xref: /dragonfly/sys/dev/netif/wpi/if_wpi.c (revision a32bc35d)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
19  */
20 
21 #define VERSION "20071127"
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_intr) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/sysctl.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/queue.h>
70 #include <sys/taskqueue.h>
71 #include <sys/module.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/linker.h>
75 #include <sys/firmware.h>
76 
77 #include <sys/bus.h>
78 #include <sys/resource.h>
79 #include <sys/rman.h>
80 
81 #include <bus/pci/pcireg.h>
82 #include <bus/pci/pcivar.h>
83 
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ifq_var.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <netproto/802_11/ieee80211_var.h>
94 #include <netproto/802_11/ieee80211_radiotap.h>
95 #include <netproto/802_11/ieee80211_regdomain.h>
96 #include <netproto/802_11/ieee80211_ratectl.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103 
104 /* XXX: move elsewhere */
105 #define abs(x) (((x) < 0) ? -(x) : (x))
106 
107 #include "if_wpireg.h"
108 #include "if_wpivar.h"
109 
110 #define WPI_DEBUG
111 
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)	do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)	do { if (wpi_debug & n) kprintf x; } while (0)
115 #define	WPI_DEBUG_SET	(wpi_debug != 0)
116 
117 enum {
118 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130 	WPI_DEBUG_ANY		= 0xffffffff
131 };
132 
133 static int wpi_debug = 1;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136 
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET	0
141 #endif
142 
143 struct wpi_ident {
144 	uint16_t	vendor;
145 	uint16_t	device;
146 	uint16_t	subdevice;
147 	const char	*name;
148 };
149 
150 static const struct wpi_ident wpi_ident_table[] = {
151 	/* The below entries support ABG regardless of the subid */
152 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154 	/* The below entries only support BG */
155 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159 	{ 0, 0, 0, NULL }
160 };
161 
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163 		    const char name[IFNAMSIZ], int unit, int opmode,
164 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
165 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
166 static void	wpi_vap_delete(struct ieee80211vap *);
167 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 		    void **, bus_size_t, bus_size_t, int);
169 static void	wpi_dma_contig_free(struct wpi_dma_info *);
170 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int	wpi_alloc_shared(struct wpi_softc *);
172 static void	wpi_free_shared(struct wpi_softc *);
173 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 		    int, int);
178 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
183 static void	wpi_mem_lock(struct wpi_softc *);
184 static void	wpi_mem_unlock(struct wpi_softc *);
185 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
186 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
187 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
188 		    const uint32_t *, int);
189 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
190 static int	wpi_alloc_fwmem(struct wpi_softc *);
191 static void	wpi_free_fwmem(struct wpi_softc *);
192 static int	wpi_load_firmware(struct wpi_softc *);
193 static void	wpi_unload_firmware(struct wpi_softc *);
194 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
195 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
196 		    struct wpi_rx_data *);
197 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
198 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
199 static void	wpi_notif_intr(struct wpi_softc *);
200 static void	wpi_intr(void *);
201 static uint8_t	wpi_plcp_signal(int);
202 static void	wpi_watchdog_callout(void *);
203 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *, int);
205 static void	wpi_start(struct ifnet *);
206 static void	wpi_start_locked(struct ifnet *);
207 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208 		    const struct ieee80211_bpf_params *);
209 static void	wpi_scan_start(struct ieee80211com *);
210 static void	wpi_scan_end(struct ieee80211com *);
211 static void	wpi_set_channel(struct ieee80211com *);
212 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
213 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
214 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
215 static void	wpi_read_eeprom(struct wpi_softc *,
216 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
217 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
218 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
219 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
220 static int	wpi_wme_update(struct ieee80211com *);
221 static int	wpi_mrr_setup(struct wpi_softc *);
222 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
223 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
224 #if 0
225 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
226 #endif
227 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
229 static int	wpi_scan(struct wpi_softc *);
230 static int	wpi_config(struct wpi_softc *);
231 static void	wpi_stop_master(struct wpi_softc *);
232 static int	wpi_power_up(struct wpi_softc *);
233 static int	wpi_reset(struct wpi_softc *);
234 static void	wpi_hwreset_task(void *, int);
235 static void	wpi_rfreset_task(void *, int);
236 static void	wpi_hw_config(struct wpi_softc *);
237 static void	wpi_init(void *);
238 static void	wpi_init_locked(struct wpi_softc *, int);
239 static void	wpi_stop(struct wpi_softc *);
240 static void	wpi_stop_locked(struct wpi_softc *);
241 
242 static void	wpi_newassoc(struct ieee80211_node *, int);
243 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244 		    int);
245 static void	wpi_calib_timeout_callout(void *);
246 static void	wpi_power_calibration(struct wpi_softc *, int);
247 static int	wpi_get_power_index(struct wpi_softc *,
248 		    struct wpi_power_group *, struct ieee80211_channel *, int);
249 #ifdef WPI_DEBUG
250 static const char *wpi_cmd_str(int);
251 #endif
252 static int wpi_probe(device_t);
253 static int wpi_attach(device_t);
254 static int wpi_detach(device_t);
255 static int wpi_shutdown(device_t);
256 static int wpi_suspend(device_t);
257 static int wpi_resume(device_t);
258 
259 
260 static device_method_t wpi_methods[] = {
261 	/* Device interface */
262 	DEVMETHOD(device_probe,		wpi_probe),
263 	DEVMETHOD(device_attach,	wpi_attach),
264 	DEVMETHOD(device_detach,	wpi_detach),
265 	DEVMETHOD(device_shutdown,	wpi_shutdown),
266 	DEVMETHOD(device_suspend,	wpi_suspend),
267 	DEVMETHOD(device_resume,	wpi_resume),
268 
269 	{ 0, 0 }
270 };
271 
272 static driver_t wpi_driver = {
273 	"wpi",
274 	wpi_methods,
275 	sizeof (struct wpi_softc)
276 };
277 
278 static devclass_t wpi_devclass;
279 
280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
281 
282 static const uint8_t wpi_ridx_to_plcp[] = {
283 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
284 	/* R1-R4 (ral/ural is R4-R1) */
285 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
286 	/* CCK: device-dependent */
287 	10, 20, 55, 110
288 };
289 static const uint8_t wpi_ridx_to_rate[] = {
290 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
291 	2, 4, 11, 22 /*CCK */
292 };
293 
294 
295 static int
296 wpi_probe(device_t dev)
297 {
298 	const struct wpi_ident *ident;
299 
300 	wlan_serialize_enter();
301 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
302 		if (pci_get_vendor(dev) == ident->vendor &&
303 		    pci_get_device(dev) == ident->device) {
304 			device_set_desc(dev, ident->name);
305 			wlan_serialize_exit();
306 			return 0;
307 		}
308 	}
309 	wlan_serialize_exit();
310 	return ENXIO;
311 }
312 
313 /**
314  * Load the firmare image from disk to the allocated dma buffer.
315  * we also maintain the reference to the firmware pointer as there
316  * is times where we may need to reload the firmware but we are not
317  * in a context that can access the filesystem (ie taskq cause by restart)
318  *
319  * @return 0 on success, an errno on failure
320  */
321 static int
322 wpi_load_firmware(struct wpi_softc *sc)
323 {
324 	const struct firmware *fp;
325 	struct wpi_dma_info *dma = &sc->fw_dma;
326 	const struct wpi_firmware_hdr *hdr;
327 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
328 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
329 	int error;
330 
331 	DPRINTFN(WPI_DEBUG_FIRMWARE,
332 	    ("Attempting Loading Firmware from wpi_fw module\n"));
333 
334 	wlan_assert_serialized();
335 	wlan_serialize_exit();
336 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337 		device_printf(sc->sc_dev,
338 		    "could not load firmware image 'wpifw_fw'\n");
339 		error = ENOENT;
340 		wlan_serialize_enter();
341 		goto fail;
342 	}
343 	wlan_serialize_enter();
344 
345 	fp = sc->fw_fp;
346 
347 	/* Validate the firmware is minimum a particular version */
348 	if (fp->version < WPI_FW_MINVERSION) {
349 	    device_printf(sc->sc_dev,
350 			   "firmware version is too old. Need %d, got %d\n",
351 			   WPI_FW_MINVERSION,
352 			   fp->version);
353 	    error = ENXIO;
354 	    goto fail;
355 	}
356 
357 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
358 		device_printf(sc->sc_dev,
359 		    "firmware file too short: %zu bytes\n", fp->datasize);
360 		error = ENXIO;
361 		goto fail;
362 	}
363 
364 	hdr = (const struct wpi_firmware_hdr *)fp->data;
365 
366 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
367 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
368 
369 	rtextsz = le32toh(hdr->rtextsz);
370 	rdatasz = le32toh(hdr->rdatasz);
371 	itextsz = le32toh(hdr->itextsz);
372 	idatasz = le32toh(hdr->idatasz);
373 	btextsz = le32toh(hdr->btextsz);
374 
375 	/* check that all firmware segments are present */
376 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
377 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
378 		device_printf(sc->sc_dev,
379 		    "firmware file too short: %zu bytes\n", fp->datasize);
380 		error = ENXIO; /* XXX appropriate error code? */
381 		goto fail;
382 	}
383 
384 	/* get pointers to firmware segments */
385 	rtext = (const uint8_t *)(hdr + 1);
386 	rdata = rtext + rtextsz;
387 	itext = rdata + rdatasz;
388 	idata = itext + itextsz;
389 	btext = idata + idatasz;
390 
391 	DPRINTFN(WPI_DEBUG_FIRMWARE,
392 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
393 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
394 	     (le32toh(hdr->version) & 0xff000000) >> 24,
395 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
396 	     (le32toh(hdr->version) & 0x0000ffff),
397 	     rtextsz, rdatasz,
398 	     itextsz, idatasz, btextsz));
399 
400 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
401 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
402 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
403 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
404 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
405 
406 	/* sanity checks */
407 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
408 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
409 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
410 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
411 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
412 	    (btextsz & 3) != 0) {
413 		device_printf(sc->sc_dev, "firmware invalid\n");
414 		error = EINVAL;
415 		goto fail;
416 	}
417 
418 	/* copy initialization images into pre-allocated DMA-safe memory */
419 	memcpy(dma->vaddr, idata, idatasz);
420 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
421 
422 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
423 
424 	/* tell adapter where to find initialization images */
425 	wpi_mem_lock(sc);
426 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
427 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
428 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
429 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
430 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
431 	wpi_mem_unlock(sc);
432 
433 	/* load firmware boot code */
434 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
435 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
436 	    goto fail;
437 	}
438 
439 	/* now press "execute" */
440 	WPI_WRITE(sc, WPI_RESET, 0);
441 
442 	/* wait at most one second for the first alive notification */
443 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
444 		device_printf(sc->sc_dev,
445 		    "timeout waiting for adapter to initialize\n");
446 		goto fail;
447 	}
448 
449 	/* copy runtime images into pre-allocated DMA-sage memory */
450 	memcpy(dma->vaddr, rdata, rdatasz);
451 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
452 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
453 
454 	/* tell adapter where to find runtime images */
455 	wpi_mem_lock(sc);
456 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
457 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
458 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
459 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
460 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
461 	wpi_mem_unlock(sc);
462 
463 	/* wait at most one second for the first alive notification */
464 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
465 		device_printf(sc->sc_dev,
466 		    "timeout waiting for adapter to initialize2\n");
467 		goto fail;
468 	}
469 
470 	DPRINTFN(WPI_DEBUG_FIRMWARE,
471 	    ("Firmware loaded to driver successfully\n"));
472 	return error;
473 fail:
474 	wpi_unload_firmware(sc);
475 	return error;
476 }
477 
478 /**
479  * Free the referenced firmware image
480  */
481 static void
482 wpi_unload_firmware(struct wpi_softc *sc)
483 {
484 	if (sc->fw_fp) {
485 		wlan_assert_serialized();
486 		wlan_serialize_exit();
487 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
488 		wlan_serialize_enter();
489 		sc->fw_fp = NULL;
490 	}
491 }
492 
493 static int
494 wpi_attach(device_t dev)
495 {
496 	struct wpi_softc *sc;
497 	struct ifnet *ifp;
498 	struct ieee80211com *ic;
499 	int ac, error, supportsa = 1;
500 	uint32_t tmp;
501 	const struct wpi_ident *ident;
502 	uint8_t macaddr[IEEE80211_ADDR_LEN];
503 
504 	wlan_serialize_enter();
505 	sc = device_get_softc(dev);
506 	sc->sc_dev = dev;
507 
508 	if (bootverbose || WPI_DEBUG_SET)
509 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
510 
511 	/*
512 	 * Some card's only support 802.11b/g not a, check to see if
513 	 * this is one such card. A 0x0 in the subdevice table indicates
514 	 * the entire subdevice range is to be ignored.
