xref: /dragonfly/sys/dev/raid/aac/aac.c (revision b7367ef6)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *	$DragonFly: src/sys/dev/raid/aac/aac.c,v 1.32 2007/07/11 23:46:58 dillon Exp $
31  */
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52 
53 #include "aac_compat.h"
54 
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 
63 #include "aacreg.h"
64 #include "aac_ioctl.h"
65 #include "aacvar.h"
66 #include "aac_tables.h"
67 #include "aac_cam.h"
68 
69 static void	aac_startup(void *arg);
70 static void	aac_add_container(struct aac_softc *sc,
71 				  struct aac_mntinforesp *mir, int f);
72 static void	aac_get_bus_info(struct aac_softc *sc);
73 
74 /* Command Processing */
75 static void	aac_timeout(void *ssc);
76 static int	aac_start(struct aac_command *cm);
77 static void	aac_complete(void *context, int pending);
78 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
79 static void	aac_bio_complete(struct aac_command *cm);
80 static int	aac_wait_command(struct aac_command *cm, int timeout);
81 static void	aac_host_command(struct aac_softc *sc);
82 static void	aac_host_response(struct aac_softc *sc);
83 
84 /* Command Buffer Management */
85 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
86 				       int nseg, int error);
87 static int	aac_alloc_commands(struct aac_softc *sc);
88 static void	aac_free_commands(struct aac_softc *sc);
89 static void	aac_map_command(struct aac_command *cm);
90 static void	aac_unmap_command(struct aac_command *cm);
91 
92 /* Hardware Interface */
93 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
94 			       int error);
95 static int	aac_check_firmware(struct aac_softc *sc);
96 static int	aac_init(struct aac_softc *sc);
97 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
98 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
99 				 u_int32_t arg3, u_int32_t *sp);
100 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
101 				struct aac_command *cm);
102 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
103 				u_int32_t *fib_size, struct aac_fib **fib_addr);
104 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
105 				     struct aac_fib *fib);
106 
107 /* Falcon/PPC interface */
108 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
109 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
110 static int	aac_fa_get_istatus(struct aac_softc *sc);
111 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
112 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
113 				   u_int32_t arg0, u_int32_t arg1,
114 				   u_int32_t arg2, u_int32_t arg3);
115 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
116 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
117 
118 struct aac_interface aac_fa_interface = {
119 	aac_fa_get_fwstatus,
120 	aac_fa_qnotify,
121 	aac_fa_get_istatus,
122 	aac_fa_clear_istatus,
123 	aac_fa_set_mailbox,
124 	aac_fa_get_mailbox,
125 	aac_fa_set_interrupts
126 };
127 
128 /* StrongARM interface */
129 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
130 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
131 static int	aac_sa_get_istatus(struct aac_softc *sc);
132 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
133 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
134 				   u_int32_t arg0, u_int32_t arg1,
135 				   u_int32_t arg2, u_int32_t arg3);
136 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
137 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
138 
139 struct aac_interface aac_sa_interface = {
140 	aac_sa_get_fwstatus,
141 	aac_sa_qnotify,
142 	aac_sa_get_istatus,
143 	aac_sa_clear_istatus,
144 	aac_sa_set_mailbox,
145 	aac_sa_get_mailbox,
146 	aac_sa_set_interrupts
147 };
148 
149 /* i960Rx interface */
150 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
151 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
152 static int	aac_rx_get_istatus(struct aac_softc *sc);
153 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
154 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
155 				   u_int32_t arg0, u_int32_t arg1,
156 				   u_int32_t arg2, u_int32_t arg3);
157 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
158 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
159 
160 struct aac_interface aac_rx_interface = {
161 	aac_rx_get_fwstatus,
162 	aac_rx_qnotify,
163 	aac_rx_get_istatus,
164 	aac_rx_clear_istatus,
165 	aac_rx_set_mailbox,
166 	aac_rx_get_mailbox,
167 	aac_rx_set_interrupts
168 };
169 
170 /* Debugging and Diagnostics */
171 static void	aac_describe_controller(struct aac_softc *sc);
172 static char	*aac_describe_code(struct aac_code_lookup *table,
173 				   u_int32_t code);
174 
175 /* Management Interface */
176 static d_open_t		aac_open;
177 static d_close_t	aac_close;
178 static d_ioctl_t	aac_ioctl;
179 static d_poll_t		aac_poll;
180 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
181 static void		aac_handle_aif(struct aac_softc *sc,
182 					   struct aac_fib *fib);
183 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
184 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
185 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
186 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
187 
188 #define AAC_CDEV_MAJOR	150
189 
190 static struct dev_ops aac_ops = {
191 	{ "aac", AAC_CDEV_MAJOR, 0 },
192 	.d_open =	aac_open,
193 	.d_close =	aac_close,
194 	.d_ioctl =	aac_ioctl,
195 	.d_poll =	aac_poll,
196 };
197 
198 DECLARE_DUMMY_MODULE(aac);
199 
200 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
201 
202 /* sysctl node */
203 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
204 
205 /*
206  * Device Interface
207  */
208 
209 /*
210  * Initialise the controller and softc
211  */
212 int
213 aac_attach(struct aac_softc *sc)
214 {
215 	int error, unit;
216 
217 	debug_called(1);
218 	callout_init(&sc->aac_watchdog);
219 
220 	/*
221 	 * Initialise per-controller queues.
222 	 */
223 	aac_initq_free(sc);
224 	aac_initq_ready(sc);
225 	aac_initq_busy(sc);
226 	aac_initq_complete(sc);
227 	aac_initq_bio(sc);
228 
229 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
230 	/*
231 	 * Initialise command-completion task.
232 	 */
233 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
234 #endif
235 
236 	/* disable interrupts before we enable anything */
237 	AAC_MASK_INTERRUPTS(sc);
238 
239 	/* mark controller as suspended until we get ourselves organised */
240 	sc->aac_state |= AAC_STATE_SUSPEND;
241 
242 	/*
243 	 * Check that the firmware on the card is supported.
244 	 */
245 	if ((error = aac_check_firmware(sc)) != 0)
246 		return(error);
247 
248 	/* Init the sync fib lock */
249 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
250 
251 	/*
252 	 * Initialise the adapter.
253 	 */
254 	if ((error = aac_init(sc)) != 0)
255 		return(error);
256 
257 	/*
258 	 * Print a little information about the controller.
259 	 */
260 	aac_describe_controller(sc);
261 
262 	/*
263 	 * Register to probe our containers later.
264 	 */
265 	TAILQ_INIT(&sc->aac_container_tqh);
266 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
267 
268 	/*
269 	 * Lock for the AIF queue
270 	 */
271 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
272 
273 	sc->aac_ich.ich_func = aac_startup;
274 	sc->aac_ich.ich_arg = sc;
275 	sc->aac_ich.ich_desc = "aac";
276 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
277 		device_printf(sc->aac_dev,
278 			      "can't establish configuration hook\n");
279 		return(ENXIO);
280 	}
281 
282 	/*
283 	 * Make the control device.
284 	 */
285 	unit = device_get_unit(sc->aac_dev);
286 	dev_ops_add(&aac_ops, -1, unit);
287 	sc->aac_dev_t = make_dev(&aac_ops, unit, UID_ROOT, GID_WHEEL, 0644,
288 				 "aac%d", unit);
289 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
290 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
291 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
292 #endif
293 	sc->aac_dev_t->si_drv1 = sc;
294 	reference_dev(sc->aac_dev_t);
295 
296 	/* Create the AIF thread */
297 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
298 	if (kthread_create((void(*)(void *))aac_host_command, sc,
299 			   &sc->aifthread, 0, "aac%daif", unit))
300 #else
301 	if (kthread_create((void(*)(void *))aac_host_command, sc,
302 			   &sc->aifthread, "aac%daif", unit))
303 #endif
304 		panic("Could not create AIF thread\n");
305 
306 	/* Register the shutdown method to only be called post-dump */
307 	if ((EVENTHANDLER_REGISTER(shutdown_post_sync, aac_shutdown, sc->aac_dev,
308 				   SHUTDOWN_PRI_DRIVER)) == NULL)
309 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
310 
311 	/* Register with CAM for the non-DASD devices */
312 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
313 		aac_get_bus_info(sc);
314 
315 	return(0);
316 }
317 
318 /*
319  * Probe for containers, create disks.
320  */
321 static void
322 aac_startup(void *arg)
323 {
324 	struct aac_softc *sc;
325 	struct aac_fib *fib;
326 	struct aac_mntinfo *mi;
327 	struct aac_mntinforesp *mir = NULL;
328 	int count = 0, i = 0;
329 
330 	debug_called(1);
331 
332 	sc = (struct aac_softc *)arg;
333 
334 	/* disconnect ourselves from the intrhook chain */
335 	config_intrhook_disestablish(&sc->aac_ich);
336 
337 	aac_alloc_sync_fib(sc, &fib, 0);
338 	mi = (struct aac_mntinfo *)&fib->data[0];
339 
340 	/* loop over possible containers */
341 	do {
342 		/* request information on this container */
343 		bzero(mi, sizeof(struct aac_mntinfo));
344 		mi->Command = VM_NameServe;
345 		mi->MntType = FT_FILESYS;
346 		mi->MntCount = i;
347 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
348 				 sizeof(struct aac_mntinfo))) {
349 			device_printf(sc->aac_dev,
350 			    "error probing container %d", i);
351 
352 			continue;
353 		}
354 
355 		mir = (struct aac_mntinforesp *)&fib->data[0];
356 		/* XXX Need to check if count changed */
357 		count = mir->MntRespCount;
358 		aac_add_container(sc, mir, 0);
359 		i++;
360 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
361 
362 	aac_release_sync_fib(sc);
363 
364 	/* poke the bus to actually attach the child devices */
365 	if (bus_generic_attach(sc->aac_dev))
366 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
367 
368 	/* mark the controller up */
369 	sc->aac_state &= ~AAC_STATE_SUSPEND;
370 
371 	/* enable interrupts now */
372 	AAC_UNMASK_INTERRUPTS(sc);
373 
374 	/* enable the timeout watchdog */
375 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
376 		      aac_timeout, sc);
377 }
378 
379 /*
380  * Create a device to respresent a new container
381  */
382 static void
383 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
384 {
385 	struct aac_container *co;
386 	device_t child;
387 
388 	/*
389 	 * Check container volume type for validity.  Note that many of
390 	 * the possible types may never show up.
