xref: /dragonfly/sys/dev/netif/wpi/if_wpi.c (revision d4ef6694)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
19  */
20 
21 #define VERSION "20071127"
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_intr) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/sysctl.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/queue.h>
70 #include <sys/taskqueue.h>
71 #include <sys/module.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/linker.h>
75 #include <sys/firmware.h>
76 
77 #include <sys/resource.h>
78 #include <sys/rman.h>
79 
80 #include <bus/pci/pcireg.h>
81 #include <bus/pci/pcivar.h>
82 
83 #include <net/bpf.h>
84 #include <net/if.h>
85 #include <net/if_arp.h>
86 #include <net/ifq_var.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 #include <net/if_types.h>
91 
92 #include <netproto/802_11/ieee80211_var.h>
93 #include <netproto/802_11/ieee80211_radiotap.h>
94 #include <netproto/802_11/ieee80211_regdomain.h>
95 #include <netproto/802_11/ieee80211_ratectl.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102 
103 /* XXX: move elsewhere */
104 #define abs(x) (((x) < 0) ? -(x) : (x))
105 
106 #include "if_wpireg.h"
107 #include "if_wpivar.h"
108 
109 #define WPI_DEBUG
110 
111 #ifdef WPI_DEBUG
112 #define DPRINTF(x)	do { if (wpi_debug != 0) kprintf x; } while (0)
113 #define DPRINTFN(n, x)	do { if (wpi_debug & n) kprintf x; } while (0)
114 #define	WPI_DEBUG_SET	(wpi_debug != 0)
115 
116 enum {
117 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
118 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
119 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
120 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
121 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
122 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
123 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
124 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
125 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
126 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
127 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
128 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
129 	WPI_DEBUG_ANY		= 0xffffffff
130 };
131 
132 static int wpi_debug = 1;
133 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
134 TUNABLE_INT("debug.wpi", &wpi_debug);
135 
136 #else
137 #define DPRINTF(x)
138 #define DPRINTFN(n, x)
139 #define WPI_DEBUG_SET	0
140 #endif
141 
142 struct wpi_ident {
143 	uint16_t	vendor;
144 	uint16_t	device;
145 	uint16_t	subdevice;
146 	const char	*name;
147 };
148 
149 static const struct wpi_ident wpi_ident_table[] = {
150 	/* The below entries support ABG regardless of the subid */
151 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
152 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	/* The below entries only support BG */
154 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
155 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0, 0, 0, NULL }
159 };
160 
161 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
162 		    const char name[IFNAMSIZ], int unit,
163 		    enum ieee80211_opmode opmode,
164 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
165 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
166 static void	wpi_vap_delete(struct ieee80211vap *);
167 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 		    void **, bus_size_t, bus_size_t, int);
169 static void	wpi_dma_contig_free(struct wpi_dma_info *);
170 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int	wpi_alloc_shared(struct wpi_softc *);
172 static void	wpi_free_shared(struct wpi_softc *);
173 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 		    int, int);
178 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
183 static void	wpi_mem_lock(struct wpi_softc *);
184 static void	wpi_mem_unlock(struct wpi_softc *);
185 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
186 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
187 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
188 		    const uint32_t *, int);
189 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
190 static int	wpi_alloc_fwmem(struct wpi_softc *);
191 static void	wpi_free_fwmem(struct wpi_softc *);
192 static int	wpi_load_firmware(struct wpi_softc *);
193 static void	wpi_unload_firmware(struct wpi_softc *);
194 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
195 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
196 		    struct wpi_rx_data *);
197 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
198 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
199 static void	wpi_notif_intr(struct wpi_softc *);
200 static void	wpi_intr(void *);
201 static uint8_t	wpi_plcp_signal(int);
202 static void	wpi_watchdog_callout(void *);
203 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *, int);
205 static void	wpi_start(struct ifnet *, struct ifaltq_subque *);
206 static void	wpi_start_locked(struct ifnet *);
207 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208 		    const struct ieee80211_bpf_params *);
209 static void	wpi_scan_start(struct ieee80211com *);
210 static void	wpi_scan_end(struct ieee80211com *);
211 static void	wpi_set_channel(struct ieee80211com *);
212 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
213 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
214 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
215 static void	wpi_read_eeprom(struct wpi_softc *,
216 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
217 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
218 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
219 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
220 static int	wpi_wme_update(struct ieee80211com *);
221 static int	wpi_mrr_setup(struct wpi_softc *);
222 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
223 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
224 #if 0
225 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
226 #endif
227 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
229 static int	wpi_scan(struct wpi_softc *);
230 static int	wpi_config(struct wpi_softc *);
231 static void	wpi_stop_master(struct wpi_softc *);
232 static int	wpi_power_up(struct wpi_softc *);
233 static int	wpi_reset(struct wpi_softc *);
234 static void	wpi_hwreset_task(void *, int);
235 static void	wpi_rfreset_task(void *, int);
236 static void	wpi_hw_config(struct wpi_softc *);
237 static void	wpi_init(void *);
238 static void	wpi_init_locked(struct wpi_softc *, int);
239 static void	wpi_stop(struct wpi_softc *);
240 static void	wpi_stop_locked(struct wpi_softc *);
241 
242 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
243 		    int);
244 static void	wpi_calib_timeout_callout(void *);
245 static void	wpi_power_calibration(struct wpi_softc *, int);
246 static int	wpi_get_power_index(struct wpi_softc *,
247 		    struct wpi_power_group *, struct ieee80211_channel *, int);
248 #ifdef WPI_DEBUG
249 static const char *wpi_cmd_str(int);
250 #endif
251 static int wpi_probe(device_t);
252 static int wpi_attach(device_t);
253 static int wpi_detach(device_t);
254 static int wpi_shutdown(device_t);
255 static int wpi_suspend(device_t);
256 static int wpi_resume(device_t);
257 
258 
259 static device_method_t wpi_methods[] = {
260 	/* Device interface */
261 	DEVMETHOD(device_probe,		wpi_probe),
262 	DEVMETHOD(device_attach,	wpi_attach),
263 	DEVMETHOD(device_detach,	wpi_detach),
264 	DEVMETHOD(device_shutdown,	wpi_shutdown),
265 	DEVMETHOD(device_suspend,	wpi_suspend),
266 	DEVMETHOD(device_resume,	wpi_resume),
267 
268 	DEVMETHOD_END
269 };
270 
271 static driver_t wpi_driver = {
272 	"wpi",
273 	wpi_methods,
274 	sizeof (struct wpi_softc)
275 };
276 
277 static devclass_t wpi_devclass;
278 
279 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
280 
281 static const uint8_t wpi_ridx_to_plcp[] = {
282 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
283 	/* R1-R4 (ral/ural is R4-R1) */
284 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
285 	/* CCK: device-dependent */
286 	10, 20, 55, 110
287 };
288 static const uint8_t wpi_ridx_to_rate[] = {
289 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
290 	2, 4, 11, 22 /*CCK */
291 };
292 
293 
294 static int
295 wpi_probe(device_t dev)
296 {
297 	const struct wpi_ident *ident;
298 
299 	wlan_serialize_enter();
300 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
301 		if (pci_get_vendor(dev) == ident->vendor &&
302 		    pci_get_device(dev) == ident->device) {
303 			device_set_desc(dev, ident->name);
304 			wlan_serialize_exit();
305 			return 0;
306 		}
307 	}
308 	wlan_serialize_exit();
309 	return ENXIO;
310 }
311 
312 /**
313  * Load the firmare image from disk to the allocated dma buffer.
314  * we also maintain the reference to the firmware pointer as there
315  * is times where we may need to reload the firmware but we are not
316  * in a context that can access the filesystem (ie taskq cause by restart)
317  *
318  * @return 0 on success, an errno on failure
319  */
320 static int
321 wpi_load_firmware(struct wpi_softc *sc)
322 {
323 	const struct firmware *fp;
324 	struct wpi_dma_info *dma = &sc->fw_dma;
325 	const struct wpi_firmware_hdr *hdr;
326 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
327 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
328 	int error;
329 
330 	DPRINTFN(WPI_DEBUG_FIRMWARE,
331 	    ("Attempting Loading Firmware from wpi_fw module\n"));
332 
333 	wlan_assert_serialized();
334 	wlan_serialize_exit();
335 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
336 		device_printf(sc->sc_dev,
337 		    "could not load firmware image 'wpifw_fw'\n");
338 		error = ENOENT;
339 		wlan_serialize_enter();
340 		goto fail;
341 	}
342 	wlan_serialize_enter();
343 
344 	fp = sc->fw_fp;
345 
346 	/* Validate the firmware is minimum a particular version */
347 	if (fp->version < WPI_FW_MINVERSION) {
348 	    device_printf(sc->sc_dev,
349 			   "firmware version is too old. Need %d, got %d\n",
350 			   WPI_FW_MINVERSION,
351 			   fp->version);
352 	    error = ENXIO;
353 	    goto fail;
354 	}
355 
356 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
357 		device_printf(sc->sc_dev,
358 		    "firmware file too short: %zu bytes\n", fp->datasize);
359 		error = ENXIO;
360 		goto fail;
361 	}
362 
363 	hdr = (const struct wpi_firmware_hdr *)fp->data;
364 
365 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
366 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
367 
368 	rtextsz = le32toh(hdr->rtextsz);
369 	rdatasz = le32toh(hdr->rdatasz);
370 	itextsz = le32toh(hdr->itextsz);
371 	idatasz = le32toh(hdr->idatasz);
372 	btextsz = le32toh(hdr->btextsz);
373 
374 	/* check that all firmware segments are present */
375 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
376 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
377 		device_printf(sc->sc_dev,
378 		    "firmware file too short: %zu bytes\n", fp->datasize);
379 		error = ENXIO; /* XXX appropriate error code? */
380 		goto fail;
381 	}
382 
383 	/* get pointers to firmware segments */
384 	rtext = (const uint8_t *)(hdr + 1);
385 	rdata = rtext + rtextsz;
386 	itext = rdata + rdatasz;
387 	idata = itext + itextsz;
388 	btext = idata + idatasz;
389 
390 	DPRINTFN(WPI_DEBUG_FIRMWARE,
391 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
392 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
393 	     (le32toh(hdr->version) & 0xff000000) >> 24,
394 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
395 	     (le32toh(hdr->version) & 0x0000ffff),
396 	     rtextsz, rdatasz,
397 	     itextsz, idatasz, btextsz));
398 
399 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
400 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
401 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
402 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
403 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
404 
405 	/* sanity checks */
406 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
407 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
408 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
409 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
410 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
411 	    (btextsz & 3) != 0) {
412 		device_printf(sc->sc_dev, "firmware invalid\n");
413 		error = EINVAL;
414 		goto fail;
415 	}
416 
417 	/* copy initialization images into pre-allocated DMA-safe memory */
418 	memcpy(dma->vaddr, idata, idatasz);
419 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
420 
421 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
422 
423 	/* tell adapter where to find initialization images */
424 	wpi_mem_lock(sc);
425 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
426 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
427 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
428 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
429 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
430 	wpi_mem_unlock(sc);
431 
432 	/* load firmware boot code */
433 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
434 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
435 	    goto fail;
436 	}
437 
438 	/* now press "execute" */
439 	WPI_WRITE(sc, WPI_RESET, 0);
440 
441 	/* wait at most one second for the first alive notification */
442 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
443 		device_printf(sc->sc_dev,
444 		    "timeout waiting for adapter to initialize\n");
445 		goto fail;
446 	}
447 
448 	/* copy runtime images into pre-allocated DMA-sage memory */
449 	memcpy(dma->vaddr, rdata, rdatasz);
450 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
451 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
452 
453 	/* tell adapter where to find runtime images */
454 	wpi_mem_lock(sc);
455 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
456 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
457 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
458 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
459 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
460 	wpi_mem_unlock(sc);
461 
462 	/* wait at most one second for the first alive notification */
463 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
464 		device_printf(sc->sc_dev,
465 		    "timeout waiting for adapter to initialize2\n");
466 		goto fail;
467 	}
468 
469 	DPRINTFN(WPI_DEBUG_FIRMWARE,
470 	    ("Firmware loaded to driver successfully\n"));
471 	return error;
472 fail:
473 	wpi_unload_firmware(sc);
474 	return error;
475 }
476 
477 /**
478  * Free the referenced firmware image
479  */
480 static void
481 wpi_unload_firmware(struct wpi_softc *sc)
482 {
483 	if (sc->fw_fp) {
484 		wlan_assert_serialized();
485 		wlan_serialize_exit();
486 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
487 		wlan_serialize_enter();
488 		sc->fw_fp = NULL;
489 	}
490 }
491 
492 static int
493 wpi_attach(device_t dev)
494 {
495 	struct wpi_softc *sc;
496 	struct ifnet *ifp;
497 	struct ieee80211com *ic;
498 	int ac, error, supportsa = 1;
499 	uint32_t tmp;
500 	const struct wpi_ident *ident;
501 	uint8_t macaddr[IEEE80211_ADDR_LEN];
502 
503 	wlan_serialize_enter();
504 	sc = device_get_softc(dev);
505 	sc->sc_dev = dev;
506 
507 	if (bootverbose || WPI_DEBUG_SET)
508 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
509 
510 	/*
511 	 * Some card's only support 802.11b/g not a, check to see if
512 	 * this is one such card. A 0x0 in the subdevice table indicates
513 	 * the entire subdevice range is to be ignored.