515 	 */
516 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
517 		if (ident->subdevice &&
518 		    pci_get_subdevice(dev) == ident->subdevice) {
519 		    supportsa = 0;
520 		    break;
521 		}
522 	}
523 
524 	/* Create the tasks that can be queued */
525 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc);
526 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc);
527 
528 	callout_init(&sc->calib_to_callout);
529 	callout_init(&sc->watchdog_to_callout);
530 
531 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
532 		device_printf(dev, "chip is in D%d power mode "
533 		    "-- setting to D0\n", pci_get_powerstate(dev));
534 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
535 	}
536 
537 	/* disable the retry timeout register */
538 	pci_write_config(dev, 0x41, 0, 1);
539 
540 	/* enable bus-mastering */
541 	pci_enable_busmaster(dev);
542 
543 	sc->mem_rid = PCIR_BAR(0);
544 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
545 	    RF_ACTIVE);
546 	if (sc->mem == NULL) {
547 		device_printf(dev, "could not allocate memory resource\n");
548 		error = ENOMEM;
549 		goto fail;
550 	}
551 
552 	sc->sc_st = rman_get_bustag(sc->mem);
553 	sc->sc_sh = rman_get_bushandle(sc->mem);
554 
555 	sc->irq_rid = 0;
556 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
557 	    RF_ACTIVE | RF_SHAREABLE);
558 	if (sc->irq == NULL) {
559 		device_printf(dev, "could not allocate interrupt resource\n");
560 		error = ENOMEM;
561 		goto fail;
562 	}
563 
564 	/*
565 	 * Allocate DMA memory for firmware transfers.
566 	 */
567 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
568 		kprintf(": could not allocate firmware memory\n");
569 		error = ENOMEM;
570 		goto fail;
571 	}
572 
573 	/*
574 	 * Put adapter into a known state.
575 	 */
576 	if ((error = wpi_reset(sc)) != 0) {
577 		device_printf(dev, "could not reset adapter\n");
578 		goto fail;
579 	}
580 
581 	wpi_mem_lock(sc);
582 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
583 	if (bootverbose || WPI_DEBUG_SET)
584 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
585 
586 	wpi_mem_unlock(sc);
587 
588 	/* Allocate shared page */
589 	if ((error = wpi_alloc_shared(sc)) != 0) {
590 		device_printf(dev, "could not allocate shared page\n");
591 		goto fail;
592 	}
593 
594 	/* tx data queues  - 4 for QoS purposes */
595 	for (ac = 0; ac < WME_NUM_AC; ac++) {
596 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
597 		if (error != 0) {
598 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
599 		    goto fail;
600 		}
601 	}
602 
603 	/* command queue to talk to the card's firmware */
604 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
605 	if (error != 0) {
606 		device_printf(dev, "could not allocate command ring\n");
607 		goto fail;
608 	}
609 
610 	/* receive data queue */
611 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
612 	if (error != 0) {
613 		device_printf(dev, "could not allocate Rx ring\n");
614 		goto fail;
615 	}
616 
617 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
618 	if (ifp == NULL) {
619 		device_printf(dev, "can not if_alloc()\n");
620 		error = ENOMEM;
621 		goto fail;
622 	}
623 	ic = ifp->if_l2com;
624 
625 	ic->ic_ifp = ifp;
626 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
627 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
628 
629 	/* set device capabilities */
630 	ic->ic_caps =
631 		  IEEE80211_C_STA		/* station mode supported */
632 		| IEEE80211_C_MONITOR		/* monitor mode supported */
633 		| IEEE80211_C_TXPMGT		/* tx power management */
634 		| IEEE80211_C_SHSLOT		/* short slot time supported */
635 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
636 		| IEEE80211_C_WPA		/* 802.11i */
637 /* XXX looks like WME is partly supported? */
638 #if 0
639 		| IEEE80211_C_IBSS		/* IBSS mode support */
640 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
641 		| IEEE80211_C_WME		/* 802.11e */
642 		| IEEE80211_C_HOSTAP		/* Host access point mode */
643 #endif
644 		;
645 
646 	/*
647 	 * Read in the eeprom and also setup the channels for
648 	 * net80211. We don't set the rates as net80211 does this for us
649 	 */
650 	wpi_read_eeprom(sc, macaddr);
651 
652 	if (bootverbose || WPI_DEBUG_SET) {
653 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
654 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
655 			  sc->type > 1 ? 'B': '?');
656 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
657 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
658 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
659 			  supportsa ? "does" : "does not");
660 
661 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
662 	       what sc->rev really represents - benjsc 20070615 */
663 	}
664 
665 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
666 	ifp->if_softc = sc;
667 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
668 	ifp->if_init = wpi_init;
669 	ifp->if_ioctl = wpi_ioctl;
670 	ifp->if_start = wpi_start;
671 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
672 	ifq_set_ready(&ifp->if_snd);
673 
674 	ieee80211_ifattach(ic, macaddr);
675 	/* override default methods */
676 	ic->ic_node_alloc = wpi_node_alloc;
677 	ic->ic_newassoc = wpi_newassoc;
678 	ic->ic_raw_xmit = wpi_raw_xmit;
679 	ic->ic_wme.wme_update = wpi_wme_update;
680 	ic->ic_scan_start = wpi_scan_start;
681 	ic->ic_scan_end = wpi_scan_end;
682 	ic->ic_set_channel = wpi_set_channel;
683 	ic->ic_scan_curchan = wpi_scan_curchan;
684 	ic->ic_scan_mindwell = wpi_scan_mindwell;
685 
686 	ic->ic_vap_create = wpi_vap_create;
687 	ic->ic_vap_delete = wpi_vap_delete;
688 
689 	ieee80211_radiotap_attach(ic,
690 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
691 		WPI_TX_RADIOTAP_PRESENT,
692 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
693 		WPI_RX_RADIOTAP_PRESENT);
694 
695 	/*
696 	 * Hook our interrupt after all initialization is complete.
697 	 */
698 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
699 	    wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
700 	if (error != 0) {
701 		device_printf(dev, "could not set up interrupt\n");
702 		goto fail;
703 	}
704 
705 	if (bootverbose)
706 		ieee80211_announce(ic);
707 #ifdef XXX_DEBUG
708 	ieee80211_announce_channels(ic);
709 #endif
710 	wlan_serialize_exit();
711 	return 0;
712 
713 fail:
714 	wlan_serialize_exit();
715 	wpi_detach(dev);
716 	return ENXIO;
717 }
718 
719 static int
720 wpi_detach(device_t dev)
721 {
722 	struct wpi_softc *sc;
723 	struct ifnet *ifp;
724 	struct ieee80211com *ic;
725 	int ac;
726 
727 	wlan_serialize_enter();
728 	sc = device_get_softc(dev);
729 	ifp = sc->sc_ifp;
730 	if (ifp != NULL) {
731 		ic = ifp->if_l2com;
732 
733 		ieee80211_draintask(ic, &sc->sc_restarttask);
734 		ieee80211_draintask(ic, &sc->sc_radiotask);
735 		wpi_stop(sc);
736 		callout_stop(&sc->watchdog_to_callout);
737 		callout_stop(&sc->calib_to_callout);
738 		ieee80211_ifdetach(ic);
739 	}
740 
741 	if (sc->txq[0].data_dmat) {
742 		for (ac = 0; ac < WME_NUM_AC; ac++)
743 			wpi_free_tx_ring(sc, &sc->txq[ac]);
744 
745 		wpi_free_tx_ring(sc, &sc->cmdq);
746 		wpi_free_rx_ring(sc, &sc->rxq);
747 		wpi_free_shared(sc);
748 	}
749 
750 	if (sc->fw_fp != NULL) {
751 		wpi_unload_firmware(sc);
752 	}
753 
754 	if (sc->fw_dma.tag)
755 		wpi_free_fwmem(sc);
756 
757 	if (sc->irq != NULL) {
758 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
759 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
760 	}
761 
762 	if (sc->mem != NULL)
763 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
764 
765 	if (ifp != NULL)
766 		if_free(ifp);
767 
768 	wlan_serialize_exit();
769 	return 0;
770 }
771 
772 static struct ieee80211vap *
773 wpi_vap_create(struct ieee80211com *ic,
774 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
775 	const uint8_t bssid[IEEE80211_ADDR_LEN],
776 	const uint8_t mac[IEEE80211_ADDR_LEN])
777 {
778 	struct wpi_vap *wvp;
779 	struct ieee80211vap *vap;
780 
781 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
782 		return NULL;
783 	wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
784 	    M_80211_VAP, M_INTWAIT | M_ZERO);
785 	if (wvp == NULL)
786 		return NULL;
787 	vap = &wvp->vap;
788 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
789 	/* override with driver methods */
790 	wvp->newstate = vap->iv_newstate;
791 	vap->iv_newstate = wpi_newstate;
792 
793 	ieee80211_ratectl_init(vap);
794 
795 	/* complete setup */
796 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
797 	ic->ic_opmode = opmode;
798 	return vap;
799 }
800 
801 static void
802 wpi_vap_delete(struct ieee80211vap *vap)
803 {
804 	struct wpi_vap *wvp = WPI_VAP(vap);
805 
806 	ieee80211_ratectl_deinit(vap);
807 	ieee80211_vap_detach(vap);
808 	kfree(wvp, M_80211_VAP);
809 }
810 
811 static void
812 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
813 {
814 	if (error != 0)
815 		return;
816 
817 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
818 
819 	*(bus_addr_t *)arg = segs[0].ds_addr;
820 }
821 
822 /*
823  * Allocates a contiguous block of dma memory of the requested size and
824  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
825  * allocations greater than 4096 may fail. Hence if the requested alignment is
826  * greater we allocate 'alignment' size extra memory and shift the vaddr and
827  * paddr after the dma load. This bypasses the problem at the cost of a little
828  * more memory.
829  */
830 static int
831 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
832     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
833 {
834 	int error;
835 	bus_size_t align;
836 	bus_size_t reqsize;
837 
838 	DPRINTFN(WPI_DEBUG_DMA,
839 	    ("Size: %zd - alignment %zd\n", size, alignment));
840 
841 	dma->size = size;
842 	dma->tag = NULL;
843 
844 	if (alignment > 4096) {
845 		align = PAGE_SIZE;
846 		reqsize = size + alignment;
847 	} else {
848 		align = alignment;
849 		reqsize = size;
850 	}
851 	error = bus_dma_tag_create(dma->tag, align,
852 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
853 	    NULL, NULL, reqsize,
854 	    1, reqsize, flags,
855 	    &dma->tag);
856 	if (error != 0) {
857 		device_printf(sc->sc_dev,
858 		    "could not create shared page DMA tag\n");
859 		goto fail;
860 	}
861 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
862 	    flags | BUS_DMA_ZERO, &dma->map);
863 	if (error != 0) {
864 		device_printf(sc->sc_dev,
865 		    "could not allocate shared page DMA memory\n");
866 		goto fail;
867 	}
868 
869 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
870 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
871 
872 	/* Save the original pointers so we can free all the memory */
873 	dma->paddr = dma->paddr_start;
874 	dma->vaddr = dma->vaddr_start;
875 
876 	/*
877 	 * Check the alignment and increment by 4096 until we get the
878 	 * requested alignment. Fail if can't obtain the alignment
879 	 * we requested.
880 	 */
881 	if ((dma->paddr & (alignment -1 )) != 0) {
882 		int i;
883 
884 		for (i = 0; i < alignment / 4096; i++) {
885 			if ((dma->paddr & (alignment - 1 )) == 0)
886 				break;
887 			dma->paddr += 4096;
888 			dma->vaddr += 4096;
889 		}
890 		if (i == alignment / 4096) {
891 			device_printf(sc->sc_dev,
892 			    "alignment requirement was not satisfied\n");
893 			goto fail;
894 		}
895 	}
896 
897 	if (error != 0) {
898 		device_printf(sc->sc_dev,
899 		    "could not load shared page DMA map\n");
900 		goto fail;
901 	}
902 
903 	if (kvap != NULL)
904 		*kvap = dma->vaddr;
905 
906 	return 0;
907 
908 fail:
909 	wpi_dma_contig_free(dma);
910 	return error;
911 }
912 
913 static void
914 wpi_dma_contig_free(struct wpi_dma_info *dma)
915 {
916 	if (dma->tag) {
917 		if (dma->map != NULL) {
918 			if (dma->paddr_start != 0) {
919 				bus_dmamap_sync(dma->tag, dma->map,
920 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
921 				bus_dmamap_unload(dma->tag, dma->map);
922 			}
923 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
924 		}
925 		bus_dma_tag_destroy(dma->tag);
926 	}
927 }
928 
929 /*
930  * Allocate a shared page between host and NIC.
931  */
932 static int
933 wpi_alloc_shared(struct wpi_softc *sc)
934 {
935 	int error;
936 
937 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
938 	    (void **)&sc->shared, sizeof (struct wpi_shared),
939 	    PAGE_SIZE,
940 	    BUS_DMA_NOWAIT);
941 
942 	if (error != 0) {
943 		device_printf(sc->sc_dev,
944 		    "could not allocate shared area DMA memory\n");
945 	}
946 
947 	return error;
948 }
949 
950 static void
951 wpi_free_shared(struct wpi_softc *sc)
952 {
953 	wpi_dma_contig_free(&sc->shared_dma);
954 }
955 
956 static int
957 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
958 {
959 
960 	int i, error;
961 
962 	ring->cur = 0;
963 
964 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
965 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
966 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
967 
968 	if (error != 0) {
969 		device_printf(sc->sc_dev,
970 		    "%s: could not allocate rx ring DMA memory, error %d\n",
971 		    __func__, error);
972 		goto fail;
973 	}
974 
975         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
976 	    BUS_SPACE_MAXADDR_32BIT,
977             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
978             MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
979         if (error != 0) {
980                 device_printf(sc->sc_dev,
981 		    "%s: bus_dma_tag_create_failed, error %d\n",
982 		    __func__, error);
983                 goto fail;
984         }
985 
986 	/*
987 	 * Setup Rx buffers.