391 	 */
392 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
393 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
394 		       M_INTWAIT);
395 		debug(1, "id %x  name '%.16s'  size %u  type %d",
396 		      mir->MntTable[0].ObjectId,
397 		      mir->MntTable[0].FileSystemName,
398 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
399 
400 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
401 			device_printf(sc->aac_dev, "device_add_child failed\n");
402 		else
403 			device_set_ivars(child, co);
404 		device_set_desc(child, aac_describe_code(aac_container_types,
405 				mir->MntTable[0].VolType));
406 		co->co_disk = child;
407 		co->co_found = f;
408 		bcopy(&mir->MntTable[0], &co->co_mntobj,
409 		      sizeof(struct aac_mntobj));
410 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
411 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
412 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
413 	}
414 }
415 
416 /*
417  * Free all of the resources associated with (sc)
418  *
419  * Should not be called if the controller is active.
420  */
421 void
422 aac_free(struct aac_softc *sc)
423 {
424 	debug_called(1);
425 
426 	/* remove the control device */
427 	if (sc->aac_dev_t != NULL)
428 		destroy_dev(sc->aac_dev_t);
429 
430 	/* throw away any FIB buffers, discard the FIB DMA tag */
431 	if (sc->aac_fibs != NULL)
432 		aac_free_commands(sc);
433 	if (sc->aac_fib_dmat)
434 		bus_dma_tag_destroy(sc->aac_fib_dmat);
435 
436 	/* destroy the common area */
437 	if (sc->aac_common) {
438 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
439 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
440 				sc->aac_common_dmamap);
441 	}
442 	if (sc->aac_common_dmat)
443 		bus_dma_tag_destroy(sc->aac_common_dmat);
444 
445 	/* disconnect the interrupt handler */
446 	if (sc->aac_intr)
447 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
448 	if (sc->aac_irq != NULL)
449 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
450 				     sc->aac_irq);
451 
452 	/* destroy data-transfer DMA tag */
453 	if (sc->aac_buffer_dmat)
454 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
455 
456 	/* destroy the parent DMA tag */
457 	if (sc->aac_parent_dmat)
458 		bus_dma_tag_destroy(sc->aac_parent_dmat);
459 
460 	/* release the register window mapping */
461 	if (sc->aac_regs_resource != NULL) {
462 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
463 				     sc->aac_regs_rid, sc->aac_regs_resource);
464 	}
465 	dev_ops_remove(&aac_ops, -1, device_get_unit(sc->aac_dev));
466 }
467 
468 /*
469  * Disconnect from the controller completely, in preparation for unload.
470  */
471 int
472 aac_detach(device_t dev)
473 {
474 	struct aac_softc *sc;
475 #if AAC_BROKEN
476 	int error;
477 #endif
478 
479 	debug_called(1);
480 
481 	sc = device_get_softc(dev);
482 
483 	callout_stop(&sc->aac_watchdog);
484 
485 	if (sc->aac_state & AAC_STATE_OPEN)
486 	return(EBUSY);
487 
488 #if AAC_BROKEN
489 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
490 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
491 		wakeup(sc->aifthread);
492 		tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
493 	}
494 
495 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
496 		panic("Cannot shutdown AIF thread\n");
497 
498 	if ((error = aac_shutdown(dev)))
499 		return(error);
500 
501 	aac_free(sc);
502 
503 	return(0);
504 #else
505 	return (EBUSY);
506 #endif
507 }
508 
509 /*
510  * Bring the controller down to a dormant state and detach all child devices.
511  *
512  * This function is called before detach or system shutdown.
513  *
514  * Note that we can assume that the bioq on the controller is empty, as we won't
515  * allow shutdown if any device is open.
516  */
517 int
518 aac_shutdown(device_t dev)
519 {
520 	struct aac_softc *sc;
521 	struct aac_fib *fib;
522 	struct aac_close_command *cc;
523 
524 	debug_called(1);
525 
526 	sc = device_get_softc(dev);
527 
528 	crit_enter();
529 
530 	sc->aac_state |= AAC_STATE_SUSPEND;
531 
532 	/*
533 	 * Send a Container shutdown followed by a HostShutdown FIB to the
534 	 * controller to convince it that we don't want to talk to it anymore.
535 	 * We've been closed and all I/O completed already
536 	 */
537 	device_printf(sc->aac_dev, "shutting down controller...");
538 
539 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
540 	cc = (struct aac_close_command *)&fib->data[0];
541 
542 	bzero(cc, sizeof(struct aac_close_command));
543 	cc->Command = VM_CloseAll;
544 	cc->ContainerId = 0xffffffff;
545 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
546 	    sizeof(struct aac_close_command)))
547 		kprintf("FAILED.\n");
548 	else {
549 		fib->data[0] = 0;
550 		/*
551 		 * XXX Issuing this command to the controller makes it shut down
552 		 * but also keeps it from coming back up without a reset of the
553 		 * PCI bus.  This is not desirable if you are just unloading the
554 		 * driver module with the intent to reload it later.
555 		 */
556 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
557 		    fib, 1)) {
558 			kprintf("FAILED.\n");
559 		} else {
560 			kprintf("done.\n");
561 		}
562 	}
563 
564 	AAC_MASK_INTERRUPTS(sc);
565 
566 	crit_exit();
567 	return(0);
568 }
569 
570 /*
571  * Bring the controller to a quiescent state, ready for system suspend.
572  */
573 int
574 aac_suspend(device_t dev)
575 {
576 	struct aac_softc *sc;
577 
578 	debug_called(1);
579 
580 	sc = device_get_softc(dev);
581 
582 	crit_enter();
583 
584 	sc->aac_state |= AAC_STATE_SUSPEND;
585 
586 	AAC_MASK_INTERRUPTS(sc);
587 	crit_exit();
588 	return(0);
589 }
590 
591 /*
592  * Bring the controller back to a state ready for operation.
593  */
594 int
595 aac_resume(device_t dev)
596 {
597 	struct aac_softc *sc;
598 
599 	debug_called(1);
600 
601 	sc = device_get_softc(dev);
602 
603 	sc->aac_state &= ~AAC_STATE_SUSPEND;
604 	AAC_UNMASK_INTERRUPTS(sc);
605 	return(0);
606 }
607 
608 /*
609  * Take an interrupt.
610  */
611 void
612 aac_intr(void *arg)
613 {
614 	struct aac_softc *sc;
615 	u_int16_t reason;
616 	u_int32_t *resp_queue;
617 
618 	debug_called(2);
619 
620 	sc = (struct aac_softc *)arg;
621 
622 	/*
623 	 * Optimize the common case of adapter response interrupts.
624 	 * We must read from the card prior to processing the responses
625 	 * to ensure the clear is flushed prior to accessing the queues.
626 	 * Reading the queues from local memory might save us a PCI read.
627 	 */
628 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
629 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
630 		reason = AAC_DB_RESPONSE_READY;
631 	else
632 		reason = AAC_GET_ISTATUS(sc);
633 	AAC_CLEAR_ISTATUS(sc, reason);
634 	(void)AAC_GET_ISTATUS(sc);
635 
636 	/* It's not ok to return here because of races with the previous step */
637 	if (reason & AAC_DB_RESPONSE_READY)
638 		aac_host_response(sc);
639 
640 	/* controller wants to talk to the log */
641 	if (reason & AAC_DB_PRINTF)
642 		aac_print_printf(sc);
643 
644 	/* controller has a message for us? */
645 	if (reason & AAC_DB_COMMAND_READY) {
646 		/* XXX What happens if the thread is already awake? */
647 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
648 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
649 			wakeup(sc->aifthread);
650 		}
651 	}
652 }
653 
654 /*
655  * Command Processing
656  */
657 
658 /*
659  * Start as much queued I/O as possible on the controller
660  */
661 void
662 aac_startio(struct aac_softc *sc)
663 {
664 	struct aac_command *cm;
665 
666 	debug_called(2);
667 
668 	for (;;) {
669 		/*
670 		 * Try to get a command that's been put off for lack of
671 		 * resources
672 		 */
673 		cm = aac_dequeue_ready(sc);
674 
675 		/*
676 		 * Try to build a command off the bio queue (ignore error
677 		 * return)
678 		 */
679 		if (cm == NULL)
680 			aac_bio_command(sc, &cm);
681 
682 		/* nothing to do? */
683 		if (cm == NULL)
684 			break;
685 
686 		/* try to give the command to the controller */
687 		if (aac_start(cm) == EBUSY) {
688 			/* put it on the ready queue for later */
689 			aac_requeue_ready(cm);
690 			break;
691 		}
692 	}
693 }
694 
695 /*
696  * Deliver a command to the controller; allocate controller resources at the
697  * last moment when possible.
698  */
699 static int
700 aac_start(struct aac_command *cm)
701 {
702 	struct aac_softc *sc;
703 	int error;
704 
705 	debug_called(2);
706 
707 	sc = cm->cm_sc;
708 
709 	/* get the command mapped */
710 	aac_map_command(cm);
711 
712 	/* fix up the address values in the FIB */
713 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
714 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
715 
716 	/* save a pointer to the command for speedy reverse-lookup */
717 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
718 							 * address issue */
719 	/* put the FIB on the outbound queue */
720 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
721 	return(error);
722 }
723 
724 /*
725  * Handle notification of one or more FIBs coming from the controller.
726  */
727 static void
728 aac_host_command(struct aac_softc *sc)
729 {
730 	struct aac_fib *fib;
731 	u_int32_t fib_size;
732 	int size;
733 
734 	debug_called(2);
735 
736 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
737 
738 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
739 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
740 			tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
741 
742 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
743 		for (;;) {
744 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
745 					    &fib_size, &fib))
746 				break;	/* nothing to do */
747 
748 			AAC_PRINT_FIB(sc, fib);
749 
750 			switch (fib->Header.Command) {
751 			case AifRequest:
752 				aac_handle_aif(sc, fib);
753 				break;
754 			default:
755 				device_printf(sc->aac_dev, "unknown command "
756 					      "from controller\n");
757 				break;
758 			}
759 
760 			/* Return the AIF to the controller. */
761 			if ((fib->Header.XferState == 0) ||
762 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
763 				break;
764 
765 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
766 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
767 				*(AAC_FSAStatus*)fib->data = ST_OK;
768 
769 				/* XXX Compute the Size field? */
770 				size = fib->Header.Size;
771 				if (size > sizeof(struct aac_fib)) {
772 					size = sizeof(struct aac_fib);
773 					fib->Header.Size = size;
774 				}
775 				/*
776 				 * Since we did not generate this command, it
777 				 * cannot go through the normal
778 				 * enqueue->startio chain.