514 	 */
515 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
516 		if (ident->subdevice &&
517 		    pci_get_subdevice(dev) == ident->subdevice) {
518 		    supportsa = 0;
519 		    break;
520 		}
521 	}
522 
523 	/* Create the tasks that can be queued */
524 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc);
525 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc);
526 
527 	callout_init(&sc->calib_to_callout);
528 	callout_init(&sc->watchdog_to_callout);
529 
530 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
531 		device_printf(dev, "chip is in D%d power mode "
532 		    "-- setting to D0\n", pci_get_powerstate(dev));
533 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
534 	}
535 
536 	/* disable the retry timeout register */
537 	pci_write_config(dev, 0x41, 0, 1);
538 
539 	/* enable bus-mastering */
540 	pci_enable_busmaster(dev);
541 
542 	sc->mem_rid = PCIR_BAR(0);
543 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
544 	    RF_ACTIVE);
545 	if (sc->mem == NULL) {
546 		device_printf(dev, "could not allocate memory resource\n");
547 		error = ENOMEM;
548 		goto fail;
549 	}
550 
551 	sc->sc_st = rman_get_bustag(sc->mem);
552 	sc->sc_sh = rman_get_bushandle(sc->mem);
553 
554 	sc->irq_rid = 0;
555 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
556 	    RF_ACTIVE | RF_SHAREABLE);
557 	if (sc->irq == NULL) {
558 		device_printf(dev, "could not allocate interrupt resource\n");
559 		error = ENOMEM;
560 		goto fail;
561 	}
562 
563 	/*
564 	 * Allocate DMA memory for firmware transfers.
565 	 */
566 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
567 		kprintf(": could not allocate firmware memory\n");
568 		error = ENOMEM;
569 		goto fail;
570 	}
571 
572 	/*
573 	 * Put adapter into a known state.
574 	 */
575 	if ((error = wpi_reset(sc)) != 0) {
576 		device_printf(dev, "could not reset adapter\n");
577 		goto fail;
578 	}
579 
580 	wpi_mem_lock(sc);
581 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
582 	if (bootverbose || WPI_DEBUG_SET)
583 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
584 
585 	wpi_mem_unlock(sc);
586 
587 	/* Allocate shared page */
588 	if ((error = wpi_alloc_shared(sc)) != 0) {
589 		device_printf(dev, "could not allocate shared page\n");
590 		goto fail;
591 	}
592 
593 	/* tx data queues  - 4 for QoS purposes */
594 	for (ac = 0; ac < WME_NUM_AC; ac++) {
595 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
596 		if (error != 0) {
597 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
598 		    goto fail;
599 		}
600 	}
601 
602 	/* command queue to talk to the card's firmware */
603 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
604 	if (error != 0) {
605 		device_printf(dev, "could not allocate command ring\n");
606 		goto fail;
607 	}
608 
609 	/* receive data queue */
610 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
611 	if (error != 0) {
612 		device_printf(dev, "could not allocate Rx ring\n");
613 		goto fail;
614 	}
615 
616 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
617 	if (ifp == NULL) {
618 		device_printf(dev, "can not if_alloc()\n");
619 		error = ENOMEM;
620 		goto fail;
621 	}
622 	ic = ifp->if_l2com;
623 
624 	ic->ic_ifp = ifp;
625 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
626 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
627 
628 	/* set device capabilities */
629 	ic->ic_caps =
630 		  IEEE80211_C_STA		/* station mode supported */
631 		| IEEE80211_C_MONITOR		/* monitor mode supported */
632 		| IEEE80211_C_TXPMGT		/* tx power management */
633 		| IEEE80211_C_SHSLOT		/* short slot time supported */
634 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
635 		| IEEE80211_C_WPA		/* 802.11i */
636 /* XXX looks like WME is partly supported? */
637 #if 0
638 		| IEEE80211_C_IBSS		/* IBSS mode support */
639 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
640 		| IEEE80211_C_WME		/* 802.11e */
641 		| IEEE80211_C_HOSTAP		/* Host access point mode */
642 #endif
643 		;
644 
645 	/*
646 	 * Read in the eeprom and also setup the channels for
647 	 * net80211. We don't set the rates as net80211 does this for us
648 	 */
649 	wpi_read_eeprom(sc, macaddr);
650 
651 	if (bootverbose || WPI_DEBUG_SET) {
652 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
653 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
654 			  sc->type > 1 ? 'B': '?');
655 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
656 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
657 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
658 			  supportsa ? "does" : "does not");
659 
660 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
661 	       what sc->rev really represents - benjsc 20070615 */
662 	}
663 
664 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
665 	ifp->if_softc = sc;
666 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
667 	ifp->if_init = wpi_init;
668 	ifp->if_ioctl = wpi_ioctl;
669 	ifp->if_start = wpi_start;
670 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
671 #ifdef notyet
672 	ifq_set_ready(&ifp->if_snd);
673 #endif
674 
675 	ieee80211_ifattach(ic, macaddr);
676 	/* override default methods */
677 	ic->ic_node_alloc = wpi_node_alloc;
678 	ic->ic_raw_xmit = wpi_raw_xmit;
679 	ic->ic_wme.wme_update = wpi_wme_update;
680 	ic->ic_scan_start = wpi_scan_start;
681 	ic->ic_scan_end = wpi_scan_end;
682 	ic->ic_set_channel = wpi_set_channel;
683 	ic->ic_scan_curchan = wpi_scan_curchan;
684 	ic->ic_scan_mindwell = wpi_scan_mindwell;
685 
686 	ic->ic_vap_create = wpi_vap_create;
687 	ic->ic_vap_delete = wpi_vap_delete;
688 
689 	ieee80211_radiotap_attach(ic,
690 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
691 		WPI_TX_RADIOTAP_PRESENT,
692 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
693 		WPI_RX_RADIOTAP_PRESENT);
694 
695 	/*
696 	 * Hook our interrupt after all initialization is complete.
697 	 */
698 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
699 	    wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
700 	if (error != 0) {
701 		device_printf(dev, "could not set up interrupt\n");
702 		goto fail;
703 	}
704 
705 	if (bootverbose)
706 		ieee80211_announce(ic);
707 #ifdef XXX_DEBUG
708 	ieee80211_announce_channels(ic);
709 #endif
710 	wlan_serialize_exit();
711 	return 0;
712 
713 fail:
714 	wlan_serialize_exit();
715 	wpi_detach(dev);
716 	return ENXIO;
717 }
718 
719 static int
720 wpi_detach(device_t dev)
721 {
722 	struct wpi_softc *sc;
723 	struct ifnet *ifp;
724 	struct ieee80211com *ic;
725 	int ac;
726 
727 	wlan_serialize_enter();
728 	sc = device_get_softc(dev);
729 	ifp = sc->sc_ifp;
730 	if (ifp != NULL) {
731 		ic = ifp->if_l2com;
732 
733 		ieee80211_draintask(ic, &sc->sc_restarttask);
734 		ieee80211_draintask(ic, &sc->sc_radiotask);
735 		wpi_stop(sc);
736 		callout_stop(&sc->watchdog_to_callout);
737 		callout_stop(&sc->calib_to_callout);
738 		ieee80211_ifdetach(ic);
739 	}
740 
741 	if (sc->txq[0].data_dmat) {
742 		for (ac = 0; ac < WME_NUM_AC; ac++)
743 			wpi_free_tx_ring(sc, &sc->txq[ac]);
744 
745 		wpi_free_tx_ring(sc, &sc->cmdq);
746 		wpi_free_rx_ring(sc, &sc->rxq);
747 		wpi_free_shared(sc);
748 	}
749 
750 	if (sc->fw_fp != NULL) {
751 		wpi_unload_firmware(sc);
752 	}
753 
754 	if (sc->fw_dma.tag)
755 		wpi_free_fwmem(sc);
756 
757 	if (sc->irq != NULL) {
758 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
759 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
760 	}
761 
762 	if (sc->mem != NULL)
763 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
764 
765 	if (ifp != NULL)
766 		if_free(ifp);
767 
768 	wlan_serialize_exit();
769 	return 0;
770 }
771 
772 static struct ieee80211vap *
773 wpi_vap_create(struct ieee80211com *ic,
774 	const char name[IFNAMSIZ], int unit,
775 	enum ieee80211_opmode opmode, int flags,
776 	const uint8_t bssid[IEEE80211_ADDR_LEN],
777 	const uint8_t mac[IEEE80211_ADDR_LEN])
778 {
779 	struct wpi_vap *wvp;
780 	struct ieee80211vap *vap;
781 
782 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
783 		return NULL;
784 	wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
785 	    M_80211_VAP, M_INTWAIT | M_ZERO);
786 	if (wvp == NULL)
787 		return NULL;
788 	vap = &wvp->vap;
789 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
790 	/* override with driver methods */
791 	wvp->newstate = vap->iv_newstate;
792 	vap->iv_newstate = wpi_newstate;
793 
794 	ieee80211_ratectl_init(vap);
795 
796 	/* complete setup */
797 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
798 	ic->ic_opmode = opmode;
799 	return vap;
800 }
801 
802 static void
803 wpi_vap_delete(struct ieee80211vap *vap)
804 {
805 	struct wpi_vap *wvp = WPI_VAP(vap);
806 
807 	ieee80211_ratectl_deinit(vap);
808 	ieee80211_vap_detach(vap);
809 	kfree(wvp, M_80211_VAP);
810 }
811 
812 static void
813 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
814 {
815 	if (error != 0)
816 		return;
817 
818 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
819 
820 	*(bus_addr_t *)arg = segs[0].ds_addr;
821 }
822 
823 /*
824  * Allocates a contiguous block of dma memory of the requested size and
825  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
826  * allocations greater than 4096 may fail. Hence if the requested alignment is
827  * greater we allocate 'alignment' size extra memory and shift the vaddr and
828  * paddr after the dma load. This bypasses the problem at the cost of a little
829  * more memory.
830  */
831 static int
832 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
833     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
834 {
835 	int error;
836 	bus_size_t align;
837 	bus_size_t reqsize;
838 
839 	DPRINTFN(WPI_DEBUG_DMA,
840 	    ("Size: %zd - alignment %zd\n", size, alignment));
841 
842 	dma->size = size;
843 	dma->tag = NULL;
844 
845 	if (alignment > 4096) {
846 		align = PAGE_SIZE;
847 		reqsize = size + alignment;
848 	} else {
849 		align = alignment;
850 		reqsize = size;
851 	}
852 	error = bus_dma_tag_create(dma->tag, align,
853 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
854 	    NULL, NULL, reqsize,
855 	    1, reqsize, flags,
856 	    &dma->tag);
857 	if (error != 0) {
858 		device_printf(sc->sc_dev,
859 		    "could not create shared page DMA tag\n");
860 		goto fail;
861 	}
862 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
863 	    flags | BUS_DMA_ZERO, &dma->map);
864 	if (error != 0) {
865 		device_printf(sc->sc_dev,
866 		    "could not allocate shared page DMA memory\n");
867 		goto fail;
868 	}
869 
870 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
871 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
872 
873 	/* Save the original pointers so we can free all the memory */
874 	dma->paddr = dma->paddr_start;
875 	dma->vaddr = dma->vaddr_start;
876 
877 	/*
878 	 * Check the alignment and increment by 4096 until we get the
879 	 * requested alignment. Fail if can't obtain the alignment
880 	 * we requested.
881 	 */
882 	if ((dma->paddr & (alignment -1 )) != 0) {
883 		int i;
884 
885 		for (i = 0; i < alignment / 4096; i++) {
886 			if ((dma->paddr & (alignment - 1 )) == 0)
887 				break;
888 			dma->paddr += 4096;
889 			dma->vaddr += 4096;
890 		}
891 		if (i == alignment / 4096) {
892 			device_printf(sc->sc_dev,
893 			    "alignment requirement was not satisfied\n");
894 			goto fail;
895 		}
896 	}
897 
898 	if (error != 0) {
899 		device_printf(sc->sc_dev,
900 		    "could not load shared page DMA map\n");
901 		goto fail;
902 	}
903 
904 	if (kvap != NULL)
905 		*kvap = dma->vaddr;
906 
907 	return 0;
908 
909 fail:
910 	wpi_dma_contig_free(dma);
911 	return error;
912 }
913 
914 static void
915 wpi_dma_contig_free(struct wpi_dma_info *dma)
916 {
917 	if (dma->tag) {
918 		if (dma->map != NULL) {
919 			if (dma->paddr_start != 0) {
920 				bus_dmamap_sync(dma->tag, dma->map,
921 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
922 				bus_dmamap_unload(dma->tag, dma->map);
923 			}
924 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
925 		}
926 		bus_dma_tag_destroy(dma->tag);
927 	}
928 }
929 
930 /*
931  * Allocate a shared page between host and NIC.
932  */
933 static int
934 wpi_alloc_shared(struct wpi_softc *sc)
935 {
936 	int error;
937 
938 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
939 	    (void **)&sc->shared, sizeof (struct wpi_shared),
940 	    PAGE_SIZE,
941 	    BUS_DMA_NOWAIT);
942 
943 	if (error != 0) {
944 		device_printf(sc->sc_dev,
945 		    "could not allocate shared area DMA memory\n");
946 	}
947 
948 	return error;
949 }
950 
951 static void
952 wpi_free_shared(struct wpi_softc *sc)
953 {
954 	wpi_dma_contig_free(&sc->shared_dma);
955 }
956 
957 static int
958 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
959 {
960 
961 	int i, error;
962 
963 	ring->cur = 0;
964 
965 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
966 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
967 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
968 
969 	if (error != 0) {
970 		device_printf(sc->sc_dev,
971 		    "%s: could not allocate rx ring DMA memory, error %d\n",
972 		    __func__, error);
973 		goto fail;
974 	}
975 
976         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
977 	    BUS_SPACE_MAXADDR_32BIT,
978             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
979             MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
980         if (error != 0) {
981                 device_printf(sc->sc_dev,
982 		    "%s: bus_dma_tag_create_failed, error %d\n",
983 		    __func__, error);
984                 goto fail;
985         }
986 
987 	/*
988 	 * Setup Rx buffers.
