 	WPI_NT_LOCK(sc);
4526 
4527 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4528 
4529 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4530 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4531 			device_printf(sc->sc_dev,
4532 			    "%s: could not add IBSS node, error %d\n",
4533 			    __func__, error);
4534 		}
4535 	}
4536 	WPI_NT_UNLOCK(sc);
4537 }
4538 
4539 static int
4540 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4541 {
4542 	struct ieee80211com *ic = vap->iv_ic;
4543 	struct ieee80211_node *ni = vap->iv_bss;
4544 	struct ieee80211_channel *c = ni->ni_chan;
4545 	int error;
4546 
4547 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4548 
4549 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4550 		/* Link LED blinks while monitoring. */
4551 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4552 		return 0;
4553 	}
4554 
4555 	/* XXX kernel panic workaround */
4556 	if (c == IEEE80211_CHAN_ANYC) {
4557 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4558 		    __func__);
4559 		return EINVAL;
4560 	}
4561 
4562 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4563 		device_printf(sc->sc_dev,
4564 		    "%s: could not set timing, error %d\n", __func__, error);
4565 		return error;
4566 	}
4567 
4568 	/* Update adapter configuration. */
4569 	WPI_RXON_LOCK(sc);
4570 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4571 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4572 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4573 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4574 	if (IEEE80211_IS_CHAN_2GHZ(c))
4575 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4576 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4577 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4578 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4579 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4580 	if (IEEE80211_IS_CHAN_A(c)) {
4581 		sc->rxon.cck_mask  = 0;
4582 		sc->rxon.ofdm_mask = 0x15;
4583 	} else if (IEEE80211_IS_CHAN_B(c)) {
4584 		sc->rxon.cck_mask  = 0x03;
4585 		sc->rxon.ofdm_mask = 0;
4586 	} else {
4587 		/* Assume 802.11b/g. */
4588 		sc->rxon.cck_mask  = 0x0f;
4589 		sc->rxon.ofdm_mask = 0x15;
4590 	}
4591 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4592 
4593 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4594 	    sc->rxon.chan, sc->rxon.flags);
4595 
4596 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4597 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4598 		    __func__);
4599 		return error;
4600 	}
4601 
4602 	/* Start periodic calibration timer. */
4603 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4604 
4605 	WPI_RXON_UNLOCK(sc);
4606 
4607 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4608 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4609 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4610 			device_printf(sc->sc_dev,
4611 			    "%s: could not setup beacon, error %d\n", __func__,
4612 			    error);
4613 			return error;
4614 		}
4615 	}
4616 
4617 	if (vap->iv_opmode == IEEE80211_M_STA) {
4618 		/* Add BSS node. */
4619 		WPI_NT_LOCK(sc);
4620 		error = wpi_add_sta_node(sc, ni);
4621 		WPI_NT_UNLOCK(sc);
4622 		if (error != 0) {
4623 			device_printf(sc->sc_dev,
4624 			    "%s: could not add BSS node, error %d\n", __func__,
4625 			    error);
4626 			return error;
4627 		}
4628 	}
4629 
4630 	/* Link LED always on while associated. */
4631 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4632 
4633 	/* Enable power-saving mode if requested by user. */
4634 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4635 	    vap->iv_opmode != IEEE80211_M_IBSS)
4636 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4637 
4638 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4639 
4640 	return 0;
4641 }
4642 
4643 static int
4644 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4645 {
4646 	const struct ieee80211_cipher *cip = k->wk_cipher;
4647 	struct ieee80211vap *vap = ni->ni_vap;
4648 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4649 	struct wpi_node *wn = WPI_NODE(ni);
