xref: /dragonfly/sys/dev/raid/aac/aac.c (revision f8f04fe3)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *	$DragonFly: src/sys/dev/raid/aac/aac.c,v 1.33 2007/11/10 19:02:04 swildner Exp $
31  */
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52 
53 #include "aac_compat.h"
54 
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 
63 #include "aacreg.h"
64 #include "aac_ioctl.h"
65 #include "aacvar.h"
66 #include "aac_tables.h"
67 #include "aac_cam.h"
68 
69 static void	aac_startup(void *arg);
70 static void	aac_add_container(struct aac_softc *sc,
71 				  struct aac_mntinforesp *mir, int f);
72 static void	aac_get_bus_info(struct aac_softc *sc);
73 static int	aac_shutdown(device_t dev);
74 
75 /* Command Processing */
76 static void	aac_timeout(void *ssc);
77 static int	aac_start(struct aac_command *cm);
78 static void	aac_complete(void *context, int pending);
79 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
80 static void	aac_bio_complete(struct aac_command *cm);
81 static int	aac_wait_command(struct aac_command *cm, int timeout);
82 static void	aac_host_command(struct aac_softc *sc);
83 static void	aac_host_response(struct aac_softc *sc);
84 
85 /* Command Buffer Management */
86 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
87 				       int nseg, int error);
88 static int	aac_alloc_commands(struct aac_softc *sc);
89 static void	aac_free_commands(struct aac_softc *sc);
90 static void	aac_map_command(struct aac_command *cm);
91 static void	aac_unmap_command(struct aac_command *cm);
92 
93 /* Hardware Interface */
94 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
95 			       int error);
96 static int	aac_check_firmware(struct aac_softc *sc);
97 static int	aac_init(struct aac_softc *sc);
98 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
99 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
100 				 u_int32_t arg3, u_int32_t *sp);
101 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
102 				struct aac_command *cm);
103 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
104 				u_int32_t *fib_size, struct aac_fib **fib_addr);
105 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
106 				     struct aac_fib *fib);
107 
108 /* Falcon/PPC interface */
109 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
110 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
111 static int	aac_fa_get_istatus(struct aac_softc *sc);
112 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
113 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
114 				   u_int32_t arg0, u_int32_t arg1,
115 				   u_int32_t arg2, u_int32_t arg3);
116 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
117 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
118 
119 struct aac_interface aac_fa_interface = {
120 	aac_fa_get_fwstatus,
121 	aac_fa_qnotify,
122 	aac_fa_get_istatus,
123 	aac_fa_clear_istatus,
124 	aac_fa_set_mailbox,
125 	aac_fa_get_mailbox,
126 	aac_fa_set_interrupts
127 };
128 
129 /* StrongARM interface */
130 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
131 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
132 static int	aac_sa_get_istatus(struct aac_softc *sc);
133 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
134 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
135 				   u_int32_t arg0, u_int32_t arg1,
136 				   u_int32_t arg2, u_int32_t arg3);
137 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
138 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
139 
140 struct aac_interface aac_sa_interface = {
141 	aac_sa_get_fwstatus,
142 	aac_sa_qnotify,
143 	aac_sa_get_istatus,
144 	aac_sa_clear_istatus,
145 	aac_sa_set_mailbox,
146 	aac_sa_get_mailbox,
147 	aac_sa_set_interrupts
148 };
149 
150 /* i960Rx interface */
151 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
152 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
153 static int	aac_rx_get_istatus(struct aac_softc *sc);
154 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
155 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
156 				   u_int32_t arg0, u_int32_t arg1,
157 				   u_int32_t arg2, u_int32_t arg3);
158 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
159 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
160 
161 struct aac_interface aac_rx_interface = {
162 	aac_rx_get_fwstatus,
163 	aac_rx_qnotify,
164 	aac_rx_get_istatus,
165 	aac_rx_clear_istatus,
166 	aac_rx_set_mailbox,
167 	aac_rx_get_mailbox,
168 	aac_rx_set_interrupts
169 };
170 
171 /* Debugging and Diagnostics */
172 static void	aac_describe_controller(struct aac_softc *sc);
173 static char	*aac_describe_code(struct aac_code_lookup *table,
174 				   u_int32_t code);
175 
176 /* Management Interface */
177 static d_open_t		aac_open;
178 static d_close_t	aac_close;
179 static d_ioctl_t	aac_ioctl;
180 static d_poll_t		aac_poll;
181 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
182 static void		aac_handle_aif(struct aac_softc *sc,
183 					   struct aac_fib *fib);
184 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
185 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
186 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
187 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
188 
189 #define AAC_CDEV_MAJOR	150
190 
191 static struct dev_ops aac_ops = {
192 	{ "aac", AAC_CDEV_MAJOR, 0 },
193 	.d_open =	aac_open,
194 	.d_close =	aac_close,
195 	.d_ioctl =	aac_ioctl,
196 	.d_poll =	aac_poll,
197 };
198 
199 DECLARE_DUMMY_MODULE(aac);
200 
201 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
202 
203 /* sysctl node */
204 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
205 
206 /*
207  * Device Interface
208  */
209 
210 /*
211  * Initialise the controller and softc
212  */
213 int
214 aac_attach(struct aac_softc *sc)
215 {
216 	int error, unit;
217 
218 	debug_called(1);
219 	callout_init(&sc->aac_watchdog);
220 
221 	/*
222 	 * Initialise per-controller queues.
