xref: /dragonfly/sys/dev/netif/wpi/if_wpi.c (revision b29f78b5)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include "opt_wlan.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #include <sys/stdbool.h>
81 #include <sys/rman.h>
82 
83 #include <bus/pci/pcireg.h>
84 #include <bus/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 #include <net/ifq_var.h>
95 
96 #include <netproto/802_11/ieee80211_var.h>
97 #include <netproto/802_11/ieee80211_radiotap.h>
98 #include <netproto/802_11/ieee80211_regdomain.h>
99 #include <netproto/802_11/ieee80211_ratectl.h>
100 
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip.h>
105 #include <netinet/if_ether.h>
106 
107 #include <dev/netif/wpi/if_wpireg.h>
108 #include <dev/netif/wpi/if_wpivar.h>
109 
110 #define WPI_DEBUG
111 
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)	do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)	do { if (wpi_debug & n) kprintf x; } while (0)
115 #define	WPI_DEBUG_SET	(wpi_debug != 0)
116 
117 enum {
118 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130 	WPI_DEBUG_ANY		= 0xffffffff
131 };
132 
133 static int wpi_debug;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136 
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET	0
141 #endif
142 
143 struct wpi_ident {
144 	uint16_t	vendor;
145 	uint16_t	device;
146 	uint16_t	subdevice;
147 	const char	*name;
148 };
149 
150 static const struct wpi_ident wpi_ident_table[] = {
151 	/* The below entries support ABG regardless of the subid */
152 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154 	/* The below entries only support BG */
155 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159 	{ 0, 0, 0, NULL }
160 };
161 
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
164 		    const uint8_t [IEEE80211_ADDR_LEN],
165 		    const uint8_t [IEEE80211_ADDR_LEN]);
166 static void	wpi_vap_delete(struct ieee80211vap *);
167 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 		    void **, bus_size_t, bus_size_t, int);
169 static void	wpi_dma_contig_free(struct wpi_dma_info *);
170 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int	wpi_alloc_shared(struct wpi_softc *);
172 static void	wpi_free_shared(struct wpi_softc *);
173 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 		    int, int);
178 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
181 static void	wpi_mem_lock(struct wpi_softc *);
182 static void	wpi_mem_unlock(struct wpi_softc *);
183 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
184 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
185 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
186 		    const uint32_t *, int);
187 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
188 static int	wpi_alloc_fwmem(struct wpi_softc *);
189 static void	wpi_free_fwmem(struct wpi_softc *);
190 static int	wpi_load_firmware(struct wpi_softc *);
191 static void	wpi_unload_firmware(struct wpi_softc *);
192 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
193 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
194 		    struct wpi_rx_data *);
195 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
196 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
197 static void	wpi_notif_intr(struct wpi_softc *);
198 static void	wpi_intr(void *);
199 static uint8_t	wpi_plcp_signal(int);
200 static void	wpi_watchdog(void *);
201 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202 		    struct ieee80211_node *, int);
203 static void	wpi_start(struct ifnet *, struct ifaltq_subque *);
204 static void	wpi_start_locked(struct ifnet *);
205 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
206 		    const struct ieee80211_bpf_params *);
207 static void	wpi_scan_start(struct ieee80211com *);
208 static void	wpi_scan_end(struct ieee80211com *);
209 static void	wpi_set_channel(struct ieee80211com *);
210 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
211 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
212 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
213 static void	wpi_read_eeprom(struct wpi_softc *,
214 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
215 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
216 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
217 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
218 static int	wpi_wme_update(struct ieee80211com *);
219 static int	wpi_mrr_setup(struct wpi_softc *);
220 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
221 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
222 #if 0
223 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
224 #endif
225 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
226 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
227 static int	wpi_scan(struct wpi_softc *);
228 static int	wpi_config(struct wpi_softc *);
229 static void	wpi_stop_master(struct wpi_softc *);
230 static int	wpi_power_up(struct wpi_softc *);
231 static int	wpi_reset(struct wpi_softc *);
232 static void	wpi_hwreset(void *, int);
233 static void	wpi_rfreset(void *, int);
234 static void	wpi_hw_config(struct wpi_softc *);
235 static void	wpi_init(void *);
236 static void	wpi_init_locked(struct wpi_softc *, int);
237 static void	wpi_stop(struct wpi_softc *);
238 static void	wpi_stop_locked(struct wpi_softc *);
239 
240 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
241 		    int);
242 static void	wpi_calib_timeout(void *);
243 static void	wpi_power_calibration(struct wpi_softc *, int);
244 static int	wpi_get_power_index(struct wpi_softc *,
245 		    struct wpi_power_group *, struct ieee80211_channel *, int);
246 #ifdef WPI_DEBUG
247 static const char *wpi_cmd_str(int);
248 #endif
249 static int wpi_probe(device_t);
250 static int wpi_attach(device_t);
251 static int wpi_detach(device_t);
252 static int wpi_shutdown(device_t);
253 static int wpi_suspend(device_t);
254 static int wpi_resume(device_t);
255 
256 #if defined(__DragonFly__)
257 static int  wpi_sleep(struct wpi_softc *sc, void *wchan,
258 		int flags, const char *wmsg, int timo);
259 #endif
260 
261 static device_method_t wpi_methods[] = {
262 	/* Device interface */
263 	DEVMETHOD(device_probe,		wpi_probe),
264 	DEVMETHOD(device_attach,	wpi_attach),
265 	DEVMETHOD(device_detach,	wpi_detach),
266 	DEVMETHOD(device_shutdown,	wpi_shutdown),
267 	DEVMETHOD(device_suspend,	wpi_suspend),
268 	DEVMETHOD(device_resume,	wpi_resume),
269 
270 	DEVMETHOD_END
271 };
272 
273 static driver_t wpi_driver = {
274 	"wpi",
275 	wpi_methods,
276 	sizeof (struct wpi_softc)
277 };
278 
279 static devclass_t wpi_devclass;
280 
281 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282 
283 MODULE_VERSION(wpi, 1);
284 
285 static const uint8_t wpi_ridx_to_plcp[] = {
286 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
287 	/* R1-R4 (ral/ural is R4-R1) */
288 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
289 	/* CCK: device-dependent */
290 	10, 20, 55, 110
291 };
292 
293 static const uint8_t wpi_ridx_to_rate[] = {
294 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
295 	2, 4, 11, 22 /*CCK */
296 };
297 
298 static int
299 wpi_probe(device_t dev)
300 {
301 	const struct wpi_ident *ident;
302 
303 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
304 		if (pci_get_vendor(dev) == ident->vendor &&
305 		    pci_get_device(dev) == ident->device) {
306 			device_set_desc(dev, ident->name);
307 			return (BUS_PROBE_DEFAULT);
308 		}
309 	}
310 	return ENXIO;
311 }
312 
313 /**
314  * Load the firmare image from disk to the allocated dma buffer.
315  * we also maintain the reference to the firmware pointer as there
316  * is times where we may need to reload the firmware but we are not
317  * in a context that can access the filesystem (ie taskq cause by restart)
318  *
319  * @return 0 on success, an errno on failure
320  */
321 static int
322 wpi_load_firmware(struct wpi_softc *sc)
323 {
324 	const struct firmware *fp;
325 	struct wpi_dma_info *dma = &sc->fw_dma;
326 	const struct wpi_firmware_hdr *hdr;
327 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
328 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
329 	int error;
330 
331 	DPRINTFN(WPI_DEBUG_FIRMWARE,
332 	    ("Attempting Loading Firmware from wpi_fw module\n"));
333 
334 	WPI_UNLOCK(sc);
335 
336 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337 		device_printf(sc->sc_dev,
338 		    "could not load firmware image 'wpifw'\n");
339 		error = ENOENT;
340 		WPI_LOCK(sc);
341 		goto fail;
342 	}
343 
344 	fp = sc->fw_fp;
345 
346 	WPI_LOCK(sc);
347 
348 	/* Validate the firmware is minimum a particular version */
349 	if (fp->version < WPI_FW_MINVERSION) {
350 	    device_printf(sc->sc_dev,
351 			   "firmware version is too old. Need %d, got %d\n",
352 			   WPI_FW_MINVERSION,
353 			   fp->version);
354 	    error = ENXIO;
355 	    goto fail;
356 	}
357 
358 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
359 		device_printf(sc->sc_dev,
360 		    "firmware file too short: %zu bytes\n", fp->datasize);
361 		error = ENXIO;
362 		goto fail;
363 	}
364 
365 	hdr = (const struct wpi_firmware_hdr *)fp->data;
366 
367 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
368 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
369 
370 	rtextsz = le32toh(hdr->rtextsz);
371 	rdatasz = le32toh(hdr->rdatasz);
372 	itextsz = le32toh(hdr->itextsz);
373 	idatasz = le32toh(hdr->idatasz);
374 	btextsz = le32toh(hdr->btextsz);
375 
376 	/* check that all firmware segments are present */
377 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
378 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
379 		device_printf(sc->sc_dev,
380 		    "firmware file too short: %zu bytes\n", fp->datasize);
381 		error = ENXIO; /* XXX appropriate error code? */
382 		goto fail;
383 	}
384 
385 	/* get pointers to firmware segments */
386 	rtext = (const uint8_t *)(hdr + 1);
387 	rdata = rtext + rtextsz;
388 	itext = rdata + rdatasz;
389 	idata = itext + itextsz;
390 	btext = idata + idatasz;
391 
392 	DPRINTFN(WPI_DEBUG_FIRMWARE,
393 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
394 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
395 	     (le32toh(hdr->version) & 0xff000000) >> 24,
396 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
397 	     (le32toh(hdr->version) & 0x0000ffff),
398 	     rtextsz, rdatasz,
399 	     itextsz, idatasz, btextsz));
400 
401 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
402 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
403 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
404 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
405 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
406 
407 	/* sanity checks */
408 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
409 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
410 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
411 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
412 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
413 	    (btextsz & 3) != 0) {
414 		device_printf(sc->sc_dev, "firmware invalid\n");
415 		error = EINVAL;
416 		goto fail;
417 	}
418 
419 	/* copy initialization images into pre-allocated DMA-safe memory */
420 	memcpy(dma->vaddr, idata, idatasz);
421 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
422 
423 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
424 
425 	/* tell adapter where to find initialization images */
426 	wpi_mem_lock(sc);
427 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
428 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
429 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
430 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
431 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
432 	wpi_mem_unlock(sc);
433 
434 	/* load firmware boot code */
435 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
436 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
437 	    goto fail;
438 	}
439 
440 	/* now press "execute" */
441 	WPI_WRITE(sc, WPI_RESET, 0);
442 
443 	/* wait at most one second for the first alive notification */
444 #if defined(__DragonFly__)
445 	if ((error = wpi_sleep(sc, sc, PCATCH, "wpiinit", hz)) != 0) {
446 		device_printf(sc->sc_dev,
447 		    "timeout waiting for adapter to initialize\n");
448 		goto fail;
449 	}
450 #else
451 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
452 		device_printf(sc->sc_dev,
453 		    "timeout waiting for adapter to initialize\n");
454 		goto fail;
455 	}
456 #endif
457 
458 	/* copy runtime images into pre-allocated DMA-sage memory */
459 	memcpy(dma->vaddr, rdata, rdatasz);
460 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
461 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
462 
463 	/* tell adapter where to find runtime images */
464 	wpi_mem_lock(sc);
465 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
466 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
467 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
468 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
469 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
470 	wpi_mem_unlock(sc);
471 
472 	/* wait at most one second for the first alive notification */
473 #if defined(__DragonFly__)
474 	if ((error = wpi_sleep(sc, sc, PCATCH, "wpiinit", hz)) != 0) {
475 		device_printf(sc->sc_dev,
476 		    "timeout waiting for adapter to initialize2\n");
477 		goto fail;
478 	}
479 #else
480 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
481 		device_printf(sc->sc_dev,
482 		    "timeout waiting for adapter to initialize2\n");
483 		goto fail;
484 	}
485 #endif
486 
487 	DPRINTFN(WPI_DEBUG_FIRMWARE,
488 	    ("Firmware loaded to driver successfully\n"));
489 	return error;
490 fail:
491 	wpi_unload_firmware(sc);
492 	return error;
493 }
494 
495 /**
496  * Free the referenced firmware image
497  */
498 static void
499 wpi_unload_firmware(struct wpi_softc *sc)
500 {
501 
502 	if (sc->fw_fp) {
503 		WPI_UNLOCK(sc);
504 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
505 		WPI_LOCK(sc);
506 		sc->fw_fp = NULL;
507 	}
508 }
509 
510 static int
511 wpi_attach(device_t dev)
512 {
513 	struct wpi_softc *sc = device_get_softc(dev);
514 	struct ifnet *ifp;
515 	struct ieee80211com *ic;
516 	int ac, error, rid, supportsa = 1;
517 	uint32_t tmp;
518 	const struct wpi_ident *ident;
519 	uint8_t macaddr[IEEE80211_ADDR_LEN];
520 
521 	sc->sc_dev = dev;
522 
523 	if (bootverbose || WPI_DEBUG_SET)
524 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
525 
526 	/*
527 	 * Some card's only support 802.11b/g not a, check to see if
528 	 * this is one such card. A 0x0 in the subdevice table indicates
529 	 * the entire subdevice range is to be ignored.
530 	 */
531 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
532 		if (ident->subdevice &&
533 		    pci_get_subdevice(dev) == ident->subdevice) {
534 		    supportsa = 0;
535 		    break;
536 		}
537 	}
538 
539 	/* Create the tasks that can be queued */
540 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
541 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
542 
543 	WPI_LOCK_INIT(sc);
544 
545 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
546 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
547 
548 	/* disable the retry timeout register */
549 	pci_write_config(dev, 0x41, 0, 1);
550 
551 	/* enable bus-mastering */
552 	pci_enable_busmaster(dev);
553 
554 	rid = PCIR_BAR(0);
555 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
556 	    RF_ACTIVE);
557 	if (sc->mem == NULL) {
558 		device_printf(dev, "could not allocate memory resource\n");
559 		error = ENOMEM;
560 		goto fail;
561 	}
562 
563 	sc->sc_st = rman_get_bustag(sc->mem);
564 	sc->sc_sh = rman_get_bushandle(sc->mem);
565 
566 	rid = 0;
567 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
568 	    RF_ACTIVE | RF_SHAREABLE);
569 	if (sc->irq == NULL) {
570 		device_printf(dev, "could not allocate interrupt resource\n");
571 		error = ENOMEM;
572 		goto fail;
573 	}
574 
575 	/*
576 	 * Allocate DMA memory for firmware transfers.
