1 /*
2  * Copyright (c) 2015 Imre Vadász <imre@vdsz.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
16  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
17  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
18  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
19  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
20  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
22  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
23  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24  * POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * Device driver for Intel's On Die power usage estimation via MSR.
29  * Supported by Sandy Bridge and later CPUs, and also by Atom CPUs
30  * of the Silvermont and later architectures.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/module.h>
37 #include <sys/conf.h>
38 #include <sys/cpu_topology.h>
39 #include <sys/kernel.h>
40 #include <sys/sensors.h>
41 #include <sys/bitops.h>
42 
43 #include <machine/specialreg.h>
44 #include <machine/cpufunc.h>
45 #include <machine/cputypes.h>
46 #include <machine/md_var.h>
47 
48 #include "cpu_if.h"
49 
50 #define MSR_RAPL_POWER_UNIT_POWER	__BITS64(0, 3)
51 #define MSR_RAPL_POWER_UNIT_ENERGY	__BITS64(8, 12)
52 #define MSR_RAPL_POWER_UNIT_TIME	__BITS64(16, 19)
53 
54 struct corepower_sensor {
55 	uint64_t	energy;
56 	u_int		msr;
57 	struct ksensor	sensor;
58 };
59 
60 struct corepower_softc {
61 	device_t		sc_dev;
62 
63 	uint32_t		sc_watt_unit;
64 	uint32_t		sc_joule_unit;
65 	uint32_t		sc_second_unit;
66 
67 	int			sc_have_sens;
68 	int			sc_is_atom;
69 
70 	struct corepower_sensor	sc_pkg_sens;
71 	struct corepower_sensor	sc_dram_sens;
72 	struct corepower_sensor	sc_pp0_sens;
73 	struct corepower_sensor	sc_pp1_sens;
74 
75 	struct ksensordev	sc_sensordev;
76 	struct sensor_task	*sc_senstask;
77 };
78 
79 /*
80  * Device methods.
81  */
82 static void	corepower_identify(driver_t *driver, device_t parent);
83 static int	corepower_probe(device_t dev);
84 static int	corepower_attach(device_t dev);
85 static int	corepower_detach(device_t dev);
86 static uint32_t	corepower_energy_to_uwatts(struct corepower_softc *sc,
87 					   uint32_t units, uint32_t secs);
88 static void	corepower_refresh(void *arg);
89 static void	corepower_sens_init(struct corepower_sensor *sens,
90 				    char *desc, u_int msr, int cpu);
91 static void	corepower_sens_update(struct corepower_softc *sc,
92 				      struct corepower_sensor *sens);
93 static int	corepower_try(u_int msr, char *name);
94 
95 static device_method_t corepower_methods[] = {
96 	/* Device interface */
97 	DEVMETHOD(device_identify,	corepower_identify),
98 	DEVMETHOD(device_probe,		corepower_probe),
99 	DEVMETHOD(device_attach,	corepower_attach),
100 	DEVMETHOD(device_detach,	corepower_detach),
101 
102 	DEVMETHOD_END
103 };
104 
105 static driver_t corepower_driver = {
106 	"corepower",
107 	corepower_methods,
108 	sizeof(struct corepower_softc),
109 };
110 
111 static devclass_t corepower_devclass;
112 DRIVER_MODULE(corepower, cpu, corepower_driver, corepower_devclass, NULL, NULL);
113 MODULE_VERSION(corepower, 1);
114 
115 static void
116 corepower_identify(driver_t *driver, device_t parent)
117 {
118 	device_t child;
119 	const struct cpu_node *node;
120 	int cpu, master_cpu;
121 
122 	/* Make sure we're not being doubly invoked. */
123 	if (device_find_child(parent, "corepower", -1) != NULL)
124 		return;
125 
126 	/* Check that the vendor is Intel. */
127 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
