xref: /dragonfly/sys/dev/raid/aac/aac.c (revision 8164c1fe)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *	$DragonFly: src/sys/dev/raid/aac/aac.c,v 1.17 2005/02/04 02:55:44 dillon Exp $
31  */
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52 
53 #include "aac_compat.h"
54 
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 
67 #include "aacreg.h"
68 #include "aac_ioctl.h"
69 #include "aacvar.h"
70 #include "aac_tables.h"
71 #include "aac_cam.h"
72 
73 static void	aac_startup(void *arg);
74 static void	aac_add_container(struct aac_softc *sc,
75 				  struct aac_mntinforesp *mir, int f);
76 static void	aac_get_bus_info(struct aac_softc *sc);
77 
78 /* Command Processing */
79 static void	aac_timeout(void *ssc);
80 static int	aac_start(struct aac_command *cm);
81 static void	aac_complete(void *context, int pending);
82 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83 static void	aac_bio_complete(struct aac_command *cm);
84 static int	aac_wait_command(struct aac_command *cm, int timeout);
85 static void	aac_host_command(struct aac_softc *sc);
86 static void	aac_host_response(struct aac_softc *sc);
87 
88 /* Command Buffer Management */
89 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90 				       int nseg, int error);
91 static int	aac_alloc_commands(struct aac_softc *sc);
92 static void	aac_free_commands(struct aac_softc *sc);
93 static void	aac_map_command(struct aac_command *cm);
94 static void	aac_unmap_command(struct aac_command *cm);
95 
96 /* Hardware Interface */
97 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98 			       int error);
99 static int	aac_check_firmware(struct aac_softc *sc);
100 static int	aac_init(struct aac_softc *sc);
101 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
102 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103 				 u_int32_t arg3, u_int32_t *sp);
104 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
105 				struct aac_command *cm);
106 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
107 				u_int32_t *fib_size, struct aac_fib **fib_addr);
108 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
109 				     struct aac_fib *fib);
110 
111 /* Falcon/PPC interface */
112 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
113 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
114 static int	aac_fa_get_istatus(struct aac_softc *sc);
115 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117 				   u_int32_t arg0, u_int32_t arg1,
118 				   u_int32_t arg2, u_int32_t arg3);
119 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
120 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121 
122 struct aac_interface aac_fa_interface = {
123 	aac_fa_get_fwstatus,
124 	aac_fa_qnotify,
125 	aac_fa_get_istatus,
126 	aac_fa_clear_istatus,
127 	aac_fa_set_mailbox,
128 	aac_fa_get_mailbox,
129 	aac_fa_set_interrupts
130 };
131 
132 /* StrongARM interface */
133 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
134 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
135 static int	aac_sa_get_istatus(struct aac_softc *sc);
136 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138 				   u_int32_t arg0, u_int32_t arg1,
139 				   u_int32_t arg2, u_int32_t arg3);
140 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
141 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142 
143 struct aac_interface aac_sa_interface = {
144 	aac_sa_get_fwstatus,
145 	aac_sa_qnotify,
146 	aac_sa_get_istatus,
147 	aac_sa_clear_istatus,
148 	aac_sa_set_mailbox,
149 	aac_sa_get_mailbox,
150 	aac_sa_set_interrupts
151 };
152 
153 /* i960Rx interface */
154 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
155 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
156 static int	aac_rx_get_istatus(struct aac_softc *sc);
157 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159 				   u_int32_t arg0, u_int32_t arg1,
160 				   u_int32_t arg2, u_int32_t arg3);
161 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
162 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163 
164 struct aac_interface aac_rx_interface = {
165 	aac_rx_get_fwstatus,
166 	aac_rx_qnotify,
167 	aac_rx_get_istatus,
168 	aac_rx_clear_istatus,
169 	aac_rx_set_mailbox,
170 	aac_rx_get_mailbox,
171 	aac_rx_set_interrupts
172 };
173 
174 /* Debugging and Diagnostics */
175 static void	aac_describe_controller(struct aac_softc *sc);
176 static char	*aac_describe_code(struct aac_code_lookup *table,
177 				   u_int32_t code);
178 
179 /* Management Interface */
180 static d_open_t		aac_open;
181 static d_close_t	aac_close;
182 static d_ioctl_t	aac_ioctl;
183 static d_poll_t		aac_poll;
184 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185 static void		aac_handle_aif(struct aac_softc *sc,
186 					   struct aac_fib *fib);
187 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
188 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191 
192 #define AAC_CDEV_MAJOR	150
193 
194 static struct cdevsw aac_cdevsw = {
195 	"aac",			/* name */
196 	AAC_CDEV_MAJOR,		/* major */
197 	0,			/* flags */
198 	NULL,			/* port */
199 	NULL,			/* clone */
200 
201 	aac_open,		/* open */
202 	aac_close,		/* close */
203 	noread,			/* read */
204 	nowrite,		/* write */
205 	aac_ioctl,		/* ioctl */
206 	aac_poll,		/* poll */
207 	nommap,			/* mmap */
208 	nostrategy,		/* strategy */
209 	nodump,			/* dump */
210 	nopsize			/* psize */
211 };
212 
213 DECLARE_DUMMY_MODULE(aac);
214 
215 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
216 
217 /* sysctl node */
218 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
219 
220 /*
221  * Device Interface
222  */
223 
224 /*
225  * Initialise the controller and softc
226  */
227 int
228 aac_attach(struct aac_softc *sc)
229 {
230 	int error, unit;
231 
232 	debug_called(1);
233 	callout_init(&sc->aac_watchdog);
234 
235 	/*
236 	 * Initialise per-controller queues.
237 	 */
238 	aac_initq_free(sc);
239 	aac_initq_ready(sc);
240 	aac_initq_busy(sc);
241 	aac_initq_complete(sc);
242 	aac_initq_bio(sc);
243 
244 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
245 	/*
246 	 * Initialise command-completion task.
247 	 */
248 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
249 #endif
250 
251 	/* disable interrupts before we enable anything */
252 	AAC_MASK_INTERRUPTS(sc);
253 
254 	/* mark controller as suspended until we get ourselves organised */
255 	sc->aac_state |= AAC_STATE_SUSPEND;
256 
257 	/*
258 	 * Check that the firmware on the card is supported.
259 	 */
260 	if ((error = aac_check_firmware(sc)) != 0)
261 		return(error);
262 
263 	/* Init the sync fib lock */
264 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
265 
266 	/*
267 	 * Initialise the adapter.
268 	 */
269 	if ((error = aac_init(sc)) != 0)
270 		return(error);
271 
272 	/*
273 	 * Print a little information about the controller.
274 	 */
275 	aac_describe_controller(sc);
276 
277 	/*
278 	 * Register to probe our containers later.
279 	 */
280 	TAILQ_INIT(&sc->aac_container_tqh);
281 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
282 
283 	/*
284 	 * Lock for the AIF queue
285 	 */
286 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
287 
288 	sc->aac_ich.ich_func = aac_startup;
289 	sc->aac_ich.ich_arg = sc;
290 	sc->aac_ich.ich_desc = "aac";
291 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
292 		device_printf(sc->aac_dev,
293 			      "can't establish configuration hook\n");
294 		return(ENXIO);
295 	}
296 
297 	/*
298 	 * Make the control device.
299 	 */
300 	unit = device_get_unit(sc->aac_dev);
301 	cdevsw_add(&aac_cdevsw, -1, unit);
302 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
303 				 "aac%d", unit);
304 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
305 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
306 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
307 #endif
308 	sc->aac_dev_t->si_drv1 = sc;
309 	reference_dev(sc->aac_dev_t);
310 
311 	/* Create the AIF thread */
312 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
313 	if (kthread_create((void(*)(void *))aac_host_command, sc,
314 			   &sc->aifthread, 0, "aac%daif", unit))
315 #else
316 	if (kthread_create((void(*)(void *))aac_host_command, sc,
317 			   &sc->aifthread, "aac%daif", unit))
318 #endif
319 		panic("Could not create AIF thread\n");
320 
321 	/* Register the shutdown method to only be called post-dump */
322 	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
323 				   SHUTDOWN_PRI_DEFAULT)) == NULL)
324 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
325 
326 	/* Register with CAM for the non-DASD devices */
327 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
328 		aac_get_bus_info(sc);
329 
330 	return(0);
331 }
332 
333 /*
334  * Probe for containers, create disks.
335  */
336 static void
337 aac_startup(void *arg)
338 {
339 	struct aac_softc *sc;
340 	struct aac_fib *fib;
341 	struct aac_mntinfo *mi;
342 	struct aac_mntinforesp *mir = NULL;
343 	int i = 0;
344 
345 	debug_called(1);
346 
347 	sc = (struct aac_softc *)arg;
348 
349 	/* disconnect ourselves from the intrhook chain */
350 	config_intrhook_disestablish(&sc->aac_ich);
351 
352 	aac_alloc_sync_fib(sc, &fib, 0);
353 	mi = (struct aac_mntinfo *)&fib->data[0];
354 
355 	/* loop over possible containers */
356 	do {
357 		/* request information on this container */
358 		bzero(mi, sizeof(struct aac_mntinfo));
359 		mi->Command = VM_NameServe;
360 		mi->MntType = FT_FILESYS;
361 		mi->MntCount = i;
362 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
363 				 sizeof(struct aac_mntinfo))) {
364 			debug(2, "error probing container %d", i);
365 			continue;
366 		}
367 
368 		mir = (struct aac_mntinforesp *)&fib->data[0];
369 		aac_add_container(sc, mir, 0);
370 		i++;
371 	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
372 
373 	aac_release_sync_fib(sc);
374 
375 	/* poke the bus to actually attach the child devices */
376 	if (bus_generic_attach(sc->aac_dev))
377 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
378 
379 	/* mark the controller up */
380 	sc->aac_state &= ~AAC_STATE_SUSPEND;
381 
382 	/* enable interrupts now */
383 	AAC_UNMASK_INTERRUPTS(sc);
384 
385 	/* enable the timeout watchdog */
386 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
387 		      aac_timeout, sc);
388 }
389 
390 /*
391  * Create a device to respresent a new container
392  */
393 static void
394 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
395 {
396 	struct aac_container *co;
397 	device_t child;
398 
399 	/*
400 	 * Check container volume type for validity.  Note that many of
401 	 * the possible types may never show up.