577 	 */
578 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
579 		kprintf(": could not allocate firmware memory\n");
580 		error = ENOMEM;
581 		goto fail;
582 	}
583 
584 	/*
585 	 * Put adapter into a known state.
586 	 */
587 	if ((error = wpi_reset(sc)) != 0) {
588 		device_printf(dev, "could not reset adapter\n");
589 		goto fail;
590 	}
591 
592 	wpi_mem_lock(sc);
593 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
594 	if (bootverbose || WPI_DEBUG_SET)
595 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
596 
597 	wpi_mem_unlock(sc);
598 
599 	/* Allocate shared page */
600 	if ((error = wpi_alloc_shared(sc)) != 0) {
601 		device_printf(dev, "could not allocate shared page\n");
602 		goto fail;
603 	}
604 
605 	/* tx data queues  - 4 for QoS purposes */
606 	for (ac = 0; ac < WME_NUM_AC; ac++) {
607 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
608 		if (error != 0) {
609 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
610 		    goto fail;
611 		}
612 	}
613 
614 	/* command queue to talk to the card's firmware */
615 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
616 	if (error != 0) {
617 		device_printf(dev, "could not allocate command ring\n");
618 		goto fail;
619 	}
620 
621 	/* receive data queue */
622 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
623 	if (error != 0) {
624 		device_printf(dev, "could not allocate Rx ring\n");
625 		goto fail;
626 	}
627 
628 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
629 	if (ifp == NULL) {
630 		device_printf(dev, "can not if_alloc()\n");
631 		error = ENOMEM;
632 		goto fail;
633 	}
634 	ic = ifp->if_l2com;
635 
636 	ic->ic_ifp = ifp;
637 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
638 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
639 
640 	/* set device capabilities */
641 	ic->ic_caps =
642 		  IEEE80211_C_STA		/* station mode supported */
643 		| IEEE80211_C_MONITOR		/* monitor mode supported */
644 		| IEEE80211_C_TXPMGT		/* tx power management */
645 		| IEEE80211_C_SHSLOT		/* short slot time supported */
646 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
647 		| IEEE80211_C_WPA		/* 802.11i */
648 /* XXX looks like WME is partly supported? */
649 #if 0
650 		| IEEE80211_C_IBSS		/* IBSS mode support */
651 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
652 		| IEEE80211_C_WME		/* 802.11e */
653 		| IEEE80211_C_HOSTAP		/* Host access point mode */
654 #endif
655 		;
656 
657 	/*
658 	 * Read in the eeprom and also setup the channels for
659 	 * net80211. We don't set the rates as net80211 does this for us
660 	 */
661 	wpi_read_eeprom(sc, macaddr);
662 
663 	if (bootverbose || WPI_DEBUG_SET) {
664 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
665 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
666 			  sc->type > 1 ? 'B': '?');
667 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
668 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
669 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
670 			  supportsa ? "does" : "does not");
671 
672 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
673 	       what sc->rev really represents - benjsc 20070615 */
674 	}
675 
676 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
677 	ifp->if_softc = sc;
678 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679 	ifp->if_init = wpi_init;
680 	ifp->if_ioctl = wpi_ioctl;
681 	ifp->if_start = wpi_start;
682 #if defined(__DragonFly__)
683 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
684 #else
685 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
686 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
687 	IFQ_SET_READY(&ifp->if_snd);
688 #endif
689 
690 	/* ieee80211_ifattach() assumes that WLAN serializer is held */
691 	wlan_serialize_enter();
692 	ieee80211_ifattach(ic, macaddr);
693 	wlan_serialize_exit();
694 	/* override default methods */
695 	ic->ic_raw_xmit = wpi_raw_xmit;
696 	ic->ic_wme.wme_update = wpi_wme_update;
697 	ic->ic_scan_start = wpi_scan_start;
698 	ic->ic_scan_end = wpi_scan_end;
699 	ic->ic_set_channel = wpi_set_channel;
700 	ic->ic_scan_curchan = wpi_scan_curchan;
701 	ic->ic_scan_mindwell = wpi_scan_mindwell;
702 
703 	ic->ic_vap_create = wpi_vap_create;
704 	ic->ic_vap_delete = wpi_vap_delete;
705 
706 	ieee80211_radiotap_attach(ic,
707 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
708 		WPI_TX_RADIOTAP_PRESENT,
709 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
710 		WPI_RX_RADIOTAP_PRESENT);
711 
712 	/*
713 	 * Hook our interrupt after all initialization is complete.
714 	 */
715 #if defined (__DragonFly__)
716 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
717 	    wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
718 #else
719 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
720 	    NULL, wpi_intr, sc, &sc->sc_ih);
721 #endif
722 	if (error != 0) {
723 		device_printf(dev, "could not set up interrupt\n");
724 		goto fail;
725 	}
726 
727 	if (bootverbose)
728 		ieee80211_announce(ic);
729 #ifdef XXX_DEBUG
730 	ieee80211_announce_channels(ic);
731 #endif
732 	return 0;
733 
734 fail:	wpi_detach(dev);
735 	return ENXIO;
736 }
737 
738 static int
739 wpi_detach(device_t dev)
740 {
741 	struct wpi_softc *sc = device_get_softc(dev);
742 	struct ifnet *ifp = sc->sc_ifp;
743 	struct ieee80211com *ic;
744 	int ac;
745 
746 	if (sc->irq != NULL)
747 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748 
749 	if (ifp != NULL) {
750 		ic = ifp->if_l2com;
751 
752 		ieee80211_draintask(ic, &sc->sc_restarttask);
753 		ieee80211_draintask(ic, &sc->sc_radiotask);
754 		wpi_stop(sc);
755 		callout_drain(&sc->watchdog_to);
756 		callout_drain(&sc->calib_to);
757 		ieee80211_ifdetach(ic);
758 	}
759 
760 	WPI_LOCK(sc);
761 	if (sc->txq[0].data_dmat) {
762 		for (ac = 0; ac < WME_NUM_AC; ac++)
763 			wpi_free_tx_ring(sc, &sc->txq[ac]);
764 
765 		wpi_free_tx_ring(sc, &sc->cmdq);
766 		wpi_free_rx_ring(sc, &sc->rxq);
767 		wpi_free_shared(sc);
768 	}
769 
770 	if (sc->fw_fp != NULL) {
771 		wpi_unload_firmware(sc);
772 	}
773 
774 	if (sc->fw_dma.tag)
775 		wpi_free_fwmem(sc);
776 	WPI_UNLOCK(sc);
777 
778 	if (sc->irq != NULL)
779 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
780 		    sc->irq);
781 	if (sc->mem != NULL)
782 		bus_release_resource(dev, SYS_RES_MEMORY,
783 		    rman_get_rid(sc->mem), sc->mem);
784 
785 	if (ifp != NULL)
786 		if_free(ifp);
787 
788 	WPI_LOCK_DESTROY(sc);
789 
790 	return 0;
791 }
792 
793 static struct ieee80211vap *
794 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
795     enum ieee80211_opmode opmode, int flags,
796     const uint8_t bssid[IEEE80211_ADDR_LEN],
797     const uint8_t mac[IEEE80211_ADDR_LEN])
798 {
799 	struct wpi_vap *wvp;
800 	struct ieee80211vap *vap;
801 
802 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
803 		return NULL;
804 	wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
805 	    M_80211_VAP, M_INTWAIT | M_ZERO);
806 	if (wvp == NULL)
807 		return NULL;
808 	vap = &wvp->vap;
809 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
810 	/* override with driver methods */
811 	wvp->newstate = vap->iv_newstate;
812 	vap->iv_newstate = wpi_newstate;
813 
814 	ieee80211_ratectl_init(vap);
815 	/* complete setup */
816 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
817 	ic->ic_opmode = opmode;
818 	return vap;
819 }
820 
821 static void
822 wpi_vap_delete(struct ieee80211vap *vap)
823 {
824 	struct wpi_vap *wvp = WPI_VAP(vap);
825 
826 	ieee80211_ratectl_deinit(vap);
827 	ieee80211_vap_detach(vap);
828 	kfree(wvp, M_80211_VAP);
829 }
830 
831 static void
832 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
833 {
834 	if (error != 0)
835 		return;
836 
837 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
838 
839 	*(bus_addr_t *)arg = segs[0].ds_addr;
840 }
841 
842 /*
843  * Allocates a contiguous block of dma memory of the requested size and
844  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
845  * allocations greater than 4096 may fail. Hence if the requested alignment is
846  * greater we allocate 'alignment' size extra memory and shift the vaddr and
847  * paddr after the dma load. This bypasses the problem at the cost of a little
848  * more memory.
849  */
850 static int
851 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
852     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
853 {
854 	int error;
855 	bus_size_t align;
856 	bus_size_t reqsize;
857 
858 	DPRINTFN(WPI_DEBUG_DMA,
859 	    ("Size: %zd - alignment %zd\n", size, alignment));
860 
861 	dma->size = size;
862 	dma->tag = NULL;
863 
864 	if (alignment > 4096) {
865 		align = PAGE_SIZE;
866 		reqsize = size + alignment;
867 	} else {
868 		align = alignment;
869 		reqsize = size;
870 	}
871 #if defined(__DragonFly__)
872 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
873 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
874 	    NULL, NULL, reqsize,
875 	    1, reqsize, flags,
876 	    &dma->tag);
877 #else
878 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
879 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
880 	    NULL, NULL, reqsize,
881 	    1, reqsize, flags,
882 	    NULL, NULL, &dma->tag);
883 #endif
884 	if (error != 0) {
885 		device_printf(sc->sc_dev,
886 		    "could not create shared page DMA tag\n");
887 		goto fail;
888 	}
889 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
890 	    flags | BUS_DMA_ZERO, &dma->map);
891 	if (error != 0) {
892 		device_printf(sc->sc_dev,
893 		    "could not allocate shared page DMA memory\n");
894 		goto fail;
895 	}
896 
897 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
898 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
899 
900 	/* Save the original pointers so we can free all the memory */
901 	dma->paddr = dma->paddr_start;
902 	dma->vaddr = dma->vaddr_start;
903 
904 	/*
905 	 * Check the alignment and increment by 4096 until we get the
906 	 * requested alignment. Fail if can't obtain the alignment
907 	 * we requested.
908 	 */
909 	if ((dma->paddr & (alignment -1 )) != 0) {
910 		int i;
911 
912 		for (i = 0; i < alignment / 4096; i++) {
913 			if ((dma->paddr & (alignment - 1 )) == 0)
914 				break;
915 			dma->paddr += 4096;
916 			dma->vaddr += 4096;
917 		}
918 		if (i == alignment / 4096) {
919 			device_printf(sc->sc_dev,
920 			    "alignment requirement was not satisfied\n");
921 			goto fail;
922 		}
923 	}
924 
925 	if (error != 0) {
926 		device_printf(sc->sc_dev,
927 		    "could not load shared page DMA map\n");
928 		goto fail;
929 	}
930 
931 	if (kvap != NULL)
932 		*kvap = dma->vaddr;
933 
934 	return 0;
935 
936 fail:
937 	wpi_dma_contig_free(dma);
938 	return error;
939 }
940 
941 static void
942 wpi_dma_contig_free(struct wpi_dma_info *dma)
943 {
944 	if (dma->tag) {
945 		if (dma->vaddr_start != NULL) {
946 			if (dma->paddr_start != 0) {
947 				bus_dmamap_sync(dma->tag, dma->map,
948 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
949 				bus_dmamap_unload(dma->tag, dma->map);
950 			}
951 			bus_dmamem_free(dma->tag, dma->vaddr_start, dma->map);
952 		}
953 		bus_dma_tag_destroy(dma->tag);
954 	}
955 }
956 
957 /*
958  * Allocate a shared page between host and NIC.
959  */
960 static int
961 wpi_alloc_shared(struct wpi_softc *sc)
962 {
963 	int error;
964 
965 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
966 	    (void **)&sc->shared, sizeof (struct wpi_shared),
967 	    PAGE_SIZE,
968 	    BUS_DMA_NOWAIT);
969 
970 	if (error != 0) {
971 		device_printf(sc->sc_dev,
972 		    "could not allocate shared area DMA memory\n");
973 	}
974 
975 	return error;
976 }
977 
978 static void
979 wpi_free_shared(struct wpi_softc *sc)
980 {
981 	wpi_dma_contig_free(&sc->shared_dma);
982 }
983 
984 static int
985 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
986 {
987 
988 	int i, error;
989 
990 	ring->cur = 0;
991 
992 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
993 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
994 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
995 
996 	if (error != 0) {
997 		device_printf(sc->sc_dev,
998 		    "%s: could not allocate rx ring DMA memory, error %d\n",
999 		    __func__, error);
1000 		goto fail;
1001 	}
1002 
1003 #if defined(__DragonFly__)
1004         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1005 	    BUS_SPACE_MAXADDR_32BIT,
1006             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1007             MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1008 #else
1009         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1010 	    BUS_SPACE_MAXADDR_32BIT,
1011             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1012             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
1013 #endif
1014         if (error != 0) {
1015                 device_printf(sc->sc_dev,
1016 		    "%s: bus_dma_tag_create_failed, error %d\n",
1017 		    __func__, error);
1018                 goto fail;
1019         }
1020 
1021 	/*
1022 	 * Setup Rx buffers.