779 				 */
780 				aac_enqueue_response(sc,
781 						     AAC_ADAP_NORM_RESP_QUEUE,
782 						     fib);
783 			}
784 		}
785 	}
786 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
787 	wakeup(sc->aac_dev);
788 
789 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
790 	mtx_lock(&Giant);
791 #endif
792 	kthread_exit();
793 }
794 
795 /*
796  * Handle notification of one or more FIBs completed by the controller
797  */
798 static void
799 aac_host_response(struct aac_softc *sc)
800 {
801 	struct aac_command *cm;
802 	struct aac_fib *fib;
803 	u_int32_t fib_size;
804 
805 	debug_called(2);
806 
807 	for (;;) {
808 		/* look for completed FIBs on our queue */
809 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
810 				    &fib))
811 			break;	/* nothing to do */
812 
813 		/* get the command, unmap and queue for later processing */
814 		cm = (struct aac_command *)fib->Header.SenderData;
815 		if (cm == NULL) {
816 			AAC_PRINT_FIB(sc, fib);
817 		} else {
818 			aac_remove_busy(cm);
819 			aac_unmap_command(cm);		/* XXX defer? */
820 			aac_enqueue_complete(cm);
821 		}
822 	}
823 
824 	/* handle completion processing */
825 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
826 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
827 #else
828 	aac_complete(sc, 0);
829 #endif
830 }
831 
832 /*
833  * Process completed commands.
834  */
835 static void
836 aac_complete(void *context, int pending)
837 {
838 	struct aac_softc *sc;
839 	struct aac_command *cm;
840 
841 	debug_called(2);
842 
843 	sc = (struct aac_softc *)context;
844 
845 	/* pull completed commands off the queue */
846 	for (;;) {
847 		cm = aac_dequeue_complete(sc);
848 		if (cm == NULL)
849 			break;
850 		cm->cm_flags |= AAC_CMD_COMPLETED;
851 
852 		/* is there a completion handler? */
853 		if (cm->cm_complete != NULL) {
854 			cm->cm_complete(cm);
855 		} else {
856 			/* assume that someone is sleeping on this command */
857 			wakeup(cm);
858 		}
859 	}
860 
861 	/* see if we can start some more I/O */
862 	aac_startio(sc);
863 }
864 
865 /*
866  * Handle a bio submitted from a disk device.
867  */
868 void
869 aac_submit_bio(struct aac_disk *ad, struct bio *bio)
870 {
871 	struct aac_softc *sc;
872 
873 	debug_called(2);
874 
875 	bio->bio_driver_info = ad;
876 	sc = ad->ad_controller;
877 
878 	/* queue the BIO and try to get some work done */
879 	aac_enqueue_bio(sc, bio);
880 	aac_startio(sc);
881 }
882 
883 /*
884  * Get a bio and build a command to go with it.
885  */
886 static int
887 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
888 {
889 	struct aac_command *cm;
890 	struct aac_fib *fib;
891 	struct aac_blockread *br;
892 	struct aac_blockwrite *bw;
893 	struct aac_disk *ad;
894 	struct bio *bio;
895 	struct buf *bp;
896 
897 	debug_called(2);
898 
899 	/* get the resources we will need */
900 	cm = NULL;
901 	if ((bio = aac_dequeue_bio(sc)) == NULL)
902 		goto fail;
903 	if (aac_alloc_command(sc, &cm))	/* get a command */
904 		goto fail;
905 
906 	/* fill out the command */
907 	bp = bio->bio_buf;
908 	cm->cm_data = (void *)bp->b_data;
909 	cm->cm_datalen = bp->b_bcount;
910 	cm->cm_complete = aac_bio_complete;
911 	cm->cm_private = bio;
912 	cm->cm_timestamp = time_second;
913 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
914 
915 	/* build the FIB */
916 	fib = cm->cm_fib;
917 	fib->Header.XferState =
918 		AAC_FIBSTATE_HOSTOWNED   |
919 		AAC_FIBSTATE_INITIALISED |
920 		AAC_FIBSTATE_EMPTY	 |
921 		AAC_FIBSTATE_FROMHOST	 |
922 		AAC_FIBSTATE_REXPECTED   |
923 		AAC_FIBSTATE_NORM	 |
924 		AAC_FIBSTATE_ASYNC	 |
925 		AAC_FIBSTATE_FAST_RESPONSE;
926 	fib->Header.Command = ContainerCommand;
927 	fib->Header.Size = sizeof(struct aac_fib_header);
928 
929 	/* build the read/write request */
930 	ad = (struct aac_disk *)bio->bio_driver_info;
931 	if (bp->b_cmd == BUF_CMD_READ) {
932 		br = (struct aac_blockread *)&fib->data[0];
933 		br->Command = VM_CtBlockRead;
934 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
935 		br->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
936 		br->ByteCount = bp->b_bcount;
937 		fib->Header.Size += sizeof(struct aac_blockread);
938 		cm->cm_sgtable = &br->SgMap;
939 		cm->cm_flags |= AAC_CMD_DATAIN;
940 	} else {
941 		bw = (struct aac_blockwrite *)&fib->data[0];
942 		bw->Command = VM_CtBlockWrite;
943 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
944 		bw->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
945 		bw->ByteCount = bp->b_bcount;
946 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
947 		fib->Header.Size += sizeof(struct aac_blockwrite);
948 		cm->cm_flags |= AAC_CMD_DATAOUT;
949 		cm->cm_sgtable = &bw->SgMap;
950 	}
951 
952 	*cmp = cm;
953 	return(0);
954 
955 fail:
956 	if (bio != NULL)
957 		aac_enqueue_bio(sc, bio);
958 	if (cm != NULL)
959 		aac_release_command(cm);
960 	return(ENOMEM);
961 }
962 
963 /*
964  * Handle a bio-instigated command that has been completed.
965  */
966 static void
967 aac_bio_complete(struct aac_command *cm)
968 {
969 	struct aac_blockread_response *brr;
970 	struct aac_blockwrite_response *bwr;
971 	struct bio *bio;
972 	struct buf *bp;
973 	const char *code;
974 	AAC_FSAStatus status;
975 
976 	/* fetch relevant status and then release the command */
977 	bio = (struct bio *)cm->cm_private;
978 	bp = bio->bio_buf;
979 	if (bp->b_cmd == BUF_CMD_READ) {
980 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
981 		status = brr->Status;
982 	} else {
983 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
984 		status = bwr->Status;
985 	}
986 	aac_release_command(cm);
987 
988 	/* fix up the bio based on status */
989 	if (status == ST_OK) {
990 		bp->b_resid = 0;
991 		code = 0;
992 	} else {
993 		bp->b_error = EIO;
994 		bp->b_flags |= B_ERROR;
995 		/* pass an error string out to the disk layer */
996 		code = aac_describe_code(aac_command_status_table, status);
997 	}
998 	aac_biodone(bio, code);
999 }
1000 
1001 /*
1002  * Dump a block of data to the controller.  If the queue is full, tell the
1003  * caller to hold off and wait for the queue to drain.
1004  */
1005 int
1006 aac_dump_enqueue(struct aac_disk *ad, u_int64_t lba, void *data, int dumppages)
1007 {
1008 	struct aac_softc *sc;
1009 	struct aac_command *cm;
1010 	struct aac_fib *fib;
1011 	struct aac_blockwrite *bw;
1012 
1013 	sc = ad->ad_controller;
1014 	cm = NULL;
1015 
1016 	KKASSERT(lba <= 0x100000000ULL);
1017 
1018 	if (aac_alloc_command(sc, &cm))
1019 		return (EBUSY);
1020 
1021 	/* fill out the command */
1022 	cm->cm_data = data;
1023 	cm->cm_datalen = dumppages * PAGE_SIZE;
1024 	cm->cm_complete = NULL;
1025 	cm->cm_private = NULL;
1026 	cm->cm_timestamp = time_second;
1027 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1028 
1029 	/* build the FIB */
1030 	fib = cm->cm_fib;
1031 	fib->Header.XferState =
1032 	AAC_FIBSTATE_HOSTOWNED   |
1033 	AAC_FIBSTATE_INITIALISED |
1034 	AAC_FIBSTATE_FROMHOST	 |
1035 	AAC_FIBSTATE_REXPECTED   |
1036 	AAC_FIBSTATE_NORM;
1037 	fib->Header.Command = ContainerCommand;
1038 	fib->Header.Size = sizeof(struct aac_fib_header);
1039 
1040 	bw = (struct aac_blockwrite *)&fib->data[0];
1041 	bw->Command = VM_CtBlockWrite;
1042 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1043 	bw->BlockNumber = lba;
1044 	bw->ByteCount = dumppages * PAGE_SIZE;
1045 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1046 	fib->Header.Size += sizeof(struct aac_blockwrite);
1047 	cm->cm_flags |= AAC_CMD_DATAOUT;
1048 	cm->cm_sgtable = &bw->SgMap;
1049 
1050 	return (aac_start(cm));
1051 }
1052 
1053 /*
1054  * Wait for the card's queue to drain when dumping.  Also check for monitor
1055  * kprintf's
1056  */
1057 void
1058 aac_dump_complete(struct aac_softc *sc)
1059 {
1060 	struct aac_fib *fib;
1061 	struct aac_command *cm;
1062 	u_int16_t reason;
1063 	u_int32_t pi, ci, fib_size;
1064 
1065 	do {
1066 		reason = AAC_GET_ISTATUS(sc);
1067 		if (reason & AAC_DB_RESPONSE_READY) {
1068 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1069 			for (;;) {
1070 				if (aac_dequeue_fib(sc,
1071 						    AAC_HOST_NORM_RESP_QUEUE,
1072 						    &fib_size, &fib))
1073 					break;
1074 				cm = (struct aac_command *)
1075 					fib->Header.SenderData;
1076 				if (cm == NULL)
1077 					AAC_PRINT_FIB(sc, fib);
1078 				else {
1079 					aac_remove_busy(cm);
1080 					aac_unmap_command(cm);
1081 					aac_enqueue_complete(cm);
1082 					aac_release_command(cm);
1083 				}
1084 			}
1085 		}
1086 		if (reason & AAC_DB_PRINTF) {
1087 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1088 			aac_print_printf(sc);
1089 		}
1090 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1091 			AAC_PRODUCER_INDEX];
1092 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1093 			AAC_CONSUMER_INDEX];
1094 	} while (ci != pi);
1095 
1096 	return;
1097 }
1098 
1099 /*
1100  * Submit a command to the controller, return when it completes.
