xref: /dragonfly/sys/dev/raid/aac/aac.c (revision d5f516c3)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *	$DragonFly: src/sys/dev/raid/aac/aac.c,v 1.16 2004/09/15 16:23:51 joerg Exp $
31  */
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52 
53 #include "aac_compat.h"
54 
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 
67 #include "aacreg.h"
68 #include "aac_ioctl.h"
69 #include "aacvar.h"
70 #include "aac_tables.h"
71 #include "aac_cam.h"
72 
73 static void	aac_startup(void *arg);
74 static void	aac_add_container(struct aac_softc *sc,
75 				  struct aac_mntinforesp *mir, int f);
76 static void	aac_get_bus_info(struct aac_softc *sc);
77 
78 /* Command Processing */
79 static void	aac_timeout(void *ssc);
80 static int	aac_start(struct aac_command *cm);
81 static void	aac_complete(void *context, int pending);
82 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83 static void	aac_bio_complete(struct aac_command *cm);
84 static int	aac_wait_command(struct aac_command *cm, int timeout);
85 static void	aac_host_command(struct aac_softc *sc);
86 static void	aac_host_response(struct aac_softc *sc);
87 
88 /* Command Buffer Management */
89 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90 				       int nseg, int error);
91 static int	aac_alloc_commands(struct aac_softc *sc);
92 static void	aac_free_commands(struct aac_softc *sc);
93 static void	aac_map_command(struct aac_command *cm);
94 static void	aac_unmap_command(struct aac_command *cm);
95 
96 /* Hardware Interface */
97 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98 			       int error);
99 static int	aac_check_firmware(struct aac_softc *sc);
100 static int	aac_init(struct aac_softc *sc);
101 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
102 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103 				 u_int32_t arg3, u_int32_t *sp);
104 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
105 				struct aac_command *cm);
106 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
107 				u_int32_t *fib_size, struct aac_fib **fib_addr);
108 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
109 				     struct aac_fib *fib);
110 
111 /* Falcon/PPC interface */
112 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
113 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
114 static int	aac_fa_get_istatus(struct aac_softc *sc);
115 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117 				   u_int32_t arg0, u_int32_t arg1,
118 				   u_int32_t arg2, u_int32_t arg3);
119 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
120 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121 
122 struct aac_interface aac_fa_interface = {
123 	aac_fa_get_fwstatus,
124 	aac_fa_qnotify,
125 	aac_fa_get_istatus,
126 	aac_fa_clear_istatus,
127 	aac_fa_set_mailbox,
128 	aac_fa_get_mailbox,
129 	aac_fa_set_interrupts
130 };
131 
132 /* StrongARM interface */
133 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
134 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
135 static int	aac_sa_get_istatus(struct aac_softc *sc);
136 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138 				   u_int32_t arg0, u_int32_t arg1,
139 				   u_int32_t arg2, u_int32_t arg3);
140 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
141 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142 
143 struct aac_interface aac_sa_interface = {
144 	aac_sa_get_fwstatus,
145 	aac_sa_qnotify,
146 	aac_sa_get_istatus,
147 	aac_sa_clear_istatus,
148 	aac_sa_set_mailbox,
149 	aac_sa_get_mailbox,
150 	aac_sa_set_interrupts
151 };
152 
153 /* i960Rx interface */
154 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
155 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
156 static int	aac_rx_get_istatus(struct aac_softc *sc);
157 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159 				   u_int32_t arg0, u_int32_t arg1,
160 				   u_int32_t arg2, u_int32_t arg3);
161 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
162 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163 
164 struct aac_interface aac_rx_interface = {
165 	aac_rx_get_fwstatus,
166 	aac_rx_qnotify,
167 	aac_rx_get_istatus,
168 	aac_rx_clear_istatus,
169 	aac_rx_set_mailbox,
170 	aac_rx_get_mailbox,
171 	aac_rx_set_interrupts
172 };
173 
174 /* Debugging and Diagnostics */
175 static void	aac_describe_controller(struct aac_softc *sc);
176 static char	*aac_describe_code(struct aac_code_lookup *table,
177 				   u_int32_t code);
178 
179 /* Management Interface */
180 static d_open_t		aac_open;
181 static d_close_t	aac_close;
182 static d_ioctl_t	aac_ioctl;
183 static d_poll_t		aac_poll;
184 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185 static void		aac_handle_aif(struct aac_softc *sc,
186 					   struct aac_fib *fib);
187 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
188 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191 
192 #define AAC_CDEV_MAJOR	150
193 
194 static struct cdevsw aac_cdevsw = {
195 	"aac",			/* name */
196 	AAC_CDEV_MAJOR,		/* major */
197 	0,			/* flags */
198 	NULL,			/* port */
199 	NULL,			/* clone */
200 
201 	aac_open,		/* open */
202 	aac_close,		/* close */
203 	noread,			/* read */
204 	nowrite,		/* write */
205 	aac_ioctl,		/* ioctl */
206 	aac_poll,		/* poll */
207 	nommap,			/* mmap */
208 	nostrategy,		/* strategy */
209 	nodump,			/* dump */
210 	nopsize			/* psize */
211 };
212 
213 DECLARE_DUMMY_MODULE(aac);
214 
215 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
216 
217 /* sysctl node */
218 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
219 
220 /*
221  * Device Interface
222  */
223 
224 /*
225  * Initialise the controller and softc
226  */
227 int
228 aac_attach(struct aac_softc *sc)
229 {
230 	int error, unit;
231 
232 	debug_called(1);
233 	callout_init(&sc->aac_watchdog);
234 
235 	/*
236 	 * Initialise per-controller queues.
237 	 */
238 	aac_initq_free(sc);
239 	aac_initq_ready(sc);
240 	aac_initq_busy(sc);
241 	aac_initq_complete(sc);
242 	aac_initq_bio(sc);
243 
244 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
245 	/*
246 	 * Initialise command-completion task.
247 	 */
248 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
249 #endif
250 
251 	/* disable interrupts before we enable anything */
252 	AAC_MASK_INTERRUPTS(sc);
253 
254 	/* mark controller as suspended until we get ourselves organised */
255 	sc->aac_state |= AAC_STATE_SUSPEND;
256 
257 	/*
258 	 * Check that the firmware on the card is supported.
259 	 */
260 	if ((error = aac_check_firmware(sc)) != 0)
261 		return(error);
262 
263 	/* Init the sync fib lock */
264 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
265 
266 	/*
267 	 * Initialise the adapter.
268 	 */
269 	if ((error = aac_init(sc)) != 0)
270 		return(error);
271 
272 	/*
273 	 * Print a little information about the controller.
274 	 */
275 	aac_describe_controller(sc);
276 
277 	/*
278 	 * Register to probe our containers later.
279 	 */
280 	TAILQ_INIT(&sc->aac_container_tqh);
281 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
282 
283 	/*
284 	 * Lock for the AIF queue
285 	 */
286 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
287 
288 	sc->aac_ich.ich_func = aac_startup;
289 	sc->aac_ich.ich_arg = sc;
290 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
291 		device_printf(sc->aac_dev,
292 			      "can't establish configuration hook\n");
293 		return(ENXIO);
294 	}
295 
296 	/*
297 	 * Make the control device.
298 	 */
299 	unit = device_get_unit(sc->aac_dev);
300 	cdevsw_add(&aac_cdevsw, -1, unit);
301 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
302 				 "aac%d", unit);
303 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
304 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
305 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
306 #endif
307 	sc->aac_dev_t->si_drv1 = sc;
308 	reference_dev(sc->aac_dev_t);
309 
310 	/* Create the AIF thread */
311 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
312 	if (kthread_create((void(*)(void *))aac_host_command, sc,
313 			   &sc->aifthread, 0, "aac%daif", unit))
314 #else
315 	if (kthread_create((void(*)(void *))aac_host_command, sc,
316 			   &sc->aifthread, "aac%daif", unit))
317 #endif
318 		panic("Could not create AIF thread\n");
319 
320 	/* Register the shutdown method to only be called post-dump */
321 	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
322 				   SHUTDOWN_PRI_DEFAULT)) == NULL)
323 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
324 
325 	/* Register with CAM for the non-DASD devices */
326 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
327 		aac_get_bus_info(sc);
328 
329 	return(0);
330 }
331 
332 /*
333  * Probe for containers, create disks.
334  */
335 static void
336 aac_startup(void *arg)
337 {
338 	struct aac_softc *sc;
339 	struct aac_fib *fib;
340 	struct aac_mntinfo *mi;
341 	struct aac_mntinforesp *mir = NULL;
342 	int i = 0;
343 
344 	debug_called(1);
345 
346 	sc = (struct aac_softc *)arg;
347 
348 	/* disconnect ourselves from the intrhook chain */
349 	config_intrhook_disestablish(&sc->aac_ich);
350 
351 	aac_alloc_sync_fib(sc, &fib, 0);
352 	mi = (struct aac_mntinfo *)&fib->data[0];
353 
354 	/* loop over possible containers */
355 	do {
356 		/* request information on this container */
357 		bzero(mi, sizeof(struct aac_mntinfo));
358 		mi->Command = VM_NameServe;
359 		mi->MntType = FT_FILESYS;
360 		mi->MntCount = i;
361 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
362 				 sizeof(struct aac_mntinfo))) {
363 			debug(2, "error probing container %d", i);
364 			continue;
365 		}
366 
367 		mir = (struct aac_mntinforesp *)&fib->data[0];
368 		aac_add_container(sc, mir, 0);
369 		i++;
370 	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
371 
372 	aac_release_sync_fib(sc);
373 
374 	/* poke the bus to actually attach the child devices */
375 	if (bus_generic_attach(sc->aac_dev))
376 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
377 
378 	/* mark the controller up */
379 	sc->aac_state &= ~AAC_STATE_SUSPEND;
380 
381 	/* enable interrupts now */
382 	AAC_UNMASK_INTERRUPTS(sc);
383 
384 	/* enable the timeout watchdog */
385 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
386 		      aac_timeout, sc);
387 }
388 
389 /*
390  * Create a device to respresent a new container
391  */
392 static void
393 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
394 {
395 	struct aac_container *co;
396 	device_t child;
397 
398 	/*
399 	 * Check container volume type for validity.  Note that many of
400 	 * the possible types may never show up.