1023 	 */
1024 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1025 		struct wpi_rx_data *data = &ring->data[i];
1026 		struct mbuf *m;
1027 		bus_addr_t paddr;
1028 
1029 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1030 		if (error != 0) {
1031 			device_printf(sc->sc_dev,
1032 			    "%s: bus_dmamap_create failed, error %d\n",
1033 			    __func__, error);
1034 			goto fail;
1035 		}
1036 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1037 		if (m == NULL) {
1038 			device_printf(sc->sc_dev,
1039 			   "%s: could not allocate rx mbuf\n", __func__);
1040 			error = ENOMEM;
1041 			goto fail;
1042 		}
1043 		/* map page */
1044 		error = bus_dmamap_load(ring->data_dmat, data->map,
1045 		    mtod(m, caddr_t), MJUMPAGESIZE,
1046 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1047 		if (error != 0 && error != EFBIG) {
1048 			device_printf(sc->sc_dev,
1049 			    "%s: bus_dmamap_load failed, error %d\n",
1050 			    __func__, error);
1051 			m_freem(m);
1052 			error = ENOMEM;	/* XXX unique code */
1053 			goto fail;
1054 		}
1055 		bus_dmamap_sync(ring->data_dmat, data->map,
1056 		    BUS_DMASYNC_PREWRITE);
1057 
1058 		data->m = m;
1059 		ring->desc[i] = htole32(paddr);
1060 	}
1061 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1062 	    BUS_DMASYNC_PREWRITE);
1063 	return 0;
1064 fail:
1065 	wpi_free_rx_ring(sc, ring);
1066 	return error;
1067 }
1068 
1069 static void
1070 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1071 {
1072 	int ntries;
1073 
1074 	wpi_mem_lock(sc);
1075 
1076 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1077 
1078 	for (ntries = 0; ntries < 100; ntries++) {
1079 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1080 			break;
1081 		DELAY(10);
1082 	}
1083 
1084 	wpi_mem_unlock(sc);
1085 
1086 #ifdef WPI_DEBUG
1087 	if (ntries == 100 && wpi_debug > 0)
1088 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1089 #endif
1090 
1091 	ring->cur = 0;
1092 }
1093 
1094 static void
1095 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1096 {
1097 	int i;
1098 
1099 	wpi_dma_contig_free(&ring->desc_dma);
1100 
1101 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1102 		struct wpi_rx_data *data = &ring->data[i];
1103 
1104 		if (data->m != NULL) {
1105 			bus_dmamap_sync(ring->data_dmat, data->map,
1106 			    BUS_DMASYNC_POSTREAD);
1107 			bus_dmamap_unload(ring->data_dmat, data->map);
1108 			m_freem(data->m);
1109 		}
1110 		if (data->map != NULL)
1111 			bus_dmamap_destroy(ring->data_dmat, data->map);
1112 	}
1113 }
1114 
1115 static int
1116 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1117 	int qid)
1118 {
1119 	struct wpi_tx_data *data;
1120 	int i, error;
1121 
1122 	ring->qid = qid;
1123 	ring->count = count;
1124 	ring->queued = 0;
1125 	ring->cur = 0;
1126 	ring->data = NULL;
1127 
1128 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1129 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1130 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1131 
1132 	if (error != 0) {
1133 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1134 	    goto fail;
1135 	}
1136 
1137 	/* update shared page with ring's base address */
1138 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1139 
1140 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1141 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1142 		BUS_DMA_NOWAIT);
1143 
1144 	if (error != 0) {
1145 		device_printf(sc->sc_dev,
1146 		    "could not allocate tx command DMA memory\n");
1147 		goto fail;
1148 	}
1149 
1150 	ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1151 	    M_INTWAIT | M_ZERO);
1152 	if (ring->data == NULL) {
1153 		device_printf(sc->sc_dev,
1154 		    "could not allocate tx data slots\n");
1155 		goto fail;
1156 	}
1157 
1158 #if defined(__DragonFly__)
1159 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1160 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1161 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT,
1162 	    &ring->data_dmat);
1163 #else
1164 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1165 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1166 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1167 	    &ring->data_dmat);
1168 #endif
1169 	if (error != 0) {
1170 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1171 		goto fail;
1172 	}
1173 
1174 	for (i = 0; i < count; i++) {
1175 		data = &ring->data[i];
1176 
1177 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1178 		if (error != 0) {
1179 			device_printf(sc->sc_dev,
1180 			    "could not create tx buf DMA map\n");
1181 			goto fail;
1182 		}
1183 		bus_dmamap_sync(ring->data_dmat, data->map,
1184 		    BUS_DMASYNC_PREWRITE);
1185 	}
1186 
1187 	return 0;
1188 
1189 fail:
1190 	wpi_free_tx_ring(sc, ring);
1191 	return error;
1192 }
1193 
1194 static void
1195 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1196 {
1197 	struct wpi_tx_data *data;
1198 	int i, ntries;
1199 
1200 	wpi_mem_lock(sc);
1201 
1202 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1203 	for (ntries = 0; ntries < 100; ntries++) {
1204 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1205 			break;
1206 		DELAY(10);
1207 	}
1208 #ifdef WPI_DEBUG
1209 	if (ntries == 100 && wpi_debug > 0)
1210 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1211 		    ring->qid);
1212 #endif
1213 	wpi_mem_unlock(sc);
1214 
1215 	for (i = 0; i < ring->count; i++) {
1216 		data = &ring->data[i];
1217 
1218 		if (data->m != NULL) {
1219 			bus_dmamap_unload(ring->data_dmat, data->map);
1220 			m_freem(data->m);
1221 			data->m = NULL;
1222 		}
1223 	}
1224 
1225 	ring->queued = 0;
1226 	ring->cur = 0;
1227 }
1228 
1229 static void
1230 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1231 {
1232 	struct wpi_tx_data *data;
1233 	int i;
1234 
1235 	wpi_dma_contig_free(&ring->desc_dma);
1236 	wpi_dma_contig_free(&ring->cmd_dma);
1237 
1238 	if (ring->data != NULL) {
1239 		for (i = 0; i < ring->count; i++) {
1240 			data = &ring->data[i];
1241 
1242 			if (data->m != NULL) {
1243 				bus_dmamap_sync(ring->data_dmat, data->map,
1244 				    BUS_DMASYNC_POSTWRITE);
1245 				bus_dmamap_unload(ring->data_dmat, data->map);
1246 				m_freem(data->m);
1247 				data->m = NULL;
1248 			}
1249 		}
1250 		kfree(ring->data, M_DEVBUF);
1251 	}
1252 
1253 	if (ring->data_dmat != NULL)
1254 		bus_dma_tag_destroy(ring->data_dmat);
1255 }
1256 
1257 static int
1258 wpi_shutdown(device_t dev)
1259 {
1260 	struct wpi_softc *sc = device_get_softc(dev);
1261 
1262 	WPI_LOCK(sc);
1263 	wpi_stop_locked(sc);
1264 	wpi_unload_firmware(sc);
1265 	WPI_UNLOCK(sc);
1266 
1267 	return 0;
1268 }
1269 
1270 static int
1271 wpi_suspend(device_t dev)
1272 {
1273 	struct wpi_softc *sc = device_get_softc(dev);
1274 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1275 
1276 	ieee80211_suspend_all(ic);
1277 	return 0;
1278 }
1279 
1280 static int
1281 wpi_resume(device_t dev)
1282 {
1283 	struct wpi_softc *sc = device_get_softc(dev);
1284 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1285 
1286 	pci_write_config(dev, 0x41, 0, 1);
1287 
1288 	ieee80211_resume_all(ic);
1289 	return 0;
1290 }
1291 
1292 /**
1293  * Called by net80211 when ever there is a change to 80211 state machine
1294  */
1295 static int
1296 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1297 {
1298 	struct wpi_vap *wvp = WPI_VAP(vap);
1299 	struct ieee80211com *ic = vap->iv_ic;
1300 	struct ifnet *ifp = ic->ic_ifp;
1301 	struct wpi_softc *sc = ifp->if_softc;
1302 	int error;
1303 
1304 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1305 		ieee80211_state_name[vap->iv_state],
1306 		ieee80211_state_name[nstate], sc->flags));
1307 
1308 	IEEE80211_UNLOCK(ic);
1309 	WPI_LOCK(sc);
1310 	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1311 		/*
1312 		 * On !INIT -> SCAN transitions, we need to clear any possible
1313 		 * knowledge about associations.
1314 		 */
1315 		error = wpi_config(sc);
1316 		if (error != 0) {
1317 			device_printf(sc->sc_dev,
1318 			    "%s: device config failed, error %d\n",
1319 			    __func__, error);
1320 		}
1321 	}
1322 	if (nstate == IEEE80211_S_AUTH ||
1323 	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1324 		/*
1325 		 * The node must be registered in the firmware before auth.
1326 		 * Also the associd must be cleared on RUN -> ASSOC
1327 		 * transitions.
1328 		 */
1329 		error = wpi_auth(sc, vap);
1330 		if (error != 0) {
1331 			device_printf(sc->sc_dev,
1332 			    "%s: could not move to auth state, error %d\n",
1333 			    __func__, error);
1334 		}
1335 	}
1336 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1337 		error = wpi_run(sc, vap);
1338 		if (error != 0) {
1339 			device_printf(sc->sc_dev,
1340 			    "%s: could not move to run state, error %d\n",
1341 			    __func__, error);
1342 		}
1343 	}
1344 	if (nstate == IEEE80211_S_RUN) {
1345 		/* RUN -> RUN transition; just restart the timers */
1346 		wpi_calib_timeout(sc);
1347 		/* XXX split out rate control timer */
1348 	}
1349 	WPI_UNLOCK(sc);
1350 	IEEE80211_LOCK(ic);
1351 	return wvp->newstate(vap, nstate, arg);
1352 }
1353 
1354 /*
1355  * Grab exclusive access to NIC memory.
1356  */
1357 static void
1358 wpi_mem_lock(struct wpi_softc *sc)
1359 {
1360 	int ntries;
1361 	uint32_t tmp;
1362 
1363 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1364 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1365 
1366 	/* spin until we actually get the lock */
1367 	for (ntries = 0; ntries < 100; ntries++) {
1368 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1369 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1370 			break;
1371 		DELAY(10);
1372 	}
1373 	if (ntries == 100)
1374 		device_printf(sc->sc_dev, "could not lock memory\n");
1375 }
1376 
1377 /*
1378  * Release lock on NIC memory.
1379  */
1380 static void
1381 wpi_mem_unlock(struct wpi_softc *sc)
1382 {
1383 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1384 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1385 }
1386 
1387 static uint32_t
1388 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1389 {
1390 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1391 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1392 }
1393 
1394 static void
1395 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1396 {
1397 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1398 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1399 }
1400 
1401 static void
1402 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1403     const uint32_t *data, int wlen)
1404 {
1405 	for (; wlen > 0; wlen--, data++, addr+=4)
1406 		wpi_mem_write(sc, addr, *data);
1407 }
1408 
1409 /*
1410  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1411  * using the traditional bit-bang method. Data is read up until len bytes have
1412  * been obtained.
1413  */
1414 static uint16_t
1415 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1416 {
1417 	int ntries;
1418 	uint32_t val;
1419 	uint8_t *out = data;
1420 
1421 	wpi_mem_lock(sc);
1422 
1423 	for (; len > 0; len -= 2, addr++) {
1424 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1425 
1426 		for (ntries = 0; ntries < 10; ntries++) {
1427 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1428 				break;
1429 			DELAY(5);
1430 		}
1431 
1432 		if (ntries == 10) {
1433 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1434 			return ETIMEDOUT;
1435 		}
1436 
1437 		*out++= val >> 16;
1438 		if (len > 1)
1439 			*out ++= val >> 24;
1440 	}
1441 
1442 	wpi_mem_unlock(sc);
1443 
1444 	return 0;
1445 }
1446 
1447 /*
1448  * The firmware text and data segments are transferred to the NIC using DMA.
1449  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1450  * where to find it.  Once the NIC has copied the firmware into its internal
1451  * memory, we can free our local copy in the driver.