402 	 */
403 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
404 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
405 		       M_INTWAIT);
406 		debug(1, "id %x  name '%.16s'  size %u  type %d",
407 		      mir->MntTable[0].ObjectId,
408 		      mir->MntTable[0].FileSystemName,
409 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
410 
411 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
412 			device_printf(sc->aac_dev, "device_add_child failed\n");
413 		else
414 			device_set_ivars(child, co);
415 		device_set_desc(child, aac_describe_code(aac_container_types,
416 				mir->MntTable[0].VolType));
417 		co->co_disk = child;
418 		co->co_found = f;
419 		bcopy(&mir->MntTable[0], &co->co_mntobj,
420 		      sizeof(struct aac_mntobj));
421 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
422 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
423 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
424 	}
425 }
426 
427 /*
428  * Free all of the resources associated with (sc)
429  *
430  * Should not be called if the controller is active.
431  */
432 void
433 aac_free(struct aac_softc *sc)
434 {
435 	debug_called(1);
436 
437 	/* remove the control device */
438 	if (sc->aac_dev_t != NULL)
439 		destroy_dev(sc->aac_dev_t);
440 
441 	/* throw away any FIB buffers, discard the FIB DMA tag */
442 	if (sc->aac_fibs != NULL)
443 		aac_free_commands(sc);
444 	if (sc->aac_fib_dmat)
445 		bus_dma_tag_destroy(sc->aac_fib_dmat);
446 
447 	/* destroy the common area */
448 	if (sc->aac_common) {
449 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
450 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
451 				sc->aac_common_dmamap);
452 	}
453 	if (sc->aac_common_dmat)
454 		bus_dma_tag_destroy(sc->aac_common_dmat);
455 
456 	/* disconnect the interrupt handler */
457 	if (sc->aac_intr)
458 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
459 	if (sc->aac_irq != NULL)
460 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
461 				     sc->aac_irq);
462 
463 	/* destroy data-transfer DMA tag */
464 	if (sc->aac_buffer_dmat)
465 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
466 
467 	/* destroy the parent DMA tag */
468 	if (sc->aac_parent_dmat)
469 		bus_dma_tag_destroy(sc->aac_parent_dmat);
470 
471 	/* release the register window mapping */
472 	if (sc->aac_regs_resource != NULL) {
473 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
474 				     sc->aac_regs_rid, sc->aac_regs_resource);
475 	}
476 	cdevsw_remove(&aac_cdevsw, -1, device_get_unit(sc->aac_dev));
477 }
478 
479 /*
480  * Disconnect from the controller completely, in preparation for unload.
481  */
482 int
483 aac_detach(device_t dev)
484 {
485 	struct aac_softc *sc;
486 #if AAC_BROKEN
487 	int error;
488 #endif
489 
490 	debug_called(1);
491 
492 	sc = device_get_softc(dev);
493 
494 	callout_stop(&sc->aac_watchdog);
495 
496 	if (sc->aac_state & AAC_STATE_OPEN)
497 	return(EBUSY);
498 
499 #if AAC_BROKEN
500 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
501 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
502 		wakeup(sc->aifthread);
503 		tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
504 	}
505 
506 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
507 		panic("Cannot shutdown AIF thread\n");
508 
509 	if ((error = aac_shutdown(dev)))
510 		return(error);
511 
512 	aac_free(sc);
513 
514 	return(0);
515 #else
516 	return (EBUSY);
517 #endif
518 }
519 
520 /*
521  * Bring the controller down to a dormant state and detach all child devices.
522  *
523  * This function is called before detach or system shutdown.
524  *
525  * Note that we can assume that the bioq on the controller is empty, as we won't
526  * allow shutdown if any device is open.
527  */
528 int
529 aac_shutdown(device_t dev)
530 {
531 	struct aac_softc *sc;
532 	struct aac_fib *fib;
533 	struct aac_close_command *cc;
534 	int s;
535 
536 	debug_called(1);
537 
538 	sc = device_get_softc(dev);
539 
540 	s = splbio();
541 
542 	sc->aac_state |= AAC_STATE_SUSPEND;
543 
544 	/*
545 	 * Send a Container shutdown followed by a HostShutdown FIB to the
546 	 * controller to convince it that we don't want to talk to it anymore.
547 	 * We've been closed and all I/O completed already
548 	 */
549 	device_printf(sc->aac_dev, "shutting down controller...");
550 
551 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
552 	cc = (struct aac_close_command *)&fib->data[0];
553 
554 	bzero(cc, sizeof(struct aac_close_command));
555 	cc->Command = VM_CloseAll;
556 	cc->ContainerId = 0xffffffff;
557 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
558 	    sizeof(struct aac_close_command)))
559 		printf("FAILED.\n");
560 	else {
561 		fib->data[0] = 0;
562 		/*
563 		 * XXX Issuing this command to the controller makes it shut down
564 		 * but also keeps it from coming back up without a reset of the
565 		 * PCI bus.  This is not desirable if you are just unloading the
566 		 * driver module with the intent to reload it later.
567 		 */
568 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
569 		    fib, 1)) {
570 			printf("FAILED.\n");
571 		} else {
572 			printf("done.\n");
573 		}
574 	}
575 
576 	AAC_MASK_INTERRUPTS(sc);
577 
578 	splx(s);
579 	return(0);
580 }
581 
582 /*
583  * Bring the controller to a quiescent state, ready for system suspend.
584  */
585 int
586 aac_suspend(device_t dev)
587 {
588 	struct aac_softc *sc;
589 	int s;
590 
591 	debug_called(1);
592 
593 	sc = device_get_softc(dev);
594 
595 	s = splbio();
596 
597 	sc->aac_state |= AAC_STATE_SUSPEND;
598 
599 	AAC_MASK_INTERRUPTS(sc);
600 	splx(s);
601 	return(0);
602 }
603 
604 /*
605  * Bring the controller back to a state ready for operation.
606  */
607 int
608 aac_resume(device_t dev)
609 {
610 	struct aac_softc *sc;
611 
612 	debug_called(1);
613 
614 	sc = device_get_softc(dev);
615 
616 	sc->aac_state &= ~AAC_STATE_SUSPEND;
617 	AAC_UNMASK_INTERRUPTS(sc);
618 	return(0);
619 }
620 
621 /*
622  * Take an interrupt.
623  */
624 void
625 aac_intr(void *arg)
626 {
627 	struct aac_softc *sc;
628 	u_int16_t reason;
629 	u_int32_t *resp_queue;
630 
631 	debug_called(2);
632 
633 	sc = (struct aac_softc *)arg;
634 
635 	/*
636 	 * Optimize the common case of adapter response interrupts.
637 	 * We must read from the card prior to processing the responses
638 	 * to ensure the clear is flushed prior to accessing the queues.
639 	 * Reading the queues from local memory might save us a PCI read.
640 	 */
641 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
642 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
643 		reason = AAC_DB_RESPONSE_READY;
644 	else
645 		reason = AAC_GET_ISTATUS(sc);
646 	AAC_CLEAR_ISTATUS(sc, reason);
647 	(void)AAC_GET_ISTATUS(sc);
648 
649 	/* It's not ok to return here because of races with the previous step */
650 	if (reason & AAC_DB_RESPONSE_READY)
651 		aac_host_response(sc);
652 
653 	/* controller wants to talk to the log */
654 	if (reason & AAC_DB_PRINTF)
655 		aac_print_printf(sc);
656 
657 	/* controller has a message for us? */
658 	if (reason & AAC_DB_COMMAND_READY) {
659 		/* XXX What happens if the thread is already awake? */
660 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
661 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
662 			wakeup(sc->aifthread);
663 		}
664 	}
665 }
666 
667 /*
668  * Command Processing
669  */
670 
671 /*
672  * Start as much queued I/O as possible on the controller
673  */
674 void
675 aac_startio(struct aac_softc *sc)
676 {
677 	struct aac_command *cm;
678 
679 	debug_called(2);
680 
681 	for (;;) {
682 		/*
683 		 * Try to get a command that's been put off for lack of
684 		 * resources
685 		 */
686 		cm = aac_dequeue_ready(sc);
687 
688 		/*
689 		 * Try to build a command off the bio queue (ignore error
690 		 * return)
691 		 */
692 		if (cm == NULL)
693 			aac_bio_command(sc, &cm);
694 
695 		/* nothing to do? */
696 		if (cm == NULL)
697 			break;
698 
699 		/* try to give the command to the controller */
700 		if (aac_start(cm) == EBUSY) {
701 			/* put it on the ready queue for later */
702 			aac_requeue_ready(cm);
703 			break;
704 		}
705 	}
706 }
707 
708 /*
709  * Deliver a command to the controller; allocate controller resources at the
710  * last moment when possible.
711  */
712 static int
713 aac_start(struct aac_command *cm)
714 {
715 	struct aac_softc *sc;
716 	int error;
717 
718 	debug_called(2);
719 
720 	sc = cm->cm_sc;
721 
722 	/* get the command mapped */
723 	aac_map_command(cm);
724 
725 	/* fix up the address values in the FIB */
726 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
727 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
728 
729 	/* save a pointer to the command for speedy reverse-lookup */
730 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
731 							 * address issue */
732 	/* put the FIB on the outbound queue */
733 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
734 	return(error);
735 }
736 
737 /*
738  * Handle notification of one or more FIBs coming from the controller.
739  */
740 static void
741 aac_host_command(struct aac_softc *sc)
742 {
743 	struct aac_fib *fib;
744 	u_int32_t fib_size;
745 	int size;
746 
747 	debug_called(2);
748 
749 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
750 
751 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
752 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
753 			tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
754 
755 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
756 		for (;;) {
757 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
758 					    &fib_size, &fib))
759 				break;	/* nothing to do */
760 
761 			AAC_PRINT_FIB(sc, fib);
762 
763 			switch (fib->Header.Command) {
764 			case AifRequest:
765 				aac_handle_aif(sc, fib);
766 				break;
767 			default:
768 				device_printf(sc->aac_dev, "unknown command "
769 					      "from controller\n");
770 				break;
771 			}
772 
773 			/* Return the AIF to the controller. */
774 			if ((fib->Header.XferState == 0) ||
775 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
776 				break;
777 
778 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
779 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
780 				*(AAC_FSAStatus*)fib->data = ST_OK;
781 
782 				/* XXX Compute the Size field? */
783 				size = fib->Header.Size;
784 				if (size > sizeof(struct aac_fib)) {
785 					size = sizeof(struct aac_fib);
786 					fib->Header.Size = size;
787 				}
788 				/*
789 				 * Since we did not generate this command, it
790 				 * cannot go through the normal
791 				 * enqueue->startio chain.