4650 	struct wpi_node_info node;
4651 	uint16_t kflags;
4652 	int error;
4653 
4654 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4655 
4656 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4657 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4658 		    __func__);
4659 		return 0;
4660 	}
4661 
4662 	switch (cip->ic_cipher) {
4663 	case IEEE80211_CIPHER_AES_CCM:
4664 		kflags = WPI_KFLAG_CCMP;
4665 		break;
4666 
4667 	default:
4668 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4669 		    cip->ic_cipher);
4670 		return 0;
4671 	}
4672 
4673 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4674 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4675 		kflags |= WPI_KFLAG_MULTICAST;
4676 
4677 	memset(&node, 0, sizeof node);
4678 	node.id = wn->id;
4679 	node.control = WPI_NODE_UPDATE;
4680 	node.flags = WPI_FLAG_KEY_SET;
4681 	node.kflags = htole16(kflags);
4682 	memcpy(node.key, k->wk_key, k->wk_keylen);
4683 again:
4684 	DPRINTF(sc, WPI_DEBUG_KEY,
4685 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4686 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4687 	    node.id, ether_sprintf(ni->ni_macaddr));
4688 
4689 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4690 	if (error != 0) {
4691 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4692 		    error);
4693 		return !error;
4694 	}
4695 
4696 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4697 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4698 		kflags |= WPI_KFLAG_MULTICAST;
4699 		node.kflags = htole16(kflags);
4700 
4701 		goto again;
4702 	}
4703 
4704 	return 1;
4705 }
4706 
4707 static void
4708 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4709 {
4710 	const struct ieee80211_key *k = arg;
4711 	struct ieee80211vap *vap = ni->ni_vap;
4712 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4713 	struct wpi_node *wn = WPI_NODE(ni);
4714 	int error;
4715 
4716 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4717 		return;
4718 
4719 	WPI_NT_LOCK(sc);
4720 	error = wpi_load_key(ni, k);
4721 	WPI_NT_UNLOCK(sc);
4722 
4723 	if (error == 0) {
4724 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4725 		    __func__);
4726 	}
4727 }
4728 
4729 static int
4730 wpi_set_global_keys(struct ieee80211_node *ni)
4731 {
4732 	struct ieee80211vap *vap = ni->ni_vap;
4733 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4734 	int error = 1;
4735 
4736 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4737 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4738 			error = wpi_load_key(ni, wk);
4739 
4740 	return !error;
4741 }
4742 
4743 static int
4744 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4745 {
4746 	struct ieee80211vap *vap = ni->ni_vap;
4747 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4748 	struct wpi_node *wn = WPI_NODE(ni);
4749 	struct wpi_node_info node;
4750 	uint16_t kflags;
4751 	int error;
4752 
4753 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4754 
4755 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4756 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4757 		return 1;	/* Nothing to do. */
4758 	}
4759 
4760 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4761 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4762 		kflags |= WPI_KFLAG_MULTICAST;
4763 
4764 	memset(&node, 0, sizeof node);
4765 	node.id = wn->id;
4766 	node.control = WPI_NODE_UPDATE;
4767 	node.flags = WPI_FLAG_KEY_SET;
4768 	node.kflags = htole16(kflags);
4769 again:
4770 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4771 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4772 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4773 
4774 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4775 	if (error != 0) {
4776 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4777 		    error);
4778 		return !error;
4779 	}
4780 
4781 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4782 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4783 		kflags |= WPI_KFLAG_MULTICAST;
4784 		node.kflags = htole16(kflags);
4785 
4786 		goto again;
4787 	}
4788 
4789 	return 1;