1452  */
1453 static int
1454 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1455 {
1456 	int error, ntries;
1457 
1458 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1459 
1460 	size /= sizeof(uint32_t);
1461 
1462 	wpi_mem_lock(sc);
1463 
1464 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1465 	    (const uint32_t *)fw, size);
1466 
1467 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1468 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1469 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1470 
1471 	/* run microcode */
1472 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1473 
1474 	/* wait while the adapter is busy copying the firmware */
1475 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1476 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1477 		DPRINTFN(WPI_DEBUG_HW,
1478 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1479 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1480 		if (status & WPI_TX_IDLE(6)) {
1481 			DPRINTFN(WPI_DEBUG_HW,
1482 			    ("Status Match! - ntries = %d\n", ntries));
1483 			break;
1484 		}
1485 		DELAY(10);
1486 	}
1487 	if (ntries == 1000) {
1488 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1489 		error = ETIMEDOUT;
1490 	}
1491 
1492 	/* start the microcode executing */
1493 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1494 
1495 	wpi_mem_unlock(sc);
1496 
1497 	return (error);
1498 }
1499 
1500 static void
1501 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1502 	struct wpi_rx_data *data)
1503 {
1504 	struct ifnet *ifp = sc->sc_ifp;
1505 	struct ieee80211com *ic = ifp->if_l2com;
1506 	struct wpi_rx_ring *ring = &sc->rxq;
1507 	struct wpi_rx_stat *stat;
1508 	struct wpi_rx_head *head;
1509 	struct wpi_rx_tail *tail;
1510 	struct ieee80211_node *ni;
1511 	struct mbuf *m, *mnew;
1512 	bus_addr_t paddr;
1513 	int error;
1514 
1515 	stat = (struct wpi_rx_stat *)(desc + 1);
1516 
1517 	if (stat->len > WPI_STAT_MAXLEN) {
1518 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1519 #if defined(__DragonFly__)
1520 		IFNET_STAT_INC(ifp, ierrors, 1);
1521 #else
1522 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1523 #endif
1524 		return;
1525 	}
1526 
1527 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1528 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1529 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1530 
1531 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1532 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1533 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1534 	    (uintmax_t)le64toh(tail->tstamp)));
1535 
1536 	/* discard Rx frames with bad CRC early */
1537 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1538 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1539 		    le32toh(tail->flags)));
1540 #if defined(__DragonFly__)
1541 		IFNET_STAT_INC(ifp, ierrors, 1);
1542 #else
1543 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1544 #endif
1545 		return;
1546 	}
1547 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1548 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1549 		    le16toh(head->len)));
1550 #if defined(__DragonFly__)
1551 		IFNET_STAT_INC(ifp, ierrors, 1);
1552 #else
1553 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1554 #endif
1555 		return;
1556 	}
1557 
1558 	/* XXX don't need mbuf, just dma buffer */
1559 	mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1560 	if (mnew == NULL) {
1561 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1562 		    __func__));
1563 #if defined(__DragonFly__)
1564 		IFNET_STAT_INC(ifp, ierrors, 1);
1565 #else
1566 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1567 #endif
1568 		return;
1569 	}
1570 	bus_dmamap_unload(ring->data_dmat, data->map);
1571 
1572 	error = bus_dmamap_load(ring->data_dmat, data->map,
1573 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1574 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1575 	if (error != 0 && error != EFBIG) {
1576 		device_printf(sc->sc_dev,
1577 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1578 		m_freem(mnew);
1579 #if defined(__DragonFly__)
1580 		IFNET_STAT_INC(ifp, ierrors, 1);
1581 #else
1582 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1583 #endif
1584 		return;
1585 	}
1586 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1587 
1588 	/* finalize mbuf and swap in new one */
1589 	m = data->m;
1590 	m->m_pkthdr.rcvif = ifp;
1591 	m->m_data = (caddr_t)(head + 1);
1592 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1593 
1594 	data->m = mnew;
1595 	/* update Rx descriptor */
1596 	ring->desc[ring->cur] = htole32(paddr);
1597 
1598 	if (ieee80211_radiotap_active(ic)) {
1599 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1600 
1601 		tap->wr_flags = 0;
1602 		tap->wr_chan_freq =
1603 			htole16(ic->ic_channels[head->chan].ic_freq);
1604 		tap->wr_chan_flags =
1605 			htole16(ic->ic_channels[head->chan].ic_flags);
1606 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1607 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1608 		tap->wr_tsft = tail->tstamp;
1609 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1610 		switch (head->rate) {
1611 		/* CCK rates */
1612 		case  10: tap->wr_rate =   2; break;
1613 		case  20: tap->wr_rate =   4; break;
1614 		case  55: tap->wr_rate =  11; break;
1615 		case 110: tap->wr_rate =  22; break;
1616 		/* OFDM rates */
1617 		case 0xd: tap->wr_rate =  12; break;
1618 		case 0xf: tap->wr_rate =  18; break;
1619 		case 0x5: tap->wr_rate =  24; break;
1620 		case 0x7: tap->wr_rate =  36; break;
1621 		case 0x9: tap->wr_rate =  48; break;
1622 		case 0xb: tap->wr_rate =  72; break;
1623 		case 0x1: tap->wr_rate =  96; break;
1624 		case 0x3: tap->wr_rate = 108; break;
1625 		/* unknown rate: should not happen */
1626 		default:  tap->wr_rate =   0;
1627 		}
1628 		if (le16toh(head->flags) & 0x4)
1629 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1630 	}
1631 
1632 	WPI_UNLOCK(sc);
1633 
1634 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1635 	if (ni != NULL) {
1636 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1637 		ieee80211_free_node(ni);
1638 	} else
1639 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1640 
1641 	WPI_LOCK(sc);
1642 }
1643 
1644 static void
1645 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1646 {
1647 	struct ifnet *ifp = sc->sc_ifp;
1648 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1649 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1650 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1651 	struct ieee80211_node *ni = txdata->ni;
1652 	struct ieee80211vap *vap = ni->ni_vap;
1653 	int retrycnt = 0;
1654 
1655 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1656 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1657 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1658 	    le32toh(stat->status)));
1659 
1660 	/*
1661 	 * Update rate control statistics for the node.
1662 	 * XXX we should not count mgmt frames since they're always sent at
1663 	 * the lowest available bit-rate.
1664 	 * XXX frames w/o ACK shouldn't be used either
1665 	 */
1666 	if (stat->ntries > 0) {
1667 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1668 		retrycnt = 1;
1669 	}
1670 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1671 	    &retrycnt, NULL);
1672 
1673 	/* XXX oerrors should only count errors !maxtries */
1674 #if defined(__DragonFly__)
1675 	if ((le32toh(stat->status) & 0xff) != 1)
1676 		IFNET_STAT_INC(ifp, oerrors, 1);
1677 	else
1678 		IFNET_STAT_INC(ifp, opackets, 1);
1679 #else
1680 	if ((le32toh(stat->status) & 0xff) != 1)
1681 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1682 	else
1683 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1684 #endif
1685 
1686 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1687 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1688 	/* XXX handle M_TXCB? */
1689 	m_freem(txdata->m);
1690 	txdata->m = NULL;
1691 	ieee80211_free_node(txdata->ni);
1692 	txdata->ni = NULL;
1693 
1694 	ring->queued--;
1695 
1696 	sc->sc_tx_timer = 0;
1697 #if defined(__DragonFly__)
1698 	ifq_clr_oactive(&ifp->if_snd);
1699 #else
1700 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1701 #endif
1702 	wpi_start_locked(ifp);
1703 }
1704 
1705 static void
1706 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1707 {
1708 	struct wpi_tx_ring *ring = &sc->cmdq;
1709 	struct wpi_tx_data *data;
1710 
1711 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1712 				 "type=%s len=%d\n", desc->qid, desc->idx,
1713 				 desc->flags, wpi_cmd_str(desc->type),
1714 				 le32toh(desc->len)));
1715 
1716 	if ((desc->qid & 7) != 4)
1717 		return;	/* not a command ack */
1718 
1719 	data = &ring->data[desc->idx];
1720 
1721 	/* if the command was mapped in a mbuf, free it */
1722 	if (data->m != NULL) {
1723 		bus_dmamap_unload(ring->data_dmat, data->map);
1724 		m_freem(data->m);
1725 		data->m = NULL;
1726 	}
1727 
1728 	sc->flags &= ~WPI_FLAG_BUSY;
1729 	wakeup(&ring->cmd[desc->idx]);
1730 }
1731 
1732 static void
1733 wpi_notif_intr(struct wpi_softc *sc)
1734 {
1735 	struct ifnet *ifp = sc->sc_ifp;
1736 	struct ieee80211com *ic = ifp->if_l2com;
1737 	struct wpi_rx_desc *desc;
1738 	struct wpi_rx_data *data;
1739 	uint32_t hw;
1740 
1741 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1742 	    BUS_DMASYNC_POSTREAD);
1743 
1744 	hw = le32toh(sc->shared->next);
1745 	while (sc->rxq.cur != hw) {
1746 		data = &sc->rxq.data[sc->rxq.cur];
1747 
1748 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1749 		    BUS_DMASYNC_POSTREAD);
1750 		desc = (void *)data->m->m_ext.ext_buf;
1751 
1752 		DPRINTFN(WPI_DEBUG_NOTIFY,
1753 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1754 			  desc->qid,
1755 			  desc->idx,
1756 			  desc->flags,
1757 			  desc->type,
1758 			  le32toh(desc->len)));
1759 
1760 		if (!(desc->qid & 0x80))	/* reply to a command */
1761 			wpi_cmd_intr(sc, desc);
1762 
1763 		switch (desc->type) {
1764 		case WPI_RX_DONE:
1765 			/* a 802.11 frame was received */
1766 			wpi_rx_intr(sc, desc, data);
1767 			break;
1768 
1769 		case WPI_TX_DONE:
1770 			/* a 802.11 frame has been transmitted */
1771 			wpi_tx_intr(sc, desc);
1772 			break;
1773 
1774 		case WPI_UC_READY:
1775 		{
1776 			struct wpi_ucode_info *uc =
1777 				(struct wpi_ucode_info *)(desc + 1);
1778 
1779 			/* the microcontroller is ready */
1780 			DPRINTF(("microcode alive notification version %x "
1781 				"alive %x\n", le32toh(uc->version),
1782 				le32toh(uc->valid)));
1783 
1784 			if (le32toh(uc->valid) != 1) {
1785 				device_printf(sc->sc_dev,
1786 				    "microcontroller initialization failed\n");
1787 				wpi_stop_locked(sc);
1788 			}
1789 			break;
1790 		}
1791 		case WPI_STATE_CHANGED:
1792 		{
1793 			uint32_t *status = (uint32_t *)(desc + 1);
1794 
1795 			/* enabled/disabled notification */
1796 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1797 
1798 			if (le32toh(*status) & 1) {
1799 				device_printf(sc->sc_dev,
1800 				    "Radio transmitter is switched off\n");
1801 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1802 #if defined(__DragonFly__)
1803 				ifp->if_flags &= ~IFF_RUNNING;
1804 #else
1805 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1806 #endif
1807 				/* Disable firmware commands */
1808 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1809 			}
1810 			break;
1811 		}
1812 		case WPI_START_SCAN:
1813 		{
1814 #ifdef WPI_DEBUG
1815 			struct wpi_start_scan *scan =
1816 				(struct wpi_start_scan *)(desc + 1);
1817 #endif
1818 
1819 			DPRINTFN(WPI_DEBUG_SCANNING,
1820 				 ("scanning channel %d status %x\n",
1821 			    scan->chan, le32toh(scan->status)));
1822 			break;
1823 		}
1824 		case WPI_STOP_SCAN:
1825 		{
1826 #ifdef WPI_DEBUG
1827 			struct wpi_stop_scan *scan =
1828 				(struct wpi_stop_scan *)(desc + 1);
1829 #endif
1830 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1831 
1832 			DPRINTFN(WPI_DEBUG_SCANNING,
1833 			    ("scan finished nchan=%d status=%d chan=%d\n",
1834 			     scan->nchan, scan->status, scan->chan));
1835 
1836 			sc->sc_scan_timer = 0;
1837 			ieee80211_scan_next(vap);
1838 			break;
1839 		}
1840 		case WPI_MISSED_BEACON:
1841 		{
1842 			struct wpi_missed_beacon *beacon =
1843 				(struct wpi_missed_beacon *)(desc + 1);
1844 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1845 
1846 			if (le32toh(beacon->consecutive) >=
1847 			    vap->iv_bmissthreshold) {
1848 				DPRINTF(("Beacon miss: %u >= %u\n",
1849 					 le32toh(beacon->consecutive),
1850 					 vap->iv_bmissthreshold));
1851 				ieee80211_beacon_miss(ic);
1852 			}
1853 			break;
1854 		}
1855 		}
1856 
1857 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1858 	}
1859 
1860 	/* tell the firmware what we have processed */
1861 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1862 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1863 }
1864 
1865 static void
1866 wpi_intr(void *arg)
1867 {
1868 	struct wpi_softc *sc = arg;
1869 	uint32_t r;
1870 
1871 	WPI_LOCK(sc);
1872 
1873 	r = WPI_READ(sc, WPI_INTR);
1874 	if (r == 0 || r == 0xffffffff) {
1875 		WPI_UNLOCK(sc);
1876 		return;
1877 	}
1878 
1879 	/* disable interrupts */
1880 	WPI_WRITE(sc, WPI_MASK, 0);
1881 	/* ack interrupts */
1882 	WPI_WRITE(sc, WPI_INTR, r);
1883 
1884 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1885 		struct ifnet *ifp = sc->sc_ifp;
1886 		struct ieee80211com *ic = ifp->if_l2com;
1887 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1888 
1889 		device_printf(sc->sc_dev, "fatal firmware error\n");
1890 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1891 				"(Hardware Error)"));
1892 		if (vap != NULL)
1893 			ieee80211_cancel_scan(vap);
1894 		ieee80211_runtask(ic, &sc->sc_restarttask);
1895 		sc->flags &= ~WPI_FLAG_BUSY;
1896 		WPI_UNLOCK(sc);
1897 		return;
1898 	}
1899 
1900 	if (r & WPI_RX_INTR)
1901 		wpi_notif_intr(sc);
1902 
1903 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1904 		wakeup(sc);
1905 
1906 	/* re-enable interrupts */
1907 	if (sc->sc_ifp->if_flags & IFF_UP)
1908 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1909 
1910 	WPI_UNLOCK(sc);
1911 }
1912 
1913 static uint8_t
1914 wpi_plcp_signal(int rate)
1915 {
1916 	switch (rate) {
1917 	/* CCK rates (returned values are device-dependent) */
1918 	case 2:		return 10;
1919 	case 4:		return 20;
1920 	case 11:	return 55;
1921 	case 22:	return 110;
1922 
1923 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1924 	/* R1-R4 (ral/ural is R4-R1) */
1925 	case 12:	return 0xd;
1926 	case 18:	return 0xf;
1927 	case 24:	return 0x5;
1928 	case 36:	return 0x7;
1929 	case 48:	return 0x9;
1930 	case 72:	return 0xb;
1931 	case 96:	return 0x1;
1932 	case 108:	return 0x3;
1933 
1934 	/* unsupported rates (should not get there) */
1935 	default:	return 0;
1936 	}
1937 }
1938 
1939 /* quickly determine if a given rate is CCK or OFDM */
1940 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1941 
1942 /*
1943  * Construct the data packet for a transmit buffer and acutally put
1944  * the buffer onto the transmit ring, kicking the card to process the
1945  * the buffer.