988 	 */
989 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
990 		struct wpi_rx_data *data = &ring->data[i];
991 		struct mbuf *m;
992 		bus_addr_t paddr;
993 
994 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
995 		if (error != 0) {
996 			device_printf(sc->sc_dev,
997 			    "%s: bus_dmamap_create failed, error %d\n",
998 			    __func__, error);
999 			goto fail;
1000 		}
1001 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1002 		if (m == NULL) {
1003 			device_printf(sc->sc_dev,
1004 			   "%s: could not allocate rx mbuf\n", __func__);
1005 			error = ENOMEM;
1006 			goto fail;
1007 		}
1008 		/* map page */
1009 		error = bus_dmamap_load(ring->data_dmat, data->map,
1010 		    mtod(m, caddr_t), MJUMPAGESIZE,
1011 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1012 		if (error != 0 && error != EFBIG) {
1013 			device_printf(sc->sc_dev,
1014 			    "%s: bus_dmamap_load failed, error %d\n",
1015 			    __func__, error);
1016 			m_freem(m);
1017 			error = ENOMEM;	/* XXX unique code */
1018 			goto fail;
1019 		}
1020 		bus_dmamap_sync(ring->data_dmat, data->map,
1021 		    BUS_DMASYNC_PREWRITE);
1022 
1023 		data->m = m;
1024 		ring->desc[i] = htole32(paddr);
1025 	}
1026 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1027 	    BUS_DMASYNC_PREWRITE);
1028 	return 0;
1029 fail:
1030 	wpi_free_rx_ring(sc, ring);
1031 	return error;
1032 }
1033 
1034 static void
1035 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1036 {
1037 	int ntries;
1038 
1039 	wpi_mem_lock(sc);
1040 
1041 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1042 
1043 	for (ntries = 0; ntries < 100; ntries++) {
1044 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1045 			break;
1046 		DELAY(10);
1047 	}
1048 
1049 	wpi_mem_unlock(sc);
1050 
1051 #ifdef WPI_DEBUG
1052 	if (ntries == 100 && wpi_debug > 0)
1053 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1054 #endif
1055 
1056 	ring->cur = 0;
1057 }
1058 
1059 static void
1060 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1061 {
1062 	int i;
1063 
1064 	wpi_dma_contig_free(&ring->desc_dma);
1065 
1066 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1067 		if (ring->data[i].m != NULL)
1068 			m_freem(ring->data[i].m);
1069 }
1070 
1071 static int
1072 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1073 	int qid)
1074 {
1075 	struct wpi_tx_data *data;
1076 	int i, error;
1077 
1078 	ring->qid = qid;
1079 	ring->count = count;
1080 	ring->queued = 0;
1081 	ring->cur = 0;
1082 	ring->data = NULL;
1083 
1084 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1085 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1086 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1087 
1088 	if (error != 0) {
1089 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1090 	    goto fail;
1091 	}
1092 
1093 	/* update shared page with ring's base address */
1094 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1095 
1096 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1097 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1098 		BUS_DMA_NOWAIT);
1099 
1100 	if (error != 0) {
1101 		device_printf(sc->sc_dev,
1102 		    "could not allocate tx command DMA memory\n");
1103 		goto fail;
1104 	}
1105 
1106 	ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1107 	    M_INTWAIT | M_ZERO);
1108 	if (ring->data == NULL) {
1109 		device_printf(sc->sc_dev,
1110 		    "could not allocate tx data slots\n");
1111 		goto fail;
1112 	}
1113 
1114 	error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1115 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE,
1116 	    WPI_MAX_SCATTER - 1, MJUMPAGESIZE, BUS_DMA_NOWAIT,
1117 	    &ring->data_dmat);
1118 	if (error != 0) {
1119 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1120 		goto fail;
1121 	}
1122 
1123 	for (i = 0; i < count; i++) {
1124 		data = &ring->data[i];
1125 
1126 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1127 		if (error != 0) {
1128 			device_printf(sc->sc_dev,
1129 			    "could not create tx buf DMA map\n");
1130 			goto fail;
1131 		}
1132 		bus_dmamap_sync(ring->data_dmat, data->map,
1133 		    BUS_DMASYNC_PREWRITE);
1134 	}
1135 
1136 	return 0;
1137 
1138 fail:
1139 	wpi_free_tx_ring(sc, ring);
1140 	return error;
1141 }
1142 
1143 static void
1144 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1145 {
1146 	struct wpi_tx_data *data;
1147 	int i, ntries;
1148 
1149 	wpi_mem_lock(sc);
1150 
1151 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1152 	for (ntries = 0; ntries < 100; ntries++) {
1153 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1154 			break;
1155 		DELAY(10);
1156 	}
1157 #ifdef WPI_DEBUG
1158 	if (ntries == 100 && wpi_debug > 0)
1159 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1160 		    ring->qid);
1161 #endif
1162 	wpi_mem_unlock(sc);
1163 
1164 	for (i = 0; i < ring->count; i++) {
1165 		data = &ring->data[i];
1166 
1167 		if (data->m != NULL) {
1168 			bus_dmamap_unload(ring->data_dmat, data->map);
1169 			m_freem(data->m);
1170 			data->m = NULL;
1171 		}
1172 	}
1173 
1174 	ring->queued = 0;
1175 	ring->cur = 0;
1176 }
1177 
1178 static void
1179 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180 {
1181 	struct wpi_tx_data *data;
1182 	int i;
1183 
1184 	wpi_dma_contig_free(&ring->desc_dma);
1185 	wpi_dma_contig_free(&ring->cmd_dma);
1186 
1187 	if (ring->data != NULL) {
1188 		for (i = 0; i < ring->count; i++) {
1189 			data = &ring->data[i];
1190 
1191 			if (data->m != NULL) {
1192 				bus_dmamap_sync(ring->data_dmat, data->map,
1193 				    BUS_DMASYNC_POSTWRITE);
1194 				bus_dmamap_unload(ring->data_dmat, data->map);
1195 				m_freem(data->m);
1196 				data->m = NULL;
1197 			}
1198 		}
1199 		kfree(ring->data, M_DEVBUF);
1200 	}
1201 
1202 	if (ring->data_dmat != NULL)
1203 		bus_dma_tag_destroy(ring->data_dmat);
1204 }
1205 
1206 static int
1207 wpi_shutdown(device_t dev)
1208 {
1209 	struct wpi_softc *sc;
1210 
1211 	wlan_serialize_enter();
1212 	sc = device_get_softc(dev);
1213 	wpi_stop_locked(sc);
1214 	wpi_unload_firmware(sc);
1215 	wlan_serialize_exit();
1216 
1217 	return 0;
1218 }
1219 
1220 static int
1221 wpi_suspend(device_t dev)
1222 {
1223 	struct wpi_softc *sc;
1224 
1225 	wlan_serialize_enter();
1226 	sc = device_get_softc(dev);
1227 	wpi_stop(sc);
1228 	wlan_serialize_exit();
1229 	return 0;
1230 }
1231 
1232 static int
1233 wpi_resume(device_t dev)
1234 {
1235 	struct wpi_softc *sc;
1236 	struct ifnet *ifp;
1237 
1238 	wlan_serialize_enter();
1239 	sc = device_get_softc(dev);
1240 	ifp = sc->sc_ifp;
1241 	pci_write_config(dev, 0x41, 0, 1);
1242 
1243 	if (ifp->if_flags & IFF_UP) {
1244 		wpi_init(ifp->if_softc);
1245 		if (ifp->if_flags & IFF_RUNNING)
1246 			wpi_start(ifp);
1247 	}
1248 	wlan_serialize_exit();
1249 	return 0;
1250 }
1251 
1252 /* ARGSUSED */
1253 static struct ieee80211_node *
1254 wpi_node_alloc(struct ieee80211vap *vap __unused,
1255 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1256 {
1257 	struct wpi_node *wn;
1258 
1259 	wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
1260 
1261 	return &wn->ni;
1262 }
1263 
1264 /**
1265  * Called by net80211 when ever there is a change to 80211 state machine
1266  */
1267 static int
1268 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1269 {
1270 	struct wpi_vap *wvp = WPI_VAP(vap);
1271 	struct ieee80211com *ic = vap->iv_ic;
1272 	struct ifnet *ifp = ic->ic_ifp;
1273 	struct wpi_softc *sc = ifp->if_softc;
1274 	int error;
1275 
1276 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1277 		ieee80211_state_name[vap->iv_state],
1278 		ieee80211_state_name[nstate], sc->flags));
1279 
1280 	if (nstate == IEEE80211_S_AUTH) {
1281 		/* The node must be registered in the firmware before auth */
1282 		error = wpi_auth(sc, vap);
1283 		if (error != 0) {
1284 			device_printf(sc->sc_dev,
1285 			    "%s: could not move to auth state, error %d\n",
1286 			    __func__, error);
1287 		}
1288 	}
1289 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1290 		error = wpi_run(sc, vap);
1291 		if (error != 0) {
1292 			device_printf(sc->sc_dev,
1293 			    "%s: could not move to run state, error %d\n",
1294 			    __func__, error);
1295 		}
1296 	}
1297 	if (nstate == IEEE80211_S_RUN) {
1298 		/* RUN -> RUN transition; just restart the timers */
1299 		wpi_calib_timeout_callout(sc);
1300 		/* XXX split out rate control timer */
1301 	}
1302 	return wvp->newstate(vap, nstate, arg);
1303 }
1304 
1305 /*
1306  * Grab exclusive access to NIC memory.
1307  */
1308 static void
1309 wpi_mem_lock(struct wpi_softc *sc)
1310 {
1311 	int ntries;
1312 	uint32_t tmp;
1313 
1314 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1315 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1316 
1317 	/* spin until we actually get the lock */
1318 	for (ntries = 0; ntries < 100; ntries++) {
1319 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1320 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1321 			break;
1322 		DELAY(10);
1323 	}
1324 	if (ntries == 100)
1325 		device_printf(sc->sc_dev, "could not lock memory\n");
1326 }
1327 
1328 /*
1329  * Release lock on NIC memory.
1330  */
1331 static void
1332 wpi_mem_unlock(struct wpi_softc *sc)
1333 {
1334 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1335 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1336 }
1337 
1338 static uint32_t
1339 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1340 {
1341 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1342 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1343 }
1344 
1345 static void
1346 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1347 {
1348 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1349 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1350 }
1351 
1352 static void
1353 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1354     const uint32_t *data, int wlen)
1355 {
1356 	for (; wlen > 0; wlen--, data++, addr+=4)
1357 		wpi_mem_write(sc, addr, *data);
1358 }
1359 
1360 /*
1361  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1362  * using the traditional bit-bang method. Data is read up until len bytes have
1363  * been obtained.
1364  */
1365 static uint16_t
1366 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1367 {
1368 	int ntries;
1369 	uint32_t val;
1370 	uint8_t *out = data;
1371 
1372 	wpi_mem_lock(sc);
1373 
1374 	for (; len > 0; len -= 2, addr++) {
1375 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1376 
1377 		for (ntries = 0; ntries < 10; ntries++) {
1378 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1379 				break;
1380 			DELAY(5);
1381 		}
1382 
1383 		if (ntries == 10) {
1384 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1385 			return ETIMEDOUT;
1386 		}
1387 
1388 		*out++= val >> 16;
1389 		if (len > 1)
1390 			*out ++= val >> 24;
1391 	}
1392 
1393 	wpi_mem_unlock(sc);
1394 
1395 	return 0;
1396 }
1397 
1398 /*
1399  * The firmware text and data segments are transferred to the NIC using DMA.
1400  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1401  * where to find it.  Once the NIC has copied the firmware into its internal
1402  * memory, we can free our local copy in the driver.