401 	 */
402 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
403 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
404 		       M_INTWAIT);
405 		debug(1, "id %x  name '%.16s'  size %u  type %d",
406 		      mir->MntTable[0].ObjectId,
407 		      mir->MntTable[0].FileSystemName,
408 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
409 
410 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
411 			device_printf(sc->aac_dev, "device_add_child failed\n");
412 		else
413 			device_set_ivars(child, co);
414 		device_set_desc(child, aac_describe_code(aac_container_types,
415 				mir->MntTable[0].VolType));
416 		co->co_disk = child;
417 		co->co_found = f;
418 		bcopy(&mir->MntTable[0], &co->co_mntobj,
419 		      sizeof(struct aac_mntobj));
420 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
421 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
422 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
423 	}
424 }
425 
426 /*
427  * Free all of the resources associated with (sc)
428  *
429  * Should not be called if the controller is active.
430  */
431 void
432 aac_free(struct aac_softc *sc)
433 {
434 	debug_called(1);
435 
436 	/* remove the control device */
437 	if (sc->aac_dev_t != NULL)
438 		destroy_dev(sc->aac_dev_t);
439 
440 	/* throw away any FIB buffers, discard the FIB DMA tag */
441 	if (sc->aac_fibs != NULL)
442 		aac_free_commands(sc);
443 	if (sc->aac_fib_dmat)
444 		bus_dma_tag_destroy(sc->aac_fib_dmat);
445 
446 	/* destroy the common area */
447 	if (sc->aac_common) {
448 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
449 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
450 				sc->aac_common_dmamap);
451 	}
452 	if (sc->aac_common_dmat)
453 		bus_dma_tag_destroy(sc->aac_common_dmat);
454 
455 	/* disconnect the interrupt handler */
456 	if (sc->aac_intr)
457 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
458 	if (sc->aac_irq != NULL)
459 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
460 				     sc->aac_irq);
461 
462 	/* destroy data-transfer DMA tag */
463 	if (sc->aac_buffer_dmat)
464 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
465 
466 	/* destroy the parent DMA tag */
467 	if (sc->aac_parent_dmat)
468 		bus_dma_tag_destroy(sc->aac_parent_dmat);
469 
470 	/* release the register window mapping */
471 	if (sc->aac_regs_resource != NULL) {
472 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
473 				     sc->aac_regs_rid, sc->aac_regs_resource);
474 	}
475 	cdevsw_remove(&aac_cdevsw, -1, device_get_unit(sc->aac_dev));
476 }
477 
478 /*
479  * Disconnect from the controller completely, in preparation for unload.
480  */
481 int
482 aac_detach(device_t dev)
483 {
484 	struct aac_softc *sc;
485 #if AAC_BROKEN
486 	int error;
487 #endif
488 
489 	debug_called(1);
490 
491 	sc = device_get_softc(dev);
492 
493 	callout_stop(&sc->aac_watchdog);
494 
495 	if (sc->aac_state & AAC_STATE_OPEN)
496 	return(EBUSY);
497 
498 #if AAC_BROKEN
499 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
500 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
501 		wakeup(sc->aifthread);
502 		tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
503 	}
504 
505 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
506 		panic("Cannot shutdown AIF thread\n");
507 
508 	if ((error = aac_shutdown(dev)))
509 		return(error);
510 
511 	aac_free(sc);
512 
513 	return(0);
514 #else
515 	return (EBUSY);
516 #endif
517 }
518 
519 /*
520  * Bring the controller down to a dormant state and detach all child devices.
521  *
522  * This function is called before detach or system shutdown.
523  *
524  * Note that we can assume that the bioq on the controller is empty, as we won't
525  * allow shutdown if any device is open.
526  */
527 int
528 aac_shutdown(device_t dev)
529 {
530 	struct aac_softc *sc;
531 	struct aac_fib *fib;
532 	struct aac_close_command *cc;
533 	int s;
534 
535 	debug_called(1);
536 
537 	sc = device_get_softc(dev);
538 
539 	s = splbio();
540 
541 	sc->aac_state |= AAC_STATE_SUSPEND;
542 
543 	/*
544 	 * Send a Container shutdown followed by a HostShutdown FIB to the
545 	 * controller to convince it that we don't want to talk to it anymore.
546 	 * We've been closed and all I/O completed already
547 	 */
548 	device_printf(sc->aac_dev, "shutting down controller...");
549 
550 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
551 	cc = (struct aac_close_command *)&fib->data[0];
552 
553 	bzero(cc, sizeof(struct aac_close_command));
554 	cc->Command = VM_CloseAll;
555 	cc->ContainerId = 0xffffffff;
556 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
557 	    sizeof(struct aac_close_command)))
558 		printf("FAILED.\n");
559 	else {
560 		fib->data[0] = 0;
561 		/*
562 		 * XXX Issuing this command to the controller makes it shut down
563 		 * but also keeps it from coming back up without a reset of the
564 		 * PCI bus.  This is not desirable if you are just unloading the
565 		 * driver module with the intent to reload it later.
566 		 */
567 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
568 		    fib, 1)) {
569 			printf("FAILED.\n");
570 		} else {
571 			printf("done.\n");
572 		}
573 	}
574 
575 	AAC_MASK_INTERRUPTS(sc);
576 
577 	splx(s);
578 	return(0);
579 }
580 
581 /*
582  * Bring the controller to a quiescent state, ready for system suspend.
583  */
584 int
585 aac_suspend(device_t dev)
586 {
587 	struct aac_softc *sc;
588 	int s;
589 
590 	debug_called(1);
591 
592 	sc = device_get_softc(dev);
593 
594 	s = splbio();
595 
596 	sc->aac_state |= AAC_STATE_SUSPEND;
597 
598 	AAC_MASK_INTERRUPTS(sc);
599 	splx(s);
600 	return(0);
601 }
602 
603 /*
604  * Bring the controller back to a state ready for operation.
605  */
606 int
607 aac_resume(device_t dev)
608 {
609 	struct aac_softc *sc;
610 
611 	debug_called(1);
612 
613 	sc = device_get_softc(dev);
614 
615 	sc->aac_state &= ~AAC_STATE_SUSPEND;
616 	AAC_UNMASK_INTERRUPTS(sc);
617 	return(0);
618 }
619 
620 /*
621  * Take an interrupt.
622  */
623 void
624 aac_intr(void *arg)
625 {
626 	struct aac_softc *sc;
627 	u_int16_t reason;
628 	u_int32_t *resp_queue;
629 
630 	debug_called(2);
631 
632 	sc = (struct aac_softc *)arg;
633 
634 	/*
635 	 * Optimize the common case of adapter response interrupts.
636 	 * We must read from the card prior to processing the responses
637 	 * to ensure the clear is flushed prior to accessing the queues.
638 	 * Reading the queues from local memory might save us a PCI read.
639 	 */
640 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
641 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
642 		reason = AAC_DB_RESPONSE_READY;
643 	else
644 		reason = AAC_GET_ISTATUS(sc);
645 	AAC_CLEAR_ISTATUS(sc, reason);
646 	(void)AAC_GET_ISTATUS(sc);
647 
648 	/* It's not ok to return here because of races with the previous step */
649 	if (reason & AAC_DB_RESPONSE_READY)
650 		aac_host_response(sc);
651 
652 	/* controller wants to talk to the log */
653 	if (reason & AAC_DB_PRINTF)
654 		aac_print_printf(sc);
655 
656 	/* controller has a message for us? */
657 	if (reason & AAC_DB_COMMAND_READY) {
658 		/* XXX What happens if the thread is already awake? */
659 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
660 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
661 			wakeup(sc->aifthread);
662 		}
663 	}
664 }
665 
666 /*
667  * Command Processing
668  */
669 
670 /*
671  * Start as much queued I/O as possible on the controller
672  */
673 void
674 aac_startio(struct aac_softc *sc)
675 {
676 	struct aac_command *cm;
677 
678 	debug_called(2);
679 
680 	for (;;) {
681 		/*
682 		 * Try to get a command that's been put off for lack of
683 		 * resources
684 		 */
685 		cm = aac_dequeue_ready(sc);
686 
687 		/*
688 		 * Try to build a command off the bio queue (ignore error
689 		 * return)
690 		 */
691 		if (cm == NULL)
692 			aac_bio_command(sc, &cm);
693 
694 		/* nothing to do? */
695 		if (cm == NULL)
696 			break;
697 
698 		/* try to give the command to the controller */
699 		if (aac_start(cm) == EBUSY) {
700 			/* put it on the ready queue for later */
701 			aac_requeue_ready(cm);
702 			break;
703 		}
704 	}
705 }
706 
707 /*
708  * Deliver a command to the controller; allocate controller resources at the
709  * last moment when possible.
710  */
711 static int
712 aac_start(struct aac_command *cm)
713 {
714 	struct aac_softc *sc;
715 	int error;
716 
717 	debug_called(2);
718 
719 	sc = cm->cm_sc;
720 
721 	/* get the command mapped */
722 	aac_map_command(cm);
723 
724 	/* fix up the address values in the FIB */
725 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
726 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
727 
728 	/* save a pointer to the command for speedy reverse-lookup */
729 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
730 							 * address issue */
731 	/* put the FIB on the outbound queue */
732 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
733 	return(error);
734 }
735 
736 /*
737  * Handle notification of one or more FIBs coming from the controller.
738  */
739 static void
740 aac_host_command(struct aac_softc *sc)
741 {
742 	struct aac_fib *fib;
743 	u_int32_t fib_size;
744 	int size;
745 
746 	debug_called(2);
747 
748 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
749 
750 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
751 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
752 			tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
753 
754 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
755 		for (;;) {
756 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
757 					    &fib_size, &fib))
758 				break;	/* nothing to do */
759 
760 			AAC_PRINT_FIB(sc, fib);
761 
762 			switch (fib->Header.Command) {
763 			case AifRequest:
764 				aac_handle_aif(sc, fib);
765 				break;
766 			default:
767 				device_printf(sc->aac_dev, "unknown command "
768 					      "from controller\n");
769 				break;
770 			}
771 
772 			/* Return the AIF to the controller. */
773 			if ((fib->Header.XferState == 0) ||
774 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
775 				break;
776 
777 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
778 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
779 				*(AAC_FSAStatus*)fib->data = ST_OK;
780 
781 				/* XXX Compute the Size field? */
782 				size = fib->Header.Size;
783 				if (size > sizeof(struct aac_fib)) {
784 					size = sizeof(struct aac_fib);
785 					fib->Header.Size = size;
786 				}
787 				/*
788 				 * Since we did not generate this command, it
789 				 * cannot go through the normal
790 				 * enqueue->startio chain.