1946  */
1947 static int
1948 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1949 	int ac)
1950 {
1951 	struct ieee80211vap *vap = ni->ni_vap;
1952 	struct ifnet *ifp = sc->sc_ifp;
1953 	struct ieee80211com *ic = ifp->if_l2com;
1954 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1955 	struct wpi_tx_ring *ring = &sc->txq[ac];
1956 	struct wpi_tx_desc *desc;
1957 	struct wpi_tx_data *data;
1958 	struct wpi_tx_cmd *cmd;
1959 	struct wpi_cmd_data *tx;
1960 	struct ieee80211_frame *wh;
1961 	const struct ieee80211_txparam *tp;
1962 	struct ieee80211_key *k;
1963 	struct mbuf *mnew;
1964 	int i, error, nsegs, rate, hdrlen, ismcast;
1965 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1966 
1967 	desc = &ring->desc[ring->cur];
1968 	data = &ring->data[ring->cur];
1969 
1970 	wh = mtod(m0, struct ieee80211_frame *);
1971 
1972 	hdrlen = ieee80211_hdrsize(wh);
1973 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1974 
1975 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1976 		k = ieee80211_crypto_encap(ni, m0);
1977 		if (k == NULL) {
1978 			m_freem(m0);
1979 			return ENOBUFS;
1980 		}
1981 		/* packet header may have moved, reset our local pointer */
1982 		wh = mtod(m0, struct ieee80211_frame *);
1983 	}
1984 
1985 	cmd = &ring->cmd[ring->cur];
1986 	cmd->code = WPI_CMD_TX_DATA;
1987 	cmd->flags = 0;
1988 	cmd->qid = ring->qid;
1989 	cmd->idx = ring->cur;
1990 
1991 	tx = (struct wpi_cmd_data *)cmd->data;
1992 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1993 	tx->timeout = htole16(0);
1994 	tx->ofdm_mask = 0xff;
1995 	tx->cck_mask = 0x0f;
1996 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1997 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1998 	tx->len = htole16(m0->m_pkthdr.len);
1999 
2000 	if (!ismcast) {
2001 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
2002 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
2003 			tx->flags |= htole32(WPI_TX_NEED_ACK);
2004 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2005 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
2006 			tx->rts_ntries = 7;
2007 		}
2008 	}
2009 	/* pick a rate */
2010 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2011 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
2012 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2013 		/* tell h/w to set timestamp in probe responses */
2014 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2015 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
2016 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2017 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2018 			tx->timeout = htole16(3);
2019 		else
2020 			tx->timeout = htole16(2);
2021 		rate = tp->mgmtrate;
2022 	} else if (ismcast) {
2023 		rate = tp->mcastrate;
2024 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2025 		rate = tp->ucastrate;
2026 	} else {
2027 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2028 		rate = ni->ni_txrate;
2029 	}
2030 	tx->rate = wpi_plcp_signal(rate);
2031 
2032 	/* be very persistant at sending frames out */
2033 #if 0
2034 	tx->data_ntries = tp->maxretry;
2035 #else
2036 	tx->data_ntries = 15;		/* XXX way too high */
2037 #endif
2038 
2039 	if (ieee80211_radiotap_active_vap(vap)) {
2040 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2041 		tap->wt_flags = 0;
2042 		tap->wt_rate = rate;
2043 		tap->wt_hwqueue = ac;
2044 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2045 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2046 
2047 		ieee80211_radiotap_tx(vap, m0);
2048 	}
2049 
2050 	/* save and trim IEEE802.11 header */
2051 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
2052 	m_adj(m0, hdrlen);
2053 
2054 #if defined(__DragonFly__)
2055 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
2056 	    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2057 #else
2058 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2059 	    &nsegs, BUS_DMA_NOWAIT);
2060 #endif
2061 	if (error != 0 && error != EFBIG) {
2062 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
2063 		    error);
2064 		m_freem(m0);
2065 		return error;
2066 	}
2067 	if (error != 0) {
2068 		/* XXX use m_collapse */
2069 		mnew = m_defrag(m0, M_NOWAIT);
2070 		if (mnew == NULL) {
2071 			device_printf(sc->sc_dev,
2072 			    "could not defragment mbuf\n");
2073 			m_freem(m0);
2074 			return ENOBUFS;
2075 		}
2076 		m0 = mnew;
2077 
2078 #if defined(__DragonFly__)
2079 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
2080 		    data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2081 #else
2082 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2083 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
2084 #endif
2085 		if (error != 0) {
2086 			device_printf(sc->sc_dev,
2087 			    "could not map mbuf (error %d)\n", error);
2088 			m_freem(m0);
2089 			return error;
2090 		}
2091 	}
2092 
2093 	data->m = m0;
2094 	data->ni = ni;
2095 
2096 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2097 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2098 
2099 	/* first scatter/gather segment is used by the tx data command */
2100 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2101 	    (1 + nsegs) << 24);
2102 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2103 	    ring->cur * sizeof (struct wpi_tx_cmd));
2104 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2105 	for (i = 1; i <= nsegs; i++) {
2106 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2107 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2108 	}
2109 
2110 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2111 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2112 	    BUS_DMASYNC_PREWRITE);
2113 
2114 	ring->queued++;
2115 
2116 	/* kick ring */
2117 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2118 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2119 
2120 	return 0;
2121 }
2122 
2123 /**
2124  * Process data waiting to be sent on the IFNET output queue
2125  */
2126 static void
2127 wpi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2128 {
2129 	struct wpi_softc *sc = ifp->if_softc;
2130 
2131 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2132 
2133 	WPI_LOCK(sc);
2134 	wpi_start_locked(ifp);
2135 	WPI_UNLOCK(sc);
2136 }
2137 
2138 static void
2139 wpi_start_locked(struct ifnet *ifp)
2140 {
2141 	struct wpi_softc *sc = ifp->if_softc;
2142 	struct ieee80211_node *ni;
2143 	struct mbuf *m;
2144 	int ac;
2145 
2146 	WPI_LOCK_ASSERT(sc);
2147 
2148 #if defined(__DragonFly__)
2149 	if ((ifp->if_flags & IFF_RUNNING) == 0)
2150 		return;
2151 #else
2152 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2153 		return;
2154 #endif
2155 
2156 	for (;;) {
2157 #if defined(__DragonFly__)
2158 		m = ifq_dequeue(&ifp->if_snd);
2159 #else
2160 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2161 #endif
2162 		if (m == NULL)
2163 			break;
2164 		ac = M_WME_GETAC(m);
2165 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2166 			/* there is no place left in this ring */
2167 #if defined(__DragonFly__)
2168 			ifq_prepend(&ifp->if_snd, m);
2169 			ifq_set_oactive(&ifp->if_snd);
2170 #else
2171 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2172 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2173 #endif
2174 			break;
2175 		}
2176 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2177 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2178 			ieee80211_free_node(ni);
2179 #if defined(__DragonFly__)
2180 			IFNET_STAT_INC(ifp, oerrors, 1);
2181 #else
2182 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2183 #endif
2184 			break;
2185 		}
2186 		sc->sc_tx_timer = 5;
2187 	}
2188 }
2189 
2190 static int
2191 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2192 	const struct ieee80211_bpf_params *params)
2193 {
2194 	struct ieee80211com *ic = ni->ni_ic;
2195 	struct ifnet *ifp = ic->ic_ifp;
2196 	struct wpi_softc *sc = ifp->if_softc;
2197 
2198 	/* prevent management frames from being sent if we're not ready */
2199 #if defined(__DragonFly__)
2200 	if (!(ifp->if_flags & IFF_RUNNING)) {
2201 		m_freem(m);
2202 		ieee80211_free_node(ni);
2203 		return ENETDOWN;
2204 	}
2205 #else
2206 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2207 		m_freem(m);
2208 		ieee80211_free_node(ni);
2209 		return ENETDOWN;
2210 	}
2211 #endif
2212 	WPI_LOCK(sc);
2213 
2214 	/* management frames go into ring 0 */
2215 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2216 #if defined(__DragonFly__)
2217 		ifq_set_oactive(&ifp->if_snd);
2218 #else
2219 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2220 #endif
2221 		m_freem(m);
2222 		WPI_UNLOCK(sc);
2223 		ieee80211_free_node(ni);
2224 		return ENOBUFS;		/* XXX */
2225 	}
2226 
2227 #if defined(__DragonFly__)
2228 	IFNET_STAT_INC(ifp, opackets, 1);
2229 #else
2230 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2231 #endif
2232 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2233 		goto bad;
2234 	sc->sc_tx_timer = 5;
2235 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2236 
2237 	WPI_UNLOCK(sc);
2238 	return 0;
2239 bad:
2240 #if defined(__DragonFly__)
2241 	IFNET_STAT_INC(ifp, oerrors, 1);
2242 #else
2243 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2244 #endif
2245 	WPI_UNLOCK(sc);
2246 	ieee80211_free_node(ni);
2247 	return EIO;		/* XXX */
2248 }
2249 
2250 static int
2251 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,
2252     struct ucred *cred __unused)
2253 {
2254 	struct wpi_softc *sc = ifp->if_softc;
2255 	struct ieee80211com *ic = ifp->if_l2com;
2256 	struct ifreq *ifr = (struct ifreq *) data;
2257 	int error = 0, startall = 0;
2258 
2259 	switch (cmd) {
2260 	case SIOCSIFFLAGS:
2261 		WPI_LOCK(sc);
2262 #if defined(__DragonFly__)
2263 		if ((ifp->if_flags & IFF_UP)) {
2264 			if (!(ifp->if_flags & IFF_RUNNING)) {
2265 				wpi_init_locked(sc, 0);
2266 				startall = 1;
2267 			}
2268 		} else if ((ifp->if_flags & IFF_RUNNING) ||
2269 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2270 			wpi_stop_locked(sc);
2271 #else
2272 		if ((ifp->if_flags & IFF_UP)) {
2273 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2274 				wpi_init_locked(sc, 0);
2275 				startall = 1;
2276 			}
2277 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2278 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2279 			wpi_stop_locked(sc);
2280 #endif
2281 		WPI_UNLOCK(sc);
2282 		if (startall)
2283 			ieee80211_start_all(ic);
2284 		break;
2285 	case SIOCGIFMEDIA:
2286 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2287 		break;
2288 	case SIOCGIFADDR:
2289 		error = ether_ioctl(ifp, cmd, data);
2290 		break;
2291 	default:
2292 		error = EINVAL;
2293 		break;
2294 	}
2295 	return error;
2296 }
2297 
2298 /*
2299  * Extract various information from EEPROM.
2300  */
2301 static void
2302 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2303 {
2304 	int i;
2305 
2306 	/* read the hardware capabilities, revision and SKU type */
2307 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2308 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2309 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2310 
2311 	/* read the regulatory domain */
2312 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2313 
2314 	/* read in the hw MAC address */
2315 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2316 
2317 	/* read the list of authorized channels */
2318 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2319 		wpi_read_eeprom_channels(sc,i);
2320 
2321 	/* read the power level calibration info for each group */
2322 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2323 		wpi_read_eeprom_group(sc,i);
2324 }
2325 
2326 /*
2327  * Send a command to the firmware.
2328  */
2329 static int
2330 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2331 {
2332 	struct wpi_tx_ring *ring = &sc->cmdq;
2333 	struct wpi_tx_desc *desc;
2334 	struct wpi_tx_cmd *cmd;
2335 
2336 #ifdef WPI_DEBUG
2337 	if (!async) {
2338 		WPI_LOCK_ASSERT(sc);
2339 	}
2340 #endif
2341 
2342 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2343 		    async));
2344 
2345 	if (sc->flags & WPI_FLAG_BUSY) {
2346 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2347 		    __func__, code);
2348 		return EAGAIN;
2349 	}
2350 	sc->flags|= WPI_FLAG_BUSY;
2351 
2352 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2353 	    code, size));
2354 
2355 	desc = &ring->desc[ring->cur];
2356 	cmd = &ring->cmd[ring->cur];
2357 
2358 	cmd->code = code;
2359 	cmd->flags = 0;
2360 	cmd->qid = ring->qid;
2361 	cmd->idx = ring->cur;
2362 	memcpy(cmd->data, buf, size);
2363 
2364 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2365 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2366 		ring->cur * sizeof (struct wpi_tx_cmd));
2367 	desc->segs[0].len  = htole32(4 + size);
2368 
2369 	/* kick cmd ring */
2370 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2371 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2372 
2373 	if (async) {
2374 		sc->flags &= ~ WPI_FLAG_BUSY;
2375 		return 0;
2376 	}
2377 
2378 #if defined(__DragonFly__)
2379 	return wpi_sleep(sc, cmd, PCATCH, "wpicmd", hz);
2380 #else
2381 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2382 #endif
2383 }
2384 
2385 static int
2386 wpi_wme_update(struct ieee80211com *ic)
2387 {
2388 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2389 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2390 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2391 	const struct wmeParams *wmep;
2392 	struct wpi_wme_setup wme;
2393 	int ac;
2394 
2395 	/* don't override default WME values if WME is not actually enabled */
2396 	if (!(ic->ic_flags & IEEE80211_F_WME))
2397 		return 0;
2398 
2399 	wme.flags = 0;
2400 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2401 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2402 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2403 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2404 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2405 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2406 
2407 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2408 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2409 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2410 	}
2411 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2412 #undef WPI_USEC
2413 #undef WPI_EXP2
2414 }
2415 
2416 /*
2417  * Configure h/w multi-rate retries.
2418  */
2419 static int
2420 wpi_mrr_setup(struct wpi_softc *sc)
2421 {
2422 	struct ifnet *ifp = sc->sc_ifp;
2423 	struct ieee80211com *ic = ifp->if_l2com;
2424 	struct wpi_mrr_setup mrr;
2425 	int i, error;
2426 
2427 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2428 
2429 	/* CCK rates (not used with 802.11a) */
2430 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2431 		mrr.rates[i].flags = 0;
2432 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2433 		/* fallback to the immediate lower CCK rate (if any) */
2434 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2435 		/* try one time at this rate before falling back to "next" */
2436 		mrr.rates[i].ntries = 1;
2437 	}
2438 
2439 	/* OFDM rates (not used with 802.11b) */
2440 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2441 		mrr.rates[i].flags = 0;
2442 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2443 		/* fallback to the immediate lower OFDM rate (if any) */
2444 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2445 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2446 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2447 			WPI_OFDM6 : WPI_CCK2) :
2448 		    i - 1;
2449 		/* try one time at this rate before falling back to "next" */
2450 		mrr.rates[i].ntries = 1;
2451 	}
2452 
2453 	/* setup MRR for control frames */
2454 	mrr.which = WPI_MRR_CTL;
2455 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2456 	if (error != 0) {
2457 		device_printf(sc->sc_dev,
2458 		    "could not setup MRR for control frames\n");
2459 		return error;
2460 	}
2461 
2462 	/* setup MRR for data frames */
2463 	mrr.which = WPI_MRR_DATA;
2464 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2465 	if (error != 0) {
2466 		device_printf(sc->sc_dev,
2467 		    "could not setup MRR for data frames\n");
2468 		return error;
2469 	}
2470 
2471 	return 0;
2472 }
2473 
2474 static void
2475 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2476 {
2477 	struct wpi_cmd_led led;
2478 
2479 	led.which = which;
2480 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2481 	led.off = off;
2482 	led.on = on;
2483 
2484 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2485 }
2486 
2487 static void
2488 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2489 {
2490 	struct wpi_cmd_tsf tsf;
2491 	uint64_t val, mod;
2492 
2493 	memset(&tsf, 0, sizeof tsf);
2494 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2495 	tsf.bintval = htole16(ni->ni_intval);
2496 	tsf.lintval = htole16(10);
2497 
2498 	/* compute remaining time until next beacon */
2499 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2500 	mod = le64toh(tsf.tstamp) % val;
2501 	tsf.binitval = htole32((uint32_t)(val - mod));
2502 
2503 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2504 		device_printf(sc->sc_dev, "could not enable TSF\n");
2505 }
2506 
2507 #if 0
2508 /*
2509  * Build a beacon frame that the firmware will broadcast periodically in
2510  * IBSS or HostAP modes.