4790 }
4791 
4792 static void
4793 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4794 {
4795 	const struct ieee80211_key *k = arg;
4796 	struct ieee80211vap *vap = ni->ni_vap;
4797 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4798 	struct wpi_node *wn = WPI_NODE(ni);
4799 	int error;
4800 
4801 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4802 		return;
4803 
4804 	WPI_NT_LOCK(sc);
4805 	error = wpi_del_key(ni, k);
4806 	WPI_NT_UNLOCK(sc);
4807 
4808 	if (error == 0) {
4809 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4810 		    __func__);
4811 	}
4812 }
4813 
4814 static int
4815 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4816     int set)
4817 {
4818 	struct ieee80211com *ic = vap->iv_ic;
4819 	struct wpi_softc *sc = ic->ic_softc;
4820 	struct wpi_vap *wvp = WPI_VAP(vap);
4821 	struct ieee80211_node *ni;
4822 	int error, ni_ref = 0;
4823 
4824 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4825 
4826 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4827 		/* Not for us. */
4828 		return 1;
4829 	}
4830 
4831 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4832 		/* XMIT keys are handled in wpi_tx_data(). */
4833 		return 1;
4834 	}
4835 
4836 	/* Handle group keys. */
4837 	if (&vap->iv_nw_keys[0] <= k &&
4838 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4839 		WPI_NT_LOCK(sc);
4840 		if (set)
4841 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4842 		else
4843 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4844 		WPI_NT_UNLOCK(sc);
4845 
4846 		if (vap->iv_state == IEEE80211_S_RUN) {
4847 			ieee80211_iterate_nodes(&ic->ic_sta,
4848 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4849 			    __DECONST(void *, k));
4850 		}
4851 
4852 		return 1;
4853 	}
4854 
4855 	switch (vap->iv_opmode) {
4856 	case IEEE80211_M_STA:
4857 		ni = vap->iv_bss;
4858 		break;
4859 
4860 	case IEEE80211_M_IBSS:
4861 	case IEEE80211_M_AHDEMO:
4862 	case IEEE80211_M_HOSTAP:
4863 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4864 		if (ni == NULL)
4865 			return 0;	/* should not happen */
4866 
4867 		ni_ref = 1;
4868 		break;
4869 
4870 	default:
4871 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4872 		    vap->iv_opmode);
4873 		return 0;
4874 	}
4875 
4876 	WPI_NT_LOCK(sc);
4877 	if (set)
4878 		error = wpi_load_key(ni, k);
4879 	else
4880 		error = wpi_del_key(ni, k);
4881 	WPI_NT_UNLOCK(sc);
4882 
4883 	if (ni_ref)
4884 		ieee80211_node_decref(ni);
4885 
4886 	return error;
4887 }
4888 
4889 static int
4890 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4891 {
4892 	return wpi_process_key(vap, k, 1);
4893 }
4894 
4895 static int
4896 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4897 {
4898 	return wpi_process_key(vap, k, 0);
4899 }
4900 
4901 /*
4902  * This function is called after the runtime firmware notifies us of its
4903  * readiness (called in a process context).
4904  */
4905 static int
4906 wpi_post_alive(struct wpi_softc *sc)
4907 {
4908 	int ntries, error;
4909 
4910 	/* Check (again) that the radio is not disabled. */
4911 	if ((error = wpi_nic_lock(sc)) != 0)
4912 		return error;
4913 
4914 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4915 
4916 	/* NB: Runtime firmware must be up and running. */
4917 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4918 		device_printf(sc->sc_dev,
4919 		    "RF switch: radio disabled (%s)\n", __func__);
4920 		wpi_nic_unlock(sc);
4921 		return EPERM;   /* :-) */
4922 	}
4923 	wpi_nic_unlock(sc);
4924 
4925 	/* Wait for thermal sensor to calibrate. */
4926 	for (ntries = 0; ntries < 1000; ntries++) {
4927 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4928 			break;
4929 		DELAY(10);
4930 	}
4931 
4932 	if (ntries == 1000) {
4933 		device_printf(sc->sc_dev,
4934 		    "timeout waiting for thermal sensor calibration\n");
4935 		return ETIMEDOUT;
4936 	}
4937 
4938 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4939 	return 0;
4940 }
4941 
4942 /*
4943  * The firmware boot code is small and is intended to be copied directly into
4944  * the NIC internal memory (no DMA transfer).