791 				 */
792 				aac_enqueue_response(sc,
793 						     AAC_ADAP_NORM_RESP_QUEUE,
794 						     fib);
795 			}
796 		}
797 	}
798 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
799 	wakeup(sc->aac_dev);
800 
801 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
802 	mtx_lock(&Giant);
803 #endif
804 	kthread_exit();
805 }
806 
807 /*
808  * Handle notification of one or more FIBs completed by the controller
809  */
810 static void
811 aac_host_response(struct aac_softc *sc)
812 {
813 	struct aac_command *cm;
814 	struct aac_fib *fib;
815 	u_int32_t fib_size;
816 
817 	debug_called(2);
818 
819 	for (;;) {
820 		/* look for completed FIBs on our queue */
821 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
822 				    &fib))
823 			break;	/* nothing to do */
824 
825 		/* get the command, unmap and queue for later processing */
826 		cm = (struct aac_command *)fib->Header.SenderData;
827 		if (cm == NULL) {
828 			AAC_PRINT_FIB(sc, fib);
829 		} else {
830 			aac_remove_busy(cm);
831 			aac_unmap_command(cm);		/* XXX defer? */
832 			aac_enqueue_complete(cm);
833 		}
834 	}
835 
836 	/* handle completion processing */
837 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
838 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
839 #else
840 	aac_complete(sc, 0);
841 #endif
842 }
843 
844 /*
845  * Process completed commands.
846  */
847 static void
848 aac_complete(void *context, int pending)
849 {
850 	struct aac_softc *sc;
851 	struct aac_command *cm;
852 
853 	debug_called(2);
854 
855 	sc = (struct aac_softc *)context;
856 
857 	/* pull completed commands off the queue */
858 	for (;;) {
859 		cm = aac_dequeue_complete(sc);
860 		if (cm == NULL)
861 			break;
862 		cm->cm_flags |= AAC_CMD_COMPLETED;
863 
864 		/* is there a completion handler? */
865 		if (cm->cm_complete != NULL) {
866 			cm->cm_complete(cm);
867 		} else {
868 			/* assume that someone is sleeping on this command */
869 			wakeup(cm);
870 		}
871 	}
872 
873 	/* see if we can start some more I/O */
874 	aac_startio(sc);
875 }
876 
877 /*
878  * Handle a bio submitted from a disk device.
879  */
880 void
881 aac_submit_bio(struct bio *bp)
882 {
883 	struct aac_disk *ad;
884 	struct aac_softc *sc;
885 
886 	debug_called(2);
887 
888 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
889 	sc = ad->ad_controller;
890 
891 	/* queue the BIO and try to get some work done */
892 	aac_enqueue_bio(sc, bp);
893 	aac_startio(sc);
894 }
895 
896 /*
897  * Get a bio and build a command to go with it.
898  */
899 static int
900 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
901 {
902 	struct aac_command *cm;
903 	struct aac_fib *fib;
904 	struct aac_blockread *br;
905 	struct aac_blockwrite *bw;
906 	struct aac_disk *ad;
907 	struct bio *bp;
908 
909 	debug_called(2);
910 
911 	/* get the resources we will need */
912 	cm = NULL;
913 	if ((bp = aac_dequeue_bio(sc)) == NULL)
914 		goto fail;
915 	if (aac_alloc_command(sc, &cm))	/* get a command */
916 		goto fail;
917 
918 	/* fill out the command */
919 	cm->cm_data = (void *)bp->bio_data;
920 	cm->cm_datalen = bp->bio_bcount;
921 	cm->cm_complete = aac_bio_complete;
922 	cm->cm_private = bp;
923 	cm->cm_timestamp = time_second;
924 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
925 
926 	/* build the FIB */
927 	fib = cm->cm_fib;
928 	fib->Header.XferState =
929 		AAC_FIBSTATE_HOSTOWNED   |
930 		AAC_FIBSTATE_INITIALISED |
931 		AAC_FIBSTATE_EMPTY	 |
932 		AAC_FIBSTATE_FROMHOST	 |
933 		AAC_FIBSTATE_REXPECTED   |
934 		AAC_FIBSTATE_NORM	 |
935 		AAC_FIBSTATE_ASYNC	 |
936 		AAC_FIBSTATE_FAST_RESPONSE;
937 	fib->Header.Command = ContainerCommand;
938 	fib->Header.Size = sizeof(struct aac_fib_header);
939 
940 	/* build the read/write request */
941 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
942 	if (BIO_IS_READ(bp)) {
943 		br = (struct aac_blockread *)&fib->data[0];
944 		br->Command = VM_CtBlockRead;
945 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
946 		br->BlockNumber = bp->bio_pblkno;
947 		br->ByteCount = bp->bio_bcount;
948 		fib->Header.Size += sizeof(struct aac_blockread);
949 		cm->cm_sgtable = &br->SgMap;
950 		cm->cm_flags |= AAC_CMD_DATAIN;
951 	} else {
952 		bw = (struct aac_blockwrite *)&fib->data[0];
953 		bw->Command = VM_CtBlockWrite;
954 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
955 		bw->BlockNumber = bp->bio_pblkno;
956 		bw->ByteCount = bp->bio_bcount;
957 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
958 		fib->Header.Size += sizeof(struct aac_blockwrite);
959 		cm->cm_flags |= AAC_CMD_DATAOUT;
960 		cm->cm_sgtable = &bw->SgMap;
961 	}
962 
963 	*cmp = cm;
964 	return(0);
965 
966 fail:
967 	if (bp != NULL)
968 		aac_enqueue_bio(sc, bp);
969 	if (cm != NULL)
970 		aac_release_command(cm);
971 	return(ENOMEM);
972 }
973 
974 /*
975  * Handle a bio-instigated command that has been completed.
976  */
977 static void
978 aac_bio_complete(struct aac_command *cm)
979 {
980 	struct aac_blockread_response *brr;
981 	struct aac_blockwrite_response *bwr;
982 	struct bio *bp;
983 	AAC_FSAStatus status;
984 
985 	/* fetch relevant status and then release the command */
986 	bp = (struct bio *)cm->cm_private;
987 	if (BIO_IS_READ(bp)) {
988 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
989 		status = brr->Status;
990 	} else {
991 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
992 		status = bwr->Status;
993 	}
994 	aac_release_command(cm);
995 
996 	/* fix up the bio based on status */
997 	if (status == ST_OK) {
998 		bp->bio_resid = 0;
999 	} else {
1000 		bp->bio_error = EIO;
1001 		bp->bio_flags |= BIO_ERROR;
1002 		/* pass an error string out to the disk layer */
1003 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1004 						    status);
1005 	}
1006 	aac_biodone(bp);
1007 }
1008 
1009 /*
1010  * Dump a block of data to the controller.  If the queue is full, tell the
1011  * caller to hold off and wait for the queue to drain.
1012  */
1013 int
1014 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1015 {
1016 	struct aac_softc *sc;
1017 	struct aac_command *cm;
1018 	struct aac_fib *fib;
1019 	struct aac_blockwrite *bw;
1020 
1021 	sc = ad->ad_controller;
1022 	cm = NULL;
1023 
1024 	if (aac_alloc_command(sc, &cm))
1025 		return (EBUSY);
1026 
1027 	/* fill out the command */
1028 	cm->cm_data = data;
1029 	cm->cm_datalen = dumppages * PAGE_SIZE;
1030 	cm->cm_complete = NULL;
1031 	cm->cm_private = NULL;
1032 	cm->cm_timestamp = time_second;
1033 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1034 
1035 	/* build the FIB */
1036 	fib = cm->cm_fib;
1037 	fib->Header.XferState =
1038 	AAC_FIBSTATE_HOSTOWNED   |
1039 	AAC_FIBSTATE_INITIALISED |
1040 	AAC_FIBSTATE_FROMHOST	 |
1041 	AAC_FIBSTATE_REXPECTED   |
1042 	AAC_FIBSTATE_NORM;
1043 	fib->Header.Command = ContainerCommand;
1044 	fib->Header.Size = sizeof(struct aac_fib_header);
1045 
1046 	bw = (struct aac_blockwrite *)&fib->data[0];
1047 	bw->Command = VM_CtBlockWrite;
1048 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1049 	bw->BlockNumber = lba;
1050 	bw->ByteCount = dumppages * PAGE_SIZE;
1051 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1052 	fib->Header.Size += sizeof(struct aac_blockwrite);
1053 	cm->cm_flags |= AAC_CMD_DATAOUT;
1054 	cm->cm_sgtable = &bw->SgMap;
1055 
1056 	return (aac_start(cm));
1057 }
1058 
1059 /*
1060  * Wait for the card's queue to drain when dumping.  Also check for monitor
1061  * printf's
1062  */
1063 void
1064 aac_dump_complete(struct aac_softc *sc)
1065 {
1066 	struct aac_fib *fib;
1067 	struct aac_command *cm;
1068 	u_int16_t reason;
1069 	u_int32_t pi, ci, fib_size;
1070 
1071 	do {
1072 		reason = AAC_GET_ISTATUS(sc);
1073 		if (reason & AAC_DB_RESPONSE_READY) {
1074 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1075 			for (;;) {
1076 				if (aac_dequeue_fib(sc,
1077 						    AAC_HOST_NORM_RESP_QUEUE,
1078 						    &fib_size, &fib))
1079 					break;
1080 				cm = (struct aac_command *)
1081 					fib->Header.SenderData;
1082 				if (cm == NULL)
1083 					AAC_PRINT_FIB(sc, fib);
1084 				else {
1085 					aac_remove_busy(cm);
1086 					aac_unmap_command(cm);
1087 					aac_enqueue_complete(cm);
1088 					aac_release_command(cm);
1089 				}
1090 			}
1091 		}
1092 		if (reason & AAC_DB_PRINTF) {
1093 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1094 			aac_print_printf(sc);
1095 		}
1096 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1097 			AAC_PRODUCER_INDEX];
1098 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1099 			AAC_CONSUMER_INDEX];
1100 	} while (ci != pi);
1101 
1102 	return;
1103 }
1104 
1105 /*
1106  * Submit a command to the controller, return when it completes.