223 	 */
224 	aac_initq_free(sc);
225 	aac_initq_ready(sc);
226 	aac_initq_busy(sc);
227 	aac_initq_complete(sc);
228 	aac_initq_bio(sc);
229 
230 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
231 	/*
232 	 * Initialise command-completion task.
233 	 */
234 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
235 #endif
236 
237 	/* disable interrupts before we enable anything */
238 	AAC_MASK_INTERRUPTS(sc);
239 
240 	/* mark controller as suspended until we get ourselves organised */
241 	sc->aac_state |= AAC_STATE_SUSPEND;
242 
243 	/*
244 	 * Check that the firmware on the card is supported.
245 	 */
246 	if ((error = aac_check_firmware(sc)) != 0)
247 		return(error);
248 
249 	/* Init the sync fib lock */
250 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
251 
252 	/*
253 	 * Initialise the adapter.
254 	 */
255 	if ((error = aac_init(sc)) != 0)
256 		return(error);
257 
258 	/*
259 	 * Print a little information about the controller.
260 	 */
261 	aac_describe_controller(sc);
262 
263 	/*
264 	 * Register to probe our containers later.
265 	 */
266 	TAILQ_INIT(&sc->aac_container_tqh);
267 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
268 
269 	/*
270 	 * Lock for the AIF queue
271 	 */
272 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
273 
274 	sc->aac_ich.ich_func = aac_startup;
275 	sc->aac_ich.ich_arg = sc;
276 	sc->aac_ich.ich_desc = "aac";
277 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
278 		device_printf(sc->aac_dev,
279 			      "can't establish configuration hook\n");
280 		return(ENXIO);
281 	}
282 
283 	/*
284 	 * Make the control device.
285 	 */
286 	unit = device_get_unit(sc->aac_dev);
287 	dev_ops_add(&aac_ops, -1, unit);
288 	sc->aac_dev_t = make_dev(&aac_ops, unit, UID_ROOT, GID_WHEEL, 0644,
289 				 "aac%d", unit);
290 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
291 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
292 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
293 #endif
294 	sc->aac_dev_t->si_drv1 = sc;
295 	reference_dev(sc->aac_dev_t);
296 
297 	/* Create the AIF thread */
298 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
299 	if (kthread_create((void(*)(void *))aac_host_command, sc,
300 			   &sc->aifthread, 0, "aac%daif", unit))
301 #else
302 	if (kthread_create((void(*)(void *))aac_host_command, sc,
303 			   &sc->aifthread, "aac%daif", unit))
304 #endif
305 		panic("Could not create AIF thread\n");
306 
307 	/* Register the shutdown method to only be called post-dump */
308 	if ((EVENTHANDLER_REGISTER(shutdown_post_sync, aac_shutdown, sc->aac_dev,
309 				   SHUTDOWN_PRI_DRIVER)) == NULL)
310 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
311 
312 	/* Register with CAM for the non-DASD devices */
313 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
314 		aac_get_bus_info(sc);
315 
316 	return(0);
317 }
318 
319 /*
320  * Probe for containers, create disks.