1101  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1102  *     be stuck here forever.  At the same time, signals are not caught
1103  *     because there is a risk that a signal could wakeup the tsleep before
1104  *     the card has a chance to complete the command.  The passed in timeout
1105  *     is ignored for the same reason.  Since there is no way to cancel a
1106  *     command in progress, we should probably create a 'dead' queue where
1107  *     commands go that have been interrupted/timed-out/etc, that keeps them
1108  *     out of the free pool.  That way, if the card is just slow, it won't
1109  *     spam the memory of a command that has been recycled.
1110  */
1111 static int
1112 aac_wait_command(struct aac_command *cm, int timeout)
1113 {
1114 	int error = 0;
1115 
1116 	debug_called(2);
1117 
1118 	/* Put the command on the ready queue and get things going */
1119 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1120 	aac_enqueue_ready(cm);
1121 	aac_startio(cm->cm_sc);
1122 	crit_enter();
1123 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1124 		error = tsleep(cm, 0, "aacwait", 0);
1125 	}
1126 	crit_exit();
1127 	return(error);
1128 }
1129 
1130 /*
1131  *Command Buffer Management
1132  */
1133 
1134 /*
1135  * Allocate a command.
1136  */
1137 int
1138 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1139 {
1140 	struct aac_command *cm;
1141 
1142 	debug_called(3);
1143 
1144 	if ((cm = aac_dequeue_free(sc)) == NULL)
1145 		return(ENOMEM);
1146 
1147 	*cmp = cm;
1148 	return(0);
1149 }
1150 
1151 /*
1152  * Release a command back to the freelist.
1153  */
1154 void
1155 aac_release_command(struct aac_command *cm)
1156 {
1157 	debug_called(3);
1158 
1159 	/* (re)initialise the command/FIB */
1160 	cm->cm_sgtable = NULL;
1161 	cm->cm_flags = 0;
1162 	cm->cm_complete = NULL;
1163 	cm->cm_private = NULL;
1164 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1165 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1166 	cm->cm_fib->Header.Flags = 0;
1167 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1168 
1169 	/*
1170 	 * These are duplicated in aac_start to cover the case where an
1171 	 * intermediate stage may have destroyed them.  They're left
1172 	 * initialised here for debugging purposes only.
1173 	 */
1174 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1175 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1176 	cm->cm_fib->Header.SenderData = 0;
1177 
1178 	aac_enqueue_free(cm);
1179 }
1180 
1181 /*
1182  * Map helper for command/FIB allocation.
1183  */
1184 static void
1185 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1186 {
1187 	struct aac_softc *sc;
1188 
1189 	sc = (struct aac_softc *)arg;
1190 
1191 	debug_called(3);
1192 
1193 	sc->aac_fibphys = segs[0].ds_addr;
1194 }
1195 
1196 /*
1197  * Allocate and initialise commands/FIBs for this adapter.
1198  */
1199 static int
1200 aac_alloc_commands(struct aac_softc *sc)
1201 {
1202 	struct aac_command *cm;
1203 	int i;
1204 
1205 	debug_called(1);
1206 
1207 	/* allocate the FIBs in DMAable memory and load them */
1208 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1209 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1210 		return(ENOMEM);
1211 	}
1212 
1213 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1214 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1215 			aac_map_command_helper, sc, 0);
1216 
1217 	/* initialise constant fields in the command structure */
1218 	bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1219 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1220 		cm = &sc->aac_command[i];
1221 		cm->cm_sc = sc;
1222 		cm->cm_fib = sc->aac_fibs + i;
1223 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1224 
1225 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1226 			aac_release_command(cm);
1227 	}
1228 	return(0);
1229 }
1230 
1231 /*
1232  * Free FIBs owned by this adapter.
1233  */
1234 static void
1235 aac_free_commands(struct aac_softc *sc)
1236 {
1237 	int i;
1238 
1239 	debug_called(1);
1240 
1241 	for (i = 0; i < AAC_FIB_COUNT; i++)
1242 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1243 				   sc->aac_command[i].cm_datamap);
1244 
1245 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1246 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1247 }
1248 
1249 /*
1250  * Command-mapping helper function - populate this command's s/g table.
1251  */
1252 static void
1253 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1254 {
1255 	struct aac_command *cm;
1256 	struct aac_fib *fib;
1257 	struct aac_sg_table *sg;
1258 	int i;
1259 
1260 	debug_called(3);
1261 
1262 	cm = (struct aac_command *)arg;
1263 	fib = cm->cm_fib;
1264 
1265 	/* find the s/g table */
1266 	sg = cm->cm_sgtable;
1267 
1268 	/* copy into the FIB */
1269 	if (sg != NULL) {
1270 		sg->SgCount = nseg;
1271 		for (i = 0; i < nseg; i++) {
1272 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1273 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1274 		}
1275 		/* update the FIB size for the s/g count */
1276 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1277 	}
1278 
1279 }
1280 
1281 /*
1282  * Map a command into controller-visible space.
1283  */
1284 static void
1285 aac_map_command(struct aac_command *cm)
1286 {
1287 	struct aac_softc *sc;
1288 
1289 	debug_called(2);
1290 
1291 	sc = cm->cm_sc;
1292 
1293 	/* don't map more than once */
1294 	if (cm->cm_flags & AAC_CMD_MAPPED)
1295 		return;
1296 
1297 	if (cm->cm_datalen != 0) {
1298 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1299 				cm->cm_data, cm->cm_datalen,
1300 				aac_map_command_sg, cm, 0);
1301 
1302 		if (cm->cm_flags & AAC_CMD_DATAIN)
1303 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1304 					BUS_DMASYNC_PREREAD);
1305 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1306 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1307 					BUS_DMASYNC_PREWRITE);
1308 	}
1309 	cm->cm_flags |= AAC_CMD_MAPPED;
1310 }
1311 
1312 /*
1313  * Unmap a command from controller-visible space.
1314  */
1315 static void
1316 aac_unmap_command(struct aac_command *cm)
1317 {
1318 	struct aac_softc *sc;
1319 
1320 	debug_called(2);
1321 
1322 	sc = cm->cm_sc;
1323 
1324 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1325 		return;
1326 
1327 	if (cm->cm_datalen != 0) {
1328 		if (cm->cm_flags & AAC_CMD_DATAIN)
1329 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1330 					BUS_DMASYNC_POSTREAD);
1331 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1332 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1333 					BUS_DMASYNC_POSTWRITE);
1334 
1335 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1336 	}
1337 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1338 }
1339 
1340 /*
1341  * Hardware Interface
1342  */
1343 
1344 /*
1345  * Initialise the adapter.
1346  */
1347 static void
1348 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1349 {
1350 	struct aac_softc *sc;
1351 
1352 	debug_called(1);
1353 
1354 	sc = (struct aac_softc *)arg;
1355 
1356 	sc->aac_common_busaddr = segs[0].ds_addr;
1357 }
1358 
1359 static int
1360 aac_check_firmware(struct aac_softc *sc)
1361 {
1362 	u_int32_t major, minor, options;
1363 
1364 	debug_called(1);
1365 
1366 	/*
1367 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1368 	 * firmware version 1.x are not compatible with this driver.
1369 	 */
1370 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1371 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1372 				     NULL)) {
1373 			device_printf(sc->aac_dev,
1374 				      "Error reading firmware version\n");
1375 			return (EIO);
1376 		}
1377 
1378 		/* These numbers are stored as ASCII! */
1379 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1380 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1381 		if (major == 1) {
1382 			device_printf(sc->aac_dev,
1383 			    "Firmware version %d.%d is not supported.\n",
1384 			    major, minor);
1385 			return (EINVAL);
1386 		}
1387 	}
1388 
1389 	/*
1390 	 * Retrieve the capabilities/supported options word so we know what
1391 	 * work-arounds to enable.
1392 	 */
1393 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1394 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1395 		return (EIO);
1396 	}
1397 	options = AAC_GET_MAILBOX(sc, 1);
1398 	sc->supported_options = options;
1399 
1400 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1401 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1402 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1403 	if (options & AAC_SUPPORTED_NONDASD)
1404 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1405 
1406 	return (0);
1407 }
1408 
1409 static int
1410 aac_init(struct aac_softc *sc)
1411 {
1412 	struct aac_adapter_init	*ip;
1413 	time_t then;
1414 	u_int32_t code;
1415 	u_int8_t *qaddr;
1416 	int error;
1417 
1418 	debug_called(1);
1419 
1420 	/*
1421 	 * First wait for the adapter to come ready.
1422 	 */
1423 	then = time_second;
1424 	do {
1425 		code = AAC_GET_FWSTATUS(sc);
1426 		if (code & AAC_SELF_TEST_FAILED) {
1427 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1428 			return(ENXIO);
1429 		}
1430 		if (code & AAC_KERNEL_PANIC) {
1431 			device_printf(sc->aac_dev,
1432 				      "FATAL: controller kernel panic\n");
1433 			return(ENXIO);
1434 		}
1435 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1436 			device_printf(sc->aac_dev,
1437 				      "FATAL: controller not coming ready, "
1438 					   "status %x\n", code);
1439 			return(ENXIO);
1440 		}
1441 	} while (!(code & AAC_UP_AND_RUNNING));
1442 
1443  	error = ENOMEM;
1444  	/*
1445  	 * Create DMA tag for mapping buffers into controller-addressable space.
1446  	 */
1447  	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1448  			       1, 0, 			/* algnmnt, boundary */
1449  			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1450  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1451  			       NULL, NULL, 		/* filter, filterarg */
1452  			       MAXBSIZE,		/* maxsize */
1453  			       AAC_MAXSGENTRIES,	/* nsegments */
1454  			       MAXBSIZE,		/* maxsegsize */
1455  			       BUS_DMA_ALLOCNOW,	/* flags */
1456  			       &sc->aac_buffer_dmat)) {
1457  		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1458  		goto out;
1459  	}
1460 
1461  	/*
1462  	 * Create DMA tag for mapping FIBs into controller-addressable space..