792 				 */
793 				aac_enqueue_response(sc,
794 						     AAC_ADAP_NORM_RESP_QUEUE,
795 						     fib);
796 			}
797 		}
798 	}
799 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
800 	wakeup(sc->aac_dev);
801 
802 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
803 	mtx_lock(&Giant);
804 #endif
805 	kthread_exit();
806 }
807 
808 /*
809  * Handle notification of one or more FIBs completed by the controller
810  */
811 static void
812 aac_host_response(struct aac_softc *sc)
813 {
814 	struct aac_command *cm;
815 	struct aac_fib *fib;
816 	u_int32_t fib_size;
817 
818 	debug_called(2);
819 
820 	for (;;) {
821 		/* look for completed FIBs on our queue */
822 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
823 				    &fib))
824 			break;	/* nothing to do */
825 
826 		/* get the command, unmap and queue for later processing */
827 		cm = (struct aac_command *)fib->Header.SenderData;
828 		if (cm == NULL) {
829 			AAC_PRINT_FIB(sc, fib);
830 		} else {
831 			aac_remove_busy(cm);
832 			aac_unmap_command(cm);		/* XXX defer? */
833 			aac_enqueue_complete(cm);
834 		}
835 	}
836 
837 	/* handle completion processing */
838 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
839 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
840 #else
841 	aac_complete(sc, 0);
842 #endif
843 }
844 
845 /*
846  * Process completed commands.
847  */
848 static void
849 aac_complete(void *context, int pending)
850 {
851 	struct aac_softc *sc;
852 	struct aac_command *cm;
853 
854 	debug_called(2);
855 
856 	sc = (struct aac_softc *)context;
857 
858 	/* pull completed commands off the queue */
859 	for (;;) {
860 		cm = aac_dequeue_complete(sc);
861 		if (cm == NULL)
862 			break;
863 		cm->cm_flags |= AAC_CMD_COMPLETED;
864 
865 		/* is there a completion handler? */
866 		if (cm->cm_complete != NULL) {
867 			cm->cm_complete(cm);
868 		} else {
869 			/* assume that someone is sleeping on this command */
870 			wakeup(cm);
871 		}
872 	}
873 
874 	/* see if we can start some more I/O */
875 	aac_startio(sc);
876 }
877 
878 /*
879  * Handle a bio submitted from a disk device.
880  */
881 void
882 aac_submit_bio(struct bio *bp)
883 {
884 	struct aac_disk *ad;
885 	struct aac_softc *sc;
886 
887 	debug_called(2);
888 
889 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
890 	sc = ad->ad_controller;
891 
892 	/* queue the BIO and try to get some work done */
893 	aac_enqueue_bio(sc, bp);
894 	aac_startio(sc);
895 }
896 
897 /*
898  * Get a bio and build a command to go with it.
899  */
900 static int
901 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
902 {
903 	struct aac_command *cm;
904 	struct aac_fib *fib;
905 	struct aac_blockread *br;
906 	struct aac_blockwrite *bw;
907 	struct aac_disk *ad;
908 	struct bio *bp;
909 
910 	debug_called(2);
911 
912 	/* get the resources we will need */
913 	cm = NULL;
914 	if ((bp = aac_dequeue_bio(sc)) == NULL)
915 		goto fail;
916 	if (aac_alloc_command(sc, &cm))	/* get a command */
917 		goto fail;
918 
919 	/* fill out the command */
920 	cm->cm_data = (void *)bp->bio_data;
921 	cm->cm_datalen = bp->bio_bcount;
922 	cm->cm_complete = aac_bio_complete;
923 	cm->cm_private = bp;
924 	cm->cm_timestamp = time_second;
925 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
926 
927 	/* build the FIB */
928 	fib = cm->cm_fib;
929 	fib->Header.XferState =
930 		AAC_FIBSTATE_HOSTOWNED   |
931 		AAC_FIBSTATE_INITIALISED |
932 		AAC_FIBSTATE_EMPTY	 |
933 		AAC_FIBSTATE_FROMHOST	 |
934 		AAC_FIBSTATE_REXPECTED   |
935 		AAC_FIBSTATE_NORM	 |
936 		AAC_FIBSTATE_ASYNC	 |
937 		AAC_FIBSTATE_FAST_RESPONSE;
938 	fib->Header.Command = ContainerCommand;
939 	fib->Header.Size = sizeof(struct aac_fib_header);
940 
941 	/* build the read/write request */
942 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
943 	if (BIO_IS_READ(bp)) {
944 		br = (struct aac_blockread *)&fib->data[0];
945 		br->Command = VM_CtBlockRead;
946 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
947 		br->BlockNumber = bp->bio_pblkno;
948 		br->ByteCount = bp->bio_bcount;
949 		fib->Header.Size += sizeof(struct aac_blockread);
950 		cm->cm_sgtable = &br->SgMap;
951 		cm->cm_flags |= AAC_CMD_DATAIN;
952 	} else {
953 		bw = (struct aac_blockwrite *)&fib->data[0];
954 		bw->Command = VM_CtBlockWrite;
955 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
956 		bw->BlockNumber = bp->bio_pblkno;
957 		bw->ByteCount = bp->bio_bcount;
958 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
959 		fib->Header.Size += sizeof(struct aac_blockwrite);
960 		cm->cm_flags |= AAC_CMD_DATAOUT;
961 		cm->cm_sgtable = &bw->SgMap;
962 	}
963 
964 	*cmp = cm;
965 	return(0);
966 
967 fail:
968 	if (bp != NULL)
969 		aac_enqueue_bio(sc, bp);
970 	if (cm != NULL)
971 		aac_release_command(cm);
972 	return(ENOMEM);
973 }
974 
975 /*
976  * Handle a bio-instigated command that has been completed.
977  */
978 static void
979 aac_bio_complete(struct aac_command *cm)
980 {
981 	struct aac_blockread_response *brr;
982 	struct aac_blockwrite_response *bwr;
983 	struct bio *bp;
984 	AAC_FSAStatus status;
985 
986 	/* fetch relevant status and then release the command */
987 	bp = (struct bio *)cm->cm_private;
988 	if (BIO_IS_READ(bp)) {
989 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
990 		status = brr->Status;
991 	} else {
992 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
993 		status = bwr->Status;
994 	}
995 	aac_release_command(cm);
996 
997 	/* fix up the bio based on status */
998 	if (status == ST_OK) {
999 		bp->bio_resid = 0;
1000 	} else {
1001 		bp->bio_error = EIO;
1002 		bp->bio_flags |= BIO_ERROR;
1003 		/* pass an error string out to the disk layer */
1004 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1005 						    status);
1006 	}
1007 	aac_biodone(bp);
1008 }
1009 
1010 /*
1011  * Dump a block of data to the controller.  If the queue is full, tell the
1012  * caller to hold off and wait for the queue to drain.
1013  */
1014 int
1015 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1016 {
1017 	struct aac_softc *sc;
1018 	struct aac_command *cm;
1019 	struct aac_fib *fib;
1020 	struct aac_blockwrite *bw;
1021 
1022 	sc = ad->ad_controller;
1023 	cm = NULL;
1024 
1025 	if (aac_alloc_command(sc, &cm))
1026 		return (EBUSY);
1027 
1028 	/* fill out the command */
1029 	cm->cm_data = data;
1030 	cm->cm_datalen = dumppages * PAGE_SIZE;
1031 	cm->cm_complete = NULL;
1032 	cm->cm_private = NULL;
1033 	cm->cm_timestamp = time_second;
1034 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1035 
1036 	/* build the FIB */
1037 	fib = cm->cm_fib;
1038 	fib->Header.XferState =
1039 	AAC_FIBSTATE_HOSTOWNED   |
1040 	AAC_FIBSTATE_INITIALISED |
1041 	AAC_FIBSTATE_FROMHOST	 |
1042 	AAC_FIBSTATE_REXPECTED   |
1043 	AAC_FIBSTATE_NORM;
1044 	fib->Header.Command = ContainerCommand;
1045 	fib->Header.Size = sizeof(struct aac_fib_header);
1046 
1047 	bw = (struct aac_blockwrite *)&fib->data[0];
1048 	bw->Command = VM_CtBlockWrite;
1049 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1050 	bw->BlockNumber = lba;
1051 	bw->ByteCount = dumppages * PAGE_SIZE;
1052 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1053 	fib->Header.Size += sizeof(struct aac_blockwrite);
1054 	cm->cm_flags |= AAC_CMD_DATAOUT;
1055 	cm->cm_sgtable = &bw->SgMap;
1056 
1057 	return (aac_start(cm));
1058 }
1059 
1060 /*
1061  * Wait for the card's queue to drain when dumping.  Also check for monitor
1062  * printf's
1063  */
1064 void
1065 aac_dump_complete(struct aac_softc *sc)
1066 {
1067 	struct aac_fib *fib;
1068 	struct aac_command *cm;
1069 	u_int16_t reason;
1070 	u_int32_t pi, ci, fib_size;
1071 
1072 	do {
1073 		reason = AAC_GET_ISTATUS(sc);
1074 		if (reason & AAC_DB_RESPONSE_READY) {
1075 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1076 			for (;;) {
1077 				if (aac_dequeue_fib(sc,
1078 						    AAC_HOST_NORM_RESP_QUEUE,
1079 						    &fib_size, &fib))
1080 					break;
1081 				cm = (struct aac_command *)
1082 					fib->Header.SenderData;
1083 				if (cm == NULL)
1084 					AAC_PRINT_FIB(sc, fib);
1085 				else {
1086 					aac_remove_busy(cm);
1087 					aac_unmap_command(cm);
1088 					aac_enqueue_complete(cm);
1089 					aac_release_command(cm);
1090 				}
1091 			}
1092 		}
1093 		if (reason & AAC_DB_PRINTF) {
1094 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1095 			aac_print_printf(sc);
1096 		}
1097 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1098 			AAC_PRODUCER_INDEX];
1099 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1100 			AAC_CONSUMER_INDEX];
1101 	} while (ci != pi);
1102 
1103 	return;
1104 }
1105 
1106 /*
1107  * Submit a command to the controller, return when it completes.