989 	 */
990 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
991 		struct wpi_rx_data *data = &ring->data[i];
992 		struct mbuf *m;
993 		bus_addr_t paddr;
994 
995 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
996 		if (error != 0) {
997 			device_printf(sc->sc_dev,
998 			    "%s: bus_dmamap_create failed, error %d\n",
999 			    __func__, error);
1000 			goto fail;
1001 		}
1002 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1003 		if (m == NULL) {
1004 			device_printf(sc->sc_dev,
1005 			   "%s: could not allocate rx mbuf\n", __func__);
1006 			error = ENOMEM;
1007 			goto fail;
1008 		}
1009 		/* map page */
1010 		error = bus_dmamap_load(ring->data_dmat, data->map,
1011 		    mtod(m, caddr_t), MJUMPAGESIZE,
1012 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1013 		if (error != 0 && error != EFBIG) {
1014 			device_printf(sc->sc_dev,
1015 			    "%s: bus_dmamap_load failed, error %d\n",
1016 			    __func__, error);
1017 			m_freem(m);
1018 			error = ENOMEM;	/* XXX unique code */
1019 			goto fail;
1020 		}
1021 		bus_dmamap_sync(ring->data_dmat, data->map,
1022 		    BUS_DMASYNC_PREWRITE);
1023 
1024 		data->m = m;
1025 		ring->desc[i] = htole32(paddr);
1026 	}
1027 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1028 	    BUS_DMASYNC_PREWRITE);
1029 	return 0;
1030 fail:
1031 	wpi_free_rx_ring(sc, ring);
1032 	return error;
1033 }
1034 
1035 static void
1036 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1037 {
1038 	int ntries;
1039 
1040 	wpi_mem_lock(sc);
1041 
1042 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1043 
1044 	for (ntries = 0; ntries < 100; ntries++) {
1045 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1046 			break;
1047 		DELAY(10);
1048 	}
1049 
1050 	wpi_mem_unlock(sc);
1051 
1052 #ifdef WPI_DEBUG
1053 	if (ntries == 100 && wpi_debug > 0)
1054 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1055 #endif
1056 
1057 	ring->cur = 0;
1058 }
1059 
1060 static void
1061 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1062 {
1063 	int i;
1064 
1065 	wpi_dma_contig_free(&ring->desc_dma);
1066 
1067 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1068 		if (ring->data[i].m != NULL)
1069 			m_freem(ring->data[i].m);
1070 }
1071 
1072 static int
1073 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1074 	int qid)
1075 {
1076 	struct wpi_tx_data *data;
1077 	int i, error;
1078 
1079 	ring->qid = qid;
1080 	ring->count = count;
1081 	ring->queued = 0;
1082 	ring->cur = 0;
1083 	ring->data = NULL;
1084 
1085 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1086 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1087 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1088 
1089 	if (error != 0) {
1090 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1091 	    goto fail;
1092 	}
1093 
1094 	/* update shared page with ring's base address */
1095 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1096 
1097 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1098 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1099 		BUS_DMA_NOWAIT);
1100 
1101 	if (error != 0) {
1102 		device_printf(sc->sc_dev,
1103 		    "could not allocate tx command DMA memory\n");
1104 		goto fail;
1105 	}
1106 
1107 	ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1108 	    M_INTWAIT | M_ZERO);
1109 	if (ring->data == NULL) {
1110 		device_printf(sc->sc_dev,
1111 		    "could not allocate tx data slots\n");
1112 		goto fail;
1113 	}
1114 
1115 	error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1116 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE,
1117 	    WPI_MAX_SCATTER - 1, MJUMPAGESIZE, BUS_DMA_NOWAIT,
1118 	    &ring->data_dmat);
1119 	if (error != 0) {
1120 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1121 		goto fail;
1122 	}
1123 
1124 	for (i = 0; i < count; i++) {
1125 		data = &ring->data[i];
1126 
1127 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1128 		if (error != 0) {
1129 			device_printf(sc->sc_dev,
1130 			    "could not create tx buf DMA map\n");
1131 			goto fail;
1132 		}
1133 		bus_dmamap_sync(ring->data_dmat, data->map,
1134 		    BUS_DMASYNC_PREWRITE);
1135 	}
1136 
1137 	return 0;
1138 
1139 fail:
1140 	wpi_free_tx_ring(sc, ring);
1141 	return error;
1142 }
1143 
1144 static void
1145 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1146 {
1147 	struct wpi_tx_data *data;
1148 	int i, ntries;
1149 
1150 	wpi_mem_lock(sc);
1151 
1152 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1153 	for (ntries = 0; ntries < 100; ntries++) {
1154 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1155 			break;
1156 		DELAY(10);
1157 	}
1158 #ifdef WPI_DEBUG
1159 	if (ntries == 100 && wpi_debug > 0)
1160 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1161 		    ring->qid);
1162 #endif
1163 	wpi_mem_unlock(sc);
1164 
1165 	for (i = 0; i < ring->count; i++) {
1166 		data = &ring->data[i];
1167 
1168 		if (data->m != NULL) {
1169 			bus_dmamap_unload(ring->data_dmat, data->map);
1170 			m_freem(data->m);
1171 			data->m = NULL;
1172 		}
1173 	}
1174 
1175 	ring->queued = 0;
1176 	ring->cur = 0;
1177 }
1178 
1179 static void
1180 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1181 {
1182 	struct wpi_tx_data *data;
1183 	int i;
1184 
1185 	wpi_dma_contig_free(&ring->desc_dma);
1186 	wpi_dma_contig_free(&ring->cmd_dma);
1187 
1188 	if (ring->data != NULL) {
1189 		for (i = 0; i < ring->count; i++) {
1190 			data = &ring->data[i];
1191 
1192 			if (data->m != NULL) {
1193 				bus_dmamap_sync(ring->data_dmat, data->map,
1194 				    BUS_DMASYNC_POSTWRITE);
1195 				bus_dmamap_unload(ring->data_dmat, data->map);
1196 				m_freem(data->m);
1197 				data->m = NULL;
1198 			}
1199 		}
1200 		kfree(ring->data, M_DEVBUF);
1201 	}
1202 
1203 	if (ring->data_dmat != NULL)
1204 		bus_dma_tag_destroy(ring->data_dmat);
1205 }
1206 
1207 static int
1208 wpi_shutdown(device_t dev)
1209 {
1210 	struct wpi_softc *sc;
1211 
1212 	wlan_serialize_enter();
1213 	sc = device_get_softc(dev);
1214 	wpi_stop_locked(sc);
1215 	wpi_unload_firmware(sc);
1216 	wlan_serialize_exit();
1217 
1218 	return 0;
1219 }
1220 
1221 static int
1222 wpi_suspend(device_t dev)
1223 {
1224 	struct wpi_softc *sc;
1225 
1226 	wlan_serialize_enter();
1227 	sc = device_get_softc(dev);
1228 	wpi_stop(sc);
1229 	wlan_serialize_exit();
1230 	return 0;
1231 }
1232 
1233 static int
1234 wpi_resume(device_t dev)
1235 {
1236 	struct wpi_softc *sc;
1237 	struct ifnet *ifp;
1238 
1239 	wlan_serialize_enter();
1240 	sc = device_get_softc(dev);
1241 	ifp = sc->sc_ifp;
1242 	pci_write_config(dev, 0x41, 0, 1);
1243 
1244 	if (ifp->if_flags & IFF_UP) {
1245 		wpi_init(ifp->if_softc);
1246 		if (ifp->if_flags & IFF_RUNNING)
1247 			if_devstart(ifp);
1248 	}
1249 	wlan_serialize_exit();
1250 	return 0;
1251 }
1252 
1253 /* ARGSUSED */
1254 static struct ieee80211_node *
1255 wpi_node_alloc(struct ieee80211vap *vap __unused,
1256 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1257 {
1258 	struct wpi_node *wn;
1259 
1260 	wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
1261 
1262 	return &wn->ni;
1263 }
1264 
1265 /**
1266  * Called by net80211 when ever there is a change to 80211 state machine
1267  */
1268 static int
1269 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1270 {
1271 	struct wpi_vap *wvp = WPI_VAP(vap);
1272 	struct ieee80211com *ic = vap->iv_ic;
1273 	struct ifnet *ifp = ic->ic_ifp;
1274 	struct wpi_softc *sc = ifp->if_softc;
1275 	int error;
1276 
1277 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1278 		ieee80211_state_name[vap->iv_state],
1279 		ieee80211_state_name[nstate], sc->flags));
1280 
1281 	if (nstate == IEEE80211_S_AUTH) {
1282 		/* The node must be registered in the firmware before auth */
1283 		error = wpi_auth(sc, vap);
1284 		if (error != 0) {
1285 			device_printf(sc->sc_dev,
1286 			    "%s: could not move to auth state, error %d\n",
1287 			    __func__, error);
1288 		}
1289 	}
1290 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1291 		error = wpi_run(sc, vap);
1292 		if (error != 0) {
1293 			device_printf(sc->sc_dev,
1294 			    "%s: could not move to run state, error %d\n",
1295 			    __func__, error);
1296 		}
1297 	}
1298 	if (nstate == IEEE80211_S_RUN) {
1299 		/* RUN -> RUN transition; just restart the timers */
1300 		wpi_calib_timeout_callout(sc);
1301 		/* XXX split out rate control timer */
1302 	}
1303 	return wvp->newstate(vap, nstate, arg);
1304 }
1305 
1306 /*
1307  * Grab exclusive access to NIC memory.
1308  */
1309 static void
1310 wpi_mem_lock(struct wpi_softc *sc)
1311 {
1312 	int ntries;
1313 	uint32_t tmp;
1314 
1315 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1316 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1317 
1318 	/* spin until we actually get the lock */
1319 	for (ntries = 0; ntries < 100; ntries++) {
1320 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1321 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1322 			break;
1323 		DELAY(10);
1324 	}
1325 	if (ntries == 100)
1326 		device_printf(sc->sc_dev, "could not lock memory\n");
1327 }
1328 
1329 /*
1330  * Release lock on NIC memory.
1331  */
1332 static void
1333 wpi_mem_unlock(struct wpi_softc *sc)
1334 {
1335 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1336 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1337 }
1338 
1339 static uint32_t
1340 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1341 {
1342 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1343 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1344 }
1345 
1346 static void
1347 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1348 {
1349 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1350 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1351 }
1352 
1353 static void
1354 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1355     const uint32_t *data, int wlen)
1356 {
1357 	for (; wlen > 0; wlen--, data++, addr+=4)
1358 		wpi_mem_write(sc, addr, *data);
1359 }
1360 
1361 /*
1362  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1363  * using the traditional bit-bang method. Data is read up until len bytes have
1364  * been obtained.
1365  */
1366 static uint16_t
1367 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1368 {
1369 	int ntries;
1370 	uint32_t val;
1371 	uint8_t *out = data;
1372 
1373 	wpi_mem_lock(sc);
1374 
1375 	for (; len > 0; len -= 2, addr++) {
1376 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1377 
1378 		for (ntries = 0; ntries < 10; ntries++) {
1379 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1380 				break;
1381 			DELAY(5);
1382 		}
1383 
1384 		if (ntries == 10) {
1385 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1386 			return ETIMEDOUT;
1387 		}
1388 
1389 		*out++= val >> 16;
1390 		if (len > 1)
1391 			*out ++= val >> 24;
1392 	}
1393 
1394 	wpi_mem_unlock(sc);
1395 
1396 	return 0;
1397 }
1398 
1399 /*
1400  * The firmware text and data segments are transferred to the NIC using DMA.
1401  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1402  * where to find it.  Once the NIC has copied the firmware into its internal
1403  * memory, we can free our local copy in the driver.