4945  */
4946 static int
4947 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4948 {
4949 	int error, ntries;
4950 
4951 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4952 
4953 	size /= sizeof (uint32_t);
4954 
4955 	if ((error = wpi_nic_lock(sc)) != 0)
4956 		return error;
4957 
4958 	/* Copy microcode image into NIC memory. */
4959 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4960 	    (const uint32_t *)ucode, size);
4961 
4962 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4963 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4964 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4965 
4966 	/* Start boot load now. */
4967 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4968 
4969 	/* Wait for transfer to complete. */
4970 	for (ntries = 0; ntries < 1000; ntries++) {
4971 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4972 		DPRINTF(sc, WPI_DEBUG_HW,
4973 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4974 		    WPI_FH_TX_STATUS_IDLE(6),
4975 		    status & WPI_FH_TX_STATUS_IDLE(6));
4976 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4977 			DPRINTF(sc, WPI_DEBUG_HW,
4978 			    "Status Match! - ntries = %d\n", ntries);
4979 			break;
4980 		}
4981 		DELAY(10);
4982 	}
4983 	if (ntries == 1000) {
4984 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4985 		    __func__);
4986 		wpi_nic_unlock(sc);
4987 		return ETIMEDOUT;
4988 	}
4989 
4990 	/* Enable boot after power up. */
4991 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4992 
4993 	wpi_nic_unlock(sc);
4994 	return 0;
4995 }
4996 
4997 static int
4998 wpi_load_firmware(struct wpi_softc *sc)
4999 {
5000 	struct wpi_fw_info *fw = &sc->fw;
5001 	struct wpi_dma_info *dma = &sc->fw_dma;
5002 	int error;
5003 
5004 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5005 
5006 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5007 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5008 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5009 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
5010 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5011 
5012 	/* Tell adapter where to find initialization sections. */
5013 	if ((error = wpi_nic_lock(sc)) != 0)
5014 		return error;
5015 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
5016 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5017 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
5018 	    dma->paddr + WPI_FW_DATA_MAXSZ);
5019 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5020 	wpi_nic_unlock(sc);
5021 
5022 	/* Load firmware boot code. */
5023 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5024 	if (error != 0) {
5025 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5026 		    __func__);
5027 		return error;
5028 	}
5029 
5030 	/* Now press "execute". */
5031 	WPI_WRITE(sc, WPI_RESET, 0);
5032 
5033 	/* Wait at most one second for first alive notification. */
5034 #if defined(__DragonFly__)
5035 	if ((error = lksleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5036 #else
5037 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5038 #endif
5039 		device_printf(sc->sc_dev,
5040 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5041 		    __func__, error);
5042 		return error;
5043 	}
5044 
5045 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5046 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5047 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5048 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
5049 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5050 
5051 	/* Tell adapter where to find runtime sections. */
5052 	if ((error = wpi_nic_lock(sc)) != 0)
5053 		return error;
5054 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
5055 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5056 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
5057 	    dma->paddr + WPI_FW_DATA_MAXSZ);
5058 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
5059 	    WPI_FW_UPDATED | fw->main.textsz);
5060 	wpi_nic_unlock(sc);
5061 
5062 	return 0;
5063 }
5064 
5065 static int
5066 wpi_read_firmware(struct wpi_softc *sc)
5067 {
5068 	const struct firmware *fp;
5069 	struct wpi_fw_info *fw = &sc->fw;
5070 	const struct wpi_firmware_hdr *hdr;
5071 	int error;
5072 
5073 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5074 
5075 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5076 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5077 
5078 	WPI_UNLOCK(sc);
5079 	fp = firmware_get(WPI_FW_NAME);
5080 	WPI_LOCK(sc);
5081 
5082 	if (fp == NULL) {
5083 		device_printf(sc->sc_dev,
5084 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5085 		return EINVAL;
5086 	}
5087 
5088 	sc->fw_fp = fp;
5089 
5090 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5091 		device_printf(sc->sc_dev,
5092 		    "firmware file too short: %zu bytes\n", fp->datasize);