2511  */
2512 static int
2513 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2514 {
2515 	struct ifnet *ifp = sc->sc_ifp;
2516 	struct ieee80211com *ic = ifp->if_l2com;
2517 	struct wpi_tx_ring *ring = &sc->cmdq;
2518 	struct wpi_tx_desc *desc;
2519 	struct wpi_tx_data *data;
2520 	struct wpi_tx_cmd *cmd;
2521 	struct wpi_cmd_beacon *bcn;
2522 	struct ieee80211_beacon_offsets bo;
2523 	struct mbuf *m0;
2524 	bus_addr_t physaddr;
2525 	int error;
2526 
2527 	desc = &ring->desc[ring->cur];
2528 	data = &ring->data[ring->cur];
2529 
2530 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2531 	if (m0 == NULL) {
2532 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2533 		return ENOMEM;
2534 	}
2535 
2536 	cmd = &ring->cmd[ring->cur];
2537 	cmd->code = WPI_CMD_SET_BEACON;
2538 	cmd->flags = 0;
2539 	cmd->qid = ring->qid;
2540 	cmd->idx = ring->cur;
2541 
2542 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2543 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2544 	bcn->id = WPI_ID_BROADCAST;
2545 	bcn->ofdm_mask = 0xff;
2546 	bcn->cck_mask = 0x0f;
2547 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2548 	bcn->len = htole16(m0->m_pkthdr.len);
2549 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2550 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2551 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2552 
2553 	/* save and trim IEEE802.11 header */
2554 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2555 	m_adj(m0, sizeof (struct ieee80211_frame));
2556 
2557 	/* assume beacon frame is contiguous */
2558 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2559 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2560 	if (error != 0) {
2561 		device_printf(sc->sc_dev, "could not map beacon\n");
2562 		m_freem(m0);
2563 		return error;
2564 	}
2565 
2566 	data->m = m0;
2567 
2568 	/* first scatter/gather segment is used by the beacon command */
2569 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2570 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2571 		ring->cur * sizeof (struct wpi_tx_cmd));
2572 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2573 	desc->segs[1].addr = htole32(physaddr);
2574 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2575 
2576 	/* kick cmd ring */
2577 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2578 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2579 
2580 	return 0;
2581 }
2582 #endif
2583 
2584 static int
2585 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2586 {
2587 	struct ieee80211com *ic = vap->iv_ic;
2588 	struct ieee80211_node *ni = vap->iv_bss;
2589 	struct wpi_node_info node;
2590 	int error;
2591 
2592 
2593 	/* update adapter's configuration */
2594 	sc->config.associd = 0;
2595 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2596 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2597 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2598 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2599 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2600 		    WPI_CONFIG_24GHZ);
2601 	} else {
2602 		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2603 		    WPI_CONFIG_24GHZ);
2604 	}
2605 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2606 		sc->config.cck_mask  = 0;
2607 		sc->config.ofdm_mask = 0x15;
2608 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2609 		sc->config.cck_mask  = 0x03;
2610 		sc->config.ofdm_mask = 0;
2611 	} else {
2612 		/* XXX assume 802.11b/g */
2613 		sc->config.cck_mask  = 0x0f;
2614 		sc->config.ofdm_mask = 0x15;
2615 	}
2616 
2617 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2618 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2619 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2620 		sizeof (struct wpi_config), 1);
2621 	if (error != 0) {
2622 		device_printf(sc->sc_dev, "could not configure\n");
2623 		return error;
2624 	}
2625 
2626 	/* configuration has changed, set Tx power accordingly */
2627 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2628 		device_printf(sc->sc_dev, "could not set Tx power\n");
2629 		return error;
2630 	}
2631 
2632 	/* add default node */
2633 	memset(&node, 0, sizeof node);
2634 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2635 	node.id = WPI_ID_BSS;
2636 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2637 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2638 	node.action = htole32(WPI_ACTION_SET_RATE);
2639 	node.antenna = WPI_ANTENNA_BOTH;
2640 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2641 	if (error != 0)
2642 		device_printf(sc->sc_dev, "could not add BSS node\n");
2643 
2644 	return (error);
2645 }
2646 
2647 static int
2648 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2649 {
2650 	struct ieee80211com *ic = vap->iv_ic;
2651 	struct ieee80211_node *ni = vap->iv_bss;
2652 	int error;
2653 
2654 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2655 		/* link LED blinks while monitoring */
2656 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2657 		return 0;
2658 	}
2659 
2660 	wpi_enable_tsf(sc, ni);
2661 
2662 	/* update adapter's configuration */
2663 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2664 	/* short preamble/slot time are negotiated when associating */
2665 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2666 	    WPI_CONFIG_SHSLOT);
2667 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2668 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2669 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2670 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2671 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2672 
2673 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2674 
2675 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2676 		    sc->config.flags));
2677 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2678 		    wpi_config), 1);
2679 	if (error != 0) {
2680 		device_printf(sc->sc_dev, "could not update configuration\n");
2681 		return error;
2682 	}
2683 
2684 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2685 	if (error != 0) {
2686 		device_printf(sc->sc_dev, "could set txpower\n");
2687 		return error;
2688 	}
2689 
2690 	/* link LED always on while associated */
2691 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2692 
2693 	/* start automatic rate control timer */
2694 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2695 
2696 	return (error);
2697 }
2698 
2699 /*
2700  * Send a scan request to the firmware.  Since this command is huge, we map it
2701  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2702  * much of this code is similar to that in wpi_cmd but because we must manually
2703  * construct the probe & channels, we duplicate what's needed here. XXX In the
2704  * future, this function should be modified to use wpi_cmd to help cleanup the
2705  * code base.
2706  */
2707 static int
2708 wpi_scan(struct wpi_softc *sc)
2709 {
2710 	struct ifnet *ifp = sc->sc_ifp;
2711 	struct ieee80211com *ic = ifp->if_l2com;
2712 	struct ieee80211_scan_state *ss = ic->ic_scan;
2713 	struct wpi_tx_ring *ring = &sc->cmdq;
2714 	struct wpi_tx_desc *desc;
2715 	struct wpi_tx_data *data;
2716 	struct wpi_tx_cmd *cmd;
2717 	struct wpi_scan_hdr *hdr;
2718 	struct wpi_scan_chan *chan;
2719 	struct ieee80211_frame *wh;
2720 	struct ieee80211_rateset *rs;
2721 	struct ieee80211_channel *c;
2722 	enum ieee80211_phymode mode;
2723 	uint8_t *frm;
2724 	int pktlen, error, i, nssid;
2725 	bus_addr_t physaddr;
2726 
2727 	desc = &ring->desc[ring->cur];
2728 	data = &ring->data[ring->cur];
2729 
2730 	data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2731 	if (data->m == NULL) {
2732 		device_printf(sc->sc_dev,
2733 		    "could not allocate mbuf for scan command\n");
2734 		return ENOMEM;
2735 	}
2736 
2737 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2738 	cmd->code = WPI_CMD_SCAN;
2739 	cmd->flags = 0;
2740 	cmd->qid = ring->qid;
2741 	cmd->idx = ring->cur;
2742 
2743 	hdr = (struct wpi_scan_hdr *)cmd->data;
2744 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2745 
2746 	/*
2747 	 * Move to the next channel if no packets are received within 5 msecs
2748 	 * after sending the probe request (this helps to reduce the duration
2749 	 * of active scans).
2750 	 */
2751 	hdr->quiet = htole16(5);
2752 	hdr->threshold = htole16(1);
2753 
2754 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2755 		/* send probe requests at 6Mbps */
2756 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2757 
2758 		/* Enable crc checking */
2759 		hdr->promotion = htole16(1);
2760 	} else {
2761 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2762 		/* send probe requests at 1Mbps */
2763 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2764 	}
2765 	hdr->tx.id = WPI_ID_BROADCAST;
2766 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2767 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2768 
2769 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2770 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2771 	for (i = 0; i < nssid; i++) {
2772 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2773 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
2774 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2775 		    hdr->scan_essids[i].esslen);
2776 #ifdef WPI_DEBUG
2777 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2778 			kprintf("Scanning Essid: ");
2779 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2780 			    hdr->scan_essids[i].esslen);
2781 			kprintf("\n");
2782 		}
2783 #endif
2784 	}
2785 
2786 	/*
2787 	 * Build a probe request frame.  Most of the following code is a
2788 	 * copy & paste of what is done in net80211.
2789 	 */
2790 	wh = (struct ieee80211_frame *)&hdr->scan_essids[WPI_SCAN_MAX_ESSIDS];
2791 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2792 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2793 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2794 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2795 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2796 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2797 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2798 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2799 
2800 	frm = (uint8_t *)(wh + 1);
2801 
2802 	mode = ieee80211_chan2mode(ic->ic_curchan);
2803 	rs = &ic->ic_sup_rates[mode];
2804 
2805 	frm = ieee80211_add_ssid(frm, NULL, 0);
2806 	frm = ieee80211_add_rates(frm, rs);
2807 	frm = ieee80211_add_xrates(frm, rs);
2808 
2809 	/* setup length of probe request */
2810 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2811 
2812 	/*
2813 	 * Construct information about the channel that we
2814 	 * want to scan. The firmware expects this to be directly
2815 	 * after the scan probe request
2816 	 */
2817 	c = ic->ic_curchan;
2818 	chan = (struct wpi_scan_chan *)frm;
2819 	chan->chan = ieee80211_chan2ieee(ic, c);
2820 	chan->flags = 0;
2821 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2822 		chan->flags |= WPI_CHAN_ACTIVE;
2823 		if (nssid != 0)
2824 			chan->flags |= WPI_CHAN_DIRECT;
2825 	}
2826 	chan->gain_dsp = 0x6e; /* Default level */
2827 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2828 		chan->active = htole16(10);
2829 		chan->passive = htole16(ss->ss_maxdwell);
2830 		chan->gain_radio = 0x3b;
2831 	} else {
2832 		chan->active = htole16(20);
2833 		chan->passive = htole16(ss->ss_maxdwell);
2834 		chan->gain_radio = 0x28;
2835 	}
2836 
2837 	DPRINTFN(WPI_DEBUG_SCANNING,
2838 	    ("Scanning %u Passive: %d\n",
2839 	     chan->chan,
2840 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2841 
2842 	hdr->nchan++;
2843 	chan++;
2844 
2845 	frm += sizeof (struct wpi_scan_chan);
2846 #if 0
2847 	// XXX All Channels....
2848 	for (c  = &ic->ic_channels[1];
2849 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2850 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2851 			continue;
2852 
2853 		chan->chan = ieee80211_chan2ieee(ic, c);
2854 		chan->flags = 0;
2855 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2856 		    chan->flags |= WPI_CHAN_ACTIVE;
2857 		    if (ic->ic_des_ssid[0].len != 0)
2858 			chan->flags |= WPI_CHAN_DIRECT;
2859 		}
2860 		chan->gain_dsp = 0x6e; /* Default level */
2861 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2862 			chan->active = htole16(10);
2863 			chan->passive = htole16(110);
2864 			chan->gain_radio = 0x3b;
2865 		} else {
2866 			chan->active = htole16(20);
2867 			chan->passive = htole16(120);
2868 			chan->gain_radio = 0x28;
2869 		}
2870 
2871 		DPRINTFN(WPI_DEBUG_SCANNING,
2872 			 ("Scanning %u Passive: %d\n",
2873 			  chan->chan,
2874 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2875 
2876 		hdr->nchan++;
2877 		chan++;
2878 
2879 		frm += sizeof (struct wpi_scan_chan);
2880 	}
2881 #endif
2882 
2883 	hdr->len = htole16(frm - (uint8_t *)hdr);
2884 	pktlen = frm - (uint8_t *)cmd;
2885 
2886 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2887 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2888 	if (error != 0) {
2889 		device_printf(sc->sc_dev, "could not map scan command\n");
2890 		m_freem(data->m);
2891 		data->m = NULL;
2892 		return error;
2893 	}
2894 
2895 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2896 	desc->segs[0].addr = htole32(physaddr);
2897 	desc->segs[0].len  = htole32(pktlen);
2898 
2899 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2900 	    BUS_DMASYNC_PREWRITE);
2901 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2902 
2903 	/* kick cmd ring */
2904 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2905 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2906 
2907 	sc->sc_scan_timer = 5;
2908 	return 0;	/* will be notified async. of failure/success */
2909 }
2910 
2911 /**
2912  * Configure the card to listen to a particular channel, this transisions the
2913  * card in to being able to receive frames from remote devices.