1403  */
1404 static int
1405 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1406 {
1407 	int error, ntries;
1408 
1409 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1410 
1411 	size /= sizeof(uint32_t);
1412 
1413 	wpi_mem_lock(sc);
1414 
1415 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1416 	    (const uint32_t *)fw, size);
1417 
1418 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1419 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1420 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1421 
1422 	/* run microcode */
1423 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1424 
1425 	/* wait while the adapter is busy copying the firmware */
1426 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1427 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1428 		DPRINTFN(WPI_DEBUG_HW,
1429 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1430 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1431 		if (status & WPI_TX_IDLE(6)) {
1432 			DPRINTFN(WPI_DEBUG_HW,
1433 			    ("Status Match! - ntries = %d\n", ntries));
1434 			break;
1435 		}
1436 		DELAY(10);
1437 	}
1438 	if (ntries == 1000) {
1439 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1440 		error = ETIMEDOUT;
1441 	}
1442 
1443 	/* start the microcode executing */
1444 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1445 
1446 	wpi_mem_unlock(sc);
1447 
1448 	return (error);
1449 }
1450 
1451 static void
1452 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1453 	struct wpi_rx_data *data)
1454 {
1455 	struct ifnet *ifp = sc->sc_ifp;
1456 	struct ieee80211com *ic = ifp->if_l2com;
1457 	struct wpi_rx_ring *ring = &sc->rxq;
1458 	struct wpi_rx_stat *stat;
1459 	struct wpi_rx_head *head;
1460 	struct wpi_rx_tail *tail;
1461 	struct ieee80211_node *ni;
1462 	struct mbuf *m, *mnew;
1463 	bus_addr_t paddr;
1464 	int error;
1465 
1466 	stat = (struct wpi_rx_stat *)(desc + 1);
1467 
1468 	if (stat->len > WPI_STAT_MAXLEN) {
1469 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1470 		ifp->if_ierrors++;
1471 		return;
1472 	}
1473 
1474 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1475 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1476 
1477 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1478 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1479 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1480 	    (uintmax_t)le64toh(tail->tstamp)));
1481 
1482 	/* discard Rx frames with bad CRC early */
1483 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1484 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1485 		    le32toh(tail->flags)));
1486 		ifp->if_ierrors++;
1487 		return;
1488 	}
1489 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1490 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1491 		    le16toh(head->len)));
1492 		ifp->if_ierrors++;
1493 		return;
1494 	}
1495 
1496 	/* XXX don't need mbuf, just dma buffer */
1497 	mnew = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1498 	if (mnew == NULL) {
1499 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1500 		    __func__));
1501 		ifp->if_ierrors++;
1502 		return;
1503 	}
1504 	error = bus_dmamap_load(ring->data_dmat, data->map,
1505 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1506 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1507 	if (error != 0 && error != EFBIG) {
1508 		device_printf(sc->sc_dev,
1509 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1510 		m_freem(mnew);
1511 		ifp->if_ierrors++;
1512 		return;
1513 	}
1514 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1515 
1516 	/* finalize mbuf and swap in new one */
1517 	m = data->m;
1518 	m->m_pkthdr.rcvif = ifp;
1519 	m->m_data = (caddr_t)(head + 1);
1520 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1521 
1522 	data->m = mnew;
1523 	/* update Rx descriptor */
1524 	ring->desc[ring->cur] = htole32(paddr);
1525 
1526 	if (ieee80211_radiotap_active(ic)) {
1527 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1528 
1529 		tap->wr_flags = 0;
1530 		tap->wr_chan_freq =
1531 			htole16(ic->ic_channels[head->chan].ic_freq);
1532 		tap->wr_chan_flags =
1533 			htole16(ic->ic_channels[head->chan].ic_flags);
1534 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1535 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1536 		tap->wr_tsft = tail->tstamp;
1537 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1538 		switch (head->rate) {
1539 		/* CCK rates */
1540 		case  10: tap->wr_rate =   2; break;
1541 		case  20: tap->wr_rate =   4; break;
1542 		case  55: tap->wr_rate =  11; break;
1543 		case 110: tap->wr_rate =  22; break;
1544 		/* OFDM rates */
1545 		case 0xd: tap->wr_rate =  12; break;
1546 		case 0xf: tap->wr_rate =  18; break;
1547 		case 0x5: tap->wr_rate =  24; break;
1548 		case 0x7: tap->wr_rate =  36; break;
1549 		case 0x9: tap->wr_rate =  48; break;
1550 		case 0xb: tap->wr_rate =  72; break;
1551 		case 0x1: tap->wr_rate =  96; break;
1552 		case 0x3: tap->wr_rate = 108; break;
1553 		/* unknown rate: should not happen */
1554 		default:  tap->wr_rate =   0;
1555 		}
1556 		if (le16toh(head->flags) & 0x4)
1557 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1558 	}
1559 
1560 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1561 	if (ni != NULL) {
1562 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1563 		ieee80211_free_node(ni);
1564 	} else
1565 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1566 }
1567 
1568 static void
1569 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1570 {
1571 	struct ifnet *ifp = sc->sc_ifp;
1572 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1573 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1574 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1575 	struct ieee80211_node *ni = txdata->ni;
1576 	struct ieee80211vap *vap = ni->ni_vap;
1577 	int retrycnt = 0;
1578 
1579 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1580 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1581 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1582 	    le32toh(stat->status)));
1583 
1584 	/*
1585 	 * Update rate control statistics for the node.
1586 	 * XXX we should not count mgmt frames since they're always sent at
1587 	 * the lowest available bit-rate.
1588 	 * XXX frames w/o ACK shouldn't be used either
1589 	 */
1590 	if (stat->ntries > 0) {
1591 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1592 		retrycnt = 1;
1593 	}
1594 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1595 		&retrycnt, NULL);
1596 
1597 	/* XXX oerrors should only count errors !maxtries */
1598 	if ((le32toh(stat->status) & 0xff) != 1)
1599 		ifp->if_oerrors++;
1600 	else
1601 		ifp->if_opackets++;
1602 
1603 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1604 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1605 	/* XXX handle M_TXCB? */
1606 	m_freem(txdata->m);
1607 	txdata->m = NULL;
1608 	ieee80211_free_node(txdata->ni);
1609 	txdata->ni = NULL;
1610 
1611 	ring->queued--;
1612 
1613 	sc->sc_tx_timer = 0;
1614 	ifp->if_flags &= ~IFF_OACTIVE;
1615 	wpi_start_locked(ifp);
1616 }
1617 
1618 static void
1619 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1620 {
1621 	struct wpi_tx_ring *ring = &sc->cmdq;
1622 	struct wpi_tx_data *data;
1623 
1624 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1625 				 "type=%s len=%d\n", desc->qid, desc->idx,
1626 				 desc->flags, wpi_cmd_str(desc->type),
1627 				 le32toh(desc->len)));
1628 
1629 	if ((desc->qid & 7) != 4)
1630 		return;	/* not a command ack */
1631 
1632 	data = &ring->data[desc->idx];
1633 
1634 	/* if the command was mapped in a mbuf, free it */
1635 	if (data->m != NULL) {
1636 		bus_dmamap_unload(ring->data_dmat, data->map);
1637 		m_freem(data->m);
1638 		data->m = NULL;
1639 	}
1640 
1641 	sc->flags &= ~WPI_FLAG_BUSY;
1642 	wakeup(&ring->cmd[desc->idx]);
1643 }
1644 
1645 static void
1646 wpi_notif_intr(struct wpi_softc *sc)
1647 {
1648 	struct ifnet *ifp = sc->sc_ifp;
1649 	struct ieee80211com *ic = ifp->if_l2com;
1650 	struct wpi_rx_desc *desc;
1651 	struct wpi_rx_data *data;
1652 	uint32_t hw;
1653 
1654 	hw = le32toh(sc->shared->next);
1655 	while (sc->rxq.cur != hw) {
1656 		data = &sc->rxq.data[sc->rxq.cur];
1657 		desc = (void *)data->m->m_ext.ext_buf;
1658 
1659 		DPRINTFN(WPI_DEBUG_NOTIFY,
1660 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1661 			  desc->qid,
1662 			  desc->idx,
1663 			  desc->flags,
1664 			  desc->type,
1665 			  le32toh(desc->len)));
1666 
1667 		if (!(desc->qid & 0x80))	/* reply to a command */
1668 			wpi_cmd_intr(sc, desc);
1669 
1670 		switch (desc->type) {
1671 		case WPI_RX_DONE:
1672 			/* a 802.11 frame was received */
1673 			wpi_rx_intr(sc, desc, data);
1674 			break;
1675 
1676 		case WPI_TX_DONE:
1677 			/* a 802.11 frame has been transmitted */
1678 			wpi_tx_intr(sc, desc);
1679 			break;
1680 
1681 		case WPI_UC_READY:
1682 		{
1683 			struct wpi_ucode_info *uc =
1684 				(struct wpi_ucode_info *)(desc + 1);
1685 
1686 			/* the microcontroller is ready */
1687 			DPRINTF(("microcode alive notification version %x "
1688 				"alive %x\n", le32toh(uc->version),
1689 				le32toh(uc->valid)));
1690 
1691 			if (le32toh(uc->valid) != 1) {
1692 				device_printf(sc->sc_dev,
1693 				    "microcontroller initialization failed\n");
1694 				wpi_stop_locked(sc);
1695 			}
1696 			break;
1697 		}
1698 		case WPI_STATE_CHANGED:
1699 		{
1700 			uint32_t *status = (uint32_t *)(desc + 1);
1701 
1702 			/* enabled/disabled notification */
1703 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1704 
1705 			if (le32toh(*status) & 1) {
1706 				device_printf(sc->sc_dev,
1707 				    "Radio transmitter is switched off\n");
1708 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1709 				ifp->if_flags &= ~IFF_RUNNING;
1710 				/* Disable firmware commands */
1711 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1712 			}
1713 			break;
1714 		}
1715 		case WPI_START_SCAN:
1716 		{
1717 #ifdef WPI_DEBUG
1718 			struct wpi_start_scan *scan =
1719 				(struct wpi_start_scan *)(desc + 1);
1720 #endif
1721 
1722 			DPRINTFN(WPI_DEBUG_SCANNING,
1723 				 ("scanning channel %d status %x\n",
1724 			    scan->chan, le32toh(scan->status)));
1725 			break;
1726 		}
1727 		case WPI_STOP_SCAN:
1728 		{
1729 #ifdef WPI_DEBUG
1730 			struct wpi_stop_scan *scan =
1731 				(struct wpi_stop_scan *)(desc + 1);
1732 #endif
1733 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1734 
1735 			DPRINTFN(WPI_DEBUG_SCANNING,
1736 			    ("scan finished nchan=%d status=%d chan=%d\n",
1737 			     scan->nchan, scan->status, scan->chan));
1738 
1739 			sc->sc_scan_timer = 0;
1740 			ieee80211_scan_next(vap);
1741 			break;
1742 		}
1743 		case WPI_MISSED_BEACON:
1744 		{
1745 			struct wpi_missed_beacon *beacon =
1746 				(struct wpi_missed_beacon *)(desc + 1);
1747 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1748 
1749 			if (le32toh(beacon->consecutive) >=
1750 			    vap->iv_bmissthreshold) {
1751 				DPRINTF(("Beacon miss: %u >= %u\n",
1752 					 le32toh(beacon->consecutive),
1753 					 vap->iv_bmissthreshold));
1754 				ieee80211_beacon_miss(ic);
1755 			}
1756 			break;
1757 		}
1758 		}
1759 
1760 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1761 	}
1762 
1763 	/* tell the firmware what we have processed */
1764 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1765 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1766 }
1767 
1768 static void
1769 wpi_intr(void *arg)
1770 {
1771 	struct wpi_softc *sc = arg;
1772 	uint32_t r;
1773 
1774 	r = WPI_READ(sc, WPI_INTR);
1775 	if (r == 0 || r == 0xffffffff) {
1776 		return;
1777 	}
1778 
1779 	/* disable interrupts */
1780 	WPI_WRITE(sc, WPI_MASK, 0);
1781 	/* ack interrupts */
1782 	WPI_WRITE(sc, WPI_INTR, r);
1783 
1784 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1785 		struct ifnet *ifp = sc->sc_ifp;
1786 		struct ieee80211com *ic = ifp->if_l2com;
1787 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1788 
1789 		device_printf(sc->sc_dev, "fatal firmware error\n");
1790 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1791 				"(Hardware Error)"));
1792 		if (vap != NULL)
1793 			ieee80211_cancel_scan(vap);
1794 		ieee80211_runtask(ic, &sc->sc_restarttask);
1795 		sc->flags &= ~WPI_FLAG_BUSY;
1796 		return;
1797 	}
1798 
1799 	if (r & WPI_RX_INTR)
1800 		wpi_notif_intr(sc);
1801 
1802 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1803 		wakeup(sc);
1804 
1805 	/* re-enable interrupts */
1806 	if (sc->sc_ifp->if_flags & IFF_UP)
1807 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1808 
1809 }
1810 
1811 static uint8_t
1812 wpi_plcp_signal(int rate)
1813 {
1814 	switch (rate) {
1815 	/* CCK rates (returned values are device-dependent) */
1816 	case 2:		return 10;
1817 	case 4:		return 20;
1818 	case 11:	return 55;
1819 	case 22:	return 110;
1820 
1821 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1822 	/* R1-R4 (ral/ural is R4-R1) */
1823 	case 12:	return 0xd;
1824 	case 18:	return 0xf;
1825 	case 24:	return 0x5;
1826 	case 36:	return 0x7;
1827 	case 48:	return 0x9;
1828 	case 72:	return 0xb;
1829 	case 96:	return 0x1;
1830 	case 108:	return 0x3;
1831 
1832 	/* unsupported rates (should not get there) */
1833 	default:	return 0;
1834 	}
1835 }
1836 
1837 /* quickly determine if a given rate is CCK or OFDM */
1838 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1839 
1840 /*
1841  * Construct the data packet for a transmit buffer and acutally put
1842  * the buffer onto the transmit ring, kicking the card to process the
1843  * the buffer.