1463  	 */
1464  	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1465  			       1, 0, 			/* algnmnt, boundary */
1466  			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1467  			       BUS_SPACE_MAXADDR_32BIT :
1468  			       0x7fffffff,		/* lowaddr */
1469  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1470  			       NULL, NULL, 		/* filter, filterarg */
1471  			       AAC_FIB_COUNT *
1472  			       sizeof(struct aac_fib),  /* maxsize */
1473  			       1,			/* nsegments */
1474  			       AAC_FIB_COUNT *
1475  			       sizeof(struct aac_fib),	/* maxsegsize */
1476  			       BUS_DMA_ALLOCNOW,	/* flags */
1477  			       &sc->aac_fib_dmat)) {
1478  		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");
1479  		goto out;
1480  	}
1481 
1482 	/*
1483 	 * Create DMA tag for the common structure and allocate it.
1484 	 */
1485 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1486 			       1, 0,			/* algnmnt, boundary */
1487 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1488 			       BUS_SPACE_MAXADDR_32BIT :
1489 			       0x7fffffff,		/* lowaddr */
1490 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1491 			       NULL, NULL, 		/* filter, filterarg */
1492 			       8192 + sizeof(struct aac_common), /* maxsize */
1493 			       1,			/* nsegments */
1494 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1495 			       BUS_DMA_ALLOCNOW,	/* flags */
1496 			       &sc->aac_common_dmat)) {
1497 		device_printf(sc->aac_dev,
1498 			      "can't allocate common structure DMA tag\n");
1499 		goto out;
1500 	}
1501 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1502 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1503 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1504 		goto out;
1505 	}
1506 	/*
1507 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1508 	 * below address 8192 in physical memory.
1509 	 * XXX If the padding is not needed, can it be put to use instead
1510 	 * of ignored?
1511 	 */
1512 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1513 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1514 			aac_common_map, sc, 0);
1515 
1516 	if (sc->aac_common_busaddr < 8192) {
1517 		sc->aac_common =
1518 		    (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1519 		sc->aac_common_busaddr += 8192;
1520 	}
1521 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1522 
1523 	/* Allocate some FIBs and associated command structs */
1524 	if (aac_alloc_commands(sc) != 0)
1525 		goto out;
1526 
1527 	/*
1528 	 * Fill in the init structure.  This tells the adapter about the
1529 	 * physical location of various important shared data structures.
1530 	 */
1531 	ip = &sc->aac_common->ac_init;
1532 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1533 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1534 
1535 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1536 					 offsetof(struct aac_common, ac_fibs);
1537 	ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1538 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1539 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1540 
1541 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1542 				  offsetof(struct aac_common, ac_printf);
1543 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1544 
1545 	/* The adapter assumes that pages are 4K in size */
1546 	/* XXX why should the adapter care? */
1547 	ip->HostPhysMemPages = ctob((int)Maxmem) / AAC_PAGE_SIZE;
1548 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1549 
1550 	/*
1551 	 * Initialise FIB queues.  Note that it appears that the layout of the
1552 	 * indexes and the segmentation of the entries may be mandated by the
1553 	 * adapter, which is only told about the base of the queue index fields.
1554 	 *
1555 	 * The initial values of the indices are assumed to inform the adapter
1556 	 * of the sizes of the respective queues, and theoretically it could
1557 	 * work out the entire layout of the queue structures from this.  We
1558 	 * take the easy route and just lay this area out like everyone else
1559 	 * does.
1560 	 *
1561 	 * The Linux driver uses a much more complex scheme whereby several
1562 	 * header records are kept for each queue.  We use a couple of generic
1563 	 * list manipulation functions which 'know' the size of each list by
1564 	 * virtue of a table.
1565 	 */
1566 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1567 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1568 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1569 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1570 				((u_int32_t)sc->aac_queues -
1571 				(u_int32_t)sc->aac_common);
1572 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1573 
1574 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1575 		AAC_HOST_NORM_CMD_ENTRIES;
1576 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1577 		AAC_HOST_NORM_CMD_ENTRIES;
1578 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1579 		AAC_HOST_HIGH_CMD_ENTRIES;
1580 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1581 		AAC_HOST_HIGH_CMD_ENTRIES;
1582 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1583 		AAC_ADAP_NORM_CMD_ENTRIES;
1584 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1585 		AAC_ADAP_NORM_CMD_ENTRIES;
1586 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1587 		AAC_ADAP_HIGH_CMD_ENTRIES;
1588 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1589 		AAC_ADAP_HIGH_CMD_ENTRIES;
1590 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1591 		AAC_HOST_NORM_RESP_ENTRIES;
1592 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1593 		AAC_HOST_NORM_RESP_ENTRIES;
1594 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1595 		AAC_HOST_HIGH_RESP_ENTRIES;
1596 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1597 		AAC_HOST_HIGH_RESP_ENTRIES;
1598 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1599 		AAC_ADAP_NORM_RESP_ENTRIES;
1600 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1601 		AAC_ADAP_NORM_RESP_ENTRIES;
1602 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1603 		AAC_ADAP_HIGH_RESP_ENTRIES;
1604 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1605 		AAC_ADAP_HIGH_RESP_ENTRIES;
1606 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1607 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1608 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1609 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1610 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1611 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1612 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1613 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1614 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1615 		&sc->aac_queues->qt_HostNormRespQueue[0];
1616 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1617 		&sc->aac_queues->qt_HostHighRespQueue[0];
1618 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1619 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1620 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1621 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1622 
1623 	/*
1624 	 * Do controller-type-specific initialisation
1625 	 */
1626 	switch (sc->aac_hwif) {
1627 	case AAC_HWIF_I960RX:
1628 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1629 		break;
1630 	}
1631 
1632 	/*
1633 	 * Give the init structure to the controller.
1634 	 */
1635 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1636 			     sc->aac_common_busaddr +
1637 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1638 			     NULL)) {
1639 		device_printf(sc->aac_dev,
1640 			      "error establishing init structure\n");
1641 		error = EIO;
1642 		goto out;
1643 	}
1644 
1645 	error = 0;
1646 out:
1647 	return(error);
1648 }
1649 
1650 /*
1651  * Send a synchronous command to the controller and wait for a result.
1652  */
1653 static int
1654 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1655 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1656 		 u_int32_t *sp)
1657 {
1658 	time_t then;
1659 	u_int32_t status;
1660 
1661 	debug_called(3);
1662 
1663 	/* populate the mailbox */
1664 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1665 
1666 	/* ensure the sync command doorbell flag is cleared */
1667 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1668 
1669 	/* then set it to signal the adapter */
1670 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1671 
1672 	/* spin waiting for the command to complete */
1673 	then = time_second;
1674 	do {
1675 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1676 			debug(1, "timed out");
1677 			return(EIO);
1678 		}
1679 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1680 
1681 	/* clear the completion flag */
1682 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1683 
1684 	/* get the command status */
1685 	status = AAC_GET_MAILBOX(sc, 0);
1686 	if (sp != NULL)
1687 		*sp = status;
1688 	return(0);
1689 }
1690 
1691 /*
1692  * Grab the sync fib area.
1693  */
1694 int
1695 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1696 {
1697 
1698 	/*
1699 	 * If the force flag is set, the system is shutting down, or in
1700 	 * trouble.  Ignore the mutex.
1701 	 */
1702 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1703 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1704 
1705 	*fib = &sc->aac_common->ac_sync_fib;
1706 
1707 	return (1);
1708 }
1709 
1710 /*
1711  * Release the sync fib area.
1712  */
1713 void
1714 aac_release_sync_fib(struct aac_softc *sc)
1715 {
1716 
1717 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1718 }
1719 
1720 /*
1721  * Send a synchronous FIB to the controller and wait for a result.
1722  */
1723 int
1724 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1725 		 struct aac_fib *fib, u_int16_t datasize)
1726 {
1727 	debug_called(3);
1728 
1729 	if (datasize > AAC_FIB_DATASIZE)
1730 		return(EINVAL);
1731 
1732 	/*
1733 	 * Set up the sync FIB
1734 	 */
1735 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1736 				AAC_FIBSTATE_INITIALISED |
1737 				AAC_FIBSTATE_EMPTY;
1738 	fib->Header.XferState |= xferstate;
1739 	fib->Header.Command = command;
1740 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1741 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1742 	fib->Header.SenderSize = sizeof(struct aac_fib);
1743 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1744 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1745 					 offsetof(struct aac_common,
1746 						  ac_sync_fib);
1747 
1748 	/*
1749 	 * Give the FIB to the controller, wait for a response.
1750 	 */
1751 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1752 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1753 		debug(2, "IO error");
1754 		return(EIO);
1755 	}
1756 
1757 	return (0);
1758 }
1759 
1760 /*
1761  * Adapter-space FIB queue manipulation
1762  *
1763  * Note that the queue implementation here is a little funky; neither the PI or
1764  * CI will ever be zero.  This behaviour is a controller feature.
1765  */
1766 static struct {
1767 	int		size;
1768 	int		notify;
1769 } aac_qinfo[] = {
1770 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1771 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1772 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1773 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1774 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1775 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1776 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1777 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1778 };
1779 
1780 /*
1781  * Atomically insert an entry into the nominated queue, returns 0 on success or
1782  * EBUSY if the queue is full.
1783  *
1784  * Note: it would be more efficient to defer notifying the controller in
1785  *	 the case where we may be inserting several entries in rapid succession,
1786  *	 but implementing this usefully may be difficult (it would involve a
1787  *	 separate queue/notify interface).
1788  */
1789 static int
1790 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1791 {
1792 	u_int32_t pi, ci;
1793 	int error;
1794 	u_int32_t fib_size;
1795 	u_int32_t fib_addr;
1796 
1797 	debug_called(3);
1798 
1799 	fib_size = cm->cm_fib->Header.Size;
1800 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1801 
1802 	crit_enter();
1803 
1804 	/* get the producer/consumer indices */
1805 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1806 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1807 
1808 	/* wrap the queue? */
1809 	if (pi >= aac_qinfo[queue].size)
1810 		pi = 0;
1811 
1812 	/* check for queue full */
1813 	if ((pi + 1) == ci) {
1814 		error = EBUSY;
1815 		goto out;
1816 	}
1817 	/*
1818 	 * To avoid a race with its completion interrupt, place this command on
1819 	 * the busy queue prior to advertising it to the controller.
1820 	 */
1821 	aac_enqueue_busy(cm);
1822 
1823 
1824 
1825 	/* populate queue entry */
1826 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1827 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1828 
1829 	/* update producer index */
1830 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1831 
1832 	/* notify the adapter if we know how */
1833 	if (aac_qinfo[queue].notify != 0)
1834 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1835 
1836 	error = 0;
1837 
1838 out:
1839 	crit_exit();
1840 	return(error);
1841 }
1842 
1843 /*
1844  * Atomically remove one entry from the nominated queue, returns 0 on
1845  * success or ENOENT if the queue is empty.