1108  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1109  *     be stuck here forever.  At the same time, signals are not caught
1110  *     because there is a risk that a signal could wakeup the tsleep before
1111  *     the card has a chance to complete the command.  The passed in timeout
1112  *     is ignored for the same reason.  Since there is no way to cancel a
1113  *     command in progress, we should probably create a 'dead' queue where
1114  *     commands go that have been interrupted/timed-out/etc, that keeps them
1115  *     out of the free pool.  That way, if the card is just slow, it won't
1116  *     spam the memory of a command that has been recycled.
1117  */
1118 static int
1119 aac_wait_command(struct aac_command *cm, int timeout)
1120 {
1121 	int s, error = 0;
1122 
1123 	debug_called(2);
1124 
1125 	/* Put the command on the ready queue and get things going */
1126 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1127 	aac_enqueue_ready(cm);
1128 	aac_startio(cm->cm_sc);
1129 	s = splbio();
1130 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1131 		error = tsleep(cm, 0, "aacwait", 0);
1132 	}
1133 	splx(s);
1134 	return(error);
1135 }
1136 
1137 /*
1138  *Command Buffer Management
1139  */
1140 
1141 /*
1142  * Allocate a command.
1143  */
1144 int
1145 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1146 {
1147 	struct aac_command *cm;
1148 
1149 	debug_called(3);
1150 
1151 	if ((cm = aac_dequeue_free(sc)) == NULL)
1152 		return(ENOMEM);
1153 
1154 	*cmp = cm;
1155 	return(0);
1156 }
1157 
1158 /*
1159  * Release a command back to the freelist.
1160  */
1161 void
1162 aac_release_command(struct aac_command *cm)
1163 {
1164 	debug_called(3);
1165 
1166 	/* (re)initialise the command/FIB */
1167 	cm->cm_sgtable = NULL;
1168 	cm->cm_flags = 0;
1169 	cm->cm_complete = NULL;
1170 	cm->cm_private = NULL;
1171 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1172 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1173 	cm->cm_fib->Header.Flags = 0;
1174 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1175 
1176 	/*
1177 	 * These are duplicated in aac_start to cover the case where an
1178 	 * intermediate stage may have destroyed them.  They're left
1179 	 * initialised here for debugging purposes only.
1180 	 */
1181 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1182 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1183 	cm->cm_fib->Header.SenderData = 0;
1184 
1185 	aac_enqueue_free(cm);
1186 }
1187 
1188 /*
1189  * Map helper for command/FIB allocation.
1190  */
1191 static void
1192 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1193 {
1194 	struct aac_softc *sc;
1195 
1196 	sc = (struct aac_softc *)arg;
1197 
1198 	debug_called(3);
1199 
1200 	sc->aac_fibphys = segs[0].ds_addr;
1201 }
1202 
1203 /*
1204  * Allocate and initialise commands/FIBs for this adapter.
1205  */
1206 static int
1207 aac_alloc_commands(struct aac_softc *sc)
1208 {
1209 	struct aac_command *cm;
1210 	int i;
1211 
1212 	debug_called(1);
1213 
1214 	/* allocate the FIBs in DMAable memory and load them */
1215 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1216 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1217 		return(ENOMEM);
1218 	}
1219 
1220 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1221 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1222 			aac_map_command_helper, sc, 0);
1223 
1224 	/* initialise constant fields in the command structure */
1225 	bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1226 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1227 		cm = &sc->aac_command[i];
1228 		cm->cm_sc = sc;
1229 		cm->cm_fib = sc->aac_fibs + i;
1230 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1231 
1232 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1233 			aac_release_command(cm);
1234 	}
1235 	return(0);
1236 }
1237 
1238 /*
1239  * Free FIBs owned by this adapter.
1240  */
1241 static void
1242 aac_free_commands(struct aac_softc *sc)
1243 {
1244 	int i;
1245 
1246 	debug_called(1);
1247 
1248 	for (i = 0; i < AAC_FIB_COUNT; i++)
1249 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1250 				   sc->aac_command[i].cm_datamap);
1251 
1252 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1253 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1254 }
1255 
1256 /*
1257  * Command-mapping helper function - populate this command's s/g table.
1258  */
1259 static void
1260 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1261 {
1262 	struct aac_command *cm;
1263 	struct aac_fib *fib;
1264 	struct aac_sg_table *sg;
1265 	int i;
1266 
1267 	debug_called(3);
1268 
1269 	cm = (struct aac_command *)arg;
1270 	fib = cm->cm_fib;
1271 
1272 	/* find the s/g table */
1273 	sg = cm->cm_sgtable;
1274 
1275 	/* copy into the FIB */
1276 	if (sg != NULL) {
1277 		sg->SgCount = nseg;
1278 		for (i = 0; i < nseg; i++) {
1279 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1280 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1281 		}
1282 		/* update the FIB size for the s/g count */
1283 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1284 	}
1285 
1286 }
1287 
1288 /*
1289  * Map a command into controller-visible space.
1290  */
1291 static void
1292 aac_map_command(struct aac_command *cm)
1293 {
1294 	struct aac_softc *sc;
1295 
1296 	debug_called(2);
1297 
1298 	sc = cm->cm_sc;
1299 
1300 	/* don't map more than once */
1301 	if (cm->cm_flags & AAC_CMD_MAPPED)
1302 		return;
1303 
1304 	if (cm->cm_datalen != 0) {
1305 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1306 				cm->cm_data, cm->cm_datalen,
1307 				aac_map_command_sg, cm, 0);
1308 
1309 		if (cm->cm_flags & AAC_CMD_DATAIN)
1310 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1311 					BUS_DMASYNC_PREREAD);
1312 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1313 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1314 					BUS_DMASYNC_PREWRITE);
1315 	}
1316 	cm->cm_flags |= AAC_CMD_MAPPED;
1317 }
1318 
1319 /*
1320  * Unmap a command from controller-visible space.
1321  */
1322 static void
1323 aac_unmap_command(struct aac_command *cm)
1324 {
1325 	struct aac_softc *sc;
1326 
1327 	debug_called(2);
1328 
1329 	sc = cm->cm_sc;
1330 
1331 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1332 		return;
1333 
1334 	if (cm->cm_datalen != 0) {
1335 		if (cm->cm_flags & AAC_CMD_DATAIN)
1336 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1337 					BUS_DMASYNC_POSTREAD);
1338 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1339 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1340 					BUS_DMASYNC_POSTWRITE);
1341 
1342 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1343 	}
1344 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1345 }
1346 
1347 /*
1348  * Hardware Interface
1349  */
1350 
1351 /*
1352  * Initialise the adapter.
1353  */
1354 static void
1355 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1356 {
1357 	struct aac_softc *sc;
1358 
1359 	debug_called(1);
1360 
1361 	sc = (struct aac_softc *)arg;
1362 
1363 	sc->aac_common_busaddr = segs[0].ds_addr;
1364 }
1365 
1366 static int
1367 aac_check_firmware(struct aac_softc *sc)
1368 {
1369 	u_int32_t major, minor, options;
1370 
1371 	debug_called(1);
1372 
1373 	/*
1374 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1375 	 * firmware version 1.x are not compatible with this driver.
1376 	 */
1377 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1378 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1379 				     NULL)) {
1380 			device_printf(sc->aac_dev,
1381 				      "Error reading firmware version\n");
1382 			return (EIO);
1383 		}
1384 
1385 		/* These numbers are stored as ASCII! */
1386 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1387 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1388 		if (major == 1) {
1389 			device_printf(sc->aac_dev,
1390 			    "Firmware version %d.%d is not supported.\n",
1391 			    major, minor);
1392 			return (EINVAL);
1393 		}
1394 	}
1395 
1396 	/*
1397 	 * Retrieve the capabilities/supported options word so we know what
1398 	 * work-arounds to enable.
1399 	 */
1400 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1401 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1402 		return (EIO);
1403 	}
1404 	options = AAC_GET_MAILBOX(sc, 1);
1405 	sc->supported_options = options;
1406 
1407 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1408 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1409 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1410 	if (options & AAC_SUPPORTED_NONDASD)
1411 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1412 
1413 	return (0);
1414 }
1415 
1416 static int
1417 aac_init(struct aac_softc *sc)
1418 {
1419 	struct aac_adapter_init	*ip;
1420 	time_t then;
1421 	u_int32_t code;
1422 	u_int8_t *qaddr;
1423 	int error;
1424 
1425 	debug_called(1);
1426 
1427 	/*
1428 	 * First wait for the adapter to come ready.
1429 	 */
1430 	then = time_second;
1431 	do {
1432 		code = AAC_GET_FWSTATUS(sc);
1433 		if (code & AAC_SELF_TEST_FAILED) {
1434 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1435 			return(ENXIO);
1436 		}
1437 		if (code & AAC_KERNEL_PANIC) {
1438 			device_printf(sc->aac_dev,
1439 				      "FATAL: controller kernel panic\n");
1440 			return(ENXIO);
1441 		}
1442 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1443 			device_printf(sc->aac_dev,
1444 				      "FATAL: controller not coming ready, "
1445 					   "status %x\n", code);
1446 			return(ENXIO);
1447 		}
1448 	} while (!(code & AAC_UP_AND_RUNNING));
1449 
1450  	error = ENOMEM;
1451  	/*
1452  	 * Create DMA tag for mapping buffers into controller-addressable space.
1453  	 */
1454  	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1455  			       1, 0, 			/* algnmnt, boundary */
1456  			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1457  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1458  			       NULL, NULL, 		/* filter, filterarg */
1459  			       MAXBSIZE,		/* maxsize */
1460  			       AAC_MAXSGENTRIES,	/* nsegments */
1461  			       MAXBSIZE,		/* maxsegsize */
1462  			       BUS_DMA_ALLOCNOW,	/* flags */
1463  			       &sc->aac_buffer_dmat)) {
1464  		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1465  		goto out;
1466  	}
1467 
1468  	/*
1469  	 * Create DMA tag for mapping FIBs into controller-addressable space..