1844  */
1845 static int
1846 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1847 	int ac)
1848 {
1849 	struct ieee80211vap *vap = ni->ni_vap;
1850 	struct ifnet *ifp = sc->sc_ifp;
1851 	struct ieee80211com *ic = ifp->if_l2com;
1852 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1853 	struct wpi_tx_ring *ring = &sc->txq[ac];
1854 	struct wpi_tx_desc *desc;
1855 	struct wpi_tx_data *data;
1856 	struct wpi_tx_cmd *cmd;
1857 	struct wpi_cmd_data *tx;
1858 	struct ieee80211_frame *wh;
1859 	const struct ieee80211_txparam *tp;
1860 	struct ieee80211_key *k;
1861 	struct mbuf *mnew;
1862 	int i, error, nsegs, rate, hdrlen, ismcast;
1863 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1864 
1865 	desc = &ring->desc[ring->cur];
1866 	data = &ring->data[ring->cur];
1867 
1868 	wh = mtod(m0, struct ieee80211_frame *);
1869 
1870 	hdrlen = ieee80211_hdrsize(wh);
1871 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1872 
1873 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1874 		k = ieee80211_crypto_encap(ni, m0);
1875 		if (k == NULL) {
1876 			m_freem(m0);
1877 			return ENOBUFS;
1878 		}
1879 		/* packet header may have moved, reset our local pointer */
1880 		wh = mtod(m0, struct ieee80211_frame *);
1881 	}
1882 
1883 	cmd = &ring->cmd[ring->cur];
1884 	cmd->code = WPI_CMD_TX_DATA;
1885 	cmd->flags = 0;
1886 	cmd->qid = ring->qid;
1887 	cmd->idx = ring->cur;
1888 
1889 	tx = (struct wpi_cmd_data *)cmd->data;
1890 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1891 	tx->timeout = htole16(0);
1892 	tx->ofdm_mask = 0xff;
1893 	tx->cck_mask = 0x0f;
1894 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1895 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1896 	tx->len = htole16(m0->m_pkthdr.len);
1897 
1898 	if (!ismcast) {
1899 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1900 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1901 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1902 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1903 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1904 			tx->rts_ntries = 7;
1905 		}
1906 	}
1907 	/* pick a rate */
1908 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1909 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1910 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1911 		/* tell h/w to set timestamp in probe responses */
1912 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1913 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1914 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1915 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1916 			tx->timeout = htole16(3);
1917 		else
1918 			tx->timeout = htole16(2);
1919 		rate = tp->mgmtrate;
1920 	} else if (ismcast) {
1921 		rate = tp->mcastrate;
1922 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1923 		rate = tp->ucastrate;
1924 	} else {
1925 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1926 		rate = ni->ni_txrate;
1927 	}
1928 	tx->rate = wpi_plcp_signal(rate);
1929 
1930 	/* be very persistant at sending frames out */
1931 #if 0
1932 	tx->data_ntries = tp->maxretry;
1933 #else
1934 	tx->data_ntries = 30;		/* XXX way too high */
1935 #endif
1936 
1937 	if (ieee80211_radiotap_active_vap(vap)) {
1938 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1939 		tap->wt_flags = 0;
1940 		tap->wt_rate = rate;
1941 		tap->wt_hwqueue = ac;
1942 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1943 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1944 
1945 		ieee80211_radiotap_tx(vap, m0);
1946 	}
1947 
1948 	/* save and trim IEEE802.11 header */
1949 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1950 	m_adj(m0, hdrlen);
1951 
1952 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1953 	    1, &nsegs, BUS_DMA_NOWAIT);
1954 	if (error != 0 && error != EFBIG) {
1955 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1956 		    error);
1957 		m_freem(m0);
1958 		return error;
1959 	}
1960 	if (error != 0) {
1961 		/* XXX use m_collapse */
1962 		mnew = m_defrag(m0, MB_DONTWAIT);
1963 		if (mnew == NULL) {
1964 			device_printf(sc->sc_dev,
1965 			    "could not defragment mbuf\n");
1966 			m_freem(m0);
1967 			return ENOBUFS;
1968 		}
1969 		m0 = mnew;
1970 
1971 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1972 		    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1973 		if (error != 0) {
1974 			device_printf(sc->sc_dev,
1975 			    "could not map mbuf (error %d)\n", error);
1976 			m_freem(m0);
1977 			return error;
1978 		}
1979 	}
1980 
1981 	data->m = m0;
1982 	data->ni = ni;
1983 
1984 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1985 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1986 
1987 	/* first scatter/gather segment is used by the tx data command */
1988 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1989 	    (1 + nsegs) << 24);
1990 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1991 	    ring->cur * sizeof (struct wpi_tx_cmd));
1992 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1993 	for (i = 1; i <= nsegs; i++) {
1994 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1995 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1996 	}
1997 
1998 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1999 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2000 	    BUS_DMASYNC_PREWRITE);
2001 
2002 	ring->queued++;
2003 
2004 	/* kick ring */
2005 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2006 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2007 
2008 	return 0;
2009 }
2010 
2011 /**
2012  * Process data waiting to be sent on the IFNET output queue
2013  */
2014 static void
2015 wpi_start(struct ifnet *ifp)
2016 {
2017 	wpi_start_locked(ifp);
2018 }
2019 
2020 static void
2021 wpi_start_locked(struct ifnet *ifp)
2022 {
2023 	struct wpi_softc *sc = ifp->if_softc;
2024 	struct ieee80211_node *ni;
2025 	struct mbuf *m;
2026 	int ac;
2027 
2028 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2029 		ifq_purge(&ifp->if_snd);
2030 		return;
2031 	}
2032 
2033 	for (;;) {
2034 		m = ifq_dequeue(&ifp->if_snd, NULL);
2035 		if (m == NULL)
2036 			break;
2037 		ac = M_WME_GETAC(m);
2038 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2039 			/* there is no place left in this ring */
2040 			/*
2041 			 * XXX: we CANNOT do it this way. If something
2042 			 * is prepended already, this is going to blow.
2043 			 */
2044 			ifp->if_flags |= IFF_OACTIVE;
2045 			ifq_prepend(&ifp->if_snd, m);
2046 			break;
2047 		}
2048 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2049 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2050 			ieee80211_free_node(ni);
2051 			ifp->if_oerrors++;
2052 			break;
2053 		}
2054 		sc->sc_tx_timer = 5;
2055 	}
2056 }
2057 
2058 static int
2059 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2060 	const struct ieee80211_bpf_params *params)
2061 {
2062 	struct ieee80211com *ic = ni->ni_ic;
2063 	struct ifnet *ifp = ic->ic_ifp;
2064 	struct wpi_softc *sc = ifp->if_softc;
2065 
2066 	/* prevent management frames from being sent if we're not ready */
2067 	if (!(ifp->if_flags & IFF_RUNNING)) {
2068 		m_freem(m);
2069 		ieee80211_free_node(ni);
2070 		return ENETDOWN;
2071 	}
2072 
2073 	/* management frames go into ring 0 */
2074 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2075 		ifp->if_flags |= IFF_OACTIVE;
2076 		m_freem(m);
2077 		ieee80211_free_node(ni);
2078 		return ENOBUFS;		/* XXX */
2079 	}
2080 
2081 	ifp->if_opackets++;
2082 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2083 		goto bad;
2084 	sc->sc_tx_timer = 5;
2085 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
2086 
2087 	return 0;
2088 bad:
2089 	ifp->if_oerrors++;
2090 	ieee80211_free_node(ni);
2091 	return EIO;		/* XXX */
2092 }
2093 
2094 static int
2095 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2096 {
2097 	struct wpi_softc *sc = ifp->if_softc;
2098 	struct ieee80211com *ic = ifp->if_l2com;
2099 	struct ifreq *ifr = (struct ifreq *) data;
2100 	int error = 0, startall = 0;
2101 
2102 	switch (cmd) {
2103 	case SIOCSIFFLAGS:
2104 		if ((ifp->if_flags & IFF_UP)) {
2105 			if (!(ifp->if_flags & IFF_RUNNING)) {
2106 				wpi_init_locked(sc, 0);
2107 				startall = 1;
2108 			}
2109 		} else if ((ifp->if_flags & IFF_RUNNING) ||
2110 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2111 			wpi_stop_locked(sc);
2112 		if (startall)
2113 			ieee80211_start_all(ic);
2114 		break;
2115 	case SIOCGIFMEDIA:
2116 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2117 		break;
2118 	case SIOCGIFADDR:
2119 		error = ether_ioctl(ifp, cmd, data);
2120 		break;
2121 	default:
2122 		error = EINVAL;
2123 		break;
2124 	}
2125 	return error;
2126 }
2127 
2128 /*
2129  * Extract various information from EEPROM.
2130  */
2131 static void
2132 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2133 {
2134 	int i;
2135 
2136 	/* read the hardware capabilities, revision and SKU type */
2137 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2138 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2139 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2140 
2141 	/* read the regulatory domain */
2142 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2143 
2144 	/* read in the hw MAC address */
2145 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2146 
2147 	/* read the list of authorized channels */
2148 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2149 		wpi_read_eeprom_channels(sc,i);
2150 
2151 	/* read the power level calibration info for each group */
2152 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2153 		wpi_read_eeprom_group(sc,i);
2154 }
2155 
2156 /*
2157  * Send a command to the firmware.
2158  */
2159 static int
2160 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2161 {
2162 	struct wpi_tx_ring *ring = &sc->cmdq;
2163 	struct wpi_tx_desc *desc;
2164 	struct wpi_tx_cmd *cmd;
2165 
2166 #ifdef WPI_DEBUG
2167 	if (!async) {
2168 		wlan_assert_serialized();
2169 	}
2170 #endif
2171 
2172 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2173 		    async));
2174 
2175 	if (sc->flags & WPI_FLAG_BUSY) {
2176 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2177 		    __func__, code);
2178 		return EAGAIN;
2179 	}
2180 	sc->flags|= WPI_FLAG_BUSY;
2181 
2182 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2183 	    code, size));
2184 
2185 	desc = &ring->desc[ring->cur];
2186 	cmd = &ring->cmd[ring->cur];
2187 
2188 	cmd->code = code;
2189 	cmd->flags = 0;
2190 	cmd->qid = ring->qid;
2191 	cmd->idx = ring->cur;
2192 	memcpy(cmd->data, buf, size);
2193 
2194 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2195 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2196 		ring->cur * sizeof (struct wpi_tx_cmd));
2197 	desc->segs[0].len  = htole32(4 + size);
2198 
2199 	/* kick cmd ring */
2200 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2201 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2202 
2203 	if (async) {
2204 		sc->flags &= ~ WPI_FLAG_BUSY;
2205 		return 0;
2206 	}
2207 
2208 	return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz);
2209 }
2210 
2211 static int
2212 wpi_wme_update(struct ieee80211com *ic)
2213 {
2214 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2215 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2216 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2217 	const struct wmeParams *wmep;
2218 	struct wpi_wme_setup wme;
2219 	int ac;
2220 
2221 	/* don't override default WME values if WME is not actually enabled */
2222 	if (!(ic->ic_flags & IEEE80211_F_WME))
2223 		return 0;
2224 
2225 	wme.flags = 0;
2226 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2227 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2228 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2229 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2230 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2231 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2232 
2233 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2234 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2235 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2236 	}
2237 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2238 #undef WPI_USEC
2239 #undef WPI_EXP2
2240 }
2241 
2242 /*
2243  * Configure h/w multi-rate retries.
2244  */
2245 static int
2246 wpi_mrr_setup(struct wpi_softc *sc)
2247 {
2248 	struct ifnet *ifp = sc->sc_ifp;
2249 	struct ieee80211com *ic = ifp->if_l2com;
2250 	struct wpi_mrr_setup mrr;
2251 	int i, error;
2252 
2253 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2254 
2255 	/* CCK rates (not used with 802.11a) */
2256 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2257 		mrr.rates[i].flags = 0;
2258 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2259 		/* fallback to the immediate lower CCK rate (if any) */
2260 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2261 		/* try one time at this rate before falling back to "next" */
2262 		mrr.rates[i].ntries = 1;
2263 	}
2264 
2265 	/* OFDM rates (not used with 802.11b) */
2266 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2267 		mrr.rates[i].flags = 0;
2268 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2269 		/* fallback to the immediate lower OFDM rate (if any) */
2270 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2271 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2272 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2273 			WPI_OFDM6 : WPI_CCK2) :
2274 		    i - 1;
2275 		/* try one time at this rate before falling back to "next" */
2276 		mrr.rates[i].ntries = 1;
2277 	}
2278 
2279 	/* setup MRR for control frames */
2280 	mrr.which = htole32(WPI_MRR_CTL);
2281 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2282 	if (error != 0) {
2283 		device_printf(sc->sc_dev,
2284 		    "could not setup MRR for control frames\n");
2285 		return error;
2286 	}
2287 
2288 	/* setup MRR for data frames */
2289 	mrr.which = htole32(WPI_MRR_DATA);
2290 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2291 	if (error != 0) {
2292 		device_printf(sc->sc_dev,
2293 		    "could not setup MRR for data frames\n");
2294 		return error;
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 static void
2301 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2302 {
2303 	struct wpi_cmd_led led;
2304 
2305 	led.which = which;
2306 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2307 	led.off = off;
2308 	led.on = on;
2309 
2310 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2311 }
2312 
2313 static void
2314 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2315 {
2316 	struct wpi_cmd_tsf tsf;
2317 	uint64_t val, mod;
2318 
2319 	memset(&tsf, 0, sizeof tsf);
2320 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2321 	tsf.bintval = htole16(ni->ni_intval);
2322 	tsf.lintval = htole16(10);
2323 
2324 	/* compute remaining time until next beacon */
2325 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2326 	mod = le64toh(tsf.tstamp) % val;
2327 	tsf.binitval = htole32((uint32_t)(val - mod));
2328 
2329 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2330 		device_printf(sc->sc_dev, "could not enable TSF\n");
2331 }
2332 
2333 #if 0
2334 /*
2335  * Build a beacon frame that the firmware will broadcast periodically in
2336  * IBSS or HostAP modes.