1404  */
1405 static int
1406 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1407 {
1408 	int error, ntries;
1409 
1410 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1411 
1412 	size /= sizeof(uint32_t);
1413 
1414 	wpi_mem_lock(sc);
1415 
1416 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1417 	    (const uint32_t *)fw, size);
1418 
1419 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1420 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1421 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1422 
1423 	/* run microcode */
1424 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1425 
1426 	/* wait while the adapter is busy copying the firmware */
1427 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1428 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1429 		DPRINTFN(WPI_DEBUG_HW,
1430 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1431 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1432 		if (status & WPI_TX_IDLE(6)) {
1433 			DPRINTFN(WPI_DEBUG_HW,
1434 			    ("Status Match! - ntries = %d\n", ntries));
1435 			break;
1436 		}
1437 		DELAY(10);
1438 	}
1439 	if (ntries == 1000) {
1440 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1441 		error = ETIMEDOUT;
1442 	}
1443 
1444 	/* start the microcode executing */
1445 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1446 
1447 	wpi_mem_unlock(sc);
1448 
1449 	return (error);
1450 }
1451 
1452 static void
1453 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1454 	struct wpi_rx_data *data)
1455 {
1456 	struct ifnet *ifp = sc->sc_ifp;
1457 	struct ieee80211com *ic = ifp->if_l2com;
1458 	struct wpi_rx_ring *ring = &sc->rxq;
1459 	struct wpi_rx_stat *stat;
1460 	struct wpi_rx_head *head;
1461 	struct wpi_rx_tail *tail;
1462 	struct ieee80211_node *ni;
1463 	struct mbuf *m, *mnew;
1464 	bus_addr_t paddr;
1465 	int error;
1466 
1467 	stat = (struct wpi_rx_stat *)(desc + 1);
1468 
1469 	if (stat->len > WPI_STAT_MAXLEN) {
1470 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1471 		IFNET_STAT_INC(ifp, ierrors, 1);
1472 		return;
1473 	}
1474 
1475 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1476 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1477 
1478 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1479 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1480 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1481 	    (uintmax_t)le64toh(tail->tstamp)));
1482 
1483 	/* discard Rx frames with bad CRC early */
1484 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1485 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1486 		    le32toh(tail->flags)));
1487 		IFNET_STAT_INC(ifp, ierrors, 1);
1488 		return;
1489 	}
1490 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1491 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1492 		    le16toh(head->len)));
1493 		IFNET_STAT_INC(ifp, ierrors, 1);
1494 		return;
1495 	}
1496 
1497 	/* XXX don't need mbuf, just dma buffer */
1498 	mnew = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1499 	if (mnew == NULL) {
1500 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1501 		    __func__));
1502 		IFNET_STAT_INC(ifp, ierrors, 1);
1503 		return;
1504 	}
1505 	error = bus_dmamap_load(ring->data_dmat, data->map,
1506 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1507 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1508 	if (error != 0 && error != EFBIG) {
1509 		device_printf(sc->sc_dev,
1510 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1511 		m_freem(mnew);
1512 		IFNET_STAT_INC(ifp, ierrors, 1);
1513 		return;
1514 	}
1515 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1516 
1517 	/* finalize mbuf and swap in new one */
1518 	m = data->m;
1519 	m->m_pkthdr.rcvif = ifp;
1520 	m->m_data = (caddr_t)(head + 1);
1521 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1522 
1523 	data->m = mnew;
1524 	/* update Rx descriptor */
1525 	ring->desc[ring->cur] = htole32(paddr);
1526 
1527 	if (ieee80211_radiotap_active(ic)) {
1528 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1529 
1530 		tap->wr_flags = 0;
1531 		tap->wr_chan_freq =
1532 			htole16(ic->ic_channels[head->chan].ic_freq);
1533 		tap->wr_chan_flags =
1534 			htole16(ic->ic_channels[head->chan].ic_flags);
1535 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1536 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1537 		tap->wr_tsft = tail->tstamp;
1538 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1539 		switch (head->rate) {
1540 		/* CCK rates */
1541 		case  10: tap->wr_rate =   2; break;
1542 		case  20: tap->wr_rate =   4; break;
1543 		case  55: tap->wr_rate =  11; break;
1544 		case 110: tap->wr_rate =  22; break;
1545 		/* OFDM rates */
1546 		case 0xd: tap->wr_rate =  12; break;
1547 		case 0xf: tap->wr_rate =  18; break;
1548 		case 0x5: tap->wr_rate =  24; break;
1549 		case 0x7: tap->wr_rate =  36; break;
1550 		case 0x9: tap->wr_rate =  48; break;
1551 		case 0xb: tap->wr_rate =  72; break;
1552 		case 0x1: tap->wr_rate =  96; break;
1553 		case 0x3: tap->wr_rate = 108; break;
1554 		/* unknown rate: should not happen */
1555 		default:  tap->wr_rate =   0;
1556 		}
1557 		if (le16toh(head->flags) & 0x4)
1558 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1559 	}
1560 
1561 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1562 	if (ni != NULL) {
1563 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1564 		ieee80211_free_node(ni);
1565 	} else
1566 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1567 }
1568 
1569 static void
1570 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1571 {
1572 	struct ifnet *ifp = sc->sc_ifp;
1573 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1574 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1575 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1576 	struct ieee80211_node *ni = txdata->ni;
1577 	struct ieee80211vap *vap = ni->ni_vap;
1578 	int retrycnt = 0;
1579 
1580 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1581 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1582 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1583 	    le32toh(stat->status)));
1584 
1585 	/*
1586 	 * Update rate control statistics for the node.
1587 	 * XXX we should not count mgmt frames since they're always sent at
1588 	 * the lowest available bit-rate.
1589 	 * XXX frames w/o ACK shouldn't be used either
1590 	 */
1591 	if (stat->ntries > 0) {
1592 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1593 		retrycnt = 1;
1594 	}
1595 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1596 		&retrycnt, NULL);
1597 
1598 	/* XXX oerrors should only count errors !maxtries */
1599 	if ((le32toh(stat->status) & 0xff) != 1)
1600 		IFNET_STAT_INC(ifp, oerrors, 1);
1601 	else
1602 		IFNET_STAT_INC(ifp, opackets, 1);
1603 
1604 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1605 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1606 	/* XXX handle M_TXCB? */
1607 	m_freem(txdata->m);
1608 	txdata->m = NULL;
1609 	ieee80211_free_node(txdata->ni);
1610 	txdata->ni = NULL;
1611 
1612 	ring->queued--;
1613 
1614 	sc->sc_tx_timer = 0;
1615 	ifq_clr_oactive(&ifp->if_snd);
1616 	wpi_start_locked(ifp);
1617 }
1618 
1619 static void
1620 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1621 {
1622 	struct wpi_tx_ring *ring = &sc->cmdq;
1623 	struct wpi_tx_data *data;
1624 
1625 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1626 				 "type=%s len=%d\n", desc->qid, desc->idx,
1627 				 desc->flags, wpi_cmd_str(desc->type),
1628 				 le32toh(desc->len)));
1629 
1630 	if ((desc->qid & 7) != 4)
1631 		return;	/* not a command ack */
1632 
1633 	data = &ring->data[desc->idx];
1634 
1635 	/* if the command was mapped in a mbuf, free it */
1636 	if (data->m != NULL) {
1637 		bus_dmamap_unload(ring->data_dmat, data->map);
1638 		m_freem(data->m);
1639 		data->m = NULL;
1640 	}
1641 
1642 	sc->flags &= ~WPI_FLAG_BUSY;
1643 	wakeup(&ring->cmd[desc->idx]);
1644 }
1645 
1646 static void
1647 wpi_notif_intr(struct wpi_softc *sc)
1648 {
1649 	struct ifnet *ifp = sc->sc_ifp;
1650 	struct ieee80211com *ic = ifp->if_l2com;
1651 	struct wpi_rx_desc *desc;
1652 	struct wpi_rx_data *data;
1653 	uint32_t hw;
1654 
1655 	hw = le32toh(sc->shared->next);
1656 	while (sc->rxq.cur != hw) {
1657 		data = &sc->rxq.data[sc->rxq.cur];
1658 		desc = (void *)data->m->m_ext.ext_buf;
1659 
1660 		DPRINTFN(WPI_DEBUG_NOTIFY,
1661 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1662 			  desc->qid,
1663 			  desc->idx,
1664 			  desc->flags,
1665 			  desc->type,
1666 			  le32toh(desc->len)));
1667 
1668 		if (!(desc->qid & 0x80))	/* reply to a command */
1669 			wpi_cmd_intr(sc, desc);
1670 
1671 		switch (desc->type) {
1672 		case WPI_RX_DONE:
1673 			/* a 802.11 frame was received */
1674 			wpi_rx_intr(sc, desc, data);
1675 			break;
1676 
1677 		case WPI_TX_DONE:
1678 			/* a 802.11 frame has been transmitted */
1679 			wpi_tx_intr(sc, desc);
1680 			break;
1681 
1682 		case WPI_UC_READY:
1683 		{
1684 			struct wpi_ucode_info *uc =
1685 				(struct wpi_ucode_info *)(desc + 1);
1686 
1687 			/* the microcontroller is ready */
1688 			DPRINTF(("microcode alive notification version %x "
1689 				"alive %x\n", le32toh(uc->version),
1690 				le32toh(uc->valid)));
1691 
1692 			if (le32toh(uc->valid) != 1) {
1693 				device_printf(sc->sc_dev,
1694 				    "microcontroller initialization failed\n");
1695 				wpi_stop_locked(sc);
1696 			}
1697 			break;
1698 		}
1699 		case WPI_STATE_CHANGED:
1700 		{
1701 			uint32_t *status = (uint32_t *)(desc + 1);
1702 
1703 			/* enabled/disabled notification */
1704 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1705 
1706 			if (le32toh(*status) & 1) {
1707 				device_printf(sc->sc_dev,
1708 				    "Radio transmitter is switched off\n");
1709 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1710 				ifp->if_flags &= ~IFF_RUNNING;
1711 				/* Disable firmware commands */
1712 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1713 			}
1714 			break;
1715 		}
1716 		case WPI_START_SCAN:
1717 		{
1718 #ifdef WPI_DEBUG
1719 			struct wpi_start_scan *scan =
1720 				(struct wpi_start_scan *)(desc + 1);
1721 #endif
1722 
1723 			DPRINTFN(WPI_DEBUG_SCANNING,
1724 				 ("scanning channel %d status %x\n",
1725 			    scan->chan, le32toh(scan->status)));
1726 			break;
1727 		}
1728 		case WPI_STOP_SCAN:
1729 		{
1730 #ifdef WPI_DEBUG
1731 			struct wpi_stop_scan *scan =
1732 				(struct wpi_stop_scan *)(desc + 1);
1733 #endif
1734 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1735 
1736 			DPRINTFN(WPI_DEBUG_SCANNING,
1737 			    ("scan finished nchan=%d status=%d chan=%d\n",
1738 			     scan->nchan, scan->status, scan->chan));
1739 
1740 			sc->sc_scan_timer = 0;
1741 			ieee80211_scan_next(vap);
1742 			break;
1743 		}
1744 		case WPI_MISSED_BEACON:
1745 		{
1746 			struct wpi_missed_beacon *beacon =
1747 				(struct wpi_missed_beacon *)(desc + 1);
1748 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1749 
1750 			if (le32toh(beacon->consecutive) >=
1751 			    vap->iv_bmissthreshold) {
1752 				DPRINTF(("Beacon miss: %u >= %u\n",
1753 					 le32toh(beacon->consecutive),
1754 					 vap->iv_bmissthreshold));
1755 				ieee80211_beacon_miss(ic);
1756 			}
1757 			break;
1758 		}
1759 		}
1760 
1761 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1762 	}
1763 
1764 	/* tell the firmware what we have processed */
1765 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1766 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1767 }
1768 
1769 static void
1770 wpi_intr(void *arg)
1771 {
1772 	struct wpi_softc *sc = arg;
1773 	uint32_t r;
1774 
1775 	r = WPI_READ(sc, WPI_INTR);
1776 	if (r == 0 || r == 0xffffffff) {
1777 		return;
1778 	}
1779 
1780 	/* disable interrupts */
1781 	WPI_WRITE(sc, WPI_MASK, 0);
1782 	/* ack interrupts */
1783 	WPI_WRITE(sc, WPI_INTR, r);
1784 
1785 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1786 		struct ifnet *ifp = sc->sc_ifp;
1787 		struct ieee80211com *ic = ifp->if_l2com;
1788 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1789 
1790 		device_printf(sc->sc_dev, "fatal firmware error\n");
1791 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1792 				"(Hardware Error)"));
1793 		if (vap != NULL)
1794 			ieee80211_cancel_scan(vap);
1795 		ieee80211_runtask(ic, &sc->sc_restarttask);
1796 		sc->flags &= ~WPI_FLAG_BUSY;
1797 		return;
1798 	}
1799 
1800 	if (r & WPI_RX_INTR)
1801 		wpi_notif_intr(sc);
1802 
1803 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1804 		wakeup(sc);
1805 
1806 	/* re-enable interrupts */
1807 	if (sc->sc_ifp->if_flags & IFF_UP)
1808 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1809 
1810 }
1811 
1812 static uint8_t
1813 wpi_plcp_signal(int rate)
1814 {
1815 	switch (rate) {
1816 	/* CCK rates (returned values are device-dependent) */
1817 	case 2:		return 10;
1818 	case 4:		return 20;
1819 	case 11:	return 55;
1820 	case 22:	return 110;
1821 
1822 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1823 	/* R1-R4 (ral/ural is R4-R1) */
1824 	case 12:	return 0xd;
1825 	case 18:	return 0xf;
1826 	case 24:	return 0x5;
1827 	case 36:	return 0x7;
1828 	case 48:	return 0x9;
1829 	case 72:	return 0xb;
1830 	case 96:	return 0x1;
1831 	case 108:	return 0x3;
1832 
1833 	/* unsupported rates (should not get there) */
1834 	default:	return 0;
1835 	}
1836 }
1837 
1838 /* quickly determine if a given rate is CCK or OFDM */
1839 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1840 
1841 /*
1842  * Construct the data packet for a transmit buffer and acutally put
1843  * the buffer onto the transmit ring, kicking the card to process the
1844  * the buffer.