321  */
322 static void
323 aac_startup(void *arg)
324 {
325 	struct aac_softc *sc;
326 	struct aac_fib *fib;
327 	struct aac_mntinfo *mi;
328 	struct aac_mntinforesp *mir = NULL;
329 	int count = 0, i = 0;
330 
331 	debug_called(1);
332 
333 	sc = (struct aac_softc *)arg;
334 
335 	/* disconnect ourselves from the intrhook chain */
336 	config_intrhook_disestablish(&sc->aac_ich);
337 
338 	aac_alloc_sync_fib(sc, &fib, 0);
339 	mi = (struct aac_mntinfo *)&fib->data[0];
340 
341 	/* loop over possible containers */
342 	do {
343 		/* request information on this container */
344 		bzero(mi, sizeof(struct aac_mntinfo));
345 		mi->Command = VM_NameServe;
346 		mi->MntType = FT_FILESYS;
347 		mi->MntCount = i;
348 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
349 				 sizeof(struct aac_mntinfo))) {
350 			device_printf(sc->aac_dev,
351 			    "error probing container %d", i);
352 
353 			continue;
354 		}
355 
356 		mir = (struct aac_mntinforesp *)&fib->data[0];
357 		/* XXX Need to check if count changed */
358 		count = mir->MntRespCount;
359 		aac_add_container(sc, mir, 0);
360 		i++;
361 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
362 
363 	aac_release_sync_fib(sc);
364 
365 	/* poke the bus to actually attach the child devices */
366 	if (bus_generic_attach(sc->aac_dev))
367 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
368 
369 	/* mark the controller up */
370 	sc->aac_state &= ~AAC_STATE_SUSPEND;
371 
372 	/* enable interrupts now */
373 	AAC_UNMASK_INTERRUPTS(sc);
374 
375 	/* enable the timeout watchdog */
376 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
377 		      aac_timeout, sc);
378 }
379 
380 /*
381  * Create a device to respresent a new container
382  */
383 static void
384 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
385 {
386 	struct aac_container *co;
387 	device_t child;
388 
389 	/*
390 	 * Check container volume type for validity.  Note that many of
391 	 * the possible types may never show up.
392 	 */
393 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
394 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
395 		       M_INTWAIT);
396 		debug(1, "id %x  name '%.16s'  size %u  type %d",
397 		      mir->MntTable[0].ObjectId,
398 		      mir->MntTable[0].FileSystemName,
399 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
400 
401 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
402 			device_printf(sc->aac_dev, "device_add_child failed\n");
403 		else
404 			device_set_ivars(child, co);
405 		device_set_desc(child, aac_describe_code(aac_container_types,
406 				mir->MntTable[0].VolType));
407 		co->co_disk = child;
408 		co->co_found = f;
409 		bcopy(&mir->MntTable[0], &co->co_mntobj,
410 		      sizeof(struct aac_mntobj));
411 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
412 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
413 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
414 	}
415 }
416 
417 /*
418  * Free all of the resources associated with (sc)
419  *
420  * Should not be called if the controller is active.
421  */
422 void
423 aac_free(struct aac_softc *sc)
424 {
425 	debug_called(1);
426 
427 	/* remove the control device */
428 	if (sc->aac_dev_t != NULL)
429 		destroy_dev(sc->aac_dev_t);
430 
431 	/* throw away any FIB buffers, discard the FIB DMA tag */
432 	if (sc->aac_fibs != NULL)
433 		aac_free_commands(sc);
434 	if (sc->aac_fib_dmat)
435 		bus_dma_tag_destroy(sc->aac_fib_dmat);
436 
437 	/* destroy the common area */
438 	if (sc->aac_common) {
439 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
440 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
441 				sc->aac_common_dmamap);
442 	}
443 	if (sc->aac_common_dmat)
444 		bus_dma_tag_destroy(sc->aac_common_dmat);
445 
446 	/* disconnect the interrupt handler */
447 	if (sc->aac_intr)
448 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
449 	if (sc->aac_irq != NULL)
450 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
451 				     sc->aac_irq);
452 
453 	/* destroy data-transfer DMA tag */
454 	if (sc->aac_buffer_dmat)
455 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
456 
457 	/* destroy the parent DMA tag */
458 	if (sc->aac_parent_dmat)
459 		bus_dma_tag_destroy(sc->aac_parent_dmat);
460 
461 	/* release the register window mapping */
462 	if (sc->aac_regs_resource != NULL) {
463 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
464 				     sc->aac_regs_rid, sc->aac_regs_resource);
465 	}
466 	dev_ops_remove(&aac_ops, -1, device_get_unit(sc->aac_dev));
467 }
468 
469 /*
470  * Disconnect from the controller completely, in preparation for unload.