1107  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1108  *     be stuck here forever.  At the same time, signals are not caught
1109  *     because there is a risk that a signal could wakeup the tsleep before
1110  *     the card has a chance to complete the command.  The passed in timeout
1111  *     is ignored for the same reason.  Since there is no way to cancel a
1112  *     command in progress, we should probably create a 'dead' queue where
1113  *     commands go that have been interrupted/timed-out/etc, that keeps them
1114  *     out of the free pool.  That way, if the card is just slow, it won't
1115  *     spam the memory of a command that has been recycled.
1116  */
1117 static int
1118 aac_wait_command(struct aac_command *cm, int timeout)
1119 {
1120 	int s, error = 0;
1121 
1122 	debug_called(2);
1123 
1124 	/* Put the command on the ready queue and get things going */
1125 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1126 	aac_enqueue_ready(cm);
1127 	aac_startio(cm->cm_sc);
1128 	s = splbio();
1129 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1130 		error = tsleep(cm, 0, "aacwait", 0);
1131 	}
1132 	splx(s);
1133 	return(error);
1134 }
1135 
1136 /*
1137  *Command Buffer Management
1138  */
1139 
1140 /*
1141  * Allocate a command.
1142  */
1143 int
1144 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1145 {
1146 	struct aac_command *cm;
1147 
1148 	debug_called(3);
1149 
1150 	if ((cm = aac_dequeue_free(sc)) == NULL)
1151 		return(ENOMEM);
1152 
1153 	*cmp = cm;
1154 	return(0);
1155 }
1156 
1157 /*
1158  * Release a command back to the freelist.
1159  */
1160 void
1161 aac_release_command(struct aac_command *cm)
1162 {
1163 	debug_called(3);
1164 
1165 	/* (re)initialise the command/FIB */
1166 	cm->cm_sgtable = NULL;
1167 	cm->cm_flags = 0;
1168 	cm->cm_complete = NULL;
1169 	cm->cm_private = NULL;
1170 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1171 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1172 	cm->cm_fib->Header.Flags = 0;
1173 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1174 
1175 	/*
1176 	 * These are duplicated in aac_start to cover the case where an
1177 	 * intermediate stage may have destroyed them.  They're left
1178 	 * initialised here for debugging purposes only.
1179 	 */
1180 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1181 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1182 	cm->cm_fib->Header.SenderData = 0;
1183 
1184 	aac_enqueue_free(cm);
1185 }
1186 
1187 /*
1188  * Map helper for command/FIB allocation.
1189  */
1190 static void
1191 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1192 {
1193 	struct aac_softc *sc;
1194 
1195 	sc = (struct aac_softc *)arg;
1196 
1197 	debug_called(3);
1198 
1199 	sc->aac_fibphys = segs[0].ds_addr;
1200 }
1201 
1202 /*
1203  * Allocate and initialise commands/FIBs for this adapter.
1204  */
1205 static int
1206 aac_alloc_commands(struct aac_softc *sc)
1207 {
1208 	struct aac_command *cm;
1209 	int i;
1210 
1211 	debug_called(1);
1212 
1213 	/* allocate the FIBs in DMAable memory and load them */
1214 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1215 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1216 		return(ENOMEM);
1217 	}
1218 
1219 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1220 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1221 			aac_map_command_helper, sc, 0);
1222 
1223 	/* initialise constant fields in the command structure */
1224 	bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1225 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1226 		cm = &sc->aac_command[i];
1227 		cm->cm_sc = sc;
1228 		cm->cm_fib = sc->aac_fibs + i;
1229 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1230 
1231 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1232 			aac_release_command(cm);
1233 	}
1234 	return(0);
1235 }
1236 
1237 /*
1238  * Free FIBs owned by this adapter.
1239  */
1240 static void
1241 aac_free_commands(struct aac_softc *sc)
1242 {
1243 	int i;
1244 
1245 	debug_called(1);
1246 
1247 	for (i = 0; i < AAC_FIB_COUNT; i++)
1248 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1249 				   sc->aac_command[i].cm_datamap);
1250 
1251 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1252 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1253 }
1254 
1255 /*
1256  * Command-mapping helper function - populate this command's s/g table.
1257  */
1258 static void
1259 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1260 {
1261 	struct aac_command *cm;
1262 	struct aac_fib *fib;
1263 	struct aac_sg_table *sg;
1264 	int i;
1265 
1266 	debug_called(3);
1267 
1268 	cm = (struct aac_command *)arg;
1269 	fib = cm->cm_fib;
1270 
1271 	/* find the s/g table */
1272 	sg = cm->cm_sgtable;
1273 
1274 	/* copy into the FIB */
1275 	if (sg != NULL) {
1276 		sg->SgCount = nseg;
1277 		for (i = 0; i < nseg; i++) {
1278 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1279 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1280 		}
1281 		/* update the FIB size for the s/g count */
1282 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1283 	}
1284 
1285 }
1286 
1287 /*
1288  * Map a command into controller-visible space.
1289  */
1290 static void
1291 aac_map_command(struct aac_command *cm)
1292 {
1293 	struct aac_softc *sc;
1294 
1295 	debug_called(2);
1296 
1297 	sc = cm->cm_sc;
1298 
1299 	/* don't map more than once */
1300 	if (cm->cm_flags & AAC_CMD_MAPPED)
1301 		return;
1302 
1303 	if (cm->cm_datalen != 0) {
1304 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1305 				cm->cm_data, cm->cm_datalen,
1306 				aac_map_command_sg, cm, 0);
1307 
1308 		if (cm->cm_flags & AAC_CMD_DATAIN)
1309 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1310 					BUS_DMASYNC_PREREAD);
1311 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1312 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1313 					BUS_DMASYNC_PREWRITE);
1314 	}
1315 	cm->cm_flags |= AAC_CMD_MAPPED;
1316 }
1317 
1318 /*
1319  * Unmap a command from controller-visible space.
1320  */
1321 static void
1322 aac_unmap_command(struct aac_command *cm)
1323 {
1324 	struct aac_softc *sc;
1325 
1326 	debug_called(2);
1327 
1328 	sc = cm->cm_sc;
1329 
1330 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1331 		return;
1332 
1333 	if (cm->cm_datalen != 0) {
1334 		if (cm->cm_flags & AAC_CMD_DATAIN)
1335 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1336 					BUS_DMASYNC_POSTREAD);
1337 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1338 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1339 					BUS_DMASYNC_POSTWRITE);
1340 
1341 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1342 	}
1343 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1344 }
1345 
1346 /*
1347  * Hardware Interface
1348  */
1349 
1350 /*
1351  * Initialise the adapter.
1352  */
1353 static void
1354 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1355 {
1356 	struct aac_softc *sc;
1357 
1358 	debug_called(1);
1359 
1360 	sc = (struct aac_softc *)arg;
1361 
1362 	sc->aac_common_busaddr = segs[0].ds_addr;
1363 }
1364 
1365 static int
1366 aac_check_firmware(struct aac_softc *sc)
1367 {
1368 	u_int32_t major, minor, options;
1369 
1370 	debug_called(1);
1371 
1372 	/*
1373 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1374 	 * firmware version 1.x are not compatible with this driver.
1375 	 */
1376 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1377 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1378 				     NULL)) {
1379 			device_printf(sc->aac_dev,
1380 				      "Error reading firmware version\n");
1381 			return (EIO);
1382 		}
1383 
1384 		/* These numbers are stored as ASCII! */
1385 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1386 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1387 		if (major == 1) {
1388 			device_printf(sc->aac_dev,
1389 			    "Firmware version %d.%d is not supported.\n",
1390 			    major, minor);
1391 			return (EINVAL);
1392 		}
1393 	}
1394 
1395 	/*
1396 	 * Retrieve the capabilities/supported options word so we know what
1397 	 * work-arounds to enable.
1398 	 */
1399 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1400 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1401 		return (EIO);
1402 	}
1403 	options = AAC_GET_MAILBOX(sc, 1);
1404 	sc->supported_options = options;
1405 
1406 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1407 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1408 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1409 	if (options & AAC_SUPPORTED_NONDASD)
1410 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1411 
1412 	return (0);
1413 }
1414 
1415 static int
1416 aac_init(struct aac_softc *sc)
1417 {
1418 	struct aac_adapter_init	*ip;
1419 	time_t then;
1420 	u_int32_t code;
1421 	u_int8_t *qaddr;
1422 	int error;
1423 
1424 	debug_called(1);
1425 
1426 	/*
1427 	 * First wait for the adapter to come ready.
1428 	 */
1429 	then = time_second;
1430 	do {
1431 		code = AAC_GET_FWSTATUS(sc);
1432 		if (code & AAC_SELF_TEST_FAILED) {
1433 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1434 			return(ENXIO);
1435 		}
1436 		if (code & AAC_KERNEL_PANIC) {
1437 			device_printf(sc->aac_dev,
1438 				      "FATAL: controller kernel panic\n");
1439 			return(ENXIO);
1440 		}
1441 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1442 			device_printf(sc->aac_dev,
1443 				      "FATAL: controller not coming ready, "
1444 					   "status %x\n", code);
1445 			return(ENXIO);
1446 		}
1447 	} while (!(code & AAC_UP_AND_RUNNING));
1448 
1449  	error = ENOMEM;
1450  	/*
1451  	 * Create DMA tag for mapping buffers into controller-addressable space.
1452  	 */
1453  	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1454  			       1, 0, 			/* algnmnt, boundary */
1455  			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1456  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1457  			       NULL, NULL, 		/* filter, filterarg */
1458  			       MAXBSIZE,		/* maxsize */
1459  			       AAC_MAXSGENTRIES,	/* nsegments */
1460  			       MAXBSIZE,		/* maxsegsize */
1461  			       BUS_DMA_ALLOCNOW,	/* flags */
1462  			       &sc->aac_buffer_dmat)) {
1463  		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1464  		goto out;
1465  	}
1466 
1467  	/*
1468  	 * Create DMA tag for mapping FIBs into controller-addressable space..