1845  */
1846 static int
1847 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1848 	int ac)
1849 {
1850 	struct ieee80211vap *vap = ni->ni_vap;
1851 	struct ifnet *ifp = sc->sc_ifp;
1852 	struct ieee80211com *ic = ifp->if_l2com;
1853 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1854 	struct wpi_tx_ring *ring = &sc->txq[ac];
1855 	struct wpi_tx_desc *desc;
1856 	struct wpi_tx_data *data;
1857 	struct wpi_tx_cmd *cmd;
1858 	struct wpi_cmd_data *tx;
1859 	struct ieee80211_frame *wh;
1860 	const struct ieee80211_txparam *tp;
1861 	struct ieee80211_key *k;
1862 	struct mbuf *mnew;
1863 	int i, error, nsegs, rate, hdrlen, ismcast;
1864 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1865 
1866 	desc = &ring->desc[ring->cur];
1867 	data = &ring->data[ring->cur];
1868 
1869 	wh = mtod(m0, struct ieee80211_frame *);
1870 
1871 	hdrlen = ieee80211_hdrsize(wh);
1872 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1873 
1874 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1875 		k = ieee80211_crypto_encap(ni, m0);
1876 		if (k == NULL) {
1877 			m_freem(m0);
1878 			return ENOBUFS;
1879 		}
1880 		/* packet header may have moved, reset our local pointer */
1881 		wh = mtod(m0, struct ieee80211_frame *);
1882 	}
1883 
1884 	cmd = &ring->cmd[ring->cur];
1885 	cmd->code = WPI_CMD_TX_DATA;
1886 	cmd->flags = 0;
1887 	cmd->qid = ring->qid;
1888 	cmd->idx = ring->cur;
1889 
1890 	tx = (struct wpi_cmd_data *)cmd->data;
1891 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1892 	tx->timeout = htole16(0);
1893 	tx->ofdm_mask = 0xff;
1894 	tx->cck_mask = 0x0f;
1895 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1896 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1897 	tx->len = htole16(m0->m_pkthdr.len);
1898 
1899 	if (!ismcast) {
1900 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1901 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1902 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1903 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1904 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1905 			tx->rts_ntries = 7;
1906 		}
1907 	}
1908 	/* pick a rate */
1909 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1910 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1911 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1912 		/* tell h/w to set timestamp in probe responses */
1913 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1914 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1915 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1916 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1917 			tx->timeout = htole16(3);
1918 		else
1919 			tx->timeout = htole16(2);
1920 		rate = tp->mgmtrate;
1921 	} else if (ismcast) {
1922 		rate = tp->mcastrate;
1923 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1924 		rate = tp->ucastrate;
1925 	} else {
1926 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1927 		rate = ni->ni_txrate;
1928 	}
1929 	tx->rate = wpi_plcp_signal(rate);
1930 
1931 	/* be very persistant at sending frames out */
1932 #if 0
1933 	tx->data_ntries = tp->maxretry;
1934 #else
1935 	tx->data_ntries = 30;		/* XXX way too high */
1936 #endif
1937 
1938 	if (ieee80211_radiotap_active_vap(vap)) {
1939 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1940 		tap->wt_flags = 0;
1941 		tap->wt_rate = rate;
1942 		tap->wt_hwqueue = ac;
1943 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1944 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1945 
1946 		ieee80211_radiotap_tx(vap, m0);
1947 	}
1948 
1949 	/* save and trim IEEE802.11 header */
1950 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1951 	m_adj(m0, hdrlen);
1952 
1953 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1954 	    1, &nsegs, BUS_DMA_NOWAIT);
1955 	if (error != 0 && error != EFBIG) {
1956 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1957 		    error);
1958 		m_freem(m0);
1959 		return error;
1960 	}
1961 	if (error != 0) {
1962 		/* XXX use m_collapse */
1963 		mnew = m_defrag(m0, MB_DONTWAIT);
1964 		if (mnew == NULL) {
1965 			device_printf(sc->sc_dev,
1966 			    "could not defragment mbuf\n");
1967 			m_freem(m0);
1968 			return ENOBUFS;
1969 		}
1970 		m0 = mnew;
1971 
1972 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1973 		    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1974 		if (error != 0) {
1975 			device_printf(sc->sc_dev,
1976 			    "could not map mbuf (error %d)\n", error);
1977 			m_freem(m0);
1978 			return error;
1979 		}
1980 	}
1981 
1982 	data->m = m0;
1983 	data->ni = ni;
1984 
1985 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1986 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1987 
1988 	/* first scatter/gather segment is used by the tx data command */
1989 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1990 	    (1 + nsegs) << 24);
1991 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1992 	    ring->cur * sizeof (struct wpi_tx_cmd));
1993 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1994 	for (i = 1; i <= nsegs; i++) {
1995 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1996 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1997 	}
1998 
1999 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2000 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2001 	    BUS_DMASYNC_PREWRITE);
2002 
2003 	ring->queued++;
2004 
2005 	/* kick ring */
2006 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2007 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2008 
2009 	return 0;
2010 }
2011 
2012 /**
2013  * Process data waiting to be sent on the IFNET output queue
2014  */
2015 static void
2016 wpi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2017 {
2018 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2019 	wpi_start_locked(ifp);
2020 }
2021 
2022 static void
2023 wpi_start_locked(struct ifnet *ifp)
2024 {
2025 	struct wpi_softc *sc = ifp->if_softc;
2026 	struct ieee80211_node *ni;
2027 	struct mbuf *m;
2028 	int ac;
2029 
2030 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2031 		ifq_purge(&ifp->if_snd);
2032 		return;
2033 	}
2034 
2035 	for (;;) {
2036 		m = ifq_dequeue(&ifp->if_snd);
2037 		if (m == NULL)
2038 			break;
2039 		ac = M_WME_GETAC(m);
2040 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2041 			/* there is no place left in this ring */
2042 			/*
2043 			 * XXX: we CANNOT do it this way. If something
2044 			 * is prepended already, this is going to blow.
2045 			 */
2046 			ifq_set_oactive(&ifp->if_snd);
2047 			ifq_prepend(&ifp->if_snd, m);
2048 			break;
2049 		}
2050 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2051 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2052 			ieee80211_free_node(ni);
2053 			IFNET_STAT_INC(ifp, oerrors, 1);
2054 			break;
2055 		}
2056 		sc->sc_tx_timer = 5;
2057 	}
2058 }
2059 
2060 static int
2061 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2062 	const struct ieee80211_bpf_params *params)
2063 {
2064 	struct ieee80211com *ic = ni->ni_ic;
2065 	struct ifnet *ifp = ic->ic_ifp;
2066 	struct wpi_softc *sc = ifp->if_softc;
2067 
2068 	/* prevent management frames from being sent if we're not ready */
2069 	if (!(ifp->if_flags & IFF_RUNNING)) {
2070 		m_freem(m);
2071 		ieee80211_free_node(ni);
2072 		return ENETDOWN;
2073 	}
2074 
2075 	/* management frames go into ring 0 */
2076 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2077 		ifq_set_oactive(&ifp->if_snd);
2078 		m_freem(m);
2079 		ieee80211_free_node(ni);
2080 		return ENOBUFS;		/* XXX */
2081 	}
2082 
2083 	IFNET_STAT_INC(ifp, opackets, 1);
2084 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2085 		goto bad;
2086 	sc->sc_tx_timer = 5;
2087 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
2088 
2089 	return 0;
2090 bad:
2091 	IFNET_STAT_INC(ifp, oerrors, 1);
2092 	ieee80211_free_node(ni);
2093 	return EIO;		/* XXX */
2094 }
2095 
2096 static int
2097 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2098 {
2099 	struct wpi_softc *sc = ifp->if_softc;
2100 	struct ieee80211com *ic = ifp->if_l2com;
2101 	struct ifreq *ifr = (struct ifreq *) data;
2102 	int error = 0, startall = 0;
2103 
2104 	switch (cmd) {
2105 	case SIOCSIFFLAGS:
2106 		if ((ifp->if_flags & IFF_UP)) {
2107 			if (!(ifp->if_flags & IFF_RUNNING)) {
2108 				wpi_init_locked(sc, 0);
2109 				startall = 1;
2110 			}
2111 		} else if ((ifp->if_flags & IFF_RUNNING) ||
2112 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2113 			wpi_stop_locked(sc);
2114 		if (startall)
2115 			ieee80211_start_all(ic);
2116 		break;
2117 	case SIOCGIFMEDIA:
2118 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2119 		break;
2120 	case SIOCGIFADDR:
2121 		error = ether_ioctl(ifp, cmd, data);
2122 		break;
2123 	default:
2124 		error = EINVAL;
2125 		break;
2126 	}
2127 	return error;
2128 }
2129 
2130 /*
2131  * Extract various information from EEPROM.
2132  */
2133 static void
2134 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2135 {
2136 	int i;
2137 
2138 	/* read the hardware capabilities, revision and SKU type */
2139 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2140 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2141 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2142 
2143 	/* read the regulatory domain */
2144 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2145 
2146 	/* read in the hw MAC address */
2147 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2148 
2149 	/* read the list of authorized channels */
2150 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2151 		wpi_read_eeprom_channels(sc,i);
2152 
2153 	/* read the power level calibration info for each group */
2154 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2155 		wpi_read_eeprom_group(sc,i);
2156 }
2157 
2158 /*
2159  * Send a command to the firmware.
2160  */
2161 static int
2162 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2163 {
2164 	struct wpi_tx_ring *ring = &sc->cmdq;
2165 	struct wpi_tx_desc *desc;
2166 	struct wpi_tx_cmd *cmd;
2167 
2168 #ifdef WPI_DEBUG
2169 	if (!async) {
2170 		wlan_assert_serialized();
2171 	}
2172 #endif
2173 
2174 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2175 		    async));
2176 
2177 	if (sc->flags & WPI_FLAG_BUSY) {
2178 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2179 		    __func__, code);
2180 		return EAGAIN;
2181 	}
2182 	sc->flags|= WPI_FLAG_BUSY;
2183 
2184 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2185 	    code, size));
2186 
2187 	desc = &ring->desc[ring->cur];
2188 	cmd = &ring->cmd[ring->cur];
2189 
2190 	cmd->code = code;
2191 	cmd->flags = 0;
2192 	cmd->qid = ring->qid;
2193 	cmd->idx = ring->cur;
2194 	memcpy(cmd->data, buf, size);
2195 
2196 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2197 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2198 		ring->cur * sizeof (struct wpi_tx_cmd));
2199 	desc->segs[0].len  = htole32(4 + size);
2200 
2201 	/* kick cmd ring */
2202 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2203 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2204 
2205 	if (async) {
2206 		sc->flags &= ~ WPI_FLAG_BUSY;
2207 		return 0;
2208 	}
2209 
2210 	return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz);
2211 }
2212 
2213 static int
2214 wpi_wme_update(struct ieee80211com *ic)
2215 {
2216 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2217 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2218 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2219 	const struct wmeParams *wmep;
2220 	struct wpi_wme_setup wme;
2221 	int ac;
2222 
2223 	/* don't override default WME values if WME is not actually enabled */
2224 	if (!(ic->ic_flags & IEEE80211_F_WME))
2225 		return 0;
2226 
2227 	wme.flags = 0;
2228 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2229 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2230 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2231 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2232 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2233 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2234 
2235 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2236 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2237 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2238 	}
2239 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2240 #undef WPI_USEC
2241 #undef WPI_EXP2
2242 }
2243 
2244 /*
2245  * Configure h/w multi-rate retries.
2246  */
2247 static int
2248 wpi_mrr_setup(struct wpi_softc *sc)
2249 {
2250 	struct ifnet *ifp = sc->sc_ifp;
2251 	struct ieee80211com *ic = ifp->if_l2com;
2252 	struct wpi_mrr_setup mrr;
2253 	int i, error;
2254 
2255 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2256 
2257 	/* CCK rates (not used with 802.11a) */
2258 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2259 		mrr.rates[i].flags = 0;
2260 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2261 		/* fallback to the immediate lower CCK rate (if any) */
2262 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2263 		/* try one time at this rate before falling back to "next" */
2264 		mrr.rates[i].ntries = 1;
2265 	}
2266 
2267 	/* OFDM rates (not used with 802.11b) */
2268 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2269 		mrr.rates[i].flags = 0;
2270 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2271 		/* fallback to the immediate lower OFDM rate (if any) */
2272 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2273 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2274 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2275 			WPI_OFDM6 : WPI_CCK2) :
2276 		    i - 1;
2277 		/* try one time at this rate before falling back to "next" */
2278 		mrr.rates[i].ntries = 1;
2279 	}
2280 
2281 	/* setup MRR for control frames */
2282 	mrr.which = htole32(WPI_MRR_CTL);
2283 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2284 	if (error != 0) {
2285 		device_printf(sc->sc_dev,
2286 		    "could not setup MRR for control frames\n");
2287 		return error;
2288 	}
2289 
2290 	/* setup MRR for data frames */
2291 	mrr.which = htole32(WPI_MRR_DATA);
2292 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2293 	if (error != 0) {
2294 		device_printf(sc->sc_dev,
2295 		    "could not setup MRR for data frames\n");
2296 		return error;
2297 	}
2298 
2299 	return 0;
2300 }
2301 
2302 static void
2303 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2304 {
2305 	struct wpi_cmd_led led;
2306 
2307 	led.which = which;
2308 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2309 	led.off = off;
2310 	led.on = on;
2311 
2312 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2313 }
2314 
2315 static void
2316 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2317 {
2318 	struct wpi_cmd_tsf tsf;
2319 	uint64_t val, mod;
2320 
2321 	memset(&tsf, 0, sizeof tsf);
2322 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2323 	tsf.bintval = htole16(ni->ni_intval);
2324 	tsf.lintval = htole16(10);
2325 
2326 	/* compute remaining time until next beacon */
2327 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2328 	mod = le64toh(tsf.tstamp) % val;
2329 	tsf.binitval = htole32((uint32_t)(val - mod));
2330 
2331 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2332 		device_printf(sc->sc_dev, "could not enable TSF\n");
2333 }
2334 
2335 #if 0
2336 /*
2337  * Build a beacon frame that the firmware will broadcast periodically in
2338  * IBSS or HostAP modes.