2337  */
2338 static int
2339 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2340 {
2341 	struct ifnet *ifp = sc->sc_ifp;
2342 	struct ieee80211com *ic = ifp->if_l2com;
2343 	struct wpi_tx_ring *ring = &sc->cmdq;
2344 	struct wpi_tx_desc *desc;
2345 	struct wpi_tx_data *data;
2346 	struct wpi_tx_cmd *cmd;
2347 	struct wpi_cmd_beacon *bcn;
2348 	struct ieee80211_beacon_offsets bo;
2349 	struct mbuf *m0;
2350 	bus_addr_t physaddr;
2351 	int error;
2352 
2353 	desc = &ring->desc[ring->cur];
2354 	data = &ring->data[ring->cur];
2355 
2356 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2357 	if (m0 == NULL) {
2358 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2359 		return ENOMEM;
2360 	}
2361 
2362 	cmd = &ring->cmd[ring->cur];
2363 	cmd->code = WPI_CMD_SET_BEACON;
2364 	cmd->flags = 0;
2365 	cmd->qid = ring->qid;
2366 	cmd->idx = ring->cur;
2367 
2368 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2369 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2370 	bcn->id = WPI_ID_BROADCAST;
2371 	bcn->ofdm_mask = 0xff;
2372 	bcn->cck_mask = 0x0f;
2373 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2374 	bcn->len = htole16(m0->m_pkthdr.len);
2375 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2376 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2377 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2378 
2379 	/* save and trim IEEE802.11 header */
2380 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2381 	m_adj(m0, sizeof (struct ieee80211_frame));
2382 
2383 	/* assume beacon frame is contiguous */
2384 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2385 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2386 	if (error != 0) {
2387 		device_printf(sc->sc_dev, "could not map beacon\n");
2388 		m_freem(m0);
2389 		return error;
2390 	}
2391 
2392 	data->m = m0;
2393 
2394 	/* first scatter/gather segment is used by the beacon command */
2395 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2396 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2397 		ring->cur * sizeof (struct wpi_tx_cmd));
2398 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2399 	desc->segs[1].addr = htole32(physaddr);
2400 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2401 
2402 	/* kick cmd ring */
2403 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2404 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2405 
2406 	return 0;
2407 }
2408 #endif
2409 
2410 static int
2411 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2412 {
2413 	struct ieee80211com *ic = vap->iv_ic;
2414 	struct ieee80211_node *ni;
2415 	struct wpi_node_info node;
2416 	int error;
2417 
2418 
2419 	/* update adapter's configuration */
2420 	sc->config.associd = 0;
2421 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2422 	ni = ieee80211_ref_node(vap->iv_bss);
2423 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2424 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2425 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2426 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2427 		    WPI_CONFIG_24GHZ);
2428 	}
2429 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2430 		sc->config.cck_mask  = 0;
2431 		sc->config.ofdm_mask = 0x15;
2432 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2433 		sc->config.cck_mask  = 0x03;
2434 		sc->config.ofdm_mask = 0;
2435 	} else {
2436 		/* XXX assume 802.11b/g */
2437 		sc->config.cck_mask  = 0x0f;
2438 		sc->config.ofdm_mask = 0x15;
2439 	}
2440 
2441 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2442 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2443 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2444 		sizeof (struct wpi_config), 1);
2445 	if (error != 0) {
2446 		device_printf(sc->sc_dev, "could not configure\n");
2447 		ieee80211_free_node(ni);
2448 		return error;
2449 	}
2450 
2451 	/* configuration has changed, set Tx power accordingly */
2452 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2453 		device_printf(sc->sc_dev, "could not set Tx power\n");
2454 		ieee80211_free_node(ni);
2455 		return error;
2456 	}
2457 
2458 	/* add default node */
2459 	memset(&node, 0, sizeof node);
2460 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2461 	ieee80211_free_node(ni);
2462 	node.id = WPI_ID_BSS;
2463 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2464 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2465 	node.action = htole32(WPI_ACTION_SET_RATE);
2466 	node.antenna = WPI_ANTENNA_BOTH;
2467 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2468 	if (error != 0)
2469 		device_printf(sc->sc_dev, "could not add BSS node\n");
2470 
2471 	return (error);
2472 }
2473 
2474 static int
2475 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2476 {
2477 	struct ieee80211com *ic = vap->iv_ic;
2478 	struct ieee80211_node *ni;
2479 	int error;
2480 
2481 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2482 		/* link LED blinks while monitoring */
2483 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2484 		return 0;
2485 	}
2486 
2487 	ni = ieee80211_ref_node(vap->iv_bss);
2488 	wpi_enable_tsf(sc, ni);
2489 
2490 	/* update adapter's configuration */
2491 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2492 	/* short preamble/slot time are negotiated when associating */
2493 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2494 	    WPI_CONFIG_SHSLOT);
2495 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2496 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2497 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2498 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2499 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2500 
2501 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2502 
2503 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2504 		    sc->config.flags));
2505 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2506 		    wpi_config), 1);
2507 	if (error != 0) {
2508 		device_printf(sc->sc_dev, "could not update configuration\n");
2509 		ieee80211_free_node(ni);
2510 		return error;
2511 	}
2512 
2513 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2514 	ieee80211_free_node(ni);
2515 	if (error != 0) {
2516 		device_printf(sc->sc_dev, "could set txpower\n");
2517 		return error;
2518 	}
2519 
2520 	/* link LED always on while associated */
2521 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2522 
2523 	/* start automatic rate control timer */
2524 	callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
2525 
2526 	return (error);
2527 }
2528 
2529 /*
2530  * Send a scan request to the firmware.  Since this command is huge, we map it
2531  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2532  * much of this code is similar to that in wpi_cmd but because we must manually
2533  * construct the probe & channels, we duplicate what's needed here. XXX In the
2534  * future, this function should be modified to use wpi_cmd to help cleanup the
2535  * code base.
2536  */
2537 static int
2538 wpi_scan(struct wpi_softc *sc)
2539 {
2540 	struct ifnet *ifp = sc->sc_ifp;
2541 	struct ieee80211com *ic = ifp->if_l2com;
2542 	struct ieee80211_scan_state *ss = ic->ic_scan;
2543 	struct wpi_tx_ring *ring = &sc->cmdq;
2544 	struct wpi_tx_desc *desc;
2545 	struct wpi_tx_data *data;
2546 	struct wpi_tx_cmd *cmd;
2547 	struct wpi_scan_hdr *hdr;
2548 	struct wpi_scan_chan *chan;
2549 	struct ieee80211_frame *wh;
2550 	struct ieee80211_rateset *rs;
2551 	struct ieee80211_channel *c;
2552 	enum ieee80211_phymode mode;
2553 	uint8_t *frm;
2554 	int nrates, pktlen, error, i, nssid;
2555 	bus_addr_t physaddr;
2556 
2557 	desc = &ring->desc[ring->cur];
2558 	data = &ring->data[ring->cur];
2559 
2560 	data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2561 	if (data->m == NULL) {
2562 		device_printf(sc->sc_dev,
2563 		    "could not allocate mbuf for scan command\n");
2564 		return ENOMEM;
2565 	}
2566 
2567 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2568 	cmd->code = WPI_CMD_SCAN;
2569 	cmd->flags = 0;
2570 	cmd->qid = ring->qid;
2571 	cmd->idx = ring->cur;
2572 
2573 	hdr = (struct wpi_scan_hdr *)cmd->data;
2574 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2575 
2576 	/*
2577 	 * Move to the next channel if no packets are received within 5 msecs
2578 	 * after sending the probe request (this helps to reduce the duration
2579 	 * of active scans).
2580 	 */
2581 	hdr->quiet = htole16(5);
2582 	hdr->threshold = htole16(1);
2583 
2584 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2585 		/* send probe requests at 6Mbps */
2586 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2587 
2588 		/* Enable crc checking */
2589 		hdr->promotion = htole16(1);
2590 	} else {
2591 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2592 		/* send probe requests at 1Mbps */
2593 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2594 	}
2595 	hdr->tx.id = WPI_ID_BROADCAST;
2596 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2597 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2598 
2599 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2600 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2601 	for (i = 0; i < nssid; i++) {
2602 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2603 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2604 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2605 		    hdr->scan_essids[i].esslen);
2606 #ifdef WPI_DEBUG
2607 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2608 			kprintf("Scanning Essid: ");
2609 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2610 			    hdr->scan_essids[i].esslen);
2611 			kprintf("\n");
2612 		}
2613 #endif
2614 	}
2615 
2616 	/*
2617 	 * Build a probe request frame.  Most of the following code is a
2618 	 * copy & paste of what is done in net80211.
2619 	 */
2620 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2621 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2622 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2623 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2624 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2625 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2626 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2627 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2628 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2629 
2630 	frm = (uint8_t *)(wh + 1);
2631 
2632 	/* add essid IE, the hardware will fill this in for us */
2633 	*frm++ = IEEE80211_ELEMID_SSID;
2634 	*frm++ = 0;
2635 
2636 	mode = ieee80211_chan2mode(ic->ic_curchan);
2637 	rs = &ic->ic_sup_rates[mode];
2638 
2639 	/* add supported rates IE */
2640 	*frm++ = IEEE80211_ELEMID_RATES;
2641 	nrates = rs->rs_nrates;
2642 	if (nrates > IEEE80211_RATE_SIZE)
2643 		nrates = IEEE80211_RATE_SIZE;
2644 	*frm++ = nrates;
2645 	memcpy(frm, rs->rs_rates, nrates);
2646 	frm += nrates;
2647 
2648 	/* add supported xrates IE */
2649 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2650 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2651 		*frm++ = IEEE80211_ELEMID_XRATES;
2652 		*frm++ = nrates;
2653 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2654 		frm += nrates;
2655 	}
2656 
2657 	/* setup length of probe request */
2658 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2659 
2660 	/*
2661 	 * Construct information about the channel that we
2662 	 * want to scan. The firmware expects this to be directly
2663 	 * after the scan probe request
2664 	 */
2665 	c = ic->ic_curchan;
2666 	chan = (struct wpi_scan_chan *)frm;
2667 	chan->chan = ieee80211_chan2ieee(ic, c);
2668 	chan->flags = 0;
2669 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2670 		chan->flags |= WPI_CHAN_ACTIVE;
2671 		if (nssid != 0)
2672 			chan->flags |= WPI_CHAN_DIRECT;
2673 	}
2674 	chan->gain_dsp = 0x6e; /* Default level */
2675 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2676 		chan->active = htole16(10);
2677 		chan->passive = htole16(ss->ss_maxdwell);
2678 		chan->gain_radio = 0x3b;
2679 	} else {
2680 		chan->active = htole16(20);
2681 		chan->passive = htole16(ss->ss_maxdwell);
2682 		chan->gain_radio = 0x28;
2683 	}
2684 
2685 	DPRINTFN(WPI_DEBUG_SCANNING,
2686 	    ("Scanning %u Passive: %d\n",
2687 	     chan->chan,
2688 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2689 
2690 	hdr->nchan++;
2691 	chan++;
2692 
2693 	frm += sizeof (struct wpi_scan_chan);
2694 #if 0
2695 	// XXX All Channels....
2696 	for (c  = &ic->ic_channels[1];
2697 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2698 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2699 			continue;
2700 
2701 		chan->chan = ieee80211_chan2ieee(ic, c);
2702 		chan->flags = 0;
2703 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2704 		    chan->flags |= WPI_CHAN_ACTIVE;
2705 		    if (ic->ic_des_ssid[0].len != 0)
2706 			chan->flags |= WPI_CHAN_DIRECT;
2707 		}
2708 		chan->gain_dsp = 0x6e; /* Default level */
2709 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2710 			chan->active = htole16(10);
2711 			chan->passive = htole16(110);
2712 			chan->gain_radio = 0x3b;
2713 		} else {
2714 			chan->active = htole16(20);
2715 			chan->passive = htole16(120);
2716 			chan->gain_radio = 0x28;
2717 		}
2718 
2719 		DPRINTFN(WPI_DEBUG_SCANNING,
2720 			 ("Scanning %u Passive: %d\n",
2721 			  chan->chan,
2722 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2723 
2724 		hdr->nchan++;
2725 		chan++;
2726 
2727 		frm += sizeof (struct wpi_scan_chan);
2728 	}
2729 #endif
2730 
2731 	hdr->len = htole16(frm - (uint8_t *)hdr);
2732 	pktlen = frm - (uint8_t *)cmd;
2733 
2734 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2735 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2736 	if (error != 0) {
2737 		device_printf(sc->sc_dev, "could not map scan command\n");
2738 		m_freem(data->m);
2739 		data->m = NULL;
2740 		return error;
2741 	}
2742 
2743 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2744 	desc->segs[0].addr = htole32(physaddr);
2745 	desc->segs[0].len  = htole32(pktlen);
2746 
2747 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2748 	    BUS_DMASYNC_PREWRITE);
2749 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2750 
2751 	/* kick cmd ring */
2752 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2753 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2754 
2755 	sc->sc_scan_timer = 5;
2756 	return 0;	/* will be notified async. of failure/success */
2757 }
2758 
2759 /**
2760  * Configure the card to listen to a particular channel, this transisions the
2761  * card in to being able to receive frames from remote devices.