1469  	 */
1470  	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1471  			       1, 0, 			/* algnmnt, boundary */
1472  			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1473  			       BUS_SPACE_MAXADDR_32BIT :
1474  			       0x7fffffff,		/* lowaddr */
1475  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1476  			       NULL, NULL, 		/* filter, filterarg */
1477  			       AAC_FIB_COUNT *
1478  			       sizeof(struct aac_fib),  /* maxsize */
1479  			       1,			/* nsegments */
1480  			       AAC_FIB_COUNT *
1481  			       sizeof(struct aac_fib),	/* maxsegsize */
1482  			       BUS_DMA_ALLOCNOW,	/* flags */
1483  			       &sc->aac_fib_dmat)) {
1484  		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1485  		goto out;
1486  	}
1487 
1488 	/*
1489 	 * Create DMA tag for the common structure and allocate it.
1490 	 */
1491 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1492 			       1, 0,			/* algnmnt, boundary */
1493 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1494 			       BUS_SPACE_MAXADDR_32BIT :
1495 			       0x7fffffff,		/* lowaddr */
1496 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1497 			       NULL, NULL, 		/* filter, filterarg */
1498 			       8192 + sizeof(struct aac_common), /* maxsize */
1499 			       1,			/* nsegments */
1500 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1501 			       BUS_DMA_ALLOCNOW,	/* flags */
1502 			       &sc->aac_common_dmat)) {
1503 		device_printf(sc->aac_dev,
1504 			      "can't allocate common structure DMA tag\n");
1505 		goto out;
1506 	}
1507 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1508 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1509 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1510 		goto out;
1511 	}
1512 	/*
1513 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1514 	 * below address 8192 in physical memory.
1515 	 * XXX If the padding is not needed, can it be put to use instead
1516 	 * of ignored?
1517 	 */
1518 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1519 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1520 			aac_common_map, sc, 0);
1521 
1522 	if (sc->aac_common_busaddr < 8192) {
1523 		sc->aac_common =
1524 		    (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1525 		sc->aac_common_busaddr += 8192;
1526 	}
1527 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1528 
1529 	/* Allocate some FIBs and associated command structs */
1530 	if (aac_alloc_commands(sc) != 0)
1531 		goto out;
1532 
1533 	/*
1534 	 * Fill in the init structure.  This tells the adapter about the
1535 	 * physical location of various important shared data structures.
1536 	 */
1537 	ip = &sc->aac_common->ac_init;
1538 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1539 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1540 
1541 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1542 					 offsetof(struct aac_common, ac_fibs);
1543 	ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1544 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1545 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1546 
1547 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1548 				  offsetof(struct aac_common, ac_printf);
1549 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1550 
1551 	/* The adapter assumes that pages are 4K in size */
1552 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1553 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1554 
1555 	/*
1556 	 * Initialise FIB queues.  Note that it appears that the layout of the
1557 	 * indexes and the segmentation of the entries may be mandated by the
1558 	 * adapter, which is only told about the base of the queue index fields.
1559 	 *
1560 	 * The initial values of the indices are assumed to inform the adapter
1561 	 * of the sizes of the respective queues, and theoretically it could
1562 	 * work out the entire layout of the queue structures from this.  We
1563 	 * take the easy route and just lay this area out like everyone else
1564 	 * does.
1565 	 *
1566 	 * The Linux driver uses a much more complex scheme whereby several
1567 	 * header records are kept for each queue.  We use a couple of generic
1568 	 * list manipulation functions which 'know' the size of each list by
1569 	 * virtue of a table.
1570 	 */
1571 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1572 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1573 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1574 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1575 				((u_int32_t)sc->aac_queues -
1576 				(u_int32_t)sc->aac_common);
1577 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1578 
1579 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1580 		AAC_HOST_NORM_CMD_ENTRIES;
1581 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1582 		AAC_HOST_NORM_CMD_ENTRIES;
1583 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1584 		AAC_HOST_HIGH_CMD_ENTRIES;
1585 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1586 		AAC_HOST_HIGH_CMD_ENTRIES;
1587 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1588 		AAC_ADAP_NORM_CMD_ENTRIES;
1589 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1590 		AAC_ADAP_NORM_CMD_ENTRIES;
1591 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1592 		AAC_ADAP_HIGH_CMD_ENTRIES;
1593 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1594 		AAC_ADAP_HIGH_CMD_ENTRIES;
1595 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1596 		AAC_HOST_NORM_RESP_ENTRIES;
1597 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1598 		AAC_HOST_NORM_RESP_ENTRIES;
1599 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1600 		AAC_HOST_HIGH_RESP_ENTRIES;
1601 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1602 		AAC_HOST_HIGH_RESP_ENTRIES;
1603 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1604 		AAC_ADAP_NORM_RESP_ENTRIES;
1605 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1606 		AAC_ADAP_NORM_RESP_ENTRIES;
1607 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1608 		AAC_ADAP_HIGH_RESP_ENTRIES;
1609 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1610 		AAC_ADAP_HIGH_RESP_ENTRIES;
1611 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1612 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1613 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1614 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1615 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1616 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1617 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1618 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1619 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1620 		&sc->aac_queues->qt_HostNormRespQueue[0];
1621 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1622 		&sc->aac_queues->qt_HostHighRespQueue[0];
1623 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1624 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1625 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1626 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1627 
1628 	/*
1629 	 * Do controller-type-specific initialisation
1630 	 */
1631 	switch (sc->aac_hwif) {
1632 	case AAC_HWIF_I960RX:
1633 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1634 		break;
1635 	}
1636 
1637 	/*
1638 	 * Give the init structure to the controller.
1639 	 */
1640 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1641 			     sc->aac_common_busaddr +
1642 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1643 			     NULL)) {
1644 		device_printf(sc->aac_dev,
1645 			      "error establishing init structure\n");
1646 		error = EIO;
1647 		goto out;
1648 	}
1649 
1650 	error = 0;
1651 out:
1652 	return(error);
1653 }
1654 
1655 /*
1656  * Send a synchronous command to the controller and wait for a result.
1657  */
1658 static int
1659 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1660 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1661 		 u_int32_t *sp)
1662 {
1663 	time_t then;
1664 	u_int32_t status;
1665 
1666 	debug_called(3);
1667 
1668 	/* populate the mailbox */
1669 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1670 
1671 	/* ensure the sync command doorbell flag is cleared */
1672 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1673 
1674 	/* then set it to signal the adapter */
1675 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1676 
1677 	/* spin waiting for the command to complete */
1678 	then = time_second;
1679 	do {
1680 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1681 			debug(1, "timed out");
1682 			return(EIO);
1683 		}
1684 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1685 
1686 	/* clear the completion flag */
1687 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1688 
1689 	/* get the command status */
1690 	status = AAC_GET_MAILBOX(sc, 0);
1691 	if (sp != NULL)
1692 		*sp = status;
1693 	return(0);
1694 }
1695 
1696 /*
1697  * Grab the sync fib area.
1698  */
1699 int
1700 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1701 {
1702 
1703 	/*
1704 	 * If the force flag is set, the system is shutting down, or in
1705 	 * trouble.  Ignore the mutex.
1706 	 */
1707 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1708 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1709 
1710 	*fib = &sc->aac_common->ac_sync_fib;
1711 
1712 	return (1);
1713 }
1714 
1715 /*
1716  * Release the sync fib area.
1717  */
1718 void
1719 aac_release_sync_fib(struct aac_softc *sc)
1720 {
1721 
1722 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1723 }
1724 
1725 /*
1726  * Send a synchronous FIB to the controller and wait for a result.
1727  */
1728 int
1729 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1730 		 struct aac_fib *fib, u_int16_t datasize)
1731 {
1732 	debug_called(3);
1733 
1734 	if (datasize > AAC_FIB_DATASIZE)
1735 		return(EINVAL);
1736 
1737 	/*
1738 	 * Set up the sync FIB
1739 	 */
1740 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1741 				AAC_FIBSTATE_INITIALISED |
1742 				AAC_FIBSTATE_EMPTY;
1743 	fib->Header.XferState |= xferstate;
1744 	fib->Header.Command = command;
1745 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1746 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1747 	fib->Header.SenderSize = sizeof(struct aac_fib);
1748 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1749 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1750 					 offsetof(struct aac_common,
1751 						  ac_sync_fib);
1752 
1753 	/*
1754 	 * Give the FIB to the controller, wait for a response.
1755 	 */
1756 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1757 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1758 		debug(2, "IO error");
1759 		return(EIO);
1760 	}
1761 
1762 	return (0);
1763 }
1764 
1765 /*
1766  * Adapter-space FIB queue manipulation
1767  *
1768  * Note that the queue implementation here is a little funky; neither the PI or
1769  * CI will ever be zero.  This behaviour is a controller feature.
1770  */
1771 static struct {
1772 	int		size;
1773 	int		notify;
1774 } aac_qinfo[] = {
1775 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1776 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1777 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1778 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1779 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1780 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1781 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1782 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1783 };
1784 
1785 /*
1786  * Atomically insert an entry into the nominated queue, returns 0 on success or
1787  * EBUSY if the queue is full.
1788  *
1789  * Note: it would be more efficient to defer notifying the controller in
1790  *	 the case where we may be inserting several entries in rapid succession,
1791  *	 but implementing this usefully may be difficult (it would involve a
1792  *	 separate queue/notify interface).
1793  */
1794 static int
1795 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1796 {
1797 	u_int32_t pi, ci;
1798 	int s, error;
1799 	u_int32_t fib_size;
1800 	u_int32_t fib_addr;
1801 
1802 	debug_called(3);
1803 
1804 	fib_size = cm->cm_fib->Header.Size;
1805 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1806 
1807 	s = splbio();
1808 
1809 	/* get the producer/consumer indices */
1810 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1811 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1812 
1813 	/* wrap the queue? */
1814 	if (pi >= aac_qinfo[queue].size)
1815 		pi = 0;
1816 
1817 	/* check for queue full */
1818 	if ((pi + 1) == ci) {
1819 		error = EBUSY;
1820 		goto out;
1821 	}
1822 
1823 	/* populate queue entry */
1824 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1825 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1826 
1827 	/* update producer index */
1828 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1829 
1830 	/*
1831 	 * To avoid a race with its completion interrupt, place this command on
1832 	 * the busy queue prior to advertising it to the controller.