1470  	 */
1471  	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1472  			       1, 0, 			/* algnmnt, boundary */
1473  			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1474  			       BUS_SPACE_MAXADDR_32BIT :
1475  			       0x7fffffff,		/* lowaddr */
1476  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1477  			       NULL, NULL, 		/* filter, filterarg */
1478  			       AAC_FIB_COUNT *
1479  			       sizeof(struct aac_fib),  /* maxsize */
1480  			       1,			/* nsegments */
1481  			       AAC_FIB_COUNT *
1482  			       sizeof(struct aac_fib),	/* maxsegsize */
1483  			       BUS_DMA_ALLOCNOW,	/* flags */
1484  			       &sc->aac_fib_dmat)) {
1485  		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1486  		goto out;
1487  	}
1488 
1489 	/*
1490 	 * Create DMA tag for the common structure and allocate it.
1491 	 */
1492 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1493 			       1, 0,			/* algnmnt, boundary */
1494 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1495 			       BUS_SPACE_MAXADDR_32BIT :
1496 			       0x7fffffff,		/* lowaddr */
1497 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1498 			       NULL, NULL, 		/* filter, filterarg */
1499 			       8192 + sizeof(struct aac_common), /* maxsize */
1500 			       1,			/* nsegments */
1501 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1502 			       BUS_DMA_ALLOCNOW,	/* flags */
1503 			       &sc->aac_common_dmat)) {
1504 		device_printf(sc->aac_dev,
1505 			      "can't allocate common structure DMA tag\n");
1506 		goto out;
1507 	}
1508 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1509 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1510 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1511 		goto out;
1512 	}
1513 	/*
1514 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1515 	 * below address 8192 in physical memory.
1516 	 * XXX If the padding is not needed, can it be put to use instead
1517 	 * of ignored?
1518 	 */
1519 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1520 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1521 			aac_common_map, sc, 0);
1522 
1523 	if (sc->aac_common_busaddr < 8192) {
1524 		sc->aac_common =
1525 		    (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1526 		sc->aac_common_busaddr += 8192;
1527 	}
1528 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1529 
1530 	/* Allocate some FIBs and associated command structs */
1531 	if (aac_alloc_commands(sc) != 0)
1532 		goto out;
1533 
1534 	/*
1535 	 * Fill in the init structure.  This tells the adapter about the
1536 	 * physical location of various important shared data structures.
1537 	 */
1538 	ip = &sc->aac_common->ac_init;
1539 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1540 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1541 
1542 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1543 					 offsetof(struct aac_common, ac_fibs);
1544 	ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1545 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1546 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1547 
1548 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1549 				  offsetof(struct aac_common, ac_printf);
1550 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1551 
1552 	/* The adapter assumes that pages are 4K in size */
1553 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1554 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1555 
1556 	/*
1557 	 * Initialise FIB queues.  Note that it appears that the layout of the
1558 	 * indexes and the segmentation of the entries may be mandated by the
1559 	 * adapter, which is only told about the base of the queue index fields.
1560 	 *
1561 	 * The initial values of the indices are assumed to inform the adapter
1562 	 * of the sizes of the respective queues, and theoretically it could
1563 	 * work out the entire layout of the queue structures from this.  We
1564 	 * take the easy route and just lay this area out like everyone else
1565 	 * does.
1566 	 *
1567 	 * The Linux driver uses a much more complex scheme whereby several
1568 	 * header records are kept for each queue.  We use a couple of generic
1569 	 * list manipulation functions which 'know' the size of each list by
1570 	 * virtue of a table.
1571 	 */
1572 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1573 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1574 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1575 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1576 				((u_int32_t)sc->aac_queues -
1577 				(u_int32_t)sc->aac_common);
1578 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1579 
1580 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1581 		AAC_HOST_NORM_CMD_ENTRIES;
1582 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1583 		AAC_HOST_NORM_CMD_ENTRIES;
1584 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1585 		AAC_HOST_HIGH_CMD_ENTRIES;
1586 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1587 		AAC_HOST_HIGH_CMD_ENTRIES;
1588 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1589 		AAC_ADAP_NORM_CMD_ENTRIES;
1590 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1591 		AAC_ADAP_NORM_CMD_ENTRIES;
1592 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1593 		AAC_ADAP_HIGH_CMD_ENTRIES;
1594 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1595 		AAC_ADAP_HIGH_CMD_ENTRIES;
1596 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1597 		AAC_HOST_NORM_RESP_ENTRIES;
1598 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1599 		AAC_HOST_NORM_RESP_ENTRIES;
1600 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1601 		AAC_HOST_HIGH_RESP_ENTRIES;
1602 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1603 		AAC_HOST_HIGH_RESP_ENTRIES;
1604 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1605 		AAC_ADAP_NORM_RESP_ENTRIES;
1606 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1607 		AAC_ADAP_NORM_RESP_ENTRIES;
1608 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1609 		AAC_ADAP_HIGH_RESP_ENTRIES;
1610 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1611 		AAC_ADAP_HIGH_RESP_ENTRIES;
1612 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1613 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1614 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1615 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1616 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1617 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1618 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1619 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1620 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1621 		&sc->aac_queues->qt_HostNormRespQueue[0];
1622 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1623 		&sc->aac_queues->qt_HostHighRespQueue[0];
1624 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1625 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1626 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1627 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1628 
1629 	/*
1630 	 * Do controller-type-specific initialisation
1631 	 */
1632 	switch (sc->aac_hwif) {
1633 	case AAC_HWIF_I960RX:
1634 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1635 		break;
1636 	}
1637 
1638 	/*
1639 	 * Give the init structure to the controller.
1640 	 */
1641 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1642 			     sc->aac_common_busaddr +
1643 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1644 			     NULL)) {
1645 		device_printf(sc->aac_dev,
1646 			      "error establishing init structure\n");
1647 		error = EIO;
1648 		goto out;
1649 	}
1650 
1651 	error = 0;
1652 out:
1653 	return(error);
1654 }
1655 
1656 /*
1657  * Send a synchronous command to the controller and wait for a result.
1658  */
1659 static int
1660 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1661 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1662 		 u_int32_t *sp)
1663 {
1664 	time_t then;
1665 	u_int32_t status;
1666 
1667 	debug_called(3);
1668 
1669 	/* populate the mailbox */
1670 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1671 
1672 	/* ensure the sync command doorbell flag is cleared */
1673 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1674 
1675 	/* then set it to signal the adapter */
1676 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1677 
1678 	/* spin waiting for the command to complete */
1679 	then = time_second;
1680 	do {
1681 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1682 			debug(1, "timed out");
1683 			return(EIO);
1684 		}
1685 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1686 
1687 	/* clear the completion flag */
1688 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1689 
1690 	/* get the command status */
1691 	status = AAC_GET_MAILBOX(sc, 0);
1692 	if (sp != NULL)
1693 		*sp = status;
1694 	return(0);
1695 }
1696 
1697 /*
1698  * Grab the sync fib area.
1699  */
1700 int
1701 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1702 {
1703 
1704 	/*
1705 	 * If the force flag is set, the system is shutting down, or in
1706 	 * trouble.  Ignore the mutex.
1707 	 */
1708 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1709 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1710 
1711 	*fib = &sc->aac_common->ac_sync_fib;
1712 
1713 	return (1);
1714 }
1715 
1716 /*
1717  * Release the sync fib area.
1718  */
1719 void
1720 aac_release_sync_fib(struct aac_softc *sc)
1721 {
1722 
1723 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1724 }
1725 
1726 /*
1727  * Send a synchronous FIB to the controller and wait for a result.
1728  */
1729 int
1730 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1731 		 struct aac_fib *fib, u_int16_t datasize)
1732 {
1733 	debug_called(3);
1734 
1735 	if (datasize > AAC_FIB_DATASIZE)
1736 		return(EINVAL);
1737 
1738 	/*
1739 	 * Set up the sync FIB
1740 	 */
1741 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1742 				AAC_FIBSTATE_INITIALISED |
1743 				AAC_FIBSTATE_EMPTY;
1744 	fib->Header.XferState |= xferstate;
1745 	fib->Header.Command = command;
1746 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1747 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1748 	fib->Header.SenderSize = sizeof(struct aac_fib);
1749 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1750 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1751 					 offsetof(struct aac_common,
1752 						  ac_sync_fib);
1753 
1754 	/*
1755 	 * Give the FIB to the controller, wait for a response.
1756 	 */
1757 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1758 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1759 		debug(2, "IO error");
1760 		return(EIO);
1761 	}
1762 
1763 	return (0);
1764 }
1765 
1766 /*
1767  * Adapter-space FIB queue manipulation
1768  *
1769  * Note that the queue implementation here is a little funky; neither the PI or
1770  * CI will ever be zero.  This behaviour is a controller feature.
1771  */
1772 static struct {
1773 	int		size;
1774 	int		notify;
1775 } aac_qinfo[] = {
1776 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1777 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1778 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1779 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1780 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1781 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1782 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1783 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1784 };
1785 
1786 /*
1787  * Atomically insert an entry into the nominated queue, returns 0 on success or
1788  * EBUSY if the queue is full.
1789  *
1790  * Note: it would be more efficient to defer notifying the controller in
1791  *	 the case where we may be inserting several entries in rapid succession,
1792  *	 but implementing this usefully may be difficult (it would involve a
1793  *	 separate queue/notify interface).
1794  */
1795 static int
1796 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1797 {
1798 	u_int32_t pi, ci;
1799 	int s, error;
1800 	u_int32_t fib_size;
1801 	u_int32_t fib_addr;
1802 
1803 	debug_called(3);
1804 
1805 	fib_size = cm->cm_fib->Header.Size;
1806 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1807 
1808 	s = splbio();
1809 
1810 	/* get the producer/consumer indices */
1811 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1812 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1813 
1814 	/* wrap the queue? */
1815 	if (pi >= aac_qinfo[queue].size)
1816 		pi = 0;
1817 
1818 	/* check for queue full */
1819 	if ((pi + 1) == ci) {
1820 		error = EBUSY;
1821 		goto out;
1822 	}
1823 
1824 	/* populate queue entry */
1825 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1826 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1827 
1828 	/* update producer index */
1829 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1830 
1831 	/*
1832 	 * To avoid a race with its completion interrupt, place this command on
1833 	 * the busy queue prior to advertising it to the controller.