2914  */
2915 static int
2916 wpi_config(struct wpi_softc *sc)
2917 {
2918 	struct ifnet *ifp = sc->sc_ifp;
2919 	struct ieee80211com *ic = ifp->if_l2com;
2920 	struct wpi_power power;
2921 	struct wpi_bluetooth bluetooth;
2922 	struct wpi_node_info node;
2923 	int error;
2924 
2925 	/* set power mode */
2926 	memset(&power, 0, sizeof power);
2927 	power.flags = htole32(WPI_POWER_CAM|0x8);
2928 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2929 	if (error != 0) {
2930 		device_printf(sc->sc_dev, "could not set power mode\n");
2931 		return error;
2932 	}
2933 
2934 	/* configure bluetooth coexistence */
2935 	memset(&bluetooth, 0, sizeof bluetooth);
2936 	bluetooth.flags = 3;
2937 	bluetooth.lead = 0xaa;
2938 	bluetooth.kill = 1;
2939 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2940 	    0);
2941 	if (error != 0) {
2942 		device_printf(sc->sc_dev,
2943 		    "could not configure bluetooth coexistence\n");
2944 		return error;
2945 	}
2946 
2947 	/* configure adapter */
2948 	memset(&sc->config, 0, sizeof (struct wpi_config));
2949 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2950 	/*set default channel*/
2951 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2952 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2953 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2954 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2955 		    WPI_CONFIG_24GHZ);
2956 	}
2957 	sc->config.filter = 0;
2958 	switch (ic->ic_opmode) {
2959 	case IEEE80211_M_STA:
2960 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2961 		sc->config.mode = WPI_MODE_STA;
2962 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2963 		break;
2964 	case IEEE80211_M_IBSS:
2965 	case IEEE80211_M_AHDEMO:
2966 		sc->config.mode = WPI_MODE_IBSS;
2967 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2968 					     WPI_FILTER_MULTICAST);
2969 		break;
2970 	case IEEE80211_M_HOSTAP:
2971 		sc->config.mode = WPI_MODE_HOSTAP;
2972 		break;
2973 	case IEEE80211_M_MONITOR:
2974 		sc->config.mode = WPI_MODE_MONITOR;
2975 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2976 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2977 		break;
2978 	default:
2979 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2980 		return EINVAL;
2981 	}
2982 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2983 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2984 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2985 		sizeof (struct wpi_config), 0);
2986 	if (error != 0) {
2987 		device_printf(sc->sc_dev, "configure command failed\n");
2988 		return error;
2989 	}
2990 
2991 	/* configuration has changed, set Tx power accordingly */
2992 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2993 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2994 	    return error;
2995 	}
2996 
2997 	/* add broadcast node */
2998 	memset(&node, 0, sizeof node);
2999 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
3000 	node.id = WPI_ID_BROADCAST;
3001 	node.rate = wpi_plcp_signal(2);
3002 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3003 	if (error != 0) {
3004 		device_printf(sc->sc_dev, "could not add broadcast node\n");
3005 		return error;
3006 	}
3007 
3008 	/* Setup rate scalling */
3009 	error = wpi_mrr_setup(sc);
3010 	if (error != 0) {
3011 		device_printf(sc->sc_dev, "could not setup MRR\n");
3012 		return error;
3013 	}
3014 
3015 	return 0;
3016 }
3017 
3018 static void
3019 wpi_stop_master(struct wpi_softc *sc)
3020 {
3021 	uint32_t tmp;
3022 	int ntries;
3023 
3024 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
3025 
3026 	tmp = WPI_READ(sc, WPI_RESET);
3027 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
3028 
3029 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3030 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3031 		return;	/* already asleep */
3032 
3033 	for (ntries = 0; ntries < 100; ntries++) {
3034 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3035 			break;
3036 		DELAY(10);
3037 	}
3038 	if (ntries == 100) {
3039 		device_printf(sc->sc_dev, "timeout waiting for master\n");
3040 	}
3041 }
3042 
3043 static int
3044 wpi_power_up(struct wpi_softc *sc)
3045 {
3046 	uint32_t tmp;
3047 	int ntries;
3048 
3049 	wpi_mem_lock(sc);
3050 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3051 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3052 	wpi_mem_unlock(sc);
3053 
3054 	for (ntries = 0; ntries < 5000; ntries++) {
3055 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3056 			break;
3057 		DELAY(10);
3058 	}
3059 	if (ntries == 5000) {
3060 		device_printf(sc->sc_dev,
3061 		    "timeout waiting for NIC to power up\n");
3062 		return ETIMEDOUT;
3063 	}
3064 	return 0;
3065 }
3066 
3067 static int
3068 wpi_reset(struct wpi_softc *sc)
3069 {
3070 	uint32_t tmp;
3071 	int ntries;
3072 
3073 	DPRINTFN(WPI_DEBUG_HW,
3074 	    ("Resetting the card - clearing any uploaded firmware\n"));
3075 
3076 	/* clear any pending interrupts */
3077 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3078 
3079 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3080 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3081 
3082 	tmp = WPI_READ(sc, WPI_CHICKEN);
3083 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3084 
3085 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3086 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3087 
3088 	/* wait for clock stabilization */
3089 	for (ntries = 0; ntries < 25000; ntries++) {
3090 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3091 			break;
3092 		DELAY(10);
3093 	}
3094 	if (ntries == 25000) {
3095 		device_printf(sc->sc_dev,
3096 		    "timeout waiting for clock stabilization\n");
3097 		return ETIMEDOUT;
3098 	}
3099 
3100 	/* initialize EEPROM */
3101 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3102 
3103 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3104 		device_printf(sc->sc_dev, "EEPROM not found\n");
3105 		return EIO;
3106 	}
3107 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3108 
3109 	return 0;
3110 }
3111 
3112 static void
3113 wpi_hw_config(struct wpi_softc *sc)
3114 {
3115 	uint32_t rev, hw;
3116 
3117 	/* voodoo from the Linux "driver".. */
3118 	hw = WPI_READ(sc, WPI_HWCONFIG);
3119 
3120 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
3121 	if ((rev & 0xc0) == 0x40)
3122 		hw |= WPI_HW_ALM_MB;
3123 	else if (!(rev & 0x80))
3124 		hw |= WPI_HW_ALM_MM;
3125 
3126 	if (sc->cap == 0x80)
3127 		hw |= WPI_HW_SKU_MRC;
3128 
3129 	hw &= ~WPI_HW_REV_D;
3130 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3131 		hw |= WPI_HW_REV_D;
3132 
3133 	if (sc->type > 1)
3134 		hw |= WPI_HW_TYPE_B;
3135 
3136 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3137 }
3138 
3139 static void
3140 wpi_rfkill_resume(struct wpi_softc *sc)
3141 {
3142 	struct ifnet *ifp = sc->sc_ifp;
3143 	struct ieee80211com *ic = ifp->if_l2com;
3144 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3145 	int ntries;
3146 
3147 	/* enable firmware again */
3148 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3149 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3150 
3151 	/* wait for thermal sensors to calibrate */
3152 	for (ntries = 0; ntries < 1000; ntries++) {
3153 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3154 			break;
3155 		DELAY(10);
3156 	}
3157 
3158 	if (ntries == 1000) {
3159 		device_printf(sc->sc_dev,
3160 		    "timeout waiting for thermal calibration\n");
3161 		return;
3162 	}
3163 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3164 
3165 	if (wpi_config(sc) != 0) {
3166 		device_printf(sc->sc_dev, "device config failed\n");
3167 		return;
3168 	}
3169 
3170 #if defined(__DragonFly__)
3171 	ifq_clr_oactive(&ifp->if_snd);
3172 	ifp->if_flags |= IFF_RUNNING;
3173 #else
3174 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3175 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3176 #endif
3177 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3178 
3179 	if (vap != NULL) {
3180 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3181 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3182 				ieee80211_beacon_miss(ic);
3183 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3184 			} else
3185 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3186 		} else {
3187 			ieee80211_scan_next(vap);
3188 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3189 		}
3190 	}
3191 
3192 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3193 }
3194 
3195 static void
3196 wpi_init_locked(struct wpi_softc *sc, int force)
3197 {
3198 	struct ifnet *ifp = sc->sc_ifp;
3199 	uint32_t tmp;
3200 	int ntries, qid;
3201 
3202 	wpi_stop_locked(sc);
3203 	(void)wpi_reset(sc);
3204 
3205 	wpi_mem_lock(sc);
3206 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3207 	DELAY(20);
3208 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3209 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3210 	wpi_mem_unlock(sc);
3211 
3212 	(void)wpi_power_up(sc);
3213 	wpi_hw_config(sc);
3214 
3215 	/* init Rx ring */
3216 	wpi_mem_lock(sc);
3217 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3218 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3219 	    offsetof(struct wpi_shared, next));
3220 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3221 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3222 	wpi_mem_unlock(sc);
3223 
3224 	/* init Tx rings */
3225 	wpi_mem_lock(sc);
3226 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3227 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3228 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3229 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3230 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3231 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3232 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3233 
3234 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3235 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3236 
3237 	for (qid = 0; qid < 6; qid++) {
3238 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3239 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3240 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3241 	}
3242 	wpi_mem_unlock(sc);
3243 
3244 	/* clear "radio off" and "disable command" bits (reversed logic) */
3245 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3246 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3247 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3248 
3249 	/* clear any pending interrupts */
3250 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3251 
3252 	/* enable interrupts */
3253 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3254 
3255 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3256 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3257 
3258 	if ((wpi_load_firmware(sc)) != 0) {
3259 	    device_printf(sc->sc_dev,
3260 		"A problem occurred loading the firmware to the driver\n");
3261 	    return;
3262 	}
3263 
3264 	/* At this point the firmware is up and running. If the hardware
3265 	 * RF switch is turned off thermal calibration will fail, though
3266 	 * the card is still happy to continue to accept commands, catch
3267 	 * this case and schedule a task to watch for it to be turned on.
3268 	 */
3269 	wpi_mem_lock(sc);
3270 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3271 	wpi_mem_unlock(sc);
3272 
3273 	if (!(tmp & 0x1)) {
3274 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3275 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3276 		goto out;
3277 	}
3278 
3279 	/* wait for thermal sensors to calibrate */
3280 	for (ntries = 0; ntries < 1000; ntries++) {
3281 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3282 			break;
3283 		DELAY(10);
3284 	}
3285 
3286 	if (ntries == 1000) {
3287 		device_printf(sc->sc_dev,
3288 		    "timeout waiting for thermal sensors calibration\n");
3289 		return;
3290 	}
3291 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3292 
3293 	if (wpi_config(sc) != 0) {
3294 		device_printf(sc->sc_dev, "device config failed\n");
3295 		return;
3296 	}
3297 
3298 #if defined(__DragonFly__)
3299 	ifq_clr_oactive(&ifp->if_snd);
3300 	ifp->if_flags |= IFF_RUNNING;
3301 #else
3302 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3303 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3304 #endif
3305 out:
3306 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3307 }
3308 
3309 static void
3310 wpi_init(void *arg)
3311 {
3312 	struct wpi_softc *sc = arg;
3313 	struct ifnet *ifp = sc->sc_ifp;
3314 	struct ieee80211com *ic = ifp->if_l2com;
3315 
3316 	WPI_LOCK(sc);
3317 	wpi_init_locked(sc, 0);
3318 	WPI_UNLOCK(sc);
3319 
3320 #if defined(__DragonFly__)
3321 	if (ifp->if_flags & IFF_RUNNING)
3322 		ieee80211_start_all(ic);		/* start all vaps */
3323 #else
3324 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3325 		ieee80211_start_all(ic);		/* start all vaps */
3326 #endif
3327 }
3328 
3329 static void
3330 wpi_stop_locked(struct wpi_softc *sc)
3331 {
3332 	struct ifnet *ifp = sc->sc_ifp;
3333 	uint32_t tmp;
3334 	int ac;
3335 
3336 	sc->sc_tx_timer = 0;
3337 	sc->sc_scan_timer = 0;
3338 #if defined(__DragonFly__)
3339 	ifq_clr_oactive(&ifp->if_snd);
3340 	ifp->if_flags &= ~IFF_RUNNING;
3341 #else
3342 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3343 #endif
3344 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3345 	callout_stop_sync(&sc->watchdog_to);
3346 	callout_stop_sync(&sc->calib_to);
3347 
3348 	/* disable interrupts */
3349 	WPI_WRITE(sc, WPI_MASK, 0);
3350 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3351 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3352 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3353 
3354 	wpi_mem_lock(sc);
3355 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3356 	wpi_mem_unlock(sc);
3357 
3358 	/* reset all Tx rings */
3359 	for (ac = 0; ac < 4; ac++)
3360 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3361 	wpi_reset_tx_ring(sc, &sc->cmdq);
3362 
3363 	/* reset Rx ring */
3364 	wpi_reset_rx_ring(sc, &sc->rxq);
3365 
3366 	wpi_mem_lock(sc);
3367 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3368 	wpi_mem_unlock(sc);
3369 
3370 	DELAY(5);
3371 
3372 	wpi_stop_master(sc);
3373 
3374 	tmp = WPI_READ(sc, WPI_RESET);
3375 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3376 	sc->flags &= ~WPI_FLAG_BUSY;
3377 }
3378 
3379 static void
3380 wpi_stop(struct wpi_softc *sc)
3381 {
3382 	WPI_LOCK(sc);
3383 	wpi_stop_locked(sc);
3384 	WPI_UNLOCK(sc);
3385 }
3386 
3387 static void
3388 wpi_calib_timeout(void *arg)
3389 {
3390 	struct wpi_softc *sc = arg;
3391 	struct ifnet *ifp = sc->sc_ifp;
3392 	struct ieee80211com *ic = ifp->if_l2com;
3393 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3394 	int temp;
3395 
3396 	if (vap->iv_state != IEEE80211_S_RUN)
3397 		return;
3398 
3399 	/* update sensor data */
3400 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3401 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3402 
3403 	wpi_power_calibration(sc, temp);
3404 
3405 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3406 }
3407 
3408 /*
3409  * This function is called periodically (every 60 seconds) to adjust output
3410  * power to temperature changes.
3411  */
3412 static void
3413 wpi_power_calibration(struct wpi_softc *sc, int temp)
3414 {
3415 	struct ifnet *ifp = sc->sc_ifp;
3416 	struct ieee80211com *ic = ifp->if_l2com;
3417 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3418 
3419 	/* sanity-check read value */
3420 	if (temp < -260 || temp > 25) {
3421 		/* this can't be correct, ignore */
3422 		DPRINTFN(WPI_DEBUG_TEMP,
3423 		    ("out-of-range temperature reported: %d\n", temp));
3424 		return;
3425 	}
3426 
3427 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3428 
3429 	/* adjust Tx power if need be */
3430 	if (abs(temp - sc->temp) <= 6)
3431 		return;
3432 
3433 	sc->temp = temp;
3434 
3435 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3436 		/* just warn, too bad for the automatic calibration... */
3437 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3438 	}
3439 }
3440 
3441 /**
3442  * Read the eeprom to find out what channels are valid for the given
3443  * band and update net80211 with what we find.