1833 	 */
1834 	aac_enqueue_busy(cm);
1835 
1836 	/* notify the adapter if we know how */
1837 	if (aac_qinfo[queue].notify != 0)
1838 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1839 
1840 	error = 0;
1841 
1842 out:
1843 	splx(s);
1844 	return(error);
1845 }
1846 
1847 /*
1848  * Atomically remove one entry from the nominated queue, returns 0 on
1849  * success or ENOENT if the queue is empty.
1850  */
1851 static int
1852 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1853 		struct aac_fib **fib_addr)
1854 {
1855 	u_int32_t pi, ci;
1856 	int s, error;
1857 	int notify;
1858 
1859 	debug_called(3);
1860 
1861 	s = splbio();
1862 
1863 	/* get the producer/consumer indices */
1864 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1865 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1866 
1867 	/* check for queue empty */
1868 	if (ci == pi) {
1869 		error = ENOENT;
1870 		goto out;
1871 	}
1872 
1873 	notify = 0;
1874 	if (ci == pi + 1)
1875 		notify++;
1876 
1877 	/* wrap the queue? */
1878 	if (ci >= aac_qinfo[queue].size)
1879 		ci = 0;
1880 
1881 	/* fetch the entry */
1882 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1883 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1884 				       ci)->aq_fib_addr;
1885 
1886 	/*
1887 	 * Is this a fast response? If it is, update the fib fields in
1888 	 * local memory so the whole fib doesn't have to be DMA'd back up.
1889 	 */
1890 	if (*(uintptr_t *)fib_addr & 0x01) {
1891 		*(uintptr_t *)fib_addr &= ~0x01;
1892 		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1893 		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1894 	}
1895 	/* update consumer index */
1896 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1897 
1898 	/* if we have made the queue un-full, notify the adapter */
1899 	if (notify && (aac_qinfo[queue].notify != 0))
1900 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1901 	error = 0;
1902 
1903 out:
1904 	splx(s);
1905 	return(error);
1906 }
1907 
1908 /*
1909  * Put our response to an Adapter Initialed Fib on the response queue
1910  */
1911 static int
1912 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1913 {
1914 	u_int32_t pi, ci;
1915 	int s, error;
1916 	u_int32_t fib_size;
1917 	u_int32_t fib_addr;
1918 
1919 	debug_called(1);
1920 
1921 	/* Tell the adapter where the FIB is */
1922 	fib_size = fib->Header.Size;
1923 	fib_addr = fib->Header.SenderFibAddress;
1924 	fib->Header.ReceiverFibAddress = fib_addr;
1925 
1926 	s = splbio();
1927 
1928 	/* get the producer/consumer indices */
1929 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1930 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1931 
1932 	/* wrap the queue? */
1933 	if (pi >= aac_qinfo[queue].size)
1934 		pi = 0;
1935 
1936 	/* check for queue full */
1937 	if ((pi + 1) == ci) {
1938 		error = EBUSY;
1939 		goto out;
1940 	}
1941 
1942 	/* populate queue entry */
1943 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1944 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1945 
1946 	/* update producer index */
1947 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1948 
1949 	/* notify the adapter if we know how */
1950 	if (aac_qinfo[queue].notify != 0)
1951 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1952 
1953 	error = 0;
1954 
1955 out:
1956 	splx(s);
1957 	return(error);
1958 }
1959 
1960 /*
1961  * Check for commands that have been outstanding for a suspiciously long time,
1962  * and complain about them.
1963  */
1964 static void
1965 aac_timeout(void *xsc)
1966 {
1967 	struct aac_softc *sc = xsc;
1968 	int s;
1969 	struct aac_command *cm;
1970 	time_t deadline;
1971 
1972 #if 0
1973 	/* simulate an interrupt to handle possibly-missed interrupts */
1974 	/*
1975 	 * XXX This was done to work around another bug which has since been
1976 	 * fixed.  It is dangerous anyways because you don't want multiple
1977 	 * threads in the interrupt handler at the same time!  If calling
1978 	 * is deamed neccesary in the future, proper mutexes must be used.
1979 	 */
1980 	s = splbio();
1981 	aac_intr(sc);
1982 	splx(s);
1983 
1984 	/* kick the I/O queue to restart it in the case of deadlock */
1985 	aac_startio(sc);
1986 #endif
1987 
1988 	/*
1989 	 * traverse the busy command list, bitch about late commands once
1990 	 * only.
1991 	 */
1992 	deadline = time_second - AAC_CMD_TIMEOUT;
1993 	s = splbio();
1994 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1995 		if ((cm->cm_timestamp  < deadline)
1996 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1997 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1998 			device_printf(sc->aac_dev,
1999 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2000 				      cm, (int)(time_second-cm->cm_timestamp));
2001 			AAC_PRINT_FIB(sc, cm->cm_fib);
2002 		}
2003 	}
2004 	splx(s);
2005 
2006 	/* reset the timer for next time */
2007 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2008 		      aac_timeout, sc);
2009 }
2010 
2011 /*
2012  * Interface Function Vectors
2013  */
2014 
2015 /*
2016  * Read the current firmware status word.
2017  */
2018 static int
2019 aac_sa_get_fwstatus(struct aac_softc *sc)
2020 {
2021 	debug_called(3);
2022 
2023 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2024 }
2025 
2026 static int
2027 aac_rx_get_fwstatus(struct aac_softc *sc)
2028 {
2029 	debug_called(3);
2030 
2031 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2032 }
2033 
2034 static int
2035 aac_fa_get_fwstatus(struct aac_softc *sc)
2036 {
2037 	int val;
2038 
2039 	debug_called(3);
2040 
2041 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2042 	return (val);
2043 }
2044 
2045 /*
2046  * Notify the controller of a change in a given queue
2047  */
2048 
2049 static void
2050 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2051 {
2052 	debug_called(3);
2053 
2054 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2055 }
2056 
2057 static void
2058 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2059 {
2060 	debug_called(3);
2061 
2062 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2063 }
2064 
2065 static void
2066 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2067 {
2068 	debug_called(3);
2069 
2070 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2071 	AAC_FA_HACK(sc);
2072 }
2073 
2074 /*
2075  * Get the interrupt reason bits
2076  */
2077 static int
2078 aac_sa_get_istatus(struct aac_softc *sc)
2079 {
2080 	debug_called(3);
2081 
2082 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2083 }
2084 
2085 static int
2086 aac_rx_get_istatus(struct aac_softc *sc)
2087 {
2088 	debug_called(3);
2089 
2090 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2091 }
2092 
2093 static int
2094 aac_fa_get_istatus(struct aac_softc *sc)
2095 {
2096 	int val;
2097 
2098 	debug_called(3);
2099 
2100 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2101 	return (val);
2102 }
2103 
2104 /*
2105  * Clear some interrupt reason bits
2106  */
2107 static void
2108 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2109 {
2110 	debug_called(3);
2111 
2112 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2113 }
2114 
2115 static void
2116 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2117 {
2118 	debug_called(3);
2119 
2120 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2121 }
2122 
2123 static void
2124 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2125 {
2126 	debug_called(3);
2127 
2128 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2129 	AAC_FA_HACK(sc);
2130 }
2131 
2132 /*
2133  * Populate the mailbox and set the command word
2134  */
2135 static void
2136 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2137 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2138 {
2139 	debug_called(4);
2140 
2141 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2142 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2143 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2144 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2145 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2146 }
2147 
2148 static void
2149 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2150 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2151 {
2152 	debug_called(4);
2153 
2154 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2155 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2156 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2157 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2158 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2159 }
2160 
2161 static void
2162 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2163 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2164 {
2165 	debug_called(4);
2166 
2167 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2168 	AAC_FA_HACK(sc);
2169 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2170 	AAC_FA_HACK(sc);
2171 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2172 	AAC_FA_HACK(sc);
2173 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2174 	AAC_FA_HACK(sc);
2175 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2176 	AAC_FA_HACK(sc);
2177 }
2178 
2179 /*
2180  * Fetch the immediate command status word
2181  */
2182 static int
2183 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2184 {
2185 	debug_called(4);
2186 
2187 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2188 }
2189 
2190 static int
2191 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2192 {
2193 	debug_called(4);
2194 
2195 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2196 }
2197 
2198 static int
2199 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2200 {
2201 	int val;
2202 
2203 	debug_called(4);
2204 
2205 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2206 	return (val);
2207 }
2208 
2209 /*
2210  * Set/clear interrupt masks
2211  */
2212 static void
2213 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2214 {
2215 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2216 
2217 	if (enable) {
2218 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2219 	} else {
2220 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2221 	}
2222 }
2223 
2224 static void
2225 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2226 {
2227 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2228 
2229 	if (enable) {
2230 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2231 	} else {
2232 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2233 	}
2234 }
2235 
2236 static void
2237 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2238 {
2239 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2240 
2241 	if (enable) {
2242 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2243 		AAC_FA_HACK(sc);
2244 	} else {
2245 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2246 		AAC_FA_HACK(sc);
2247 	}
2248 }
2249 
2250 /*
2251  * Debugging and Diagnostics
2252  */
2253 
2254 /*
2255  * Print some information about the controller.