2339  */
2340 static int
2341 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2342 {
2343 	struct ifnet *ifp = sc->sc_ifp;
2344 	struct ieee80211com *ic = ifp->if_l2com;
2345 	struct wpi_tx_ring *ring = &sc->cmdq;
2346 	struct wpi_tx_desc *desc;
2347 	struct wpi_tx_data *data;
2348 	struct wpi_tx_cmd *cmd;
2349 	struct wpi_cmd_beacon *bcn;
2350 	struct ieee80211_beacon_offsets bo;
2351 	struct mbuf *m0;
2352 	bus_addr_t physaddr;
2353 	int error;
2354 
2355 	desc = &ring->desc[ring->cur];
2356 	data = &ring->data[ring->cur];
2357 
2358 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2359 	if (m0 == NULL) {
2360 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2361 		return ENOMEM;
2362 	}
2363 
2364 	cmd = &ring->cmd[ring->cur];
2365 	cmd->code = WPI_CMD_SET_BEACON;
2366 	cmd->flags = 0;
2367 	cmd->qid = ring->qid;
2368 	cmd->idx = ring->cur;
2369 
2370 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2371 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2372 	bcn->id = WPI_ID_BROADCAST;
2373 	bcn->ofdm_mask = 0xff;
2374 	bcn->cck_mask = 0x0f;
2375 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2376 	bcn->len = htole16(m0->m_pkthdr.len);
2377 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2378 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2379 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2380 
2381 	/* save and trim IEEE802.11 header */
2382 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2383 	m_adj(m0, sizeof (struct ieee80211_frame));
2384 
2385 	/* assume beacon frame is contiguous */
2386 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2387 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2388 	if (error != 0) {
2389 		device_printf(sc->sc_dev, "could not map beacon\n");
2390 		m_freem(m0);
2391 		return error;
2392 	}
2393 
2394 	data->m = m0;
2395 
2396 	/* first scatter/gather segment is used by the beacon command */
2397 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2398 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2399 		ring->cur * sizeof (struct wpi_tx_cmd));
2400 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2401 	desc->segs[1].addr = htole32(physaddr);
2402 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2403 
2404 	/* kick cmd ring */
2405 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2406 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2407 
2408 	return 0;
2409 }
2410 #endif
2411 
2412 static int
2413 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2414 {
2415 	struct ieee80211com *ic = vap->iv_ic;
2416 	struct ieee80211_node *ni;
2417 	struct wpi_node_info node;
2418 	int error;
2419 
2420 
2421 	/* update adapter's configuration */
2422 	sc->config.associd = 0;
2423 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2424 	ni = ieee80211_ref_node(vap->iv_bss);
2425 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2426 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2427 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2428 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2429 		    WPI_CONFIG_24GHZ);
2430 	}
2431 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2432 		sc->config.cck_mask  = 0;
2433 		sc->config.ofdm_mask = 0x15;
2434 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2435 		sc->config.cck_mask  = 0x03;
2436 		sc->config.ofdm_mask = 0;
2437 	} else {
2438 		/* XXX assume 802.11b/g */
2439 		sc->config.cck_mask  = 0x0f;
2440 		sc->config.ofdm_mask = 0x15;
2441 	}
2442 
2443 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2444 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2445 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2446 		sizeof (struct wpi_config), 1);
2447 	if (error != 0) {
2448 		device_printf(sc->sc_dev, "could not configure\n");
2449 		ieee80211_free_node(ni);
2450 		return error;
2451 	}
2452 
2453 	/* configuration has changed, set Tx power accordingly */
2454 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2455 		device_printf(sc->sc_dev, "could not set Tx power\n");
2456 		ieee80211_free_node(ni);
2457 		return error;
2458 	}
2459 
2460 	/* add default node */
2461 	memset(&node, 0, sizeof node);
2462 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2463 	ieee80211_free_node(ni);
2464 	node.id = WPI_ID_BSS;
2465 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2466 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2467 	node.action = htole32(WPI_ACTION_SET_RATE);
2468 	node.antenna = WPI_ANTENNA_BOTH;
2469 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2470 	if (error != 0)
2471 		device_printf(sc->sc_dev, "could not add BSS node\n");
2472 
2473 	return (error);
2474 }
2475 
2476 static int
2477 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2478 {
2479 	struct ieee80211com *ic = vap->iv_ic;
2480 	struct ieee80211_node *ni;
2481 	int error;
2482 
2483 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2484 		/* link LED blinks while monitoring */
2485 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2486 		return 0;
2487 	}
2488 
2489 	ni = ieee80211_ref_node(vap->iv_bss);
2490 	wpi_enable_tsf(sc, ni);
2491 
2492 	/* update adapter's configuration */
2493 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2494 	/* short preamble/slot time are negotiated when associating */
2495 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2496 	    WPI_CONFIG_SHSLOT);
2497 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2498 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2499 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2500 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2501 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2502 
2503 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2504 
2505 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2506 		    sc->config.flags));
2507 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2508 		    wpi_config), 1);
2509 	if (error != 0) {
2510 		device_printf(sc->sc_dev, "could not update configuration\n");
2511 		ieee80211_free_node(ni);
2512 		return error;
2513 	}
2514 
2515 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2516 	ieee80211_free_node(ni);
2517 	if (error != 0) {
2518 		device_printf(sc->sc_dev, "could set txpower\n");
2519 		return error;
2520 	}
2521 
2522 	/* link LED always on while associated */
2523 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2524 
2525 	/* start automatic rate control timer */
2526 	callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
2527 
2528 	return (error);
2529 }
2530 
2531 /*
2532  * Send a scan request to the firmware.  Since this command is huge, we map it
2533  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2534  * much of this code is similar to that in wpi_cmd but because we must manually
2535  * construct the probe & channels, we duplicate what's needed here. XXX In the
2536  * future, this function should be modified to use wpi_cmd to help cleanup the
2537  * code base.
2538  */
2539 static int
2540 wpi_scan(struct wpi_softc *sc)
2541 {
2542 	struct ifnet *ifp = sc->sc_ifp;
2543 	struct ieee80211com *ic = ifp->if_l2com;
2544 	struct ieee80211_scan_state *ss = ic->ic_scan;
2545 	struct wpi_tx_ring *ring = &sc->cmdq;
2546 	struct wpi_tx_desc *desc;
2547 	struct wpi_tx_data *data;
2548 	struct wpi_tx_cmd *cmd;
2549 	struct wpi_scan_hdr *hdr;
2550 	struct wpi_scan_chan *chan;
2551 	struct ieee80211_frame *wh;
2552 	struct ieee80211_rateset *rs;
2553 	struct ieee80211_channel *c;
2554 	enum ieee80211_phymode mode;
2555 	uint8_t *frm;
2556 	int nrates, pktlen, error, i, nssid;
2557 	bus_addr_t physaddr;
2558 
2559 	desc = &ring->desc[ring->cur];
2560 	data = &ring->data[ring->cur];
2561 
2562 	data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2563 	if (data->m == NULL) {
2564 		device_printf(sc->sc_dev,
2565 		    "could not allocate mbuf for scan command\n");
2566 		return ENOMEM;
2567 	}
2568 
2569 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2570 	cmd->code = WPI_CMD_SCAN;
2571 	cmd->flags = 0;
2572 	cmd->qid = ring->qid;
2573 	cmd->idx = ring->cur;
2574 
2575 	hdr = (struct wpi_scan_hdr *)cmd->data;
2576 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2577 
2578 	/*
2579 	 * Move to the next channel if no packets are received within 5 msecs
2580 	 * after sending the probe request (this helps to reduce the duration
2581 	 * of active scans).
2582 	 */
2583 	hdr->quiet = htole16(5);
2584 	hdr->threshold = htole16(1);
2585 
2586 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2587 		/* send probe requests at 6Mbps */
2588 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2589 
2590 		/* Enable crc checking */
2591 		hdr->promotion = htole16(1);
2592 	} else {
2593 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2594 		/* send probe requests at 1Mbps */
2595 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2596 	}
2597 	hdr->tx.id = WPI_ID_BROADCAST;
2598 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2599 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2600 
2601 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2602 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2603 	for (i = 0; i < nssid; i++) {
2604 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2605 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2606 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2607 		    hdr->scan_essids[i].esslen);
2608 #ifdef WPI_DEBUG
2609 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2610 			kprintf("Scanning Essid: ");
2611 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2612 			    hdr->scan_essids[i].esslen);
2613 			kprintf("\n");
2614 		}
2615 #endif
2616 	}
2617 
2618 	/*
2619 	 * Build a probe request frame.  Most of the following code is a
2620 	 * copy & paste of what is done in net80211.
2621 	 */
2622 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2623 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2624 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2625 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2626 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2627 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2628 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2629 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2630 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2631 
2632 	frm = (uint8_t *)(wh + 1);
2633 
2634 	/* add essid IE, the hardware will fill this in for us */
2635 	*frm++ = IEEE80211_ELEMID_SSID;
2636 	*frm++ = 0;
2637 
2638 	mode = ieee80211_chan2mode(ic->ic_curchan);
2639 	rs = &ic->ic_sup_rates[mode];
2640 
2641 	/* add supported rates IE */
2642 	*frm++ = IEEE80211_ELEMID_RATES;
2643 	nrates = rs->rs_nrates;
2644 	if (nrates > IEEE80211_RATE_SIZE)
2645 		nrates = IEEE80211_RATE_SIZE;
2646 	*frm++ = nrates;
2647 	memcpy(frm, rs->rs_rates, nrates);
2648 	frm += nrates;
2649 
2650 	/* add supported xrates IE */
2651 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2652 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2653 		*frm++ = IEEE80211_ELEMID_XRATES;
2654 		*frm++ = nrates;
2655 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2656 		frm += nrates;
2657 	}
2658 
2659 	/* setup length of probe request */
2660 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2661 
2662 	/*
2663 	 * Construct information about the channel that we
2664 	 * want to scan. The firmware expects this to be directly
2665 	 * after the scan probe request
2666 	 */
2667 	c = ic->ic_curchan;
2668 	chan = (struct wpi_scan_chan *)frm;
2669 	chan->chan = ieee80211_chan2ieee(ic, c);
2670 	chan->flags = 0;
2671 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2672 		chan->flags |= WPI_CHAN_ACTIVE;
2673 		if (nssid != 0)
2674 			chan->flags |= WPI_CHAN_DIRECT;
2675 	}
2676 	chan->gain_dsp = 0x6e; /* Default level */
2677 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2678 		chan->active = htole16(10);
2679 		chan->passive = htole16(ss->ss_maxdwell);
2680 		chan->gain_radio = 0x3b;
2681 	} else {
2682 		chan->active = htole16(20);
2683 		chan->passive = htole16(ss->ss_maxdwell);
2684 		chan->gain_radio = 0x28;
2685 	}
2686 
2687 	DPRINTFN(WPI_DEBUG_SCANNING,
2688 	    ("Scanning %u Passive: %d\n",
2689 	     chan->chan,
2690 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2691 
2692 	hdr->nchan++;
2693 	chan++;
2694 
2695 	frm += sizeof (struct wpi_scan_chan);
2696 #if 0
2697 	// XXX All Channels....
2698 	for (c  = &ic->ic_channels[1];
2699 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2700 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2701 			continue;
2702 
2703 		chan->chan = ieee80211_chan2ieee(ic, c);
2704 		chan->flags = 0;
2705 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2706 		    chan->flags |= WPI_CHAN_ACTIVE;
2707 		    if (ic->ic_des_ssid[0].len != 0)
2708 			chan->flags |= WPI_CHAN_DIRECT;
2709 		}
2710 		chan->gain_dsp = 0x6e; /* Default level */
2711 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2712 			chan->active = htole16(10);
2713 			chan->passive = htole16(110);
2714 			chan->gain_radio = 0x3b;
2715 		} else {
2716 			chan->active = htole16(20);
2717 			chan->passive = htole16(120);
2718 			chan->gain_radio = 0x28;
2719 		}
2720 
2721 		DPRINTFN(WPI_DEBUG_SCANNING,
2722 			 ("Scanning %u Passive: %d\n",
2723 			  chan->chan,
2724 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2725 
2726 		hdr->nchan++;
2727 		chan++;
2728 
2729 		frm += sizeof (struct wpi_scan_chan);
2730 	}
2731 #endif
2732 
2733 	hdr->len = htole16(frm - (uint8_t *)hdr);
2734 	pktlen = frm - (uint8_t *)cmd;
2735 
2736 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2737 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2738 	if (error != 0) {
2739 		device_printf(sc->sc_dev, "could not map scan command\n");
2740 		m_freem(data->m);
2741 		data->m = NULL;
2742 		return error;
2743 	}
2744 
2745 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2746 	desc->segs[0].addr = htole32(physaddr);
2747 	desc->segs[0].len  = htole32(pktlen);
2748 
2749 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2750 	    BUS_DMASYNC_PREWRITE);
2751 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2752 
2753 	/* kick cmd ring */
2754 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2755 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2756 
2757 	sc->sc_scan_timer = 5;
2758 	return 0;	/* will be notified async. of failure/success */
2759 }
2760 
2761 /**
2762  * Configure the card to listen to a particular channel, this transisions the
2763  * card in to being able to receive frames from remote devices.