2762  */
2763 static int
2764 wpi_config(struct wpi_softc *sc)
2765 {
2766 	struct ifnet *ifp = sc->sc_ifp;
2767 	struct ieee80211com *ic = ifp->if_l2com;
2768 	struct wpi_power power;
2769 	struct wpi_bluetooth bluetooth;
2770 	struct wpi_node_info node;
2771 	int error;
2772 
2773 	/* set power mode */
2774 	memset(&power, 0, sizeof power);
2775 	power.flags = htole32(WPI_POWER_CAM|0x8);
2776 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2777 	if (error != 0) {
2778 		device_printf(sc->sc_dev, "could not set power mode\n");
2779 		return error;
2780 	}
2781 
2782 	/* configure bluetooth coexistence */
2783 	memset(&bluetooth, 0, sizeof bluetooth);
2784 	bluetooth.flags = 3;
2785 	bluetooth.lead = 0xaa;
2786 	bluetooth.kill = 1;
2787 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2788 	    0);
2789 	if (error != 0) {
2790 		device_printf(sc->sc_dev,
2791 		    "could not configure bluetooth coexistence\n");
2792 		return error;
2793 	}
2794 
2795 	/* configure adapter */
2796 	memset(&sc->config, 0, sizeof (struct wpi_config));
2797 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2798 	/*set default channel*/
2799 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2800 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2801 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2802 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2803 		    WPI_CONFIG_24GHZ);
2804 	}
2805 	sc->config.filter = 0;
2806 	switch (ic->ic_opmode) {
2807 	case IEEE80211_M_STA:
2808 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2809 		sc->config.mode = WPI_MODE_STA;
2810 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2811 		break;
2812 	case IEEE80211_M_IBSS:
2813 	case IEEE80211_M_AHDEMO:
2814 		sc->config.mode = WPI_MODE_IBSS;
2815 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2816 					     WPI_FILTER_MULTICAST);
2817 		break;
2818 	case IEEE80211_M_HOSTAP:
2819 		sc->config.mode = WPI_MODE_HOSTAP;
2820 		break;
2821 	case IEEE80211_M_MONITOR:
2822 		sc->config.mode = WPI_MODE_MONITOR;
2823 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2824 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2825 		break;
2826 	default:
2827 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2828 		return EINVAL;
2829 	}
2830 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2831 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2832 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2833 		sizeof (struct wpi_config), 0);
2834 	if (error != 0) {
2835 		device_printf(sc->sc_dev, "configure command failed\n");
2836 		return error;
2837 	}
2838 
2839 	/* configuration has changed, set Tx power accordingly */
2840 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2841 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2842 	    return error;
2843 	}
2844 
2845 	/* add broadcast node */
2846 	memset(&node, 0, sizeof node);
2847 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2848 	node.id = WPI_ID_BROADCAST;
2849 	node.rate = wpi_plcp_signal(2);
2850 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2851 	if (error != 0) {
2852 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2853 		return error;
2854 	}
2855 
2856 	/* Setup rate scalling */
2857 	error = wpi_mrr_setup(sc);
2858 	if (error != 0) {
2859 		device_printf(sc->sc_dev, "could not setup MRR\n");
2860 		return error;
2861 	}
2862 
2863 	return 0;
2864 }
2865 
2866 static void
2867 wpi_stop_master(struct wpi_softc *sc)
2868 {
2869 	uint32_t tmp;
2870 	int ntries;
2871 
2872 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2873 
2874 	tmp = WPI_READ(sc, WPI_RESET);
2875 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2876 
2877 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2878 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2879 		return;	/* already asleep */
2880 
2881 	for (ntries = 0; ntries < 100; ntries++) {
2882 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2883 			break;
2884 		DELAY(10);
2885 	}
2886 	if (ntries == 100) {
2887 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2888 	}
2889 }
2890 
2891 static int
2892 wpi_power_up(struct wpi_softc *sc)
2893 {
2894 	uint32_t tmp;
2895 	int ntries;
2896 
2897 	wpi_mem_lock(sc);
2898 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2899 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2900 	wpi_mem_unlock(sc);
2901 
2902 	for (ntries = 0; ntries < 5000; ntries++) {
2903 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2904 			break;
2905 		DELAY(10);
2906 	}
2907 	if (ntries == 5000) {
2908 		device_printf(sc->sc_dev,
2909 		    "timeout waiting for NIC to power up\n");
2910 		return ETIMEDOUT;
2911 	}
2912 	return 0;
2913 }
2914 
2915 static int
2916 wpi_reset(struct wpi_softc *sc)
2917 {
2918 	uint32_t tmp;
2919 	int ntries;
2920 
2921 	DPRINTFN(WPI_DEBUG_HW,
2922 	    ("Resetting the card - clearing any uploaded firmware\n"));
2923 
2924 	/* clear any pending interrupts */
2925 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2926 
2927 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2928 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2929 
2930 	tmp = WPI_READ(sc, WPI_CHICKEN);
2931 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2932 
2933 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2934 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2935 
2936 	/* wait for clock stabilization */
2937 	for (ntries = 0; ntries < 25000; ntries++) {
2938 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2939 			break;
2940 		DELAY(10);
2941 	}
2942 	if (ntries == 25000) {
2943 		device_printf(sc->sc_dev,
2944 		    "timeout waiting for clock stabilization\n");
2945 		return ETIMEDOUT;
2946 	}
2947 
2948 	/* initialize EEPROM */
2949 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2950 
2951 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2952 		device_printf(sc->sc_dev, "EEPROM not found\n");
2953 		return EIO;
2954 	}
2955 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2956 
2957 	return 0;
2958 }
2959 
2960 static void
2961 wpi_hw_config(struct wpi_softc *sc)
2962 {
2963 	uint32_t rev, hw;
2964 
2965 	/* voodoo from the Linux "driver".. */
2966 	hw = WPI_READ(sc, WPI_HWCONFIG);
2967 
2968 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2969 	if ((rev & 0xc0) == 0x40)
2970 		hw |= WPI_HW_ALM_MB;
2971 	else if (!(rev & 0x80))
2972 		hw |= WPI_HW_ALM_MM;
2973 
2974 	if (sc->cap == 0x80)
2975 		hw |= WPI_HW_SKU_MRC;
2976 
2977 	hw &= ~WPI_HW_REV_D;
2978 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2979 		hw |= WPI_HW_REV_D;
2980 
2981 	if (sc->type > 1)
2982 		hw |= WPI_HW_TYPE_B;
2983 
2984 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2985 }
2986 
2987 static void
2988 wpi_rfkill_resume(struct wpi_softc *sc)
2989 {
2990 	struct ifnet *ifp = sc->sc_ifp;
2991 	struct ieee80211com *ic = ifp->if_l2com;
2992 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2993 	int ntries;
2994 
2995 	/* enable firmware again */
2996 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2997 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2998 
2999 	/* wait for thermal sensors to calibrate */
3000 	for (ntries = 0; ntries < 1000; ntries++) {
3001 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3002 			break;
3003 		DELAY(10);
3004 	}
3005 
3006 	if (ntries == 1000) {
3007 		device_printf(sc->sc_dev,
3008 		    "timeout waiting for thermal calibration\n");
3009 		return;
3010 	}
3011 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3012 
3013 	if (wpi_config(sc) != 0) {
3014 		device_printf(sc->sc_dev, "device config failed\n");
3015 		return;
3016 	}
3017 
3018 	ifp->if_flags &= ~IFF_OACTIVE;
3019 	ifp->if_flags |= IFF_RUNNING;
3020 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3021 
3022 	if (vap != NULL) {
3023 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3024 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3025 				ieee80211_beacon_miss(ic);
3026 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3027 			} else
3028 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3029 		} else {
3030 			ieee80211_scan_next(vap);
3031 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3032 		}
3033 	}
3034 
3035 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3036 }
3037 
3038 static void
3039 wpi_init_locked(struct wpi_softc *sc, int force)
3040 {
3041 	struct ifnet *ifp = sc->sc_ifp;
3042 	uint32_t tmp;
3043 	int ntries, qid;
3044 
3045 	wpi_stop_locked(sc);
3046 	(void)wpi_reset(sc);
3047 
3048 	wpi_mem_lock(sc);
3049 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3050 	DELAY(20);
3051 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3052 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3053 	wpi_mem_unlock(sc);
3054 
3055 	(void)wpi_power_up(sc);
3056 	wpi_hw_config(sc);
3057 
3058 	/* init Rx ring */
3059 	wpi_mem_lock(sc);
3060 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3061 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3062 	    offsetof(struct wpi_shared, next));
3063 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3064 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3065 	wpi_mem_unlock(sc);
3066 
3067 	/* init Tx rings */
3068 	wpi_mem_lock(sc);
3069 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3070 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3071 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3072 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3073 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3074 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3075 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3076 
3077 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3078 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3079 
3080 	for (qid = 0; qid < 6; qid++) {
3081 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3082 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3083 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3084 	}
3085 	wpi_mem_unlock(sc);
3086 
3087 	/* clear "radio off" and "disable command" bits (reversed logic) */
3088 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3089 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3090 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3091 
3092 	/* clear any pending interrupts */
3093 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3094 
3095 	/* enable interrupts */
3096 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3097 
3098 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3099 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100 
3101 	if ((wpi_load_firmware(sc)) != 0) {
3102 	    device_printf(sc->sc_dev,
3103 		"A problem occurred loading the firmware to the driver\n");
3104 	    return;
3105 	}
3106 
3107 	/* At this point the firmware is up and running. If the hardware
3108 	 * RF switch is turned off thermal calibration will fail, though
3109 	 * the card is still happy to continue to accept commands, catch
3110 	 * this case and schedule a task to watch for it to be turned on.
3111 	 */
3112 	wpi_mem_lock(sc);
3113 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3114 	wpi_mem_unlock(sc);
3115 
3116 	if (!(tmp & 0x1)) {
3117 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3118 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3119 		goto out;
3120 	}
3121 
3122 	/* wait for thermal sensors to calibrate */
3123 	for (ntries = 0; ntries < 1000; ntries++) {
3124 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3125 			break;
3126 		DELAY(10);
3127 	}
3128 
3129 	if (ntries == 1000) {
3130 		device_printf(sc->sc_dev,
3131 		    "timeout waiting for thermal sensors calibration\n");
3132 		return;
3133 	}
3134 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3135 
3136 	if (wpi_config(sc) != 0) {
3137 		device_printf(sc->sc_dev, "device config failed\n");
3138 		return;
3139 	}
3140 
3141 	ifp->if_flags &= ~IFF_OACTIVE;
3142 	ifp->if_flags |= IFF_RUNNING;
3143 out:
3144 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3145 }
3146 
3147 static void
3148 wpi_init(void *arg)
3149 {
3150 	struct wpi_softc *sc = arg;
3151 	struct ifnet *ifp = sc->sc_ifp;
3152 	struct ieee80211com *ic = ifp->if_l2com;
3153 
3154 	wpi_init_locked(sc, 0);
3155 
3156 	if (ifp->if_flags & IFF_RUNNING)
3157 		ieee80211_start_all(ic);		/* start all vaps */
3158 }
3159 
3160 static void
3161 wpi_stop_locked(struct wpi_softc *sc)
3162 {
3163 	struct ifnet *ifp = sc->sc_ifp;
3164 	uint32_t tmp;
3165 	int ac;
3166 
3167 	sc->sc_tx_timer = 0;
3168 	sc->sc_scan_timer = 0;
3169 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3170 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3171 	callout_stop(&sc->watchdog_to_callout);
3172 	callout_stop(&sc->calib_to_callout);
3173 
3174 
3175 	/* disable interrupts */
3176 	WPI_WRITE(sc, WPI_MASK, 0);
3177 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3178 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3179 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3180 
3181 	wpi_mem_lock(sc);
3182 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3183 	wpi_mem_unlock(sc);
3184 
3185 	/* reset all Tx rings */
3186 	for (ac = 0; ac < 4; ac++)
3187 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3188 	wpi_reset_tx_ring(sc, &sc->cmdq);
3189 
3190 	/* reset Rx ring */
3191 	wpi_reset_rx_ring(sc, &sc->rxq);
3192 
3193 	wpi_mem_lock(sc);
3194 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3195 	wpi_mem_unlock(sc);
3196 
3197 	DELAY(5);
3198 
3199 	wpi_stop_master(sc);
3200 
3201 	tmp = WPI_READ(sc, WPI_RESET);
3202 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3203 	sc->flags &= ~WPI_FLAG_BUSY;
3204 }
3205 
3206 static void
3207 wpi_stop(struct wpi_softc *sc)
3208 {
3209 	wpi_stop_locked(sc);
3210 }
3211 
3212 static void
3213 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3214 {
3215 	/* XXX move */
3216 	ieee80211_ratectl_node_init(ni);
3217 }
3218 
3219 static void
3220 wpi_calib_timeout_callout(void *arg)
3221 {
3222 	struct wpi_softc *sc = arg;
3223 	struct ifnet *ifp = sc->sc_ifp;
3224 	struct ieee80211com *ic = ifp->if_l2com;
3225 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3226 	int temp;
3227 
3228 	if (vap->iv_state != IEEE80211_S_RUN)
3229 		return;
3230 
3231 	/* update sensor data */
3232 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3233 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3234 
3235 	wpi_power_calibration(sc, temp);
3236 
3237 	callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
3238 }
3239 
3240 /*
3241  * This function is called periodically (every 60 seconds) to adjust output
3242  * power to temperature changes.
3243  */
3244 static void
3245 wpi_power_calibration(struct wpi_softc *sc, int temp)
3246 {
3247 	struct ifnet *ifp = sc->sc_ifp;
3248 	struct ieee80211com *ic = ifp->if_l2com;
3249 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3250 
3251 	/* sanity-check read value */
3252 	if (temp < -260 || temp > 25) {
3253 		/* this can't be correct, ignore */
3254 		DPRINTFN(WPI_DEBUG_TEMP,
3255 		    ("out-of-range temperature reported: %d\n", temp));
3256 		return;
3257 	}
3258 
3259 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3260 
3261 	/* adjust Tx power if need be */
3262 	if (abs(temp - sc->temp) <= 6)
3263 		return;
3264 
3265 	sc->temp = temp;
3266 
3267 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3268 		/* just warn, too bad for the automatic calibration... */
3269 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3270 	}
3271 }
3272 
3273 /**
3274  * Read the eeprom to find out what channels are valid for the given
3275  * band and update net80211 with what we find.