1834 	 */
1835 	aac_enqueue_busy(cm);
1836 
1837 	/* notify the adapter if we know how */
1838 	if (aac_qinfo[queue].notify != 0)
1839 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1840 
1841 	error = 0;
1842 
1843 out:
1844 	splx(s);
1845 	return(error);
1846 }
1847 
1848 /*
1849  * Atomically remove one entry from the nominated queue, returns 0 on
1850  * success or ENOENT if the queue is empty.
1851  */
1852 static int
1853 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1854 		struct aac_fib **fib_addr)
1855 {
1856 	u_int32_t pi, ci;
1857 	int s, error;
1858 	int notify;
1859 
1860 	debug_called(3);
1861 
1862 	s = splbio();
1863 
1864 	/* get the producer/consumer indices */
1865 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1866 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1867 
1868 	/* check for queue empty */
1869 	if (ci == pi) {
1870 		error = ENOENT;
1871 		goto out;
1872 	}
1873 
1874 	notify = 0;
1875 	if (ci == pi + 1)
1876 		notify++;
1877 
1878 	/* wrap the queue? */
1879 	if (ci >= aac_qinfo[queue].size)
1880 		ci = 0;
1881 
1882 	/* fetch the entry */
1883 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1884 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1885 				       ci)->aq_fib_addr;
1886 
1887 	/*
1888 	 * Is this a fast response? If it is, update the fib fields in
1889 	 * local memory so the whole fib doesn't have to be DMA'd back up.
1890 	 */
1891 	if (*(uintptr_t *)fib_addr & 0x01) {
1892 		*(uintptr_t *)fib_addr &= ~0x01;
1893 		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1894 		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1895 	}
1896 	/* update consumer index */
1897 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1898 
1899 	/* if we have made the queue un-full, notify the adapter */
1900 	if (notify && (aac_qinfo[queue].notify != 0))
1901 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1902 	error = 0;
1903 
1904 out:
1905 	splx(s);
1906 	return(error);
1907 }
1908 
1909 /*
1910  * Put our response to an Adapter Initialed Fib on the response queue
1911  */
1912 static int
1913 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1914 {
1915 	u_int32_t pi, ci;
1916 	int s, error;
1917 	u_int32_t fib_size;
1918 	u_int32_t fib_addr;
1919 
1920 	debug_called(1);
1921 
1922 	/* Tell the adapter where the FIB is */
1923 	fib_size = fib->Header.Size;
1924 	fib_addr = fib->Header.SenderFibAddress;
1925 	fib->Header.ReceiverFibAddress = fib_addr;
1926 
1927 	s = splbio();
1928 
1929 	/* get the producer/consumer indices */
1930 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1931 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1932 
1933 	/* wrap the queue? */
1934 	if (pi >= aac_qinfo[queue].size)
1935 		pi = 0;
1936 
1937 	/* check for queue full */
1938 	if ((pi + 1) == ci) {
1939 		error = EBUSY;
1940 		goto out;
1941 	}
1942 
1943 	/* populate queue entry */
1944 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1945 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1946 
1947 	/* update producer index */
1948 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1949 
1950 	/* notify the adapter if we know how */
1951 	if (aac_qinfo[queue].notify != 0)
1952 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1953 
1954 	error = 0;
1955 
1956 out:
1957 	splx(s);
1958 	return(error);
1959 }
1960 
1961 /*
1962  * Check for commands that have been outstanding for a suspiciously long time,
1963  * and complain about them.
1964  */
1965 static void
1966 aac_timeout(void *xsc)
1967 {
1968 	struct aac_softc *sc = xsc;
1969 	int s;
1970 	struct aac_command *cm;
1971 	time_t deadline;
1972 
1973 #if 0
1974 	/* simulate an interrupt to handle possibly-missed interrupts */
1975 	/*
1976 	 * XXX This was done to work around another bug which has since been
1977 	 * fixed.  It is dangerous anyways because you don't want multiple
1978 	 * threads in the interrupt handler at the same time!  If calling
1979 	 * is deamed neccesary in the future, proper mutexes must be used.
1980 	 */
1981 	s = splbio();
1982 	aac_intr(sc);
1983 	splx(s);
1984 
1985 	/* kick the I/O queue to restart it in the case of deadlock */
1986 	aac_startio(sc);
1987 #endif
1988 
1989 	/*
1990 	 * traverse the busy command list, bitch about late commands once
1991 	 * only.
1992 	 */
1993 	deadline = time_second - AAC_CMD_TIMEOUT;
1994 	s = splbio();
1995 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1996 		if ((cm->cm_timestamp  < deadline)
1997 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1998 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1999 			device_printf(sc->aac_dev,
2000 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2001 				      cm, (int)(time_second-cm->cm_timestamp));
2002 			AAC_PRINT_FIB(sc, cm->cm_fib);
2003 		}
2004 	}
2005 	splx(s);
2006 
2007 	/* reset the timer for next time */
2008 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2009 		      aac_timeout, sc);
2010 }
2011 
2012 /*
2013  * Interface Function Vectors
2014  */
2015 
2016 /*
2017  * Read the current firmware status word.
2018  */
2019 static int
2020 aac_sa_get_fwstatus(struct aac_softc *sc)
2021 {
2022 	debug_called(3);
2023 
2024 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2025 }
2026 
2027 static int
2028 aac_rx_get_fwstatus(struct aac_softc *sc)
2029 {
2030 	debug_called(3);
2031 
2032 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2033 }
2034 
2035 static int
2036 aac_fa_get_fwstatus(struct aac_softc *sc)
2037 {
2038 	int val;
2039 
2040 	debug_called(3);
2041 
2042 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2043 	return (val);
2044 }
2045 
2046 /*
2047  * Notify the controller of a change in a given queue
2048  */
2049 
2050 static void
2051 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2052 {
2053 	debug_called(3);
2054 
2055 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2056 }
2057 
2058 static void
2059 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2060 {
2061 	debug_called(3);
2062 
2063 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2064 }
2065 
2066 static void
2067 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2068 {
2069 	debug_called(3);
2070 
2071 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2072 	AAC_FA_HACK(sc);
2073 }
2074 
2075 /*
2076  * Get the interrupt reason bits
2077  */
2078 static int
2079 aac_sa_get_istatus(struct aac_softc *sc)
2080 {
2081 	debug_called(3);
2082 
2083 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2084 }
2085 
2086 static int
2087 aac_rx_get_istatus(struct aac_softc *sc)
2088 {
2089 	debug_called(3);
2090 
2091 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2092 }
2093 
2094 static int
2095 aac_fa_get_istatus(struct aac_softc *sc)
2096 {
2097 	int val;
2098 
2099 	debug_called(3);
2100 
2101 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2102 	return (val);
2103 }
2104 
2105 /*
2106  * Clear some interrupt reason bits
2107  */
2108 static void
2109 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2110 {
2111 	debug_called(3);
2112 
2113 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2114 }
2115 
2116 static void
2117 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2118 {
2119 	debug_called(3);
2120 
2121 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2122 }
2123 
2124 static void
2125 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2126 {
2127 	debug_called(3);
2128 
2129 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2130 	AAC_FA_HACK(sc);
2131 }
2132 
2133 /*
2134  * Populate the mailbox and set the command word
2135  */
2136 static void
2137 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2138 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2139 {
2140 	debug_called(4);
2141 
2142 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2143 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2144 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2145 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2146 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2147 }
2148 
2149 static void
2150 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2151 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2152 {
2153 	debug_called(4);
2154 
2155 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2156 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2157 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2158 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2159 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2160 }
2161 
2162 static void
2163 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2164 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2165 {
2166 	debug_called(4);
2167 
2168 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2169 	AAC_FA_HACK(sc);
2170 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2171 	AAC_FA_HACK(sc);
2172 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2173 	AAC_FA_HACK(sc);
2174 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2175 	AAC_FA_HACK(sc);
2176 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2177 	AAC_FA_HACK(sc);
2178 }
2179 
2180 /*
2181  * Fetch the immediate command status word
2182  */
2183 static int
2184 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2185 {
2186 	debug_called(4);
2187 
2188 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2189 }
2190 
2191 static int
2192 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2193 {
2194 	debug_called(4);
2195 
2196 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2197 }
2198 
2199 static int
2200 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2201 {
2202 	int val;
2203 
2204 	debug_called(4);
2205 
2206 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2207 	return (val);
2208 }
2209 
2210 /*
2211  * Set/clear interrupt masks
2212  */
2213 static void
2214 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2215 {
2216 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2217 
2218 	if (enable) {
2219 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2220 	} else {
2221 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2222 	}
2223 }
2224 
2225 static void
2226 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2227 {
2228 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2229 
2230 	if (enable) {
2231 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2232 	} else {
2233 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2234 	}
2235 }
2236 
2237 static void
2238 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2239 {
2240 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2241 
2242 	if (enable) {
2243 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2244 		AAC_FA_HACK(sc);
2245 	} else {
2246 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2247 		AAC_FA_HACK(sc);
2248 	}
2249 }
2250 
2251 /*
2252  * Debugging and Diagnostics
2253  */
2254 
2255 /*
2256  * Print some information about the controller.