1846  */
1847 static int
1848 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1849 		struct aac_fib **fib_addr)
1850 {
1851 	u_int32_t pi, ci;
1852 	int error;
1853 	int notify;
1854 
1855 	debug_called(3);
1856 
1857 	crit_enter();
1858 
1859 	/* get the producer/consumer indices */
1860 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1861 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1862 
1863 	/* check for queue empty */
1864 	if (ci == pi) {
1865 		error = ENOENT;
1866 		goto out;
1867 	}
1868 
1869 	/* wrap the pi so the following test works */
1870 	if (pi >= aac_qinfo[queue].size)
1871 		pi = 0;
1872 
1873 	notify = 0;
1874 	if (ci == pi + 1)
1875 		notify++;
1876 
1877 	/* wrap the queue? */
1878 	if (ci >= aac_qinfo[queue].size)
1879 		ci = 0;
1880 
1881 	/* fetch the entry */
1882 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1883 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1884 				       ci)->aq_fib_addr;
1885 
1886 	/*
1887 	 * Is this a fast response? If it is, update the fib fields in
1888 	 * local memory so the whole fib doesn't have to be DMA'd back up.
1889 	 */
1890 	if (*(uintptr_t *)fib_addr & 0x01) {
1891 		*(uintptr_t *)fib_addr &= ~0x01;
1892 		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1893 		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1894 	}
1895 	/* update consumer index */
1896 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1897 
1898 	/* if we have made the queue un-full, notify the adapter */
1899 	if (notify && (aac_qinfo[queue].notify != 0))
1900 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1901 	error = 0;
1902 
1903 out:
1904 	crit_exit();
1905 	return(error);
1906 }
1907 
1908 /*
1909  * Put our response to an Adapter Initialed Fib on the response queue
1910  */
1911 static int
1912 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1913 {
1914 	u_int32_t pi, ci;
1915 	int error;
1916 	u_int32_t fib_size;
1917 	u_int32_t fib_addr;
1918 
1919 	debug_called(1);
1920 
1921 	/* Tell the adapter where the FIB is */
1922 	fib_size = fib->Header.Size;
1923 	fib_addr = fib->Header.SenderFibAddress;
1924 	fib->Header.ReceiverFibAddress = fib_addr;
1925 
1926 	crit_enter();
1927 
1928 	/* get the producer/consumer indices */
1929 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1930 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1931 
1932 	/* wrap the queue? */
1933 	if (pi >= aac_qinfo[queue].size)
1934 		pi = 0;
1935 
1936 	/* check for queue full */
1937 	if ((pi + 1) == ci) {
1938 		error = EBUSY;
1939 		goto out;
1940 	}
1941 
1942 	/* populate queue entry */
1943 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1944 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1945 
1946 	/* update producer index */
1947 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1948 
1949 	/* notify the adapter if we know how */
1950 	if (aac_qinfo[queue].notify != 0)
1951 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1952 
1953 	error = 0;
1954 
1955 out:
1956 	crit_exit();
1957 	return(error);
1958 }
1959 
1960 /*
1961  * Check for commands that have been outstanding for a suspiciously long time,
1962  * and complain about them.
1963  */
1964 static void
1965 aac_timeout(void *xsc)
1966 {
1967 	struct aac_softc *sc = xsc;
1968 	struct aac_command *cm;
1969 	time_t deadline;
1970 	int timedout, code;
1971 #if 0
1972 	/* simulate an interrupt to handle possibly-missed interrupts */
1973 	/*
1974 	 * XXX This was done to work around another bug which has since been
1975 	 * fixed.  It is dangerous anyways because you don't want multiple
1976 	 * threads in the interrupt handler at the same time!  If calling
1977 	 * is deamed neccesary in the future, proper mutexes must be used.
1978 	 */
1979 	crit_enter();
1980 	aac_intr(sc);
1981 	crit_exit();
1982 
1983 	/* kick the I/O queue to restart it in the case of deadlock */
1984 	aac_startio(sc);
1985 #endif
1986 
1987 	/*
1988 	 * traverse the busy command list, bitch about late commands once
1989 	 * only.
1990 	 */
1991 	timedout = 0;
1992 	deadline = time_second - AAC_CMD_TIMEOUT;
1993 	crit_enter();
1994 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1995 		if ((cm->cm_timestamp  < deadline)
1996 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1997 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1998 			device_printf(sc->aac_dev,
1999 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2000 				      cm, (int)(time_second-cm->cm_timestamp));
2001 			AAC_PRINT_FIB(sc, cm->cm_fib);
2002 			timedout++;
2003 		}
2004 	}
2005 	if (timedout) {
2006 		code = AAC_GET_FWSTATUS(sc);
2007 		if (code != AAC_UP_AND_RUNNING) {
2008 			device_printf(sc->aac_dev, "WARNING! Controller is no "
2009 				      "longer running! code= 0x%x\n", code);
2010 
2011 		}
2012 	}
2013 	crit_exit();
2014 
2015 	/* reset the timer for next time */
2016 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2017 		      aac_timeout, sc);
2018 }
2019 
2020 /*
2021  * Interface Function Vectors
2022  */
2023 
2024 /*
2025  * Read the current firmware status word.
2026  */
2027 static int
2028 aac_sa_get_fwstatus(struct aac_softc *sc)
2029 {
2030 	debug_called(3);
2031 
2032 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2033 }
2034 
2035 static int
2036 aac_rx_get_fwstatus(struct aac_softc *sc)
2037 {
2038 	debug_called(3);
2039 
2040 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2041 }
2042 
2043 static int
2044 aac_fa_get_fwstatus(struct aac_softc *sc)
2045 {
2046 	int val;
2047 
2048 	debug_called(3);
2049 
2050 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2051 	return (val);
2052 }
2053 
2054 /*
2055  * Notify the controller of a change in a given queue
2056  */
2057 
2058 static void
2059 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2060 {
2061 	debug_called(3);
2062 
2063 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2064 }
2065 
2066 static void
2067 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2068 {
2069 	debug_called(3);
2070 
2071 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2072 }
2073 
2074 static void
2075 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2076 {
2077 	debug_called(3);
2078 
2079 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2080 	AAC_FA_HACK(sc);
2081 }
2082 
2083 /*
2084  * Get the interrupt reason bits
2085  */
2086 static int
2087 aac_sa_get_istatus(struct aac_softc *sc)
2088 {
2089 	debug_called(3);
2090 
2091 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2092 }
2093 
2094 static int
2095 aac_rx_get_istatus(struct aac_softc *sc)
2096 {
2097 	debug_called(3);
2098 
2099 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2100 }
2101 
2102 static int
2103 aac_fa_get_istatus(struct aac_softc *sc)
2104 {
2105 	int val;
2106 
2107 	debug_called(3);
2108 
2109 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2110 	return (val);
2111 }
2112 
2113 /*
2114  * Clear some interrupt reason bits
2115  */
2116 static void
2117 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2118 {
2119 	debug_called(3);
2120 
2121 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2122 }
2123 
2124 static void
2125 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2126 {
2127 	debug_called(3);
2128 
2129 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2130 }
2131 
2132 static void
2133 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2134 {
2135 	debug_called(3);
2136 
2137 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2138 	AAC_FA_HACK(sc);
2139 }
2140 
2141 /*
2142  * Populate the mailbox and set the command word
2143  */
2144 static void
2145 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2146 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2147 {
2148 	debug_called(4);
2149 
2150 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2151 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2152 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2153 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2154 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2155 }
2156 
2157 static void
2158 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2159 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2160 {
2161 	debug_called(4);
2162 
2163 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2164 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2165 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2166 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2167 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2168 }
2169 
2170 static void
2171 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2172 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2173 {
2174 	debug_called(4);
2175 
2176 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2177 	AAC_FA_HACK(sc);
2178 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2179 	AAC_FA_HACK(sc);
2180 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2181 	AAC_FA_HACK(sc);
2182 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2183 	AAC_FA_HACK(sc);
2184 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2185 	AAC_FA_HACK(sc);
2186 }
2187 
2188 /*
2189  * Fetch the immediate command status word
2190  */
2191 static int
2192 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2193 {
2194 	debug_called(4);
2195 
2196 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2197 }
2198 
2199 static int
2200 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2201 {
2202 	debug_called(4);
2203 
2204 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2205 }
2206 
2207 static int
2208 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2209 {
2210 	int val;
2211 
2212 	debug_called(4);
2213 
2214 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2215 	return (val);
2216 }
2217 
2218 /*
2219  * Set/clear interrupt masks
2220  */
2221 static void
2222 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2223 {
2224 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2225 
2226 	if (enable) {
2227 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2228 	} else {
2229 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2230 	}
2231 }
2232 
2233 static void
2234 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2235 {
2236 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2237 
2238 	if (enable) {
2239 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2240 	} else {
2241 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2242 	}
2243 }
2244 
2245 static void
2246 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2247 {
2248 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2249 
2250 	if (enable) {
2251 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2252 		AAC_FA_HACK(sc);
2253 	} else {
2254 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2255 		AAC_FA_HACK(sc);
2256 	}
2257 }
2258 
2259 /*
2260  * Debugging and Diagnostics
2261  */
2262 
2263 /*
2264  * Print some information about the controller.
2265  */
2266 static void
2267 aac_describe_controller(struct aac_softc *sc)
2268 {
2269 	struct aac_fib *fib;
2270 	struct aac_adapter_info	*info;
2271 
2272 	debug_called(2);
2273 
2274 	aac_alloc_sync_fib(sc, &fib, 0);
2275 
2276 	fib->data[0] = 0;
2277 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2278 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2279 		aac_release_sync_fib(sc);
2280 		return;
2281 	}
2282 	info = (struct aac_adapter_info *)&fib->data[0];
2283 
2284 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2285 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2286 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2287 		      aac_describe_code(aac_battery_platform,
2288 					info->batteryPlatform));
2289 
2290 	/* save the kernel revision structure for later use */
2291 	sc->aac_revision = info->KernelRevision;
2292 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2293 		      info->KernelRevision.external.comp.major,
2294 		      info->KernelRevision.external.comp.minor,
2295 		      info->KernelRevision.external.comp.dash,
2296 		      info->KernelRevision.buildNumber,
2297 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2298 
2299 	aac_release_sync_fib(sc);
2300 
2301 	if (1 || bootverbose) {
2302 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2303 			      sc->supported_options,
2304 			      "\20"
2305 			      "\1SNAPSHOT"
2306 			      "\2CLUSTERS"
2307 			      "\3WCACHE"
2308 			      "\4DATA64"
2309 			      "\5HOSTTIME"
2310 			      "\6RAID50"
2311 			      "\7WINDOW4GB"
2312 			      "\10SCSIUPGD"
2313 			      "\11SOFTERR"
2314 			      "\12NORECOND"
2315 			      "\13SGMAP64"
2316 			      "\14ALARM"
2317 			      "\15NONDASD");
2318 	}
2319 }
2320 
2321 /*
2322  * Look up a text description of a numeric error code and return a pointer to
2323  * same.