5093 		error = EINVAL;
5094 		goto fail;
5095 	}
5096 
5097 	fw->size = fp->datasize;
5098 	fw->data = (const uint8_t *)fp->data;
5099 
5100 	/* Extract firmware header information. */
5101 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5102 
5103 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5104 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5105 
5106 	fw->main.textsz = le32toh(hdr->rtextsz);
5107 	fw->main.datasz = le32toh(hdr->rdatasz);
5108 	fw->init.textsz = le32toh(hdr->itextsz);
5109 	fw->init.datasz = le32toh(hdr->idatasz);
5110 	fw->boot.textsz = le32toh(hdr->btextsz);
5111 	fw->boot.datasz = 0;
5112 
5113 	/* Sanity-check firmware header. */
5114 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5115 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5116 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5117 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5118 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5119 	    (fw->boot.textsz & 3) != 0) {
5120 		device_printf(sc->sc_dev, "invalid firmware header\n");
5121 		error = EINVAL;
5122 		goto fail;
5123 	}
5124 
5125 	/* Check that all firmware sections fit. */
5126 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5127 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5128 		device_printf(sc->sc_dev,
5129 		    "firmware file too short: %zu bytes\n", fw->size);
5130 		error = EINVAL;
5131 		goto fail;
5132 	}
5133 
5134 	/* Get pointers to firmware sections. */
5135 	fw->main.text = (const uint8_t *)(hdr + 1);
5136 	fw->main.data = fw->main.text + fw->main.textsz;
5137 	fw->init.text = fw->main.data + fw->main.datasz;
5138 	fw->init.data = fw->init.text + fw->init.textsz;
5139 	fw->boot.text = fw->init.data + fw->init.datasz;
5140 
5141 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5142 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5143 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5144 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5145 	    fw->main.textsz, fw->main.datasz,
5146 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5147 
5148 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5149 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5150 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5151 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5152 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5153 
5154 	return 0;
5155 
5156 fail:	wpi_unload_firmware(sc);
5157 	return error;
5158 }
5159 
5160 /**
5161  * Free the referenced firmware image
5162  */
5163 static void
5164 wpi_unload_firmware(struct wpi_softc *sc)
5165 {
5166 	if (sc->fw_fp != NULL) {
5167 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5168 		sc->fw_fp = NULL;
5169 	}
5170 }
5171 
5172 static int
5173 wpi_clock_wait(struct wpi_softc *sc)
5174 {
5175 	int ntries;
5176 
5177 	/* Set "initialization complete" bit. */
5178 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5179 
5180 	/* Wait for clock stabilization. */
5181 	for (ntries = 0; ntries < 2500; ntries++) {
5182 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5183 			return 0;
5184 		DELAY(100);
5185 	}
5186 	device_printf(sc->sc_dev,
5187 	    "%s: timeout waiting for clock stabilization\n", __func__);
5188 
5189 	return ETIMEDOUT;
5190 }
5191 
5192 static int
5193 wpi_apm_init(struct wpi_softc *sc)
5194 {
5195 	uint32_t reg;
5196 	int error;
5197 
5198 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5199 
5200 	/* Disable L0s exit timer (NMI bug workaround). */
5201 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5202 	/* Don't wait for ICH L0s (ICH bug workaround). */
5203 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5204 
5205 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5206 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5207 
5208 	/* Retrieve PCIe Active State Power Management (ASPM). */
5209 #if defined(__DragonFly__)
5210 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINKCTRL, 1);
5211 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5212 	if (reg & PCIEM_LNKCTL_ASPM_L1)	/* L1 Entry enabled. */
5213 #else
5214 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
5215 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5216 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
5217 #endif
5218 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5219 	else
5220 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5221 
5222 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5223 
5224 	/* Wait for clock stabilization before accessing prph. */
5225 	if ((error = wpi_clock_wait(sc)) != 0)
5226 		return error;
5227 
5228 	if ((error = wpi_nic_lock(sc)) != 0)
5229 		return error;
5230 	/* Cleanup. */
5231 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5232 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5233 