2256  */
2257 static void
2258 aac_describe_controller(struct aac_softc *sc)
2259 {
2260 	struct aac_fib *fib;
2261 	struct aac_adapter_info	*info;
2262 
2263 	debug_called(2);
2264 
2265 	aac_alloc_sync_fib(sc, &fib, 0);
2266 
2267 	fib->data[0] = 0;
2268 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2269 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2270 		aac_release_sync_fib(sc);
2271 		return;
2272 	}
2273 	info = (struct aac_adapter_info *)&fib->data[0];
2274 
2275 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2276 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2277 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2278 		      aac_describe_code(aac_battery_platform,
2279 					info->batteryPlatform));
2280 
2281 	/* save the kernel revision structure for later use */
2282 	sc->aac_revision = info->KernelRevision;
2283 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2284 		      info->KernelRevision.external.comp.major,
2285 		      info->KernelRevision.external.comp.minor,
2286 		      info->KernelRevision.external.comp.dash,
2287 		      info->KernelRevision.buildNumber,
2288 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2289 
2290 	aac_release_sync_fib(sc);
2291 
2292 	if (1 || bootverbose) {
2293 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2294 			      sc->supported_options,
2295 			      "\20"
2296 			      "\1SNAPSHOT"
2297 			      "\2CLUSTERS"
2298 			      "\3WCACHE"
2299 			      "\4DATA64"
2300 			      "\5HOSTTIME"
2301 			      "\6RAID50"
2302 			      "\7WINDOW4GB"
2303 			      "\10SCSIUPGD"
2304 			      "\11SOFTERR"
2305 			      "\12NORECOND"
2306 			      "\13SGMAP64"
2307 			      "\14ALARM"
2308 			      "\15NONDASD");
2309 	}
2310 }
2311 
2312 /*
2313  * Look up a text description of a numeric error code and return a pointer to
2314  * same.
2315  */
2316 static char *
2317 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2318 {
2319 	int i;
2320 
2321 	for (i = 0; table[i].string != NULL; i++)
2322 		if (table[i].code == code)
2323 			return(table[i].string);
2324 	return(table[i + 1].string);
2325 }
2326 
2327 /*
2328  * Management Interface
2329  */
2330 
2331 static int
2332 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2333 {
2334 	struct aac_softc *sc;
2335 
2336 	debug_called(2);
2337 
2338 	sc = dev->si_drv1;
2339 
2340 	/* Check to make sure the device isn't already open */
2341 	if (sc->aac_state & AAC_STATE_OPEN) {
2342 		return EBUSY;
2343 	}
2344 	sc->aac_state |= AAC_STATE_OPEN;
2345 
2346 	return 0;
2347 }
2348 
2349 static int
2350 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2351 {
2352 	struct aac_softc *sc;
2353 
2354 	debug_called(2);
2355 
2356 	sc = dev->si_drv1;
2357 
2358 	/* Mark this unit as no longer open  */
2359 	sc->aac_state &= ~AAC_STATE_OPEN;
2360 
2361 	return 0;
2362 }
2363 
2364 static int
2365 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2366 {
2367 	struct aac_softc *sc = dev->si_drv1;
2368 	int error = 0;
2369 	int i;
2370 
2371 	debug_called(2);
2372 
2373 	if (cmd == AACIO_STATS) {
2374 		union aac_statrequest *as = (union aac_statrequest *)arg;
2375 
2376 		switch (as->as_item) {
2377 		case AACQ_FREE:
2378 		case AACQ_BIO:
2379 		case AACQ_READY:
2380 		case AACQ_BUSY:
2381 		case AACQ_COMPLETE:
2382 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2383 			      sizeof(struct aac_qstat));
2384 			break;
2385 		default:
2386 			error = ENOENT;
2387 			break;
2388 		}
2389 		return(error);
2390 	}
2391 
2392 	arg = *(caddr_t *)arg;
2393 
2394 	switch (cmd) {
2395 	/* AACIO_STATS already handled above */
2396 	case FSACTL_SENDFIB:
2397 		debug(1, "FSACTL_SENDFIB");
2398 		error = aac_ioctl_sendfib(sc, arg);
2399 		break;
2400 	case FSACTL_AIF_THREAD:
2401 		debug(1, "FSACTL_AIF_THREAD");
2402 		error = EINVAL;
2403 		break;
2404 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2405 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2406 		/*
2407 		 * Pass the caller out an AdapterFibContext.
2408 		 *
2409 		 * Note that because we only support one opener, we
2410 		 * basically ignore this.  Set the caller's context to a magic
2411 		 * number just in case.
2412 		 *
2413 		 * The Linux code hands the driver a pointer into kernel space,
2414 		 * and then trusts it when the caller hands it back.  Aiee!
2415 		 * Here, we give it the proc pointer of the per-adapter aif
2416 		 * thread. It's only used as a sanity check in other calls.
2417 		 */
2418 		i = (int)sc->aifthread;
2419 		error = copyout(&i, arg, sizeof(i));
2420 		break;
2421 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2422 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2423 		error = aac_getnext_aif(sc, arg);
2424 		break;
2425 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2426 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2427 		/* don't do anything here */
2428 		break;
2429 	case FSACTL_MINIPORT_REV_CHECK:
2430 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2431 		error = aac_rev_check(sc, arg);
2432 		break;
2433 	case FSACTL_QUERY_DISK:
2434 		debug(1, "FSACTL_QUERY_DISK");
2435 		error = aac_query_disk(sc, arg);
2436 			break;
2437 	case FSACTL_DELETE_DISK:
2438 		/*
2439 		 * We don't trust the underland to tell us when to delete a
2440 		 * container, rather we rely on an AIF coming from the
2441 		 * controller
2442 		 */
2443 		error = 0;
2444 		break;
2445 	default:
2446 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2447 		error = EINVAL;
2448 		break;
2449 	}
2450 	return(error);
2451 }
2452 
2453 static int
2454 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2455 {
2456 	struct aac_softc *sc;
2457 	int revents;
2458 
2459 	sc = dev->si_drv1;
2460 	revents = 0;
2461 
2462 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2463 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2464 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2465 			revents |= poll_events & (POLLIN | POLLRDNORM);
2466 	}
2467 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2468 
2469 	if (revents == 0) {
2470 		if (poll_events & (POLLIN | POLLRDNORM))
2471 			selrecord(td, &sc->rcv_select);
2472 	}
2473 
2474 	return (revents);
2475 }
2476 
2477 /*
2478  * Send a FIB supplied from userspace
2479  */
2480 static int
2481 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2482 {
2483 	struct aac_command *cm;
2484 	int size, error;
2485 
2486 	debug_called(2);
2487 
2488 	cm = NULL;
2489 
2490 	/*
2491 	 * Get a command
2492 	 */
2493 	if (aac_alloc_command(sc, &cm)) {
2494 		error = EBUSY;
2495 		goto out;
2496 	}
2497 
2498 	/*
2499 	 * Fetch the FIB header, then re-copy to get data as well.
2500 	 */
2501 	if ((error = copyin(ufib, cm->cm_fib,
2502 			    sizeof(struct aac_fib_header))) != 0)
2503 		goto out;
2504 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2505 	if (size > sizeof(struct aac_fib)) {
2506 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2507 			      size, sizeof(struct aac_fib));
2508 		size = sizeof(struct aac_fib);
2509 	}
2510 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2511 		goto out;
2512 	cm->cm_fib->Header.Size = size;
2513 	cm->cm_timestamp = time_second;
2514 
2515 	/*
2516 	 * Pass the FIB to the controller, wait for it to complete.
2517 	 */
2518 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2519 		printf("aac_wait_command return %d\n", error);
2520 		goto out;
2521 	}
2522 
2523 	/*
2524 	 * Copy the FIB and data back out to the caller.
2525 	 */
2526 	size = cm->cm_fib->Header.Size;
2527 	if (size > sizeof(struct aac_fib)) {
2528 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2529 			      size, sizeof(struct aac_fib));
2530 		size = sizeof(struct aac_fib);
2531 	}
2532 	error = copyout(cm->cm_fib, ufib, size);
2533 
2534 out:
2535 	if (cm != NULL) {
2536 		aac_release_command(cm);
2537 	}
2538 	return(error);
2539 }
2540 
2541 /*
2542  * Handle an AIF sent to us by the controller; queue it for later reference.
2543  * If the queue fills up, then drop the older entries.
2544  */
2545 static void
2546 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2547 {
2548 	struct aac_aif_command *aif;
2549 	struct aac_container *co, *co_next;
2550 	struct aac_mntinfo *mi;
2551 	struct aac_mntinforesp *mir = NULL;
2552 	u_int16_t rsize;
2553 	int next, found;
2554 	int added = 0, i = 0;
2555 
2556 	debug_called(2);
2557 
2558 	aif = (struct aac_aif_command*)&fib->data[0];
2559 	aac_print_aif(sc, aif);
2560 
2561 	/* Is it an event that we should care about? */
2562 	switch (aif->command) {
2563 	case AifCmdEventNotify:
2564 		switch (aif->data.EN.type) {
2565 		case AifEnAddContainer:
2566 		case AifEnDeleteContainer:
2567 			/*
2568 			 * A container was added or deleted, but the message
2569 			 * doesn't tell us anything else!  Re-enumerate the
2570 			 * containers and sort things out.
2571 			 */
2572 			aac_alloc_sync_fib(sc, &fib, 0);
2573 			mi = (struct aac_mntinfo *)&fib->data[0];
2574 			do {
2575 				/*
2576 				 * Ask the controller for its containers one at
2577 				 * a time.
2578 				 * XXX What if the controller's list changes
2579 				 * midway through this enumaration?
2580 				 * XXX This should be done async.
2581 				 */
2582 				bzero(mi, sizeof(struct aac_mntinfo));
2583 				mi->Command = VM_NameServe;
2584 				mi->MntType = FT_FILESYS;
2585 				mi->MntCount = i;
2586 				rsize = sizeof(mir);
2587 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2588 						 sizeof(struct aac_mntinfo))) {
2589 					debug(2, "Error probing container %d\n",
2590 					      i);
2591 					continue;
2592 				}
2593 				mir = (struct aac_mntinforesp *)&fib->data[0];
2594 				/*
2595 				 * Check the container against our list.
2596 				 * co->co_found was already set to 0 in a
2597 				 * previous run.
2598 				 */
2599 				if ((mir->Status == ST_OK) &&
2600 				    (mir->MntTable[0].VolType != CT_NONE)) {
2601 					found = 0;
2602 					TAILQ_FOREACH(co,
2603 						      &sc->aac_container_tqh,
2604 						      co_link) {
2605 						if (co->co_mntobj.ObjectId ==
2606 						    mir->MntTable[0].ObjectId) {
2607 							co->co_found = 1;
2608 							found = 1;
2609 							break;
2610 						}
2611 					}
2612 					/*
2613 					 * If the container matched, continue
2614 					 * in the list.