128 		return;
129 
130 	/* We only want one child per CPU package */
131 	cpu = device_get_unit(parent);
132 	node = get_cpu_node_by_cpuid(cpu);
133 	while (node != NULL) {
134 		if (node->type == PACKAGE_LEVEL) {
135 			if (node->child_no == 0)
136 				node = NULL;
137 			break;
138 		}
139 		node = node->parent_node;
140 	}
141 	if (node == NULL)
142 		return;
143 
144 	master_cpu = BSRCPUMASK(node->members);
145 	if (cpu != master_cpu)
146 		return;
147 
148 	child = device_add_child(parent, "corepower", -1);
149 	if (child == NULL)
150 		device_printf(parent, "add corepower child failed\n");
151 }
152 
153 static int
154 corepower_probe(device_t dev)
155 {
156 	int cpu_family, cpu_model;
157 
158 	if (resource_disabled("corepower", 0))
159 		return (ENXIO);
160 
161 	cpu_model = CPUID_TO_MODEL(cpu_id);
162 	cpu_family = CPUID_TO_FAMILY(cpu_id);
163 
164 	if (cpu_family == 0x06) {
165 		switch (cpu_model) {
166 		/* Core CPUs */
167 		case 0x2a:
168 		case 0x3a:
169 		/* Xeon CPUs */
170 		case 0x2d:
171 		case 0x3e:
172 		case 0x3f:
173 		case 0x4f:
174 		case 0x56:
175 		/* Haswell, Broadwell, Skylake */
176 		case 0x3c:
177 		case 0x3d:
178 		case 0x45:
179 		case 0x46:
180 		case 0x47:
181 		case 0x4e:
182 		case 0x5e:
183 		/* Atom CPUs */
184 		case 0x37:
185 		case 0x4a:
186 		case 0x4c:
187 		case 0x4d:
188 		case 0x5a:
189 		case 0x5d:
190 			break;
191 		default:
192 			return (ENXIO);
193 		}
194 	}
195 
196 	if (corepower_try(MSR_RAPL_POWER_UNIT, "MSR_RAPL_POWER_UNIT") == 0)
197 		return (ENXIO);
198 
199 	device_set_desc(dev, "CPU On-Die Power Usage Estimation");
200 
201 	return (BUS_PROBE_GENERIC);
202 }
203 
204 static int
205 corepower_attach(device_t dev)
206 {
207 	struct corepower_softc *sc = device_get_softc(dev);
208 	uint64_t val;
209 	uint32_t power_units;
210 	uint32_t energy_units;
211 	uint32_t time_units;
212 	int cpu_family, cpu_model;
213 	int cpu;
214 
215 	sc->sc_dev = dev;
216 	sc->sc_have_sens = 0;
217 	sc->sc_is_atom = 0;
218 
219 	cpu_family = CPUID_TO_FAMILY(cpu_id);
220 	cpu_model = CPUID_TO_MODEL(cpu_id);
221 
222 	/* Check CPU model */
223 	if (cpu_family == 0x06) {
224 		switch (cpu_model) {
225 		/* Core CPUs */
226 		case 0x2a:
227 		case 0x3a:
228 			sc->sc_have_sens = 0xd;
229 			break;
230 		/* Xeon CPUs */
231 		case 0x2d: /* Only Xeon branded, Core i version should probably be 0x5 */
232 		case 0x3e:
233 		case 0x3f:
234 		case 0x4f:
235 		case 0x56:
236 			sc->sc_have_sens = 0x7;
237 			break;
238 		/* Haswell, Broadwell, Skylake */
239 		case 0x3c:
240 		case 0x3d:
241 		case 0x45:
242 		case 0x46:
243 		case 0x47:
244 		case 0x4e:
245 		case 0x5e:
246 			/* Check if Core or Xeon (Xeon CPUs might be 0x7) */
247 			sc->sc_have_sens = 0xf;
248 			break;
249 		/* Atom CPUs */
250 		case 0x37:
251 		case 0x4a:
252 		case 0x4c:
253 		case 0x4d:
254 		case 0x5a:
255 		case 0x5d:
256 			sc->sc_have_sens = 0x5;
257 			/* use quirk for Valleyview Atom CPUs */
258 			sc->sc_is_atom = 1;
259 			break;
260 		default:
261 			return (ENXIO);
262 		}
263 	}
264 
265 	val = rdmsr(MSR_RAPL_POWER_UNIT);
266 
267 	power_units = __SHIFTOUT(val, MSR_RAPL_POWER_UNIT_POWER);
268 	energy_units = __SHIFTOUT(val, MSR_RAPL_POWER_UNIT_ENERGY);
269 	time_units = __SHIFTOUT(val, MSR_RAPL_POWER_UNIT_TIME);
270 
271 	sc->sc_watt_unit = (1 << power_units);
272 	sc->sc_joule_unit = (1 << energy_units);
273 	sc->sc_second_unit = (1 << time_units);
274 
275 	/*
276 	 * Add hw.sensors.cpu_nodeN MIB.