5234 	/* Enable DMA and BSM (Bootstrap State Machine). */
5235 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5236 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5237 	DELAY(20);
5238 	/* Disable L1-Active. */
5239 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5240 	wpi_nic_unlock(sc);
5241 
5242 	return 0;
5243 }
5244 
5245 static void
5246 wpi_apm_stop_master(struct wpi_softc *sc)
5247 {
5248 	int ntries;
5249 
5250 	/* Stop busmaster DMA activity. */
5251 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5252 
5253 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5254 	    WPI_GP_CNTRL_MAC_PS)
5255 		return; /* Already asleep. */
5256 
5257 	for (ntries = 0; ntries < 100; ntries++) {
5258 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5259 			return;
5260 		DELAY(10);
5261 	}
5262 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5263 	    __func__);
5264 }
5265 
5266 static void
5267 wpi_apm_stop(struct wpi_softc *sc)
5268 {
5269 	wpi_apm_stop_master(sc);
5270 
5271 	/* Reset the entire device. */
5272 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5273 	DELAY(10);
5274 	/* Clear "initialization complete" bit. */
5275 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5276 }
5277 
5278 static void
5279 wpi_nic_config(struct wpi_softc *sc)
5280 {
5281 	uint32_t rev;
5282 
5283 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5284 
5285 	/* voodoo from the Linux "driver".. */
5286 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5287 	if ((rev & 0xc0) == 0x40)
5288 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5289 	else if (!(rev & 0x80))
5290 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5291 
5292 	if (sc->cap == 0x80)
5293 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5294 
5295 	if ((sc->rev & 0xf0) == 0xd0)
5296 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5297 	else
5298 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5299 
5300 	if (sc->type > 1)
5301 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5302 }
5303 
5304 static int
5305 wpi_hw_init(struct wpi_softc *sc)
5306 {
5307 	uint8_t chnl;
5308 	int ntries, error;
5309 
5310 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5311 
5312 	/* Clear pending interrupts. */
5313 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5314 
5315 	if ((error = wpi_apm_init(sc)) != 0) {
5316 		device_printf(sc->sc_dev,
5317 		    "%s: could not power ON adapter, error %d\n", __func__,
5318 		    error);
5319 		return error;
5320 	}
5321 
5322 	/* Select VMAIN power source. */
5323 	if ((error = wpi_nic_lock(sc)) != 0)
5324 		return error;
5325 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5326 	wpi_nic_unlock(sc);
5327 	/* Spin until VMAIN gets selected. */
5328 	for (ntries = 0; ntries < 5000; ntries++) {
5329 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5330 			break;
5331 		DELAY(10);
5332 	}
5333 	if (ntries == 5000) {
5334 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5335 		return ETIMEDOUT;
5336 	}
5337 
5338 	/* Perform adapter initialization. */
5339 	wpi_nic_config(sc);
5340 
5341 	/* Initialize RX ring. */
5342 	if ((error = wpi_nic_lock(sc)) != 0)
5343 		return error;
5344 	/* Set physical address of RX ring. */
5345 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5346 	/* Set physical address of RX read pointer. */
5347 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5348 	    offsetof(struct wpi_shared, next));
5349 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5350 	/* Enable RX. */
5351 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5352 	    WPI_FH_RX_CONFIG_DMA_ENA |
5353 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5354 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5355 	    WPI_FH_RX_CONFIG_MAXFRAG |
5356 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5357 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5358 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5359 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5360 	wpi_nic_unlock(sc);
5361 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5362 
5363 	/* Initialize TX rings. */
5364 	if ((error = wpi_nic_lock(sc)) != 0)
5365 		return error;
5366 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5367 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5368 	/* Enable all 6 TX rings. */
5369 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5370 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5371 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5372 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5373 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5374 	/* Set physical address of TX rings. */
5375 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5376 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5377 
5378 	/* Enable all DMA channels. */