2615 					 */
2616 					if (found) {
2617 						i++;
2618 						continue;
2619 					}
2620 
2621 					/*
2622 					 * This is a new container.  Do all the
2623 					 * appropriate things to set it up.						 */
2624 					aac_add_container(sc, mir, 1);
2625 					added = 1;
2626 				}
2627 				i++;
2628 			} while ((i < mir->MntRespCount) &&
2629 				 (i < AAC_MAX_CONTAINERS));
2630 			aac_release_sync_fib(sc);
2631 
2632 			/*
2633 			 * Go through our list of containers and see which ones
2634 			 * were not marked 'found'.  Since the controller didn't
2635 			 * list them they must have been deleted.  Do the
2636 			 * appropriate steps to destroy the device.  Also reset
2637 			 * the co->co_found field.
2638 			 */
2639 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2640 			while (co != NULL) {
2641 				if (co->co_found == 0) {
2642 					device_delete_child(sc->aac_dev,
2643 							    co->co_disk);
2644 					co_next = TAILQ_NEXT(co, co_link);
2645 					AAC_LOCK_ACQUIRE(&sc->
2646 							aac_container_lock);
2647 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2648 						     co_link);
2649 					AAC_LOCK_RELEASE(&sc->
2650 							 aac_container_lock);
2651 					FREE(co, M_AACBUF);
2652 					co = co_next;
2653 				} else {
2654 					co->co_found = 0;
2655 					co = TAILQ_NEXT(co, co_link);
2656 				}
2657 			}
2658 
2659 			/* Attach the newly created containers */
2660 			if (added)
2661 				bus_generic_attach(sc->aac_dev);
2662 
2663 				break;
2664 
2665 		default:
2666 			break;
2667 		}
2668 
2669 	default:
2670 		break;
2671 	}
2672 
2673 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2674 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2675 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2676 	if (next != sc->aac_aifq_tail) {
2677 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2678 		sc->aac_aifq_head = next;
2679 
2680 		/* On the off chance that someone is sleeping for an aif... */
2681 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2682 			wakeup(sc->aac_aifq);
2683 		/* token may have been lost */
2684 		/* Wakeup any poll()ers */
2685 		selwakeup(&sc->rcv_select);
2686 		/* token may have been lost */
2687 	}
2688 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2689 
2690 	return;
2691 }
2692 
2693 /*
2694  * Return the Revision of the driver to userspace and check to see if the
2695  * userspace app is possibly compatible.  This is extremely bogus since
2696  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2697  * returning what the card reported.
2698  */
2699 static int
2700 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2701 {
2702 	struct aac_rev_check rev_check;
2703 	struct aac_rev_check_resp rev_check_resp;
2704 	int error = 0;
2705 
2706 	debug_called(2);
2707 
2708 	/*
2709 	 * Copyin the revision struct from userspace
2710 	 */
2711 	if ((error = copyin(udata, (caddr_t)&rev_check,
2712 			sizeof(struct aac_rev_check))) != 0) {
2713 		return error;
2714 	}
2715 
2716 	debug(2, "Userland revision= %d\n",
2717 	      rev_check.callingRevision.buildNumber);
2718 
2719 	/*
2720 	 * Doctor up the response struct.
2721 	 */
2722 	rev_check_resp.possiblyCompatible = 1;
2723 	rev_check_resp.adapterSWRevision.external.ul =
2724 	    sc->aac_revision.external.ul;
2725 	rev_check_resp.adapterSWRevision.buildNumber =
2726 	    sc->aac_revision.buildNumber;
2727 
2728 	return(copyout((caddr_t)&rev_check_resp, udata,
2729 			sizeof(struct aac_rev_check_resp)));
2730 }
2731 
2732 /*
2733  * Pass the caller the next AIF in their queue
2734  */
2735 static int
2736 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2737 {
2738 	struct get_adapter_fib_ioctl agf;
2739 	int error, s;
2740 
2741 	debug_called(2);
2742 
2743 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2744 
2745 		/*
2746 		 * Check the magic number that we gave the caller.
2747 		 */
2748 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2749 			error = EFAULT;
2750 		} else {
2751 
2752 			s = splbio();
2753 			error = aac_return_aif(sc, agf.AifFib);
2754 
2755 			if ((error == EAGAIN) && (agf.Wait)) {
2756 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2757 				while (error == EAGAIN) {
2758 					error = tsleep(sc->aac_aifq,
2759 						       PCATCH, "aacaif", 0);
2760 					if (error == 0)
2761 						error = aac_return_aif(sc,
2762 						    agf.AifFib);
2763 				}
2764 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2765 			}
2766 		splx(s);
2767 		}
2768 	}
2769 	return(error);
2770 }
2771 
2772 /*
2773  * Hand the next AIF off the top of the queue out to userspace.
2774  *
2775  * YYY token could be lost during copyout
2776  */
2777 static int
2778 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2779 {
2780 	int error;
2781 
2782 	debug_called(2);
2783 
2784 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2785 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2786 		error = EAGAIN;
2787 	} else {
2788 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2789 				sizeof(struct aac_aif_command));
2790 		if (error)
2791 			printf("aac_return_aif: copyout returned %d\n", error);
2792 		if (!error)
2793 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2794 					    AAC_AIFQ_LENGTH;
2795 	}
2796 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2797 	return(error);
2798 }
2799 
2800 /*
2801  * Give the userland some information about the container.  The AAC arch
2802  * expects the driver to be a SCSI passthrough type driver, so it expects
2803  * the containers to have b:t:l numbers.  Fake it.
2804  */
2805 static int
2806 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2807 {
2808 	struct aac_query_disk query_disk;
2809 	struct aac_container *co;
2810 	struct aac_disk	*disk;
2811 	int error, id;
2812 
2813 	debug_called(2);
2814 
2815 	disk = NULL;
2816 
2817 	error = copyin(uptr, (caddr_t)&query_disk,
2818 		       sizeof(struct aac_query_disk));
2819 	if (error)
2820 		return (error);
2821 
2822 	id = query_disk.ContainerNumber;
2823 	if (id == -1)
2824 		return (EINVAL);
2825 
2826 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2827 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2828 		if (co->co_mntobj.ObjectId == id)
2829 			break;
2830 		}
2831 
2832 		if (co == NULL) {
2833 			query_disk.Valid = 0;
2834 			query_disk.Locked = 0;
2835 			query_disk.Deleted = 1;		/* XXX is this right? */
2836 		} else {
2837 			disk = device_get_softc(co->co_disk);
2838 			query_disk.Valid = 1;
2839 			query_disk.Locked =
2840 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2841 			query_disk.Deleted = 0;
2842 			query_disk.Bus = device_get_unit(sc->aac_dev);
2843 			query_disk.Target = disk->unit;
2844 			query_disk.Lun = 0;
2845 			query_disk.UnMapped = 0;
2846 			bcopy(disk->ad_dev_t->si_name,
2847 			      &query_disk.diskDeviceName[0], 10);
2848 		}
2849 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2850 
2851 	error = copyout((caddr_t)&query_disk, uptr,
2852 			sizeof(struct aac_query_disk));
2853 
2854 	return (error);
2855 }
2856 
2857 static void
2858 aac_get_bus_info(struct aac_softc *sc)
2859 {
2860 	struct aac_fib *fib;
2861 	struct aac_ctcfg *c_cmd;
2862 	struct aac_ctcfg_resp *c_resp;
2863 	struct aac_vmioctl *vmi;
2864 	struct aac_vmi_businf_resp *vmi_resp;
2865 	struct aac_getbusinf businfo;
2866 	struct aac_cam_inf *caminf;
2867 	device_t child;
2868 	int i, found, error;
2869 
2870 	aac_alloc_sync_fib(sc, &fib, 0);
2871 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2872 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2873 
2874 	c_cmd->Command = VM_ContainerConfig;
2875 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2876 	c_cmd->param = 0;
2877 
2878 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2879 	    sizeof(struct aac_ctcfg));
2880 	if (error) {
2881 		device_printf(sc->aac_dev, "Error %d sending "
2882 		    "VM_ContainerConfig command\n", error);
2883 		aac_release_sync_fib(sc);
2884 		return;
2885 	}
2886 
2887 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2888 	if (c_resp->Status != ST_OK) {
2889 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2890 		    c_resp->Status);
2891 		aac_release_sync_fib(sc);
2892 		return;
2893 	}
2894 
2895 	sc->scsi_method_id = c_resp->param;
2896 
2897 	vmi = (struct aac_vmioctl *)&fib->data[0];
2898 	bzero(vmi, sizeof(struct aac_vmioctl));
2899 
2900 	vmi->Command = VM_Ioctl;
2901 	vmi->ObjType = FT_DRIVE;
2902 	vmi->MethId = sc->scsi_method_id;
2903 	vmi->ObjId = 0;
2904 	vmi->IoctlCmd = GetBusInfo;
2905 
2906 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2907 	    sizeof(struct aac_vmioctl));
2908 	if (error) {
2909 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2910 		    error);
2911 		aac_release_sync_fib(sc);
2912 		return;
2913 	}
2914 
2915 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2916 	if (vmi_resp->Status != ST_OK) {
2917 		debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2918 		aac_release_sync_fib(sc);
2919 		return;
2920 	}
2921 
2922 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2923 	aac_release_sync_fib(sc);
2924 
2925 	found = 0;
2926 	for (i = 0; i < businfo.BusCount; i++) {
2927 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2928 			continue;
2929 
2930 		MALLOC(caminf, struct aac_cam_inf *,
2931 		    sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2932 
2933 		child = device_add_child(sc->aac_dev, "aacp", -1);
2934 		if (child == NULL) {
2935 			device_printf(sc->aac_dev, "device_add_child failed\n");
2936 			continue;
2937 		}
2938 
2939 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2940 		caminf->BusNumber = i;
2941 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2942 		caminf->aac_sc = sc;
2943 
2944 		device_set_ivars(child, caminf);
2945 		device_set_desc(child, "SCSI Passthrough Bus");
2946 
2947 		found = 1;
2948 	}
2949 
2950 	if (found)
2951 		bus_generic_attach(sc->aac_dev);
2952 
2953 	return;
2954 }
2955