3444  */
3445 static void
3446 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3447 {
3448 	struct ifnet *ifp = sc->sc_ifp;
3449 	struct ieee80211com *ic = ifp->if_l2com;
3450 	const struct wpi_chan_band *band = &wpi_bands[n];
3451 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3452 	struct ieee80211_channel *c;
3453 	int chan, i, passive;
3454 
3455 	wpi_read_prom_data(sc, band->addr, channels,
3456 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3457 
3458 	for (i = 0; i < band->nchan; i++) {
3459 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3460 			DPRINTFN(WPI_DEBUG_HW,
3461 			    ("Channel Not Valid: %d, band %d\n",
3462 			     band->chan[i],n));
3463 			continue;
3464 		}
3465 
3466 		passive = 0;
3467 		chan = band->chan[i];
3468 		c = &ic->ic_channels[ic->ic_nchans++];
3469 
3470 		/* is active scan allowed on this channel? */
3471 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3472 			passive = IEEE80211_CHAN_PASSIVE;
3473 		}
3474 
3475 		if (n == 0) {	/* 2GHz band */
3476 			c->ic_ieee = chan;
3477 			c->ic_freq = ieee80211_ieee2mhz(chan,
3478 			    IEEE80211_CHAN_2GHZ);
3479 			c->ic_flags = IEEE80211_CHAN_B | passive;
3480 
3481 			c = &ic->ic_channels[ic->ic_nchans++];
3482 			c->ic_ieee = chan;
3483 			c->ic_freq = ieee80211_ieee2mhz(chan,
3484 			    IEEE80211_CHAN_2GHZ);
3485 			c->ic_flags = IEEE80211_CHAN_G | passive;
3486 
3487 		} else {	/* 5GHz band */
3488 			/*
3489 			 * Some 3945ABG adapters support channels 7, 8, 11
3490 			 * and 12 in the 2GHz *and* 5GHz bands.
3491 			 * Because of limitations in our net80211(9) stack,
3492 			 * we can't support these channels in 5GHz band.
3493 			 * XXX not true; just need to map to proper frequency
3494 			 */
3495 			if (chan <= 14)
3496 				continue;
3497 
3498 			c->ic_ieee = chan;
3499 			c->ic_freq = ieee80211_ieee2mhz(chan,
3500 			    IEEE80211_CHAN_5GHZ);
3501 			c->ic_flags = IEEE80211_CHAN_A | passive;
3502 		}
3503 
3504 		/* save maximum allowed power for this channel */
3505 		sc->maxpwr[chan] = channels[i].maxpwr;
3506 
3507 #if 0
3508 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3509 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3510 		//ic->ic_channels[chan].ic_minpower...
3511 		//ic->ic_channels[chan].ic_maxregtxpower...
3512 #endif
3513 
3514 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3515 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3516 		    channels[i].flags, sc->maxpwr[chan],
3517 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3518 		    ic->ic_nchans));
3519 	}
3520 }
3521 
3522 static void
3523 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3524 {
3525 	struct wpi_power_group *group = &sc->groups[n];
3526 	struct wpi_eeprom_group rgroup;
3527 	int i;
3528 
3529 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3530 	    sizeof rgroup);
3531 
3532 	/* save power group information */
3533 	group->chan   = rgroup.chan;
3534 	group->maxpwr = rgroup.maxpwr;
3535 	/* temperature at which the samples were taken */
3536 	group->temp   = (int16_t)le16toh(rgroup.temp);
3537 
3538 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3539 		    group->chan, group->maxpwr, group->temp));
3540 
3541 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3542 		group->samples[i].index = rgroup.samples[i].index;
3543 		group->samples[i].power = rgroup.samples[i].power;
3544 
3545 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3546 			    group->samples[i].index, group->samples[i].power));
3547 	}
3548 }
3549 
3550 /*
3551  * Update Tx power to match what is defined for channel `c'.
3552  */
3553 static int
3554 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3555 {
3556 	struct ifnet *ifp = sc->sc_ifp;
3557 	struct ieee80211com *ic = ifp->if_l2com;
3558 	struct wpi_power_group *group;
3559 	struct wpi_cmd_txpower txpower;
3560 	u_int chan;
3561 	int i;
3562 
3563 	/* get channel number */
3564 	chan = ieee80211_chan2ieee(ic, c);
3565 
3566 	/* find the power group to which this channel belongs */
3567 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3568 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3569 			if (chan <= group->chan)
3570 				break;
3571 	} else
3572 		group = &sc->groups[0];
3573 
3574 	memset(&txpower, 0, sizeof txpower);
3575 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3576 	txpower.channel = htole16(chan);
3577 
3578 	/* set Tx power for all OFDM and CCK rates */
3579 	for (i = 0; i <= 11 ; i++) {
3580 		/* retrieve Tx power for this channel/rate combination */
3581 		int idx = wpi_get_power_index(sc, group, c,
3582 		    wpi_ridx_to_rate[i]);
3583 
3584 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3585 
3586 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3587 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3588 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3589 		} else {
3590 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3591 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3592 		}
3593 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3594 			    chan, wpi_ridx_to_rate[i], idx));
3595 	}
3596 
3597 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3598 }
3599 
3600 /*
3601  * Determine Tx power index for a given channel/rate combination.
3602  * This takes into account the regulatory information from EEPROM and the
3603  * current temperature.
3604  */
3605 static int
3606 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3607     struct ieee80211_channel *c, int rate)
3608 {
3609 /* fixed-point arithmetic division using a n-bit fractional part */
3610 #define fdivround(a, b, n)      \
3611 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3612 
3613 /* linear interpolation */
3614 #define interpolate(x, x1, y1, x2, y2, n)       \
3615 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3616 
3617 	struct ifnet *ifp = sc->sc_ifp;
3618 	struct ieee80211com *ic = ifp->if_l2com;
3619 	struct wpi_power_sample *sample;
3620 	int pwr, idx;
3621 	u_int chan;
3622 
3623 	/* get channel number */
3624 	chan = ieee80211_chan2ieee(ic, c);
3625 
3626 	/* default power is group's maximum power - 3dB */
3627 	pwr = group->maxpwr / 2;
3628 
3629 	/* decrease power for highest OFDM rates to reduce distortion */
3630 	switch (rate) {
3631 		case 72:	/* 36Mb/s */
3632 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3633 			break;
3634 		case 96:	/* 48Mb/s */
3635 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3636 			break;
3637 		case 108:	/* 54Mb/s */
3638 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3639 			break;
3640 	}
3641 
3642 	/* never exceed channel's maximum allowed Tx power */
3643 	pwr = min(pwr, sc->maxpwr[chan]);
3644 
3645 	/* retrieve power index into gain tables from samples */
3646 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3647 		if (pwr > sample[1].power)
3648 			break;
3649 	/* fixed-point linear interpolation using a 19-bit fractional part */
3650 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3651 	    sample[1].power, sample[1].index, 19);
3652 
3653 	/*
3654 	 *  Adjust power index based on current temperature
3655 	 *	- if colder than factory-calibrated: decreate output power
3656 	 *	- if warmer than factory-calibrated: increase output power
3657 	 */
3658 	idx -= (sc->temp - group->temp) * 11 / 100;
3659 
3660 	/* decrease power for CCK rates (-5dB) */
3661 	if (!WPI_RATE_IS_OFDM(rate))
3662 		idx += 10;
3663 
3664 	/* keep power index in a valid range */
3665 	if (idx < 0)
3666 		return 0;
3667 	if (idx > WPI_MAX_PWR_INDEX)
3668 		return WPI_MAX_PWR_INDEX;
3669 	return idx;
3670 
3671 #undef interpolate
3672 #undef fdivround
3673 }
3674 
3675 /**
3676  * Called by net80211 framework to indicate that a scan
3677  * is starting. This function doesn't actually do the scan,
3678  * wpi_scan_curchan starts things off. This function is more
3679  * of an early warning from the framework we should get ready
3680  * for the scan.
3681  */
3682 static void
3683 wpi_scan_start(struct ieee80211com *ic)
3684 {
3685 	struct ifnet *ifp = ic->ic_ifp;
3686 	struct wpi_softc *sc = ifp->if_softc;
3687 
3688 	WPI_LOCK(sc);
3689 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3690 	WPI_UNLOCK(sc);
3691 }
3692 
3693 /**
3694  * Called by the net80211 framework, indicates that the
3695  * scan has ended. If there is a scan in progress on the card
3696  * then it should be aborted.
3697  */
3698 static void
3699 wpi_scan_end(struct ieee80211com *ic)
3700 {
3701 	/* XXX ignore */
3702 }
3703 
3704 /**
3705  * Called by the net80211 framework to indicate to the driver
3706  * that the channel should be changed
3707  */
3708 static void
3709 wpi_set_channel(struct ieee80211com *ic)
3710 {
3711 	struct ifnet *ifp = ic->ic_ifp;
3712 	struct wpi_softc *sc = ifp->if_softc;
3713 	int error;
3714 
3715 	/*
3716 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3717 	 * are already taken care of by their respective firmware commands.
3718 	 */
3719 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3720 		WPI_LOCK(sc);
3721 		error = wpi_config(sc);
3722 		WPI_UNLOCK(sc);
3723 		if (error != 0)
3724 			device_printf(sc->sc_dev,
3725 			    "error %d settting channel\n", error);
3726 	}
3727 }
3728 
3729 /**
3730  * Called by net80211 to indicate that we need to scan the current
3731  * channel. The channel is previously be set via the wpi_set_channel
3732  * callback.
3733  */
3734 static void
3735 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3736 {
3737 	struct ieee80211vap *vap = ss->ss_vap;
3738 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3739 	struct wpi_softc *sc = ifp->if_softc;
3740 
3741 	WPI_LOCK(sc);
3742 	if (wpi_scan(sc))
3743 		ieee80211_cancel_scan(vap);
3744 	WPI_UNLOCK(sc);
3745 }
3746 
3747 /**
3748  * Called by the net80211 framework to indicate
3749  * the minimum dwell time has been met, terminate the scan.
3750  * We don't actually terminate the scan as the firmware will notify
3751  * us when it's finished and we have no way to interrupt it.
3752  */
3753 static void
3754 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3755 {
3756 	/* NB: don't try to abort scan; wait for firmware to finish */
3757 }
3758 
3759 static void
3760 wpi_hwreset(void *arg, int pending)
3761 {
3762 	struct wpi_softc *sc = arg;
3763 
3764 	WPI_LOCK(sc);
3765 	wpi_init_locked(sc, 0);
3766 	WPI_UNLOCK(sc);
3767 }
3768 
3769 static void
3770 wpi_rfreset(void *arg, int pending)
3771 {
3772 	struct wpi_softc *sc = arg;
3773 
3774 	WPI_LOCK(sc);
3775 	wpi_rfkill_resume(sc);
3776 	WPI_UNLOCK(sc);
3777 }
3778 
3779 /*
3780  * Allocate DMA-safe memory for firmware transfer.
3781  */
3782 static int
3783 wpi_alloc_fwmem(struct wpi_softc *sc)
3784 {
3785 	/* allocate enough contiguous space to store text and data */
3786 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3787 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3788 	    BUS_DMA_NOWAIT);
3789 }
3790 
3791 static void
3792 wpi_free_fwmem(struct wpi_softc *sc)
3793 {
3794 	wpi_dma_contig_free(&sc->fw_dma);
3795 }
3796 
3797 /**
3798  * Called every second, wpi_watchdog used by the watch dog timer
3799  * to check that the card is still alive
3800  */
3801 static void
3802 wpi_watchdog(void *arg)
3803 {
3804 	struct wpi_softc *sc = arg;
3805 	struct ifnet *ifp = sc->sc_ifp;
3806 	struct ieee80211com *ic = ifp->if_l2com;
3807 	uint32_t tmp;
3808 
3809 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3810 
3811 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3812 		/* No need to lock firmware memory */
3813 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3814 
3815 		if ((tmp & 0x1) == 0) {
3816 			/* Radio kill switch is still off */
3817 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3818 			return;
3819 		}
3820 
3821 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3822 		ieee80211_runtask(ic, &sc->sc_radiotask);
3823 		return;
3824 	}
3825 
3826 	if (sc->sc_tx_timer > 0) {
3827 		if (--sc->sc_tx_timer == 0) {
3828 			device_printf(sc->sc_dev,"device timeout\n");
3829 #if defined(__DragonFly__)
3830 			IFNET_STAT_INC(ifp, oerrors, 1);
3831 #else
3832 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3833 #endif
3834 			ieee80211_runtask(ic, &sc->sc_restarttask);
3835 		}
3836 	}
3837 	if (sc->sc_scan_timer > 0) {
3838 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3839 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3840 			device_printf(sc->sc_dev,"scan timeout\n");
3841 			ieee80211_cancel_scan(vap);
3842 			ieee80211_runtask(ic, &sc->sc_restarttask);
3843 		}
3844 	}
3845 
3846 #if defined(__DragonFly__)
3847 	if (ifp->if_flags & IFF_RUNNING)
3848 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3849 #else
3850 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3851 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3852 #endif
3853 }
3854 
3855 #if defined(__DragonFly__)
3856 static int
3857 wpi_sleep(struct wpi_softc *sc, void *wchan,
3858 	int flags, const char *wmsg, int timo)
3859 {
3860 	int iws;
3861 	int error;
3862 	iws = wlan_is_serialized();
3863 	if (iws)
3864 		wlan_serialize_exit();
3865 	error = lksleep(wchan, &sc->sc_mtx, flags, wmsg, timo);
3866 	if (iws)
3867 		wlan_serialize_enter();
3868 	return error;
3869 }
3870 #endif
3871 
3872 
3873 #ifdef WPI_DEBUG
3874 static const char *wpi_cmd_str(int cmd)
3875 {
3876 	switch (cmd) {
3877 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3878 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3879 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3880 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3881 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3882 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3883 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3884 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3885 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3886 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3887 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3888 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3889 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3890 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3891 
3892 	default:
3893 		KASSERT(1, ("Unknown Command: %d", cmd));
3894 		return "UNKNOWN CMD";	/* Make the compiler happy */
3895 	}
3896 }
3897 #endif
3898 
3899 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3900 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3901 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3902