2764  */
2765 static int
2766 wpi_config(struct wpi_softc *sc)
2767 {
2768 	struct ifnet *ifp = sc->sc_ifp;
2769 	struct ieee80211com *ic = ifp->if_l2com;
2770 	struct wpi_power power;
2771 	struct wpi_bluetooth bluetooth;
2772 	struct wpi_node_info node;
2773 	int error;
2774 
2775 	/* set power mode */
2776 	memset(&power, 0, sizeof power);
2777 	power.flags = htole32(WPI_POWER_CAM|0x8);
2778 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2779 	if (error != 0) {
2780 		device_printf(sc->sc_dev, "could not set power mode\n");
2781 		return error;
2782 	}
2783 
2784 	/* configure bluetooth coexistence */
2785 	memset(&bluetooth, 0, sizeof bluetooth);
2786 	bluetooth.flags = 3;
2787 	bluetooth.lead = 0xaa;
2788 	bluetooth.kill = 1;
2789 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2790 	    0);
2791 	if (error != 0) {
2792 		device_printf(sc->sc_dev,
2793 		    "could not configure bluetooth coexistence\n");
2794 		return error;
2795 	}
2796 
2797 	/* configure adapter */
2798 	memset(&sc->config, 0, sizeof (struct wpi_config));
2799 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2800 	/*set default channel*/
2801 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2802 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2803 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2804 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2805 		    WPI_CONFIG_24GHZ);
2806 	}
2807 	sc->config.filter = 0;
2808 	switch (ic->ic_opmode) {
2809 	case IEEE80211_M_STA:
2810 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2811 		sc->config.mode = WPI_MODE_STA;
2812 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2813 		break;
2814 	case IEEE80211_M_IBSS:
2815 	case IEEE80211_M_AHDEMO:
2816 		sc->config.mode = WPI_MODE_IBSS;
2817 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2818 					     WPI_FILTER_MULTICAST);
2819 		break;
2820 	case IEEE80211_M_HOSTAP:
2821 		sc->config.mode = WPI_MODE_HOSTAP;
2822 		break;
2823 	case IEEE80211_M_MONITOR:
2824 		sc->config.mode = WPI_MODE_MONITOR;
2825 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2826 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2827 		break;
2828 	default:
2829 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2830 		return EINVAL;
2831 	}
2832 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2833 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2834 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2835 		sizeof (struct wpi_config), 0);
2836 	if (error != 0) {
2837 		device_printf(sc->sc_dev, "configure command failed\n");
2838 		return error;
2839 	}
2840 
2841 	/* configuration has changed, set Tx power accordingly */
2842 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2843 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2844 	    return error;
2845 	}
2846 
2847 	/* add broadcast node */
2848 	memset(&node, 0, sizeof node);
2849 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2850 	node.id = WPI_ID_BROADCAST;
2851 	node.rate = wpi_plcp_signal(2);
2852 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2853 	if (error != 0) {
2854 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2855 		return error;
2856 	}
2857 
2858 	/* Setup rate scalling */
2859 	error = wpi_mrr_setup(sc);
2860 	if (error != 0) {
2861 		device_printf(sc->sc_dev, "could not setup MRR\n");
2862 		return error;
2863 	}
2864 
2865 	return 0;
2866 }
2867 
2868 static void
2869 wpi_stop_master(struct wpi_softc *sc)
2870 {
2871 	uint32_t tmp;
2872 	int ntries;
2873 
2874 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2875 
2876 	tmp = WPI_READ(sc, WPI_RESET);
2877 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2878 
2879 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2880 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2881 		return;	/* already asleep */
2882 
2883 	for (ntries = 0; ntries < 100; ntries++) {
2884 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2885 			break;
2886 		DELAY(10);
2887 	}
2888 	if (ntries == 100) {
2889 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2890 	}
2891 }
2892 
2893 static int
2894 wpi_power_up(struct wpi_softc *sc)
2895 {
2896 	uint32_t tmp;
2897 	int ntries;
2898 
2899 	wpi_mem_lock(sc);
2900 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2901 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2902 	wpi_mem_unlock(sc);
2903 
2904 	for (ntries = 0; ntries < 5000; ntries++) {
2905 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2906 			break;
2907 		DELAY(10);
2908 	}
2909 	if (ntries == 5000) {
2910 		device_printf(sc->sc_dev,
2911 		    "timeout waiting for NIC to power up\n");
2912 		return ETIMEDOUT;
2913 	}
2914 	return 0;
2915 }
2916 
2917 static int
2918 wpi_reset(struct wpi_softc *sc)
2919 {
2920 	uint32_t tmp;
2921 	int ntries;
2922 
2923 	DPRINTFN(WPI_DEBUG_HW,
2924 	    ("Resetting the card - clearing any uploaded firmware\n"));
2925 
2926 	/* clear any pending interrupts */
2927 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2928 
2929 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2930 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2931 
2932 	tmp = WPI_READ(sc, WPI_CHICKEN);
2933 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2934 
2935 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2936 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2937 
2938 	/* wait for clock stabilization */
2939 	for (ntries = 0; ntries < 25000; ntries++) {
2940 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2941 			break;
2942 		DELAY(10);
2943 	}
2944 	if (ntries == 25000) {
2945 		device_printf(sc->sc_dev,
2946 		    "timeout waiting for clock stabilization\n");
2947 		return ETIMEDOUT;
2948 	}
2949 
2950 	/* initialize EEPROM */
2951 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2952 
2953 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2954 		device_printf(sc->sc_dev, "EEPROM not found\n");
2955 		return EIO;
2956 	}
2957 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2958 
2959 	return 0;
2960 }
2961 
2962 static void
2963 wpi_hw_config(struct wpi_softc *sc)
2964 {
2965 	uint32_t rev, hw;
2966 
2967 	/* voodoo from the Linux "driver".. */
2968 	hw = WPI_READ(sc, WPI_HWCONFIG);
2969 
2970 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2971 	if ((rev & 0xc0) == 0x40)
2972 		hw |= WPI_HW_ALM_MB;
2973 	else if (!(rev & 0x80))
2974 		hw |= WPI_HW_ALM_MM;
2975 
2976 	if (sc->cap == 0x80)
2977 		hw |= WPI_HW_SKU_MRC;
2978 
2979 	hw &= ~WPI_HW_REV_D;
2980 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2981 		hw |= WPI_HW_REV_D;
2982 
2983 	if (sc->type > 1)
2984 		hw |= WPI_HW_TYPE_B;
2985 
2986 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2987 }
2988 
2989 static void
2990 wpi_rfkill_resume(struct wpi_softc *sc)
2991 {
2992 	struct ifnet *ifp = sc->sc_ifp;
2993 	struct ieee80211com *ic = ifp->if_l2com;
2994 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2995 	int ntries;
2996 
2997 	/* enable firmware again */
2998 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2999 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3000 
3001 	/* wait for thermal sensors to calibrate */
3002 	for (ntries = 0; ntries < 1000; ntries++) {
3003 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3004 			break;
3005 		DELAY(10);
3006 	}
3007 
3008 	if (ntries == 1000) {
3009 		device_printf(sc->sc_dev,
3010 		    "timeout waiting for thermal calibration\n");
3011 		return;
3012 	}
3013 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3014 
3015 	if (wpi_config(sc) != 0) {
3016 		device_printf(sc->sc_dev, "device config failed\n");
3017 		return;
3018 	}
3019 
3020 	ifq_clr_oactive(&ifp->if_snd);
3021 	ifp->if_flags |= IFF_RUNNING;
3022 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3023 
3024 	if (vap != NULL) {
3025 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3026 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3027 				ieee80211_beacon_miss(ic);
3028 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3029 			} else
3030 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3031 		} else {
3032 			ieee80211_scan_next(vap);
3033 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3034 		}
3035 	}
3036 
3037 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3038 }
3039 
3040 static void
3041 wpi_init_locked(struct wpi_softc *sc, int force)
3042 {
3043 	struct ifnet *ifp = sc->sc_ifp;
3044 	uint32_t tmp;
3045 	int ntries, qid;
3046 
3047 	wpi_stop_locked(sc);
3048 	(void)wpi_reset(sc);
3049 
3050 	wpi_mem_lock(sc);
3051 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3052 	DELAY(20);
3053 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3054 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3055 	wpi_mem_unlock(sc);
3056 
3057 	(void)wpi_power_up(sc);
3058 	wpi_hw_config(sc);
3059 
3060 	/* init Rx ring */
3061 	wpi_mem_lock(sc);
3062 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3063 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3064 	    offsetof(struct wpi_shared, next));
3065 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3066 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3067 	wpi_mem_unlock(sc);
3068 
3069 	/* init Tx rings */
3070 	wpi_mem_lock(sc);
3071 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3072 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3073 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3074 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3075 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3076 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3077 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3078 
3079 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3080 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3081 
3082 	for (qid = 0; qid < 6; qid++) {
3083 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3084 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3085 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3086 	}
3087 	wpi_mem_unlock(sc);
3088 
3089 	/* clear "radio off" and "disable command" bits (reversed logic) */
3090 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3091 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3092 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3093 
3094 	/* clear any pending interrupts */
3095 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3096 
3097 	/* enable interrupts */
3098 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3099 
3100 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3101 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3102 
3103 	if ((wpi_load_firmware(sc)) != 0) {
3104 	    device_printf(sc->sc_dev,
3105 		"A problem occurred loading the firmware to the driver\n");
3106 	    return;
3107 	}
3108 
3109 	/* At this point the firmware is up and running. If the hardware
3110 	 * RF switch is turned off thermal calibration will fail, though
3111 	 * the card is still happy to continue to accept commands, catch
3112 	 * this case and schedule a task to watch for it to be turned on.
3113 	 */
3114 	wpi_mem_lock(sc);
3115 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3116 	wpi_mem_unlock(sc);
3117 
3118 	if (!(tmp & 0x1)) {
3119 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3120 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3121 		goto out;
3122 	}
3123 
3124 	/* wait for thermal sensors to calibrate */
3125 	for (ntries = 0; ntries < 1000; ntries++) {
3126 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3127 			break;
3128 		DELAY(10);
3129 	}
3130 
3131 	if (ntries == 1000) {
3132 		device_printf(sc->sc_dev,
3133 		    "timeout waiting for thermal sensors calibration\n");
3134 		return;
3135 	}
3136 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3137 
3138 	if (wpi_config(sc) != 0) {
3139 		device_printf(sc->sc_dev, "device config failed\n");
3140 		return;
3141 	}
3142 
3143 	ifq_clr_oactive(&ifp->if_snd);
3144 	ifp->if_flags |= IFF_RUNNING;
3145 out:
3146 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3147 }
3148 
3149 static void
3150 wpi_init(void *arg)
3151 {
3152 	struct wpi_softc *sc = arg;
3153 	struct ifnet *ifp = sc->sc_ifp;
3154 	struct ieee80211com *ic = ifp->if_l2com;
3155 
3156 	wpi_init_locked(sc, 0);
3157 
3158 	if (ifp->if_flags & IFF_RUNNING)
3159 		ieee80211_start_all(ic);		/* start all vaps */
3160 }
3161 
3162 static void
3163 wpi_stop_locked(struct wpi_softc *sc)
3164 {
3165 	struct ifnet *ifp = sc->sc_ifp;
3166 	uint32_t tmp;
3167 	int ac;
3168 
3169 	sc->sc_tx_timer = 0;
3170 	sc->sc_scan_timer = 0;
3171 	ifp->if_flags &= ~IFF_RUNNING;
3172 	ifq_clr_oactive(&ifp->if_snd);
3173 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3174 	callout_stop(&sc->watchdog_to_callout);
3175 	callout_stop(&sc->calib_to_callout);
3176 
3177 
3178 	/* disable interrupts */
3179 	WPI_WRITE(sc, WPI_MASK, 0);
3180 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3181 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3182 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3183 
3184 	wpi_mem_lock(sc);
3185 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3186 	wpi_mem_unlock(sc);
3187 
3188 	/* reset all Tx rings */
3189 	for (ac = 0; ac < 4; ac++)
3190 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3191 	wpi_reset_tx_ring(sc, &sc->cmdq);
3192 
3193 	/* reset Rx ring */
3194 	wpi_reset_rx_ring(sc, &sc->rxq);
3195 
3196 	wpi_mem_lock(sc);
3197 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3198 	wpi_mem_unlock(sc);
3199 
3200 	DELAY(5);
3201 
3202 	wpi_stop_master(sc);
3203 
3204 	tmp = WPI_READ(sc, WPI_RESET);
3205 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3206 	sc->flags &= ~WPI_FLAG_BUSY;
3207 }
3208 
3209 static void
3210 wpi_stop(struct wpi_softc *sc)
3211 {
3212 	wpi_stop_locked(sc);
3213 }
3214 
3215 static void
3216 wpi_calib_timeout_callout(void *arg)
3217 {
3218 	struct wpi_softc *sc = arg;
3219 	struct ifnet *ifp = sc->sc_ifp;
3220 	struct ieee80211com *ic = ifp->if_l2com;
3221 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3222 	int temp;
3223 
3224 	if (vap->iv_state != IEEE80211_S_RUN)
3225 		return;
3226 
3227 	/* update sensor data */
3228 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3229 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3230 
3231 	wpi_power_calibration(sc, temp);
3232 
3233 	callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
3234 }
3235 
3236 /*
3237  * This function is called periodically (every 60 seconds) to adjust output
3238  * power to temperature changes.
3239  */
3240 static void
3241 wpi_power_calibration(struct wpi_softc *sc, int temp)
3242 {
3243 	struct ifnet *ifp = sc->sc_ifp;
3244 	struct ieee80211com *ic = ifp->if_l2com;
3245 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3246 
3247 	/* sanity-check read value */
3248 	if (temp < -260 || temp > 25) {
3249 		/* this can't be correct, ignore */
3250 		DPRINTFN(WPI_DEBUG_TEMP,
3251 		    ("out-of-range temperature reported: %d\n", temp));
3252 		return;
3253 	}
3254 
3255 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3256 
3257 	/* adjust Tx power if need be */
3258 	if (abs(temp - sc->temp) <= 6)
3259 		return;
3260 
3261 	sc->temp = temp;
3262 
3263 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3264 		/* just warn, too bad for the automatic calibration... */
3265 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3266 	}
3267 }
3268 
3269 /**
3270  * Read the eeprom to find out what channels are valid for the given
3271  * band and update net80211 with what we find.