277 	 */
278 	cpu = device_get_unit(device_get_parent(dev));
279 	ksnprintf(sc->sc_sensordev.xname, sizeof(sc->sc_sensordev.xname),
280 	    "cpu_node%d", get_chip_ID(cpu));
281 	if ((sc->sc_have_sens & 1) &&
282 	    corepower_try(MSR_PKG_ENERGY_STATUS, "MSR_PKG_ENERGY_STATUS")) {
283 		corepower_sens_init(&sc->sc_pkg_sens, "Package Power",
284 		    MSR_PKG_ENERGY_STATUS, cpu);
285 		sensor_attach(&sc->sc_sensordev, &sc->sc_pkg_sens.sensor);
286 	} else {
287 		sc->sc_have_sens &= ~1;
288 	}
289 	if ((sc->sc_have_sens & 2) &&
290 	    corepower_try(MSR_DRAM_ENERGY_STATUS, "MSR_DRAM_ENERGY_STATUS")) {
291 		corepower_sens_init(&sc->sc_dram_sens, "DRAM Power",
292 		    MSR_DRAM_ENERGY_STATUS, cpu);
293 		sensor_attach(&sc->sc_sensordev, &sc->sc_dram_sens.sensor);
294 	} else {
295 		sc->sc_have_sens &= ~2;
296 	}
297 	if ((sc->sc_have_sens & 4) &&
298 	    corepower_try(MSR_PP0_ENERGY_STATUS, "MSR_PP0_ENERGY_STATUS")) {
299 		corepower_sens_init(&sc->sc_pp0_sens, "Cores Power",
300 		    MSR_PP0_ENERGY_STATUS, cpu);
301 		sensor_attach(&sc->sc_sensordev, &sc->sc_pp0_sens.sensor);
302 	} else {
303 		sc->sc_have_sens &= ~4;
304 	}
305 	if ((sc->sc_have_sens & 8) &&
306 	    corepower_try(MSR_PP1_ENERGY_STATUS, "MSR_PP1_ENERGY_STATUS")) {
307 		corepower_sens_init(&sc->sc_pp1_sens, "Graphics Power",
308 		    MSR_PP1_ENERGY_STATUS, cpu);
309 		sensor_attach(&sc->sc_sensordev, &sc->sc_pp1_sens.sensor);
310 	} else {
311 		sc->sc_have_sens &= ~8;
312 	}
313 
314 	if (sc->sc_have_sens == 0)
315 		return (ENXIO);
316 
317 	sc->sc_senstask = sensor_task_register2(sc, corepower_refresh, 1, cpu);
318 
319 	sensordev_install(&sc->sc_sensordev);
320 
321 	return (0);
322 }
323 
324 static int
325 corepower_detach(device_t dev)
326 {
327 	struct corepower_softc *sc = device_get_softc(dev);
328 
329 	sensordev_deinstall(&sc->sc_sensordev);
330 	sensor_task_unregister2(sc->sc_senstask);
331 
332 	return (0);
333 }
334 
335 static uint32_t
336 corepower_energy_to_uwatts(struct corepower_softc *sc, uint32_t units,
337     uint32_t secs)
338 {
339 	uint64_t val;
340 
341 	if (sc->sc_is_atom) {
342 		val = ((uint64_t)units) * sc->sc_joule_unit;
343 	} else {
344 		val = ((uint64_t)units) * 1000ULL * 1000ULL;
345 		val /= sc->sc_joule_unit;
346 	}
347 
348 	return val / secs;
349 }
350 
351 static void
352 corepower_refresh(void *arg)
353 {
354 	struct corepower_softc *sc = (struct corepower_softc *)arg;
355 
356 	if (sc->sc_have_sens & 1)
357 		corepower_sens_update(sc, &sc->sc_pkg_sens);
358 	if (sc->sc_have_sens & 2)
359 		corepower_sens_update(sc, &sc->sc_dram_sens);
360 	if (sc->sc_have_sens & 4)
361 		corepower_sens_update(sc, &sc->sc_pp0_sens);
362 	if (sc->sc_have_sens & 8)
363 		corepower_sens_update(sc, &sc->sc_pp1_sens);
364 }
365 
366 static void
367 corepower_sens_init(struct corepower_sensor *sens, char *desc, u_int msr,
368     int cpu)
369 {
370 	ksnprintf(sens->sensor.desc, sizeof(sens->sensor.desc), "node%d %s",
371 	    get_chip_ID(cpu), desc);
372 	sens->sensor.type = SENSOR_WATTS;
373 	sens->msr = msr;
374 	sens->energy = rdmsr(sens->msr) & 0xffffffffU;
375 }
376 
377 static void
378 corepower_sens_update(struct corepower_softc *sc,
379     struct corepower_sensor *sens)
380 {
381 	uint64_t a, res;
382 
383 	a = rdmsr(sens->msr) & 0xffffffffU;
384 	if (sens->energy > a) {
385 		res = (0x100000000ULL - sens->energy) + a;
386 	} else {
387 		res = a - sens->energy;
388 	}
389 	sens->energy = a;
390 	sens->sensor.value = corepower_energy_to_uwatts(sc, res, 1);
391 }
392 
393 static int
394 corepower_try(u_int msr, char *name)
395 {
396 	uint64_t val;
397 
398 	if (rdmsr_safe(msr, &val) != 0) {
399 		kprintf("msr %s (0x%08x) not available\n", name, msr);
400 		return 0;
401 	}
402 	return 1;
403 }
404