471  */
472 int
473 aac_detach(device_t dev)
474 {
475 	struct aac_softc *sc;
476 #if AAC_BROKEN
477 	int error;
478 #endif
479 
480 	debug_called(1);
481 
482 	sc = device_get_softc(dev);
483 
484 	callout_stop(&sc->aac_watchdog);
485 
486 	if (sc->aac_state & AAC_STATE_OPEN)
487 	return(EBUSY);
488 
489 #if AAC_BROKEN
490 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
491 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
492 		wakeup(sc->aifthread);
493 		tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
494 	}
495 
496 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
497 		panic("Cannot shutdown AIF thread\n");
498 
499 	if ((error = aac_shutdown(dev)))
500 		return(error);
501 
502 	aac_free(sc);
503 
504 	return(0);
505 #else
506 	return (EBUSY);
507 #endif
508 }
509 
510 /*
511  * Bring the controller down to a dormant state and detach all child devices.
512  *
513  * This function is called before detach or system shutdown.
514  *
515  * Note that we can assume that the bioq on the controller is empty, as we won't
516  * allow shutdown if any device is open.
517  */
518 static int
519 aac_shutdown(device_t dev)
520 {
521 	struct aac_softc *sc;
522 	struct aac_fib *fib;
523 	struct aac_close_command *cc;
524 
525 	debug_called(1);
526 
527 	sc = device_get_softc(dev);
528 
529 	crit_enter();
530 
531 	sc->aac_state |= AAC_STATE_SUSPEND;
532 
533 	/*
534 	 * Send a Container shutdown followed by a HostShutdown FIB to the
535 	 * controller to convince it that we don't want to talk to it anymore.
536 	 * We've been closed and all I/O completed already
537 	 */
538 	device_printf(sc->aac_dev, "shutting down controller...");
539 
540 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
541 	cc = (struct aac_close_command *)&fib->data[0];
542 
543 	bzero(cc, sizeof(struct aac_close_command));
544 	cc->Command = VM_CloseAll;
545 	cc->ContainerId = 0xffffffff;
546 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
547 	    sizeof(struct aac_close_command)))
548 		kprintf("FAILED.\n");
549 	else {
550 		fib->data[0] = 0;
551 		/*
552 		 * XXX Issuing this command to the controller makes it shut down
553 		 * but also keeps it from coming back up without a reset of the
554 		 * PCI bus.  This is not desirable if you are just unloading the
555 		 * driver module with the intent to reload it later.
556 		 */
557 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
558 		    fib, 1)) {
559 			kprintf("FAILED.\n");
560 		} else {
561 			kprintf("done.\n");
562 		}
563 	}
564 
565 	AAC_MASK_INTERRUPTS(sc);
566 
567 	crit_exit();
568 	return(0);
569 }
570 
571 /*
572  * Bring the controller to a quiescent state, ready for system suspend.
573  */
574 int
575 aac_suspend(device_t dev)
576 {
577 	struct aac_softc *sc;
578 
579 	debug_called(1);
580 
581 	sc = device_get_softc(dev);
582 
583 	crit_enter();
584 
585 	sc->aac_state |= AAC_STATE_SUSPEND;
586 
587 	AAC_MASK_INTERRUPTS(sc);
588 	crit_exit();
589 	return(0);
590 }
591 
592 /*
593  * Bring the controller back to a state ready for operation.
594  */
595 int
596 aac_resume(device_t dev)
597 {
598 	struct aac_softc *sc;
599 
600 	debug_called(1);
601 
602 	sc = device_get_softc(dev);
603 
604 	sc->aac_state &= ~AAC_STATE_SUSPEND;
605 	AAC_UNMASK_INTERRUPTS(sc);
606 	return(0);
607 }
608 
609 /*
610  * Take an interrupt.
611  */
612 void
613 aac_intr(void *arg)
614 {
615 	struct aac_softc *sc;
616 	u_int16_t reason;
617 	u_int32_t *resp_queue;
618 
619 	debug_called(2);
620 
621 	sc = (struct aac_softc *)arg;
622 
623 	/*
624 	 * Optimize the common case of adapter response interrupts.
625 	 * We must read from the card prior to processing the responses
626 	 * to ensure the clear is flushed prior to accessing the queues.
627 	 * Reading the queues from local memory might save us a PCI read.