5379 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5380 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5381 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5382 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5383 	}
5384 	wpi_nic_unlock(sc);
5385 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5386 
5387 	/* Clear "radio off" and "commands blocked" bits. */
5388 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5389 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5390 
5391 	/* Clear pending interrupts. */
5392 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5393 	/* Enable interrupts. */
5394 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5395 
5396 	/* _Really_ make sure "radio off" bit is cleared! */
5397 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5398 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5399 
5400 	if ((error = wpi_load_firmware(sc)) != 0) {
5401 		device_printf(sc->sc_dev,
5402 		    "%s: could not load firmware, error %d\n", __func__,
5403 		    error);
5404 		return error;
5405 	}
5406 	/* Wait at most one second for firmware alive notification. */
5407 #if defined(__DragonFly__)
5408 	if ((error = lksleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5409 #else
5410 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5411 #endif
5412 		device_printf(sc->sc_dev,
5413 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5414 		    __func__, error);
5415 		return error;
5416 	}
5417 
5418 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5419 
5420 	/* Do post-firmware initialization. */
5421 	return wpi_post_alive(sc);
5422 }
5423 
5424 static void
5425 wpi_hw_stop(struct wpi_softc *sc)
5426 {
5427 	uint8_t chnl, qid;
5428 	int ntries;
5429 
5430 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5431 
5432 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5433 		wpi_nic_lock(sc);
5434 
5435 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5436 
5437 	/* Disable interrupts. */
5438 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5439 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5440 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5441 
5442 	/* Make sure we no longer hold the NIC lock. */
5443 	wpi_nic_unlock(sc);
5444 
5445 	if (wpi_nic_lock(sc) == 0) {
5446 		/* Stop TX scheduler. */
5447 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5448 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5449 
5450 		/* Stop all DMA channels. */
5451 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5452 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5453 			for (ntries = 0; ntries < 200; ntries++) {
5454 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5455 				    WPI_FH_TX_STATUS_IDLE(chnl))
5456 					break;
5457 				DELAY(10);
5458 			}
5459 		}
5460 		wpi_nic_unlock(sc);
5461 	}
5462 
5463 	/* Stop RX ring. */
5464 	wpi_reset_rx_ring(sc);
5465 
5466 	/* Reset all TX rings. */
5467 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
5468 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5469 
5470 	if (wpi_nic_lock(sc) == 0) {
5471 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5472 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5473 		wpi_nic_unlock(sc);
5474 	}
5475 	DELAY(5);
5476 	/* Power OFF adapter. */
5477 	wpi_apm_stop(sc);
5478 }
5479 
5480 static void
5481 wpi_radio_on(void *arg0, int pending)
5482 {
5483 	struct wpi_softc *sc = arg0;
5484 	struct ieee80211com *ic = &sc->sc_ic;
5485 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5486 
5487 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5488 
5489 	WPI_LOCK(sc);
5490 	callout_stop(&sc->watchdog_rfkill);
5491 	WPI_UNLOCK(sc);
5492 
5493 	if (vap != NULL)
5494 		ieee80211_init(vap);
5495 }
5496 
5497 static void
5498 wpi_radio_off(void *arg0, int pending)
5499 {
5500 	struct wpi_softc *sc = arg0;
5501 	struct ieee80211com *ic = &sc->sc_ic;
5502 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5503 
5504 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5505 
5506 	ieee80211_notify_radio(ic, 0);
5507 	wpi_stop(sc);
5508 	if (vap != NULL)
5509 		ieee80211_stop(vap);
5510 
5511 	WPI_LOCK(sc);
5512 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5513 	WPI_UNLOCK(sc);
5514 }
5515 
5516 static int
5517 wpi_init(struct wpi_softc *sc)
5518 {
5519 	int error = 0;
5520 
5521 	WPI_LOCK(sc);
5522 
5523 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5524 
5525 	if (sc->sc_running != 0)
5526 		goto end;
5527 
5528 	/* Check that the radio is not disabled by hardware switch. */
5529 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5530 		device_printf(sc->sc_dev,
5531 		    "RF switch: radio disabled (%s)\n", __func__);
5532 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5533 		    sc);
5534 		error = EINPROGRESS;
5535 		goto end;
5536 	}
5537 
5538 	/* Read firmware images from the filesystem. */