3276  */
3277 static void
3278 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3279 {
3280 	struct ifnet *ifp = sc->sc_ifp;
3281 	struct ieee80211com *ic = ifp->if_l2com;
3282 	const struct wpi_chan_band *band = &wpi_bands[n];
3283 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3284 	struct ieee80211_channel *c;
3285 	int chan, i, passive;
3286 
3287 	wpi_read_prom_data(sc, band->addr, channels,
3288 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3289 
3290 	for (i = 0; i < band->nchan; i++) {
3291 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3292 			DPRINTFN(WPI_DEBUG_HW,
3293 			    ("Channel Not Valid: %d, band %d\n",
3294 			     band->chan[i],n));
3295 			continue;
3296 		}
3297 
3298 		passive = 0;
3299 		chan = band->chan[i];
3300 		c = &ic->ic_channels[ic->ic_nchans++];
3301 
3302 		/* is active scan allowed on this channel? */
3303 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3304 			passive = IEEE80211_CHAN_PASSIVE;
3305 		}
3306 
3307 		if (n == 0) {	/* 2GHz band */
3308 			c->ic_ieee = chan;
3309 			c->ic_freq = ieee80211_ieee2mhz(chan,
3310 			    IEEE80211_CHAN_2GHZ);
3311 			c->ic_flags = IEEE80211_CHAN_B | passive;
3312 
3313 			c = &ic->ic_channels[ic->ic_nchans++];
3314 			c->ic_ieee = chan;
3315 			c->ic_freq = ieee80211_ieee2mhz(chan,
3316 			    IEEE80211_CHAN_2GHZ);
3317 			c->ic_flags = IEEE80211_CHAN_G | passive;
3318 
3319 		} else {	/* 5GHz band */
3320 			/*
3321 			 * Some 3945ABG adapters support channels 7, 8, 11
3322 			 * and 12 in the 2GHz *and* 5GHz bands.
3323 			 * Because of limitations in our net80211(9) stack,
3324 			 * we can't support these channels in 5GHz band.
3325 			 * XXX not true; just need to map to proper frequency
3326 			 */
3327 			if (chan <= 14)
3328 				continue;
3329 
3330 			c->ic_ieee = chan;
3331 			c->ic_freq = ieee80211_ieee2mhz(chan,
3332 			    IEEE80211_CHAN_5GHZ);
3333 			c->ic_flags = IEEE80211_CHAN_A | passive;
3334 		}
3335 
3336 		/* save maximum allowed power for this channel */
3337 		sc->maxpwr[chan] = channels[i].maxpwr;
3338 
3339 #if 0
3340 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3341 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3342 		//ic->ic_channels[chan].ic_minpower...
3343 		//ic->ic_channels[chan].ic_maxregtxpower...
3344 #endif
3345 
3346 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3347 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3348 		    channels[i].flags, sc->maxpwr[chan],
3349 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3350 		    ic->ic_nchans));
3351 	}
3352 }
3353 
3354 static void
3355 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3356 {
3357 	struct wpi_power_group *group = &sc->groups[n];
3358 	struct wpi_eeprom_group rgroup;
3359 	int i;
3360 
3361 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3362 	    sizeof rgroup);
3363 
3364 	/* save power group information */
3365 	group->chan   = rgroup.chan;
3366 	group->maxpwr = rgroup.maxpwr;
3367 	/* temperature at which the samples were taken */
3368 	group->temp   = (int16_t)le16toh(rgroup.temp);
3369 
3370 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3371 		    group->chan, group->maxpwr, group->temp));
3372 
3373 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3374 		group->samples[i].index = rgroup.samples[i].index;
3375 		group->samples[i].power = rgroup.samples[i].power;
3376 
3377 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3378 			    group->samples[i].index, group->samples[i].power));
3379 	}
3380 }
3381 
3382 /*
3383  * Update Tx power to match what is defined for channel `c'.
3384  */
3385 static int
3386 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3387 {
3388 	struct ifnet *ifp = sc->sc_ifp;
3389 	struct ieee80211com *ic = ifp->if_l2com;
3390 	struct wpi_power_group *group;
3391 	struct wpi_cmd_txpower txpower;
3392 	u_int chan;
3393 	int i;
3394 
3395 	/* get channel number */
3396 	chan = ieee80211_chan2ieee(ic, c);
3397 
3398 	/* find the power group to which this channel belongs */
3399 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3400 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3401 			if (chan <= group->chan)
3402 				break;
3403 	} else
3404 		group = &sc->groups[0];
3405 
3406 	memset(&txpower, 0, sizeof txpower);
3407 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3408 	txpower.channel = htole16(chan);
3409 
3410 	/* set Tx power for all OFDM and CCK rates */
3411 	for (i = 0; i <= 11 ; i++) {
3412 		/* retrieve Tx power for this channel/rate combination */
3413 		int idx = wpi_get_power_index(sc, group, c,
3414 		    wpi_ridx_to_rate[i]);
3415 
3416 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3417 
3418 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3419 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3420 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3421 		} else {
3422 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3423 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3424 		}
3425 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3426 			    chan, wpi_ridx_to_rate[i], idx));
3427 	}
3428 
3429 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3430 }
3431 
3432 /*
3433  * Determine Tx power index for a given channel/rate combination.
3434  * This takes into account the regulatory information from EEPROM and the
3435  * current temperature.
3436  */
3437 static int
3438 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3439     struct ieee80211_channel *c, int rate)
3440 {
3441 /* fixed-point arithmetic division using a n-bit fractional part */
3442 #define fdivround(a, b, n)      \
3443 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3444 
3445 /* linear interpolation */
3446 #define interpolate(x, x1, y1, x2, y2, n)       \
3447 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3448 
3449 	struct ifnet *ifp = sc->sc_ifp;
3450 	struct ieee80211com *ic = ifp->if_l2com;
3451 	struct wpi_power_sample *sample;
3452 	int pwr, idx;
3453 	u_int chan;
3454 
3455 	/* get channel number */
3456 	chan = ieee80211_chan2ieee(ic, c);
3457 
3458 	/* default power is group's maximum power - 3dB */
3459 	pwr = group->maxpwr / 2;
3460 
3461 	/* decrease power for highest OFDM rates to reduce distortion */
3462 	switch (rate) {
3463 		case 72:	/* 36Mb/s */
3464 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3465 			break;
3466 		case 96:	/* 48Mb/s */
3467 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3468 			break;
3469 		case 108:	/* 54Mb/s */
3470 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3471 			break;
3472 	}
3473 
3474 	/* never exceed channel's maximum allowed Tx power */
3475 	pwr = min(pwr, sc->maxpwr[chan]);
3476 
3477 	/* retrieve power index into gain tables from samples */
3478 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3479 		if (pwr > sample[1].power)
3480 			break;
3481 	/* fixed-point linear interpolation using a 19-bit fractional part */
3482 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3483 	    sample[1].power, sample[1].index, 19);
3484 
3485 	/*
3486 	 *  Adjust power index based on current temperature
3487 	 *	- if colder than factory-calibrated: decreate output power
3488 	 *	- if warmer than factory-calibrated: increase output power
3489 	 */
3490 	idx -= (sc->temp - group->temp) * 11 / 100;
3491 
3492 	/* decrease power for CCK rates (-5dB) */
3493 	if (!WPI_RATE_IS_OFDM(rate))
3494 		idx += 10;
3495 
3496 	/* keep power index in a valid range */
3497 	if (idx < 0)
3498 		return 0;
3499 	if (idx > WPI_MAX_PWR_INDEX)
3500 		return WPI_MAX_PWR_INDEX;
3501 	return idx;
3502 
3503 #undef interpolate
3504 #undef fdivround
3505 }
3506 
3507 /**
3508  * Called by net80211 framework to indicate that a scan
3509  * is starting. This function doesn't actually do the scan,
3510  * wpi_scan_curchan starts things off. This function is more
3511  * of an early warning from the framework we should get ready
3512  * for the scan.
3513  */
3514 static void
3515 wpi_scan_start(struct ieee80211com *ic)
3516 {
3517 	struct ifnet *ifp = ic->ic_ifp;
3518 	struct wpi_softc *sc = ifp->if_softc;
3519 
3520 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3521 }
3522 
3523 /**
3524  * Called by the net80211 framework, indicates that the
3525  * scan has ended. If there is a scan in progress on the card
3526  * then it should be aborted.
3527  */
3528 static void
3529 wpi_scan_end(struct ieee80211com *ic)
3530 {
3531 	/* XXX ignore */
3532 }
3533 
3534 /**
3535  * Called by the net80211 framework to indicate to the driver
3536  * that the channel should be changed
3537  */
3538 static void
3539 wpi_set_channel(struct ieee80211com *ic)
3540 {
3541 	struct ifnet *ifp = ic->ic_ifp;
3542 	struct wpi_softc *sc = ifp->if_softc;
3543 	int error;
3544 
3545 	/*
3546 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3547 	 * are already taken care of by their respective firmware commands.
3548 	 */
3549 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3550 		error = wpi_config(sc);
3551 		if (error != 0)
3552 			device_printf(sc->sc_dev,
3553 			    "error %d settting channel\n", error);
3554 	}
3555 }
3556 
3557 /**
3558  * Called by net80211 to indicate that we need to scan the current
3559  * channel. The channel is previously be set via the wpi_set_channel
3560  * callback.
3561  */
3562 static void
3563 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3564 {
3565 	struct ieee80211vap *vap = ss->ss_vap;
3566 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3567 	struct wpi_softc *sc = ifp->if_softc;
3568 
3569 	if (wpi_scan(sc))
3570 		ieee80211_cancel_scan(vap);
3571 }
3572 
3573 /**
3574  * Called by the net80211 framework to indicate
3575  * the minimum dwell time has been met, terminate the scan.
3576  * We don't actually terminate the scan as the firmware will notify
3577  * us when it's finished and we have no way to interrupt it.
3578  */
3579 static void
3580 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3581 {
3582 	/* NB: don't try to abort scan; wait for firmware to finish */
3583 }
3584 
3585 static void
3586 wpi_hwreset_task(void *arg, int pending)
3587 {
3588 	struct wpi_softc *sc;
3589 
3590 	wlan_serialize_enter();
3591 	sc = arg;
3592 	wpi_init_locked(sc, 0);
3593 	wlan_serialize_exit();
3594 }
3595 
3596 static void
3597 wpi_rfreset_task(void *arg, int pending)
3598 {
3599 	struct wpi_softc *sc;
3600 
3601 	wlan_serialize_enter();
3602 	sc = arg;
3603 	wpi_rfkill_resume(sc);
3604 	wlan_serialize_exit();
3605 }
3606 
3607 /*
3608  * Allocate DMA-safe memory for firmware transfer.
3609  */
3610 static int
3611 wpi_alloc_fwmem(struct wpi_softc *sc)
3612 {
3613 	/* allocate enough contiguous space to store text and data */
3614 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3615 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3616 	    BUS_DMA_NOWAIT);
3617 }
3618 
3619 static void
3620 wpi_free_fwmem(struct wpi_softc *sc)
3621 {
3622 	wpi_dma_contig_free(&sc->fw_dma);
3623 }
3624 
3625 /**
3626  * Called every second, wpi_watchdog_callout used by the watch dog timer
3627  * to check that the card is still alive
3628  */
3629 static void
3630 wpi_watchdog_callout(void *arg)
3631 {
3632 	struct wpi_softc *sc;
3633 	struct ifnet *ifp;
3634 	struct ieee80211com *ic;
3635 	uint32_t tmp;
3636 
3637 	wlan_serialize_enter();
3638 	sc = arg;
3639 	ifp = sc->sc_ifp;
3640 	ic = ifp->if_l2com;
3641 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3642 
3643 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3644 		/* No need to lock firmware memory */
3645 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3646 
3647 		if ((tmp & 0x1) == 0) {
3648 			/* Radio kill switch is still off */
3649 			callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3650 			wlan_serialize_exit();
3651 			return;
3652 		}
3653 
3654 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3655 		ieee80211_runtask(ic, &sc->sc_radiotask);
3656 		wlan_serialize_exit();
3657 		return;
3658 	}
3659 
3660 	if (sc->sc_tx_timer > 0) {
3661 		if (--sc->sc_tx_timer == 0) {
3662 			device_printf(sc->sc_dev,"device timeout\n");
3663 			ifp->if_oerrors++;
3664 			wlan_serialize_exit();
3665 			ieee80211_runtask(ic, &sc->sc_restarttask);
3666 			wlan_serialize_enter();
3667 		}
3668 	}
3669 	if (sc->sc_scan_timer > 0) {
3670 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3671 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3672 			device_printf(sc->sc_dev,"scan timeout\n");
3673 			ieee80211_cancel_scan(vap);
3674 			wlan_serialize_exit();
3675 			ieee80211_runtask(ic, &sc->sc_restarttask);
3676 			wlan_serialize_enter();
3677 		}
3678 	}
3679 
3680 	if (ifp->if_flags & IFF_RUNNING)
3681 		callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3682 
3683 	wlan_serialize_exit();
3684 }
3685 
3686 #ifdef WPI_DEBUG
3687 static const char *wpi_cmd_str(int cmd)
3688 {
3689 	switch (cmd) {
3690 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3691 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3692 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3693 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3694 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3695 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3696 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3697 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3698 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3699 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3700 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3701 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3702 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3703 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3704 
3705 	default:
3706 		KASSERT(1, ("Unknown Command: %d", cmd));
3707 		return "UNKNOWN CMD";	/* Make the compiler happy */
3708 	}
3709 }
3710 #endif
3711 
3712 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3713 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3714 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3715 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3716