2324  */
2325 static char *
2326 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2327 {
2328 	int i;
2329 
2330 	for (i = 0; table[i].string != NULL; i++)
2331 		if (table[i].code == code)
2332 			return(table[i].string);
2333 	return(table[i + 1].string);
2334 }
2335 
2336 /*
2337  * Management Interface
2338  */
2339 
2340 static int
2341 aac_open(struct dev_open_args *ap)
2342 {
2343 	cdev_t dev = ap->a_head.a_dev;
2344 	struct aac_softc *sc;
2345 
2346 	debug_called(2);
2347 
2348 	sc = dev->si_drv1;
2349 
2350 	/* Check to make sure the device isn't already open */
2351 	if (sc->aac_state & AAC_STATE_OPEN) {
2352 		return EBUSY;
2353 	}
2354 	sc->aac_state |= AAC_STATE_OPEN;
2355 
2356 	return 0;
2357 }
2358 
2359 static int
2360 aac_close(struct dev_close_args *ap)
2361 {
2362 	cdev_t dev = ap->a_head.a_dev;
2363 	struct aac_softc *sc;
2364 
2365 	debug_called(2);
2366 
2367 	sc = dev->si_drv1;
2368 
2369 	/* Mark this unit as no longer open  */
2370 	sc->aac_state &= ~AAC_STATE_OPEN;
2371 
2372 	return 0;
2373 }
2374 
2375 static int
2376 aac_ioctl(struct dev_ioctl_args *ap)
2377 {
2378 	cdev_t dev = ap->a_head.a_dev;
2379 	caddr_t arg = ap->a_data;
2380 	struct aac_softc *sc = dev->si_drv1;
2381 	int error = 0;
2382 	int i;
2383 
2384 	debug_called(2);
2385 
2386 	if (ap->a_cmd == AACIO_STATS) {
2387 		union aac_statrequest *as = (union aac_statrequest *)arg;
2388 
2389 		switch (as->as_item) {
2390 		case AACQ_FREE:
2391 		case AACQ_BIO:
2392 		case AACQ_READY:
2393 		case AACQ_BUSY:
2394 		case AACQ_COMPLETE:
2395 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2396 			      sizeof(struct aac_qstat));
2397 			break;
2398 		default:
2399 			error = ENOENT;
2400 			break;
2401 		}
2402 		return(error);
2403 	}
2404 
2405 	arg = *(caddr_t *)arg;
2406 
2407 	switch (ap->a_cmd) {
2408 	/* AACIO_STATS already handled above */
2409 	case FSACTL_SENDFIB:
2410 		debug(1, "FSACTL_SENDFIB");
2411 		error = aac_ioctl_sendfib(sc, arg);
2412 		break;
2413 	case FSACTL_AIF_THREAD:
2414 		debug(1, "FSACTL_AIF_THREAD");
2415 		error = EINVAL;
2416 		break;
2417 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2418 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2419 		/*
2420 		 * Pass the caller out an AdapterFibContext.
2421 		 *
2422 		 * Note that because we only support one opener, we
2423 		 * basically ignore this.  Set the caller's context to a magic
2424 		 * number just in case.
2425 		 *
2426 		 * The Linux code hands the driver a pointer into kernel space,
2427 		 * and then trusts it when the caller hands it back.  Aiee!
2428 		 * Here, we give it the proc pointer of the per-adapter aif
2429 		 * thread. It's only used as a sanity check in other calls.
2430 		 */
2431 		i = (int)sc->aifthread;
2432 		error = copyout(&i, arg, sizeof(i));
2433 		break;
2434 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2435 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2436 		error = aac_getnext_aif(sc, arg);
2437 		break;
2438 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2439 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2440 		/* don't do anything here */
2441 		break;
2442 	case FSACTL_MINIPORT_REV_CHECK:
2443 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2444 		error = aac_rev_check(sc, arg);
2445 		break;
2446 	case FSACTL_QUERY_DISK:
2447 		debug(1, "FSACTL_QUERY_DISK");
2448 		error = aac_query_disk(sc, arg);
2449 			break;
2450 	case FSACTL_DELETE_DISK:
2451 		/*
2452 		 * We don't trust the underland to tell us when to delete a
2453 		 * container, rather we rely on an AIF coming from the
2454 		 * controller
2455 		 */
2456 		error = 0;
2457 		break;
2458 	default:
2459 		debug(1, "unsupported cmd 0x%lx\n", ap->a_cmd);
2460 		error = EINVAL;
2461 		break;
2462 	}
2463 	return(error);
2464 }
2465 
2466 static int
2467 aac_poll(struct dev_poll_args *ap)
2468 {
2469 	cdev_t dev = ap->a_head.a_dev;
2470 	struct aac_softc *sc;
2471 	int revents;
2472 
2473 	sc = dev->si_drv1;
2474 	revents = 0;
2475 
2476 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2477 	if ((ap->a_events & (POLLRDNORM | POLLIN)) != 0) {
2478 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2479 			revents |= ap->a_events & (POLLIN | POLLRDNORM);
2480 	}
2481 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2482 
2483 	if (revents == 0) {
2484 		if (ap->a_events & (POLLIN | POLLRDNORM))
2485 			selrecord(curthread, &sc->rcv_select);
2486 	}
2487 	ap->a_events = revents;
2488 	return (0);
2489 }
2490 
2491 /*
2492  * Send a FIB supplied from userspace
2493  */
2494 static int
2495 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2496 {
2497 	struct aac_command *cm;
2498 	int size, error;
2499 
2500 	debug_called(2);
2501 
2502 	cm = NULL;
2503 
2504 	/*
2505 	 * Get a command
2506 	 */
2507 	if (aac_alloc_command(sc, &cm)) {
2508 		error = EBUSY;
2509 		goto out;
2510 	}
2511 
2512 	/*
2513 	 * Fetch the FIB header, then re-copy to get data as well.
2514 	 */
2515 	if ((error = copyin(ufib, cm->cm_fib,
2516 			    sizeof(struct aac_fib_header))) != 0)
2517 		goto out;
2518 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2519 	if (size > sizeof(struct aac_fib)) {
2520 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2521 			      size, sizeof(struct aac_fib));
2522 		size = sizeof(struct aac_fib);
2523 	}
2524 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2525 		goto out;
2526 	cm->cm_fib->Header.Size = size;
2527 	cm->cm_timestamp = time_second;
2528 
2529 	/*
2530 	 * Pass the FIB to the controller, wait for it to complete.
2531 	 */
2532 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2533 		kprintf("aac_wait_command return %d\n", error);
2534 		goto out;
2535 	}
2536 
2537 	/*
2538 	 * Copy the FIB and data back out to the caller.
2539 	 */
2540 	size = cm->cm_fib->Header.Size;
2541 	if (size > sizeof(struct aac_fib)) {
2542 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2543 			      size, sizeof(struct aac_fib));
2544 		size = sizeof(struct aac_fib);
2545 	}
2546 	error = copyout(cm->cm_fib, ufib, size);
2547 
2548 out:
2549 	if (cm != NULL) {
2550 		aac_release_command(cm);
2551 	}
2552 	return(error);
2553 }
2554 
2555 /*
2556  * Handle an AIF sent to us by the controller; queue it for later reference.
2557  * If the queue fills up, then drop the older entries.
2558  */
2559 static void
2560 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2561 {
2562 	struct aac_aif_command *aif;
2563 	struct aac_container *co, *co_next;
2564 	struct aac_mntinfo *mi;
2565 	struct aac_mntinforesp *mir = NULL;
2566 	u_int16_t rsize;
2567 	int next, found;
2568 	int count = 0, added = 0, i = 0;
2569 
2570 	debug_called(2);
2571 
2572 	aif = (struct aac_aif_command*)&fib->data[0];
2573 	aac_print_aif(sc, aif);
2574 
2575 	/* Is it an event that we should care about? */
2576 	switch (aif->command) {
2577 	case AifCmdEventNotify:
2578 		switch (aif->data.EN.type) {
2579 		case AifEnAddContainer:
2580 		case AifEnDeleteContainer:
2581 			/*
2582 			 * A container was added or deleted, but the message
2583 			 * doesn't tell us anything else!  Re-enumerate the
2584 			 * containers and sort things out.
2585 			 */
2586 			aac_alloc_sync_fib(sc, &fib, 0);
2587 			mi = (struct aac_mntinfo *)&fib->data[0];
2588 			do {
2589 				/*
2590 				 * Ask the controller for its containers one at
2591 				 * a time.
2592 				 * XXX What if the controller's list changes
2593 				 * midway through this enumaration?
2594 				 * XXX This should be done async.
2595 				 */
2596 				bzero(mi, sizeof(struct aac_mntinfo));
2597 				mi->Command = VM_NameServe;
2598 				mi->MntType = FT_FILESYS;
2599 				mi->MntCount = i;
2600 				rsize = sizeof(mir);
2601 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2602 						 sizeof(struct aac_mntinfo))) {
2603 					device_printf(sc->aac_dev,
2604 					    "Error probing container %d\n", i);
2605 
2606 					continue;
2607 				}
2608 				mir = (struct aac_mntinforesp *)&fib->data[0];
2609 				/* XXX Need to check if count changed */
2610 				count = mir->MntRespCount;
2611 
2612 				/*
2613 				 * Check the container against our list.
2614 				 * co->co_found was already set to 0 in a
2615 				 * previous run.