3272  */
3273 static void
3274 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3275 {
3276 	struct ifnet *ifp = sc->sc_ifp;
3277 	struct ieee80211com *ic = ifp->if_l2com;
3278 	const struct wpi_chan_band *band = &wpi_bands[n];
3279 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3280 	struct ieee80211_channel *c;
3281 	int chan, i, passive;
3282 
3283 	wpi_read_prom_data(sc, band->addr, channels,
3284 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3285 
3286 	for (i = 0; i < band->nchan; i++) {
3287 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3288 			DPRINTFN(WPI_DEBUG_HW,
3289 			    ("Channel Not Valid: %d, band %d\n",
3290 			     band->chan[i],n));
3291 			continue;
3292 		}
3293 
3294 		passive = 0;
3295 		chan = band->chan[i];
3296 		c = &ic->ic_channels[ic->ic_nchans++];
3297 
3298 		/* is active scan allowed on this channel? */
3299 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3300 			passive = IEEE80211_CHAN_PASSIVE;
3301 		}
3302 
3303 		if (n == 0) {	/* 2GHz band */
3304 			c->ic_ieee = chan;
3305 			c->ic_freq = ieee80211_ieee2mhz(chan,
3306 			    IEEE80211_CHAN_2GHZ);
3307 			c->ic_flags = IEEE80211_CHAN_B | passive;
3308 
3309 			c = &ic->ic_channels[ic->ic_nchans++];
3310 			c->ic_ieee = chan;
3311 			c->ic_freq = ieee80211_ieee2mhz(chan,
3312 			    IEEE80211_CHAN_2GHZ);
3313 			c->ic_flags = IEEE80211_CHAN_G | passive;
3314 
3315 		} else {	/* 5GHz band */
3316 			/*
3317 			 * Some 3945ABG adapters support channels 7, 8, 11
3318 			 * and 12 in the 2GHz *and* 5GHz bands.
3319 			 * Because of limitations in our net80211(9) stack,
3320 			 * we can't support these channels in 5GHz band.
3321 			 * XXX not true; just need to map to proper frequency
3322 			 */
3323 			if (chan <= 14)
3324 				continue;
3325 
3326 			c->ic_ieee = chan;
3327 			c->ic_freq = ieee80211_ieee2mhz(chan,
3328 			    IEEE80211_CHAN_5GHZ);
3329 			c->ic_flags = IEEE80211_CHAN_A | passive;
3330 		}
3331 
3332 		/* save maximum allowed power for this channel */
3333 		sc->maxpwr[chan] = channels[i].maxpwr;
3334 
3335 #if 0
3336 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3337 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3338 		//ic->ic_channels[chan].ic_minpower...
3339 		//ic->ic_channels[chan].ic_maxregtxpower...
3340 #endif
3341 
3342 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3343 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3344 		    channels[i].flags, sc->maxpwr[chan],
3345 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3346 		    ic->ic_nchans));
3347 	}
3348 }
3349 
3350 static void
3351 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3352 {
3353 	struct wpi_power_group *group = &sc->groups[n];
3354 	struct wpi_eeprom_group rgroup;
3355 	int i;
3356 
3357 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3358 	    sizeof rgroup);
3359 
3360 	/* save power group information */
3361 	group->chan   = rgroup.chan;
3362 	group->maxpwr = rgroup.maxpwr;
3363 	/* temperature at which the samples were taken */
3364 	group->temp   = (int16_t)le16toh(rgroup.temp);
3365 
3366 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3367 		    group->chan, group->maxpwr, group->temp));
3368 
3369 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3370 		group->samples[i].index = rgroup.samples[i].index;
3371 		group->samples[i].power = rgroup.samples[i].power;
3372 
3373 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3374 			    group->samples[i].index, group->samples[i].power));
3375 	}
3376 }
3377 
3378 /*
3379  * Update Tx power to match what is defined for channel `c'.
3380  */
3381 static int
3382 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3383 {
3384 	struct ifnet *ifp = sc->sc_ifp;
3385 	struct ieee80211com *ic = ifp->if_l2com;
3386 	struct wpi_power_group *group;
3387 	struct wpi_cmd_txpower txpower;
3388 	u_int chan;
3389 	int i;
3390 
3391 	/* get channel number */
3392 	chan = ieee80211_chan2ieee(ic, c);
3393 
3394 	/* find the power group to which this channel belongs */
3395 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3396 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3397 			if (chan <= group->chan)
3398 				break;
3399 	} else
3400 		group = &sc->groups[0];
3401 
3402 	memset(&txpower, 0, sizeof txpower);
3403 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3404 	txpower.channel = htole16(chan);
3405 
3406 	/* set Tx power for all OFDM and CCK rates */
3407 	for (i = 0; i <= 11 ; i++) {
3408 		/* retrieve Tx power for this channel/rate combination */
3409 		int idx = wpi_get_power_index(sc, group, c,
3410 		    wpi_ridx_to_rate[i]);
3411 
3412 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3413 
3414 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3415 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3416 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3417 		} else {
3418 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3419 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3420 		}
3421 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3422 			    chan, wpi_ridx_to_rate[i], idx));
3423 	}
3424 
3425 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3426 }
3427 
3428 /*
3429  * Determine Tx power index for a given channel/rate combination.
3430  * This takes into account the regulatory information from EEPROM and the
3431  * current temperature.
3432  */
3433 static int
3434 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3435     struct ieee80211_channel *c, int rate)
3436 {
3437 /* fixed-point arithmetic division using a n-bit fractional part */
3438 #define fdivround(a, b, n)      \
3439 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3440 
3441 /* linear interpolation */
3442 #define interpolate(x, x1, y1, x2, y2, n)       \
3443 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3444 
3445 	struct ifnet *ifp = sc->sc_ifp;
3446 	struct ieee80211com *ic = ifp->if_l2com;
3447 	struct wpi_power_sample *sample;
3448 	int pwr, idx;
3449 	u_int chan;
3450 
3451 	/* get channel number */
3452 	chan = ieee80211_chan2ieee(ic, c);
3453 
3454 	/* default power is group's maximum power - 3dB */
3455 	pwr = group->maxpwr / 2;
3456 
3457 	/* decrease power for highest OFDM rates to reduce distortion */
3458 	switch (rate) {
3459 		case 72:	/* 36Mb/s */
3460 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3461 			break;
3462 		case 96:	/* 48Mb/s */
3463 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3464 			break;
3465 		case 108:	/* 54Mb/s */
3466 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3467 			break;
3468 	}
3469 
3470 	/* never exceed channel's maximum allowed Tx power */
3471 	pwr = min(pwr, sc->maxpwr[chan]);
3472 
3473 	/* retrieve power index into gain tables from samples */
3474 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3475 		if (pwr > sample[1].power)
3476 			break;
3477 	/* fixed-point linear interpolation using a 19-bit fractional part */
3478 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3479 	    sample[1].power, sample[1].index, 19);
3480 
3481 	/*
3482 	 *  Adjust power index based on current temperature
3483 	 *	- if colder than factory-calibrated: decreate output power
3484 	 *	- if warmer than factory-calibrated: increase output power
3485 	 */
3486 	idx -= (sc->temp - group->temp) * 11 / 100;
3487 
3488 	/* decrease power for CCK rates (-5dB) */
3489 	if (!WPI_RATE_IS_OFDM(rate))
3490 		idx += 10;
3491 
3492 	/* keep power index in a valid range */
3493 	if (idx < 0)
3494 		return 0;
3495 	if (idx > WPI_MAX_PWR_INDEX)
3496 		return WPI_MAX_PWR_INDEX;
3497 	return idx;
3498 
3499 #undef interpolate
3500 #undef fdivround
3501 }
3502 
3503 /**
3504  * Called by net80211 framework to indicate that a scan
3505  * is starting. This function doesn't actually do the scan,
3506  * wpi_scan_curchan starts things off. This function is more
3507  * of an early warning from the framework we should get ready
3508  * for the scan.
3509  */
3510 static void
3511 wpi_scan_start(struct ieee80211com *ic)
3512 {
3513 	struct ifnet *ifp = ic->ic_ifp;
3514 	struct wpi_softc *sc = ifp->if_softc;
3515 
3516 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3517 }
3518 
3519 /**
3520  * Called by the net80211 framework, indicates that the
3521  * scan has ended. If there is a scan in progress on the card
3522  * then it should be aborted.
3523  */
3524 static void
3525 wpi_scan_end(struct ieee80211com *ic)
3526 {
3527 	/* XXX ignore */
3528 }
3529 
3530 /**
3531  * Called by the net80211 framework to indicate to the driver
3532  * that the channel should be changed
3533  */
3534 static void
3535 wpi_set_channel(struct ieee80211com *ic)
3536 {
3537 	struct ifnet *ifp = ic->ic_ifp;
3538 	struct wpi_softc *sc = ifp->if_softc;
3539 	int error;
3540 
3541 	/*
3542 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3543 	 * are already taken care of by their respective firmware commands.
3544 	 */
3545 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3546 		error = wpi_config(sc);
3547 		if (error != 0)
3548 			device_printf(sc->sc_dev,
3549 			    "error %d settting channel\n", error);
3550 	}
3551 }
3552 
3553 /**
3554  * Called by net80211 to indicate that we need to scan the current
3555  * channel. The channel is previously be set via the wpi_set_channel
3556  * callback.
3557  */
3558 static void
3559 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3560 {
3561 	struct ieee80211vap *vap = ss->ss_vap;
3562 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3563 	struct wpi_softc *sc = ifp->if_softc;
3564 
3565 	if (wpi_scan(sc))
3566 		ieee80211_cancel_scan(vap);
3567 }
3568 
3569 /**
3570  * Called by the net80211 framework to indicate
3571  * the minimum dwell time has been met, terminate the scan.
3572  * We don't actually terminate the scan as the firmware will notify
3573  * us when it's finished and we have no way to interrupt it.
3574  */
3575 static void
3576 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3577 {
3578 	/* NB: don't try to abort scan; wait for firmware to finish */
3579 }
3580 
3581 static void
3582 wpi_hwreset_task(void *arg, int pending)
3583 {
3584 	struct wpi_softc *sc;
3585 
3586 	wlan_serialize_enter();
3587 	sc = arg;
3588 	wpi_init_locked(sc, 0);
3589 	wlan_serialize_exit();
3590 }
3591 
3592 static void
3593 wpi_rfreset_task(void *arg, int pending)
3594 {
3595 	struct wpi_softc *sc;
3596 
3597 	wlan_serialize_enter();
3598 	sc = arg;
3599 	wpi_rfkill_resume(sc);
3600 	wlan_serialize_exit();
3601 }
3602 
3603 /*
3604  * Allocate DMA-safe memory for firmware transfer.
3605  */
3606 static int
3607 wpi_alloc_fwmem(struct wpi_softc *sc)
3608 {
3609 	/* allocate enough contiguous space to store text and data */
3610 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3611 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3612 	    BUS_DMA_NOWAIT);
3613 }
3614 
3615 static void
3616 wpi_free_fwmem(struct wpi_softc *sc)
3617 {
3618 	wpi_dma_contig_free(&sc->fw_dma);
3619 }
3620 
3621 /**
3622  * Called every second, wpi_watchdog_callout used by the watch dog timer
3623  * to check that the card is still alive
3624  */
3625 static void
3626 wpi_watchdog_callout(void *arg)
3627 {
3628 	struct wpi_softc *sc;
3629 	struct ifnet *ifp;
3630 	struct ieee80211com *ic;
3631 	uint32_t tmp;
3632 
3633 	wlan_serialize_enter();
3634 	sc = arg;
3635 	ifp = sc->sc_ifp;
3636 	ic = ifp->if_l2com;
3637 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3638 
3639 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3640 		/* No need to lock firmware memory */
3641 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3642 
3643 		if ((tmp & 0x1) == 0) {
3644 			/* Radio kill switch is still off */
3645 			callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3646 			wlan_serialize_exit();
3647 			return;
3648 		}
3649 
3650 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3651 		ieee80211_runtask(ic, &sc->sc_radiotask);
3652 		wlan_serialize_exit();
3653 		return;
3654 	}
3655 
3656 	if (sc->sc_tx_timer > 0) {
3657 		if (--sc->sc_tx_timer == 0) {
3658 			device_printf(sc->sc_dev,"device timeout\n");
3659 			IFNET_STAT_INC(ifp, oerrors, 1);
3660 			wlan_serialize_exit();
3661 			ieee80211_runtask(ic, &sc->sc_restarttask);
3662 			wlan_serialize_enter();
3663 		}
3664 	}
3665 	if (sc->sc_scan_timer > 0) {
3666 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3667 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3668 			device_printf(sc->sc_dev,"scan timeout\n");
3669 			ieee80211_cancel_scan(vap);
3670 			wlan_serialize_exit();
3671 			ieee80211_runtask(ic, &sc->sc_restarttask);
3672 			wlan_serialize_enter();
3673 		}
3674 	}
3675 
3676 	if (ifp->if_flags & IFF_RUNNING)
3677 		callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3678 
3679 	wlan_serialize_exit();
3680 }
3681 
3682 #ifdef WPI_DEBUG
3683 static const char *wpi_cmd_str(int cmd)
3684 {
3685 	switch (cmd) {
3686 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3687 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3688 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3689 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3690 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3691 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3692 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3693 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3694 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3695 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3696 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3697 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3698 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3699 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3700 
3701 	default:
3702 		KASSERT(1, ("Unknown Command: %d", cmd));
3703 		return "UNKNOWN CMD";	/* Make the compiler happy */
3704 	}
3705 }
3706 #endif
3707 
3708 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3709 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3710 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3711 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3712