2257  */
2258 static void
2259 aac_describe_controller(struct aac_softc *sc)
2260 {
2261 	struct aac_fib *fib;
2262 	struct aac_adapter_info	*info;
2263 
2264 	debug_called(2);
2265 
2266 	aac_alloc_sync_fib(sc, &fib, 0);
2267 
2268 	fib->data[0] = 0;
2269 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2270 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2271 		aac_release_sync_fib(sc);
2272 		return;
2273 	}
2274 	info = (struct aac_adapter_info *)&fib->data[0];
2275 
2276 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2277 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2278 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2279 		      aac_describe_code(aac_battery_platform,
2280 					info->batteryPlatform));
2281 
2282 	/* save the kernel revision structure for later use */
2283 	sc->aac_revision = info->KernelRevision;
2284 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2285 		      info->KernelRevision.external.comp.major,
2286 		      info->KernelRevision.external.comp.minor,
2287 		      info->KernelRevision.external.comp.dash,
2288 		      info->KernelRevision.buildNumber,
2289 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2290 
2291 	aac_release_sync_fib(sc);
2292 
2293 	if (1 || bootverbose) {
2294 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2295 			      sc->supported_options,
2296 			      "\20"
2297 			      "\1SNAPSHOT"
2298 			      "\2CLUSTERS"
2299 			      "\3WCACHE"
2300 			      "\4DATA64"
2301 			      "\5HOSTTIME"
2302 			      "\6RAID50"
2303 			      "\7WINDOW4GB"
2304 			      "\10SCSIUPGD"
2305 			      "\11SOFTERR"
2306 			      "\12NORECOND"
2307 			      "\13SGMAP64"
2308 			      "\14ALARM"
2309 			      "\15NONDASD");
2310 	}
2311 }
2312 
2313 /*
2314  * Look up a text description of a numeric error code and return a pointer to
2315  * same.
2316  */
2317 static char *
2318 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2319 {
2320 	int i;
2321 
2322 	for (i = 0; table[i].string != NULL; i++)
2323 		if (table[i].code == code)
2324 			return(table[i].string);
2325 	return(table[i + 1].string);
2326 }
2327 
2328 /*
2329  * Management Interface
2330  */
2331 
2332 static int
2333 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2334 {
2335 	struct aac_softc *sc;
2336 
2337 	debug_called(2);
2338 
2339 	sc = dev->si_drv1;
2340 
2341 	/* Check to make sure the device isn't already open */
2342 	if (sc->aac_state & AAC_STATE_OPEN) {
2343 		return EBUSY;
2344 	}
2345 	sc->aac_state |= AAC_STATE_OPEN;
2346 
2347 	return 0;
2348 }
2349 
2350 static int
2351 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2352 {
2353 	struct aac_softc *sc;
2354 
2355 	debug_called(2);
2356 
2357 	sc = dev->si_drv1;
2358 
2359 	/* Mark this unit as no longer open  */
2360 	sc->aac_state &= ~AAC_STATE_OPEN;
2361 
2362 	return 0;
2363 }
2364 
2365 static int
2366 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2367 {
2368 	struct aac_softc *sc = dev->si_drv1;
2369 	int error = 0;
2370 	int i;
2371 
2372 	debug_called(2);
2373 
2374 	if (cmd == AACIO_STATS) {
2375 		union aac_statrequest *as = (union aac_statrequest *)arg;
2376 
2377 		switch (as->as_item) {
2378 		case AACQ_FREE:
2379 		case AACQ_BIO:
2380 		case AACQ_READY:
2381 		case AACQ_BUSY:
2382 		case AACQ_COMPLETE:
2383 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2384 			      sizeof(struct aac_qstat));
2385 			break;
2386 		default:
2387 			error = ENOENT;
2388 			break;
2389 		}
2390 		return(error);
2391 	}
2392 
2393 	arg = *(caddr_t *)arg;
2394 
2395 	switch (cmd) {
2396 	/* AACIO_STATS already handled above */
2397 	case FSACTL_SENDFIB:
2398 		debug(1, "FSACTL_SENDFIB");
2399 		error = aac_ioctl_sendfib(sc, arg);
2400 		break;
2401 	case FSACTL_AIF_THREAD:
2402 		debug(1, "FSACTL_AIF_THREAD");
2403 		error = EINVAL;
2404 		break;
2405 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2406 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2407 		/*
2408 		 * Pass the caller out an AdapterFibContext.
2409 		 *
2410 		 * Note that because we only support one opener, we
2411 		 * basically ignore this.  Set the caller's context to a magic
2412 		 * number just in case.
2413 		 *
2414 		 * The Linux code hands the driver a pointer into kernel space,
2415 		 * and then trusts it when the caller hands it back.  Aiee!
2416 		 * Here, we give it the proc pointer of the per-adapter aif
2417 		 * thread. It's only used as a sanity check in other calls.
2418 		 */
2419 		i = (int)sc->aifthread;
2420 		error = copyout(&i, arg, sizeof(i));
2421 		break;
2422 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2423 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2424 		error = aac_getnext_aif(sc, arg);
2425 		break;
2426 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2427 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2428 		/* don't do anything here */
2429 		break;
2430 	case FSACTL_MINIPORT_REV_CHECK:
2431 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2432 		error = aac_rev_check(sc, arg);
2433 		break;
2434 	case FSACTL_QUERY_DISK:
2435 		debug(1, "FSACTL_QUERY_DISK");
2436 		error = aac_query_disk(sc, arg);
2437 			break;
2438 	case FSACTL_DELETE_DISK:
2439 		/*
2440 		 * We don't trust the underland to tell us when to delete a
2441 		 * container, rather we rely on an AIF coming from the
2442 		 * controller
2443 		 */
2444 		error = 0;
2445 		break;
2446 	default:
2447 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2448 		error = EINVAL;
2449 		break;
2450 	}
2451 	return(error);
2452 }
2453 
2454 static int
2455 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2456 {
2457 	struct aac_softc *sc;
2458 	int revents;
2459 
2460 	sc = dev->si_drv1;
2461 	revents = 0;
2462 
2463 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2464 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2465 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2466 			revents |= poll_events & (POLLIN | POLLRDNORM);
2467 	}
2468 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2469 
2470 	if (revents == 0) {
2471 		if (poll_events & (POLLIN | POLLRDNORM))
2472 			selrecord(td, &sc->rcv_select);
2473 	}
2474 
2475 	return (revents);
2476 }
2477 
2478 /*
2479  * Send a FIB supplied from userspace
2480  */
2481 static int
2482 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2483 {
2484 	struct aac_command *cm;
2485 	int size, error;
2486 
2487 	debug_called(2);
2488 
2489 	cm = NULL;
2490 
2491 	/*
2492 	 * Get a command
2493 	 */
2494 	if (aac_alloc_command(sc, &cm)) {
2495 		error = EBUSY;
2496 		goto out;
2497 	}
2498 
2499 	/*
2500 	 * Fetch the FIB header, then re-copy to get data as well.
2501 	 */
2502 	if ((error = copyin(ufib, cm->cm_fib,
2503 			    sizeof(struct aac_fib_header))) != 0)
2504 		goto out;
2505 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2506 	if (size > sizeof(struct aac_fib)) {
2507 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2508 			      size, sizeof(struct aac_fib));
2509 		size = sizeof(struct aac_fib);
2510 	}
2511 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2512 		goto out;
2513 	cm->cm_fib->Header.Size = size;
2514 	cm->cm_timestamp = time_second;
2515 
2516 	/*
2517 	 * Pass the FIB to the controller, wait for it to complete.
2518 	 */
2519 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2520 		printf("aac_wait_command return %d\n", error);
2521 		goto out;
2522 	}
2523 
2524 	/*
2525 	 * Copy the FIB and data back out to the caller.
2526 	 */
2527 	size = cm->cm_fib->Header.Size;
2528 	if (size > sizeof(struct aac_fib)) {
2529 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2530 			      size, sizeof(struct aac_fib));
2531 		size = sizeof(struct aac_fib);
2532 	}
2533 	error = copyout(cm->cm_fib, ufib, size);
2534 
2535 out:
2536 	if (cm != NULL) {
2537 		aac_release_command(cm);
2538 	}
2539 	return(error);
2540 }
2541 
2542 /*
2543  * Handle an AIF sent to us by the controller; queue it for later reference.
2544  * If the queue fills up, then drop the older entries.
2545  */
2546 static void
2547 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2548 {
2549 	struct aac_aif_command *aif;
2550 	struct aac_container *co, *co_next;
2551 	struct aac_mntinfo *mi;
2552 	struct aac_mntinforesp *mir = NULL;
2553 	u_int16_t rsize;
2554 	int next, found;
2555 	int added = 0, i = 0;
2556 
2557 	debug_called(2);
2558 
2559 	aif = (struct aac_aif_command*)&fib->data[0];
2560 	aac_print_aif(sc, aif);
2561 
2562 	/* Is it an event that we should care about? */
2563 	switch (aif->command) {
2564 	case AifCmdEventNotify:
2565 		switch (aif->data.EN.type) {
2566 		case AifEnAddContainer:
2567 		case AifEnDeleteContainer:
2568 			/*
2569 			 * A container was added or deleted, but the message
2570 			 * doesn't tell us anything else!  Re-enumerate the
2571 			 * containers and sort things out.
2572 			 */
2573 			aac_alloc_sync_fib(sc, &fib, 0);
2574 			mi = (struct aac_mntinfo *)&fib->data[0];
2575 			do {
2576 				/*
2577 				 * Ask the controller for its containers one at
2578 				 * a time.
2579 				 * XXX What if the controller's list changes
2580 				 * midway through this enumaration?
2581 				 * XXX This should be done async.
2582 				 */
2583 				bzero(mi, sizeof(struct aac_mntinfo));
2584 				mi->Command = VM_NameServe;
2585 				mi->MntType = FT_FILESYS;
2586 				mi->MntCount = i;
2587 				rsize = sizeof(mir);
2588 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2589 						 sizeof(struct aac_mntinfo))) {
2590 					debug(2, "Error probing container %d\n",
2591 					      i);
2592 					continue;
2593 				}
2594 				mir = (struct aac_mntinforesp *)&fib->data[0];
2595 				/*
2596 				 * Check the container against our list.
2597 				 * co->co_found was already set to 0 in a
2598 				 * previous run.
2599 				 */
2600 				if ((mir->Status == ST_OK) &&
2601 				    (mir->MntTable[0].VolType != CT_NONE)) {
2602 					found = 0;
2603 					TAILQ_FOREACH(co,
2604 						      &sc->aac_container_tqh,
2605 						      co_link) {
2606 						if (co->co_mntobj.ObjectId ==
2607 						    mir->MntTable[0].ObjectId) {
2608 							co->co_found = 1;
2609 							found = 1;
2610 							break;
2611 						}
2612 					}
2613 					/*
2614 					 * If the container matched, continue
2615 					 * in the list.