2616 				 */
2617 				if ((mir->Status == ST_OK) &&
2618 				    (mir->MntTable[0].VolType != CT_NONE)) {
2619 					found = 0;
2620 					TAILQ_FOREACH(co,
2621 						      &sc->aac_container_tqh,
2622 						      co_link) {
2623 						if (co->co_mntobj.ObjectId ==
2624 						    mir->MntTable[0].ObjectId) {
2625 							co->co_found = 1;
2626 							found = 1;
2627 							break;
2628 						}
2629 					}
2630 					/*
2631 					 * If the container matched, continue
2632 					 * in the list.
2633 					 */
2634 					if (found) {
2635 						i++;
2636 						continue;
2637 					}
2638 
2639 					/*
2640 					 * This is a new container.  Do all the
2641 					 * appropriate things to set it up.						 */
2642 					aac_add_container(sc, mir, 1);
2643 					added = 1;
2644 				}
2645 				i++;
2646 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2647 			aac_release_sync_fib(sc);
2648 
2649 			/*
2650 			 * Go through our list of containers and see which ones
2651 			 * were not marked 'found'.  Since the controller didn't
2652 			 * list them they must have been deleted.  Do the
2653 			 * appropriate steps to destroy the device.  Also reset
2654 			 * the co->co_found field.
2655 			 */
2656 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2657 			while (co != NULL) {
2658 				if (co->co_found == 0) {
2659 					device_delete_child(sc->aac_dev,
2660 							    co->co_disk);
2661 					co_next = TAILQ_NEXT(co, co_link);
2662 					AAC_LOCK_ACQUIRE(&sc->
2663 							aac_container_lock);
2664 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2665 						     co_link);
2666 					AAC_LOCK_RELEASE(&sc->
2667 							 aac_container_lock);
2668 					FREE(co, M_AACBUF);
2669 					co = co_next;
2670 				} else {
2671 					co->co_found = 0;
2672 					co = TAILQ_NEXT(co, co_link);
2673 				}
2674 			}
2675 
2676 			/* Attach the newly created containers */
2677 			if (added)
2678 				bus_generic_attach(sc->aac_dev);
2679 
2680 				break;
2681 
2682 		default:
2683 			break;
2684 		}
2685 
2686 	default:
2687 		break;
2688 	}
2689 
2690 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2691 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2692 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2693 	if (next != sc->aac_aifq_tail) {
2694 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2695 		sc->aac_aifq_head = next;
2696 
2697 		/* On the off chance that someone is sleeping for an aif... */
2698 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2699 			wakeup(sc->aac_aifq);
2700 		/* token may have been lost */
2701 		/* Wakeup any poll()ers */
2702 		selwakeup(&sc->rcv_select);
2703 		/* token may have been lost */
2704 	}
2705 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2706 
2707 	return;
2708 }
2709 
2710 /*
2711  * Return the Revision of the driver to userspace and check to see if the
2712  * userspace app is possibly compatible.  This is extremely bogus since
2713  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2714  * returning what the card reported.
2715  */
2716 static int
2717 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2718 {
2719 	struct aac_rev_check rev_check;
2720 	struct aac_rev_check_resp rev_check_resp;
2721 	int error = 0;
2722 
2723 	debug_called(2);
2724 
2725 	/*
2726 	 * Copyin the revision struct from userspace
2727 	 */
2728 	if ((error = copyin(udata, (caddr_t)&rev_check,
2729 			sizeof(struct aac_rev_check))) != 0) {
2730 		return error;
2731 	}
2732 
2733 	debug(2, "Userland revision= %d\n",
2734 	      rev_check.callingRevision.buildNumber);
2735 
2736 	/*
2737 	 * Doctor up the response struct.
2738 	 */
2739 	rev_check_resp.possiblyCompatible = 1;
2740 	rev_check_resp.adapterSWRevision.external.ul =
2741 	    sc->aac_revision.external.ul;
2742 	rev_check_resp.adapterSWRevision.buildNumber =
2743 	    sc->aac_revision.buildNumber;
2744 
2745 	return(copyout((caddr_t)&rev_check_resp, udata,
2746 			sizeof(struct aac_rev_check_resp)));
2747 }
2748 
2749 /*
2750  * Pass the caller the next AIF in their queue
2751  */
2752 static int
2753 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2754 {
2755 	struct get_adapter_fib_ioctl agf;
2756 	int error;
2757 
2758 	debug_called(2);
2759 
2760 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2761 
2762 		/*
2763 		 * Check the magic number that we gave the caller.
2764 		 */
2765 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2766 			error = EFAULT;
2767 		} else {
2768 
2769 			crit_enter();
2770 			error = aac_return_aif(sc, agf.AifFib);
2771 
2772 			if ((error == EAGAIN) && (agf.Wait)) {
2773 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2774 				while (error == EAGAIN) {
2775 					error = tsleep(sc->aac_aifq,
2776 						       PCATCH, "aacaif", 0);
2777 					if (error == 0)
2778 						error = aac_return_aif(sc,
2779 						    agf.AifFib);
2780 				}
2781 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2782 			}
2783 			crit_exit();
2784 		}
2785 	}
2786 	return(error);
2787 }
2788 
2789 /*
2790  * Hand the next AIF off the top of the queue out to userspace.
2791  *
2792  * YYY token could be lost during copyout
2793  */
2794 static int
2795 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2796 {
2797 	int error;
2798 
2799 	debug_called(2);
2800 
2801 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2802 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2803 		error = EAGAIN;
2804 	} else {
2805 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2806 				sizeof(struct aac_aif_command));
2807 		if (error)
2808 			kprintf("aac_return_aif: copyout returned %d\n", error);
2809 		if (!error)
2810 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2811 					    AAC_AIFQ_LENGTH;
2812 	}
2813 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2814 	return(error);
2815 }
2816 
2817 /*
2818  * Give the userland some information about the container.  The AAC arch
2819  * expects the driver to be a SCSI passthrough type driver, so it expects
2820  * the containers to have b:t:l numbers.  Fake it.
2821  */
2822 static int
2823 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2824 {
2825 	struct aac_query_disk query_disk;
2826 	struct aac_container *co;
2827 	struct aac_disk	*disk;
2828 	int error, id;
2829 
2830 	debug_called(2);
2831 
2832 	disk = NULL;
2833 
2834 	error = copyin(uptr, (caddr_t)&query_disk,
2835 		       sizeof(struct aac_query_disk));
2836 	if (error)
2837 		return (error);
2838 
2839 	id = query_disk.ContainerNumber;
2840 	if (id == -1)
2841 		return (EINVAL);
2842 
2843 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2844 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2845 		if (co->co_mntobj.ObjectId == id)
2846 			break;
2847 		}
2848 
2849 		if (co == NULL) {
2850 			query_disk.Valid = 0;
2851 			query_disk.Locked = 0;
2852 			query_disk.Deleted = 1;		/* XXX is this right? */
2853 		} else {
2854 			disk = device_get_softc(co->co_disk);
2855 			query_disk.Valid = 1;
2856 			query_disk.Locked =
2857 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2858 			query_disk.Deleted = 0;
2859 			query_disk.Bus = device_get_unit(sc->aac_dev);
2860 			query_disk.Target = disk->unit;
2861 			query_disk.Lun = 0;
2862 			query_disk.UnMapped = 0;
2863 			bcopy(disk->ad_dev_t->si_name,
2864 			      &query_disk.diskDeviceName[0], 10);
2865 		}
2866 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2867 
2868 	error = copyout((caddr_t)&query_disk, uptr,
2869 			sizeof(struct aac_query_disk));
2870 
2871 	return (error);
2872 }
2873 
2874 static void
2875 aac_get_bus_info(struct aac_softc *sc)
2876 {
2877 	struct aac_fib *fib;
2878 	struct aac_ctcfg *c_cmd;
2879 	struct aac_ctcfg_resp *c_resp;
2880 	struct aac_vmioctl *vmi;
2881 	struct aac_vmi_businf_resp *vmi_resp;
2882 	struct aac_getbusinf businfo;
2883 	struct aac_cam_inf *caminf;
2884 	device_t child;
2885 	int i, found, error;
2886 
2887 	aac_alloc_sync_fib(sc, &fib, 0);
2888 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2889 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2890 
2891 	c_cmd->Command = VM_ContainerConfig;
2892 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2893 	c_cmd->param = 0;
2894 
2895 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2896 	    sizeof(struct aac_ctcfg));
2897 	if (error) {
2898 		device_printf(sc->aac_dev, "Error %d sending "
2899 		    "VM_ContainerConfig command\n", error);
2900 		aac_release_sync_fib(sc);
2901 		return;
2902 	}
2903 
2904 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2905 	if (c_resp->Status != ST_OK) {
2906 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2907 		    c_resp->Status);
2908 		aac_release_sync_fib(sc);
2909 		return;
2910 	}
2911 
2912 	sc->scsi_method_id = c_resp->param;
2913 
2914 	vmi = (struct aac_vmioctl *)&fib->data[0];
2915 	bzero(vmi, sizeof(struct aac_vmioctl));
2916 
2917 	vmi->Command = VM_Ioctl;
2918 	vmi->ObjType = FT_DRIVE;
2919 	vmi->MethId = sc->scsi_method_id;
2920 	vmi->ObjId = 0;
2921 	vmi->IoctlCmd = GetBusInfo;
2922 
2923 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2924 	    sizeof(struct aac_vmioctl));
2925 	if (error) {
2926 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2927 		    error);
2928 		aac_release_sync_fib(sc);
2929 		return;
2930 	}
2931 
2932 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2933 	if (vmi_resp->Status != ST_OK) {
2934 		debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2935 		aac_release_sync_fib(sc);
2936 		return;
2937 	}
2938 
2939 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2940 	aac_release_sync_fib(sc);
2941 
2942 	found = 0;
2943 	for (i = 0; i < businfo.BusCount; i++) {
2944 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2945 			continue;
2946 
2947 		MALLOC(caminf, struct aac_cam_inf *,
2948 		    sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2949 
2950 		child = device_add_child(sc->aac_dev, "aacp", -1);
2951 		if (child == NULL) {
2952 			device_printf(sc->aac_dev, "device_add_child failed\n");
2953 			continue;
2954 		}
2955 
2956 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2957 		caminf->BusNumber = i;
2958 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2959 		caminf->aac_sc = sc;
2960 
2961 		device_set_ivars(child, caminf);
2962 		device_set_desc(child, "SCSI Passthrough Bus");
2963 
2964 		found = 1;
2965 	}
2966 
2967 	if (found)
2968 		bus_generic_attach(sc->aac_dev);
2969 
2970 	return;
2971 }
2972