5539 	if ((error = wpi_read_firmware(sc)) != 0) {
5540 		device_printf(sc->sc_dev,
5541 		    "%s: could not read firmware, error %d\n", __func__,
5542 		    error);
5543 		goto end;
5544 	}
5545 
5546 	sc->sc_running = 1;
5547 
5548 	/* Initialize hardware and upload firmware. */
5549 	error = wpi_hw_init(sc);
5550 	wpi_unload_firmware(sc);
5551 	if (error != 0) {
5552 		device_printf(sc->sc_dev,
5553 		    "%s: could not initialize hardware, error %d\n", __func__,
5554 		    error);
5555 		goto fail;
5556 	}
5557 
5558 	/* Configure adapter now that it is ready. */
5559 	if ((error = wpi_config(sc)) != 0) {
5560 		device_printf(sc->sc_dev,
5561 		    "%s: could not configure device, error %d\n", __func__,
5562 		    error);
5563 		goto fail;
5564 	}
5565 
5566 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5567 
5568 	WPI_UNLOCK(sc);
5569 
5570 	return 0;
5571 
5572 fail:	wpi_stop_locked(sc);
5573 
5574 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5575 	WPI_UNLOCK(sc);
5576 
5577 	return error;
5578 }
5579 
5580 static void
5581 wpi_stop_locked(struct wpi_softc *sc)
5582 {
5583 
5584 	WPI_LOCK_ASSERT(sc);
5585 
5586 	if (sc->sc_running == 0)
5587 		return;
5588 
5589 	WPI_TX_LOCK(sc);
5590 	WPI_TXQ_LOCK(sc);
5591 	sc->sc_running = 0;
5592 	WPI_TXQ_UNLOCK(sc);
5593 	WPI_TX_UNLOCK(sc);
5594 
5595 	WPI_TXQ_STATE_LOCK(sc);
5596 	callout_stop(&sc->tx_timeout);
5597 	WPI_TXQ_STATE_UNLOCK(sc);
5598 
5599 	WPI_RXON_LOCK(sc);
5600 	callout_stop(&sc->scan_timeout);
5601 	callout_stop(&sc->calib_to);
5602 	WPI_RXON_UNLOCK(sc);
5603 
5604 	/* Power OFF hardware. */
5605 	wpi_hw_stop(sc);
5606 }
5607 
5608 static void
5609 wpi_stop(struct wpi_softc *sc)
5610 {
5611 	WPI_LOCK(sc);
5612 	wpi_stop_locked(sc);
5613 	WPI_UNLOCK(sc);
5614 }
5615 
5616 /*
5617  * Callback from net80211 to start a scan.
5618  */
5619 static void
5620 wpi_scan_start(struct ieee80211com *ic)
5621 {
5622 	struct wpi_softc *sc = ic->ic_softc;
5623 
5624 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5625 }
5626 
5627 /*
5628  * Callback from net80211 to terminate a scan.
5629  */
5630 static void
5631 wpi_scan_end(struct ieee80211com *ic)
5632 {
5633 	struct wpi_softc *sc = ic->ic_softc;
5634 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5635 
5636 	if (vap->iv_state == IEEE80211_S_RUN)
5637 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5638 }
5639 
5640 /**
5641  * Called by the net80211 framework to indicate to the driver
5642  * that the channel should be changed
5643  */
5644 static void
5645 wpi_set_channel(struct ieee80211com *ic)
5646 {
5647 	const struct ieee80211_channel *c = ic->ic_curchan;
5648 	struct wpi_softc *sc = ic->ic_softc;
5649 	int error;
5650 
5651 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5652 
5653 	WPI_LOCK(sc);
5654 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5655 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5656 	WPI_UNLOCK(sc);
5657 	WPI_TX_LOCK(sc);
5658 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5659 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5660 	WPI_TX_UNLOCK(sc);
5661 
5662 	/*
5663 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5664 	 * are already taken care of by their respective firmware commands.
5665 	 */
5666 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5667 		WPI_RXON_LOCK(sc);
5668 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5669 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5670 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5671 			    WPI_RXON_24GHZ);
5672 		} else {
5673 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5674 			    WPI_RXON_24GHZ);
5675 		}
5676 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5677 			device_printf(sc->sc_dev,
5678 			    "%s: error %d setting channel\n", __func__,
5679 			    error);
5680 		WPI_RXON_UNLOCK(sc);
5681 	}
5682 }
5683 
5684 /**
5685  * Called by net80211 to indicate that we need to scan the current
5686  * channel. The channel is previously be set via the wpi_set_channel
5687  * callback.
5688  */
5689 static void
5690 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5691 {
5692 	struct ieee80211vap *vap = ss->ss_vap;
5693 	struct ieee80211com *ic = vap->iv_ic;
5694 	struct wpi_softc *sc = ic->ic_softc;
5695 	int error;
5696 
5697 	WPI_RXON_LOCK(sc);
5698 	error = wpi_scan(sc, ic->ic_curchan);
5699 	WPI_RXON_UNLOCK(sc);
5700 	if (error != 0)
5701 		ieee80211_cancel_scan(vap);
5702 }
5703 
5704 /**
5705  * Called by the net80211 framework to indicate
5706  * the minimum dwell time has been met, terminate the scan.
5707  * We don't actually terminate the scan as the firmware will notify
5708  * us when it's finished and we have no way to interrupt it.
5709  */
5710 static void
5711 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5712 {
5713 	/* NB: don't try to abort scan; wait for firmware to finish */
5714 }
5715