2616 					 */
2617 					if (found) {
2618 						i++;
2619 						continue;
2620 					}
2621 
2622 					/*
2623 					 * This is a new container.  Do all the
2624 					 * appropriate things to set it up.						 */
2625 					aac_add_container(sc, mir, 1);
2626 					added = 1;
2627 				}
2628 				i++;
2629 			} while ((i < mir->MntRespCount) &&
2630 				 (i < AAC_MAX_CONTAINERS));
2631 			aac_release_sync_fib(sc);
2632 
2633 			/*
2634 			 * Go through our list of containers and see which ones
2635 			 * were not marked 'found'.  Since the controller didn't
2636 			 * list them they must have been deleted.  Do the
2637 			 * appropriate steps to destroy the device.  Also reset
2638 			 * the co->co_found field.
2639 			 */
2640 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2641 			while (co != NULL) {
2642 				if (co->co_found == 0) {
2643 					device_delete_child(sc->aac_dev,
2644 							    co->co_disk);
2645 					co_next = TAILQ_NEXT(co, co_link);
2646 					AAC_LOCK_ACQUIRE(&sc->
2647 							aac_container_lock);
2648 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2649 						     co_link);
2650 					AAC_LOCK_RELEASE(&sc->
2651 							 aac_container_lock);
2652 					FREE(co, M_AACBUF);
2653 					co = co_next;
2654 				} else {
2655 					co->co_found = 0;
2656 					co = TAILQ_NEXT(co, co_link);
2657 				}
2658 			}
2659 
2660 			/* Attach the newly created containers */
2661 			if (added)
2662 				bus_generic_attach(sc->aac_dev);
2663 
2664 				break;
2665 
2666 		default:
2667 			break;
2668 		}
2669 
2670 	default:
2671 		break;
2672 	}
2673 
2674 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2675 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2676 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2677 	if (next != sc->aac_aifq_tail) {
2678 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2679 		sc->aac_aifq_head = next;
2680 
2681 		/* On the off chance that someone is sleeping for an aif... */
2682 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2683 			wakeup(sc->aac_aifq);
2684 		/* token may have been lost */
2685 		/* Wakeup any poll()ers */
2686 		selwakeup(&sc->rcv_select);
2687 		/* token may have been lost */
2688 	}
2689 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2690 
2691 	return;
2692 }
2693 
2694 /*
2695  * Return the Revision of the driver to userspace and check to see if the
2696  * userspace app is possibly compatible.  This is extremely bogus since
2697  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2698  * returning what the card reported.
2699  */
2700 static int
2701 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2702 {
2703 	struct aac_rev_check rev_check;
2704 	struct aac_rev_check_resp rev_check_resp;
2705 	int error = 0;
2706 
2707 	debug_called(2);
2708 
2709 	/*
2710 	 * Copyin the revision struct from userspace
2711 	 */
2712 	if ((error = copyin(udata, (caddr_t)&rev_check,
2713 			sizeof(struct aac_rev_check))) != 0) {
2714 		return error;
2715 	}
2716 
2717 	debug(2, "Userland revision= %d\n",
2718 	      rev_check.callingRevision.buildNumber);
2719 
2720 	/*
2721 	 * Doctor up the response struct.
2722 	 */
2723 	rev_check_resp.possiblyCompatible = 1;
2724 	rev_check_resp.adapterSWRevision.external.ul =
2725 	    sc->aac_revision.external.ul;
2726 	rev_check_resp.adapterSWRevision.buildNumber =
2727 	    sc->aac_revision.buildNumber;
2728 
2729 	return(copyout((caddr_t)&rev_check_resp, udata,
2730 			sizeof(struct aac_rev_check_resp)));
2731 }
2732 
2733 /*
2734  * Pass the caller the next AIF in their queue
2735  */
2736 static int
2737 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2738 {
2739 	struct get_adapter_fib_ioctl agf;
2740 	int error, s;
2741 
2742 	debug_called(2);
2743 
2744 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2745 
2746 		/*
2747 		 * Check the magic number that we gave the caller.
2748 		 */
2749 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2750 			error = EFAULT;
2751 		} else {
2752 
2753 			s = splbio();
2754 			error = aac_return_aif(sc, agf.AifFib);
2755 
2756 			if ((error == EAGAIN) && (agf.Wait)) {
2757 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2758 				while (error == EAGAIN) {
2759 					error = tsleep(sc->aac_aifq,
2760 						       PCATCH, "aacaif", 0);
2761 					if (error == 0)
2762 						error = aac_return_aif(sc,
2763 						    agf.AifFib);
2764 				}
2765 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2766 			}
2767 		splx(s);
2768 		}
2769 	}
2770 	return(error);
2771 }
2772 
2773 /*
2774  * Hand the next AIF off the top of the queue out to userspace.
2775  *
2776  * YYY token could be lost during copyout
2777  */
2778 static int
2779 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2780 {
2781 	int error;
2782 
2783 	debug_called(2);
2784 
2785 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2786 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2787 		error = EAGAIN;
2788 	} else {
2789 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2790 				sizeof(struct aac_aif_command));
2791 		if (error)
2792 			printf("aac_return_aif: copyout returned %d\n", error);
2793 		if (!error)
2794 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2795 					    AAC_AIFQ_LENGTH;
2796 	}
2797 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2798 	return(error);
2799 }
2800 
2801 /*
2802  * Give the userland some information about the container.  The AAC arch
2803  * expects the driver to be a SCSI passthrough type driver, so it expects
2804  * the containers to have b:t:l numbers.  Fake it.
2805  */
2806 static int
2807 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2808 {
2809 	struct aac_query_disk query_disk;
2810 	struct aac_container *co;
2811 	struct aac_disk	*disk;
2812 	int error, id;
2813 
2814 	debug_called(2);
2815 
2816 	disk = NULL;
2817 
2818 	error = copyin(uptr, (caddr_t)&query_disk,
2819 		       sizeof(struct aac_query_disk));
2820 	if (error)
2821 		return (error);
2822 
2823 	id = query_disk.ContainerNumber;
2824 	if (id == -1)
2825 		return (EINVAL);
2826 
2827 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2828 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2829 		if (co->co_mntobj.ObjectId == id)
2830 			break;
2831 		}
2832 
2833 		if (co == NULL) {
2834 			query_disk.Valid = 0;
2835 			query_disk.Locked = 0;
2836 			query_disk.Deleted = 1;		/* XXX is this right? */
2837 		} else {
2838 			disk = device_get_softc(co->co_disk);
2839 			query_disk.Valid = 1;
2840 			query_disk.Locked =
2841 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2842 			query_disk.Deleted = 0;
2843 			query_disk.Bus = device_get_unit(sc->aac_dev);
2844 			query_disk.Target = disk->unit;
2845 			query_disk.Lun = 0;
2846 			query_disk.UnMapped = 0;
2847 			bcopy(disk->ad_dev_t->si_name,
2848 			      &query_disk.diskDeviceName[0], 10);
2849 		}
2850 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2851 
2852 	error = copyout((caddr_t)&query_disk, uptr,
2853 			sizeof(struct aac_query_disk));
2854 
2855 	return (error);
2856 }
2857 
2858 static void
2859 aac_get_bus_info(struct aac_softc *sc)
2860 {
2861 	struct aac_fib *fib;
2862 	struct aac_ctcfg *c_cmd;
2863 	struct aac_ctcfg_resp *c_resp;
2864 	struct aac_vmioctl *vmi;
2865 	struct aac_vmi_businf_resp *vmi_resp;
2866 	struct aac_getbusinf businfo;
2867 	struct aac_cam_inf *caminf;
2868 	device_t child;
2869 	int i, found, error;
2870 
2871 	aac_alloc_sync_fib(sc, &fib, 0);
2872 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2873 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2874 
2875 	c_cmd->Command = VM_ContainerConfig;
2876 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2877 	c_cmd->param = 0;
2878 
2879 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2880 	    sizeof(struct aac_ctcfg));
2881 	if (error) {
2882 		device_printf(sc->aac_dev, "Error %d sending "
2883 		    "VM_ContainerConfig command\n", error);
2884 		aac_release_sync_fib(sc);
2885 		return;
2886 	}
2887 
2888 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2889 	if (c_resp->Status != ST_OK) {
2890 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2891 		    c_resp->Status);
2892 		aac_release_sync_fib(sc);
2893 		return;
2894 	}
2895 
2896 	sc->scsi_method_id = c_resp->param;
2897 
2898 	vmi = (struct aac_vmioctl *)&fib->data[0];
2899 	bzero(vmi, sizeof(struct aac_vmioctl));
2900 
2901 	vmi->Command = VM_Ioctl;
2902 	vmi->ObjType = FT_DRIVE;
2903 	vmi->MethId = sc->scsi_method_id;
2904 	vmi->ObjId = 0;
2905 	vmi->IoctlCmd = GetBusInfo;
2906 
2907 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2908 	    sizeof(struct aac_vmioctl));
2909 	if (error) {
2910 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2911 		    error);
2912 		aac_release_sync_fib(sc);
2913 		return;
2914 	}
2915 
2916 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2917 	if (vmi_resp->Status != ST_OK) {
2918 		debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2919 		aac_release_sync_fib(sc);
2920 		return;
2921 	}
2922 
2923 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2924 	aac_release_sync_fib(sc);
2925 
2926 	found = 0;
2927 	for (i = 0; i < businfo.BusCount; i++) {
2928 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2929 			continue;
2930 
2931 		MALLOC(caminf, struct aac_cam_inf *,
2932 		    sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2933 
2934 		child = device_add_child(sc->aac_dev, "aacp", -1);
2935 		if (child == NULL) {
2936 			device_printf(sc->aac_dev, "device_add_child failed\n");
2937 			continue;
2938 		}
2939 
2940 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2941 		caminf->BusNumber = i;
2942 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2943 		caminf->aac_sc = sc;
2944 
2945 		device_set_ivars(child, caminf);
2946 		device_set_desc(child, "SCSI Passthrough Bus");
2947 
2948 		found = 1;
2949 	}
2950 
2951 	if (found)
2952 		bus_generic_attach(sc->aac_dev);
2953 
2954 	return;
2955 }
2956