628 	 */
629 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
630 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
631 		reason = AAC_DB_RESPONSE_READY;
632 	else
633 		reason = AAC_GET_ISTATUS(sc);
634 	AAC_CLEAR_ISTATUS(sc, reason);
635 	(void)AAC_GET_ISTATUS(sc);
636 
637 	/* It's not ok to return here because of races with the previous step */
638 	if (reason & AAC_DB_RESPONSE_READY)
639 		aac_host_response(sc);
640 
641 	/* controller wants to talk to the log */
642 	if (reason & AAC_DB_PRINTF)
643 		aac_print_printf(sc);
644 
645 	/* controller has a message for us? */
646 	if (reason & AAC_DB_COMMAND_READY) {
647 		/* XXX What happens if the thread is already awake? */
648 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
649 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
650 			wakeup(sc->aifthread);
651 		}
652 	}
653 }
654 
655 /*
656  * Command Processing
657  */
658 
659 /*
660  * Start as much queued I/O as possible on the controller
661  */
662 void
663 aac_startio(struct aac_softc *sc)
664 {
665 	struct aac_command *cm;
666 
667 	debug_called(2);
668 
669 	for (;;) {
670 		/*
671 		 * Try to get a command that's been put off for lack of
672 		 * resources
673 		 */
674 		cm = aac_dequeue_ready(sc);
675 
676 		/*
677 		 * Try to build a command off the bio queue (ignore error
678 		 * return)
679 		 */
680 		if (cm == NULL)
681 			aac_bio_command(sc, &cm);
682 
683 		/* nothing to do? */
684 		if (cm == NULL)
685 			break;
686 
687 		/* try to give the command to the controller */
688 		if (aac_start(cm) == EBUSY) {
689 			/* put it on the ready queue for later */
690 			aac_requeue_ready(cm);
691 			break;
692 		}
693 	}
694 }
695 
696 /*
697  * Deliver a command to the controller; allocate controller resources at the
698  * last moment when possible.
699  */
700 static int
701 aac_start(struct aac_command *cm)
702 {
703 	struct aac_softc *sc;
704 	int error;
705 
706 	debug_called(2);
707 
708 	sc = cm->cm_sc;
709 
710 	/* get the command mapped */
711 	aac_map_command(cm);
712 
713 	/* fix up the address values in the FIB */
714 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
715 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
716 
717 	/* save a pointer to the command for speedy reverse-lookup */
718 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
719 							 * address issue */
720 	/* put the FIB on the outbound queue */
721 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
722 	return(error);
723 }
724 
725 /*
726  * Handle notification of one or more FIBs coming from the controller.
727  */
728 static void
729 aac_host_command(struct aac_softc *sc)
730 {
731 	struct aac_fib *fib;
732 	u_int32_t fib_size;
733 	int size;
734 
735 	debug_called(2);
736 
737 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
738 
739 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
740 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
741 			tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
742 
743 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
744 		for (;;) {
745 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
746 					    &fib_size, &fib))
747 				break;	/* nothing to do */
748 
749 			AAC_PRINT_FIB(sc, fib);
750 
751 			switch (fib->Header.Command) {
752 			case AifRequest:
753 				aac_handle_aif(sc, fib);
754 				break;
755 			default:
756 				device_printf(sc->aac_dev, "unknown command "
757 					      "from controller\n");
758 				break;
759 			}
760 
761 			/* Return the AIF to the controller. */
762 			if ((fib->Header.XferState == 0) ||
763 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
764 				break;
765 
766 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
767 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
768 				*(AAC_FSAStatus*)fib->data = ST_OK;
769 
770 				/* XXX Compute the Size field? */
771 				size = fib->Header.Size;
772 				if (size > sizeof(struct aac_fib)) {
773 					size = sizeof(struct aac_fib);
774 					fib->Header.Size = size;
775 				}
776 				/*
777 				 * Since we did not generate this command, it
778 				 * cannot go through the normal
779 				 * enqueue->startio chain.
780 				 */
781 				aac_enqueue_response(sc,
782 						     AAC_ADAP_NORM_RESP_QUEUE,
783 						     fib);
784 			}
785 		}
786 	}
787 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
788 	wakeup(sc->aac_dev);
789 
790 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
791 	mtx_lock(&Giant);
792 #endif
793 	kthread_exit();
794 }
795 
796 /*
797  * Handle notification of one or more FIBs completed by the controller
798  */
799 static void
800 aac_host_response(struct aac_softc *sc)
801 {
802 	struct aac_command *cm;
803 	struct aac_fib *fib;
804 	u_int32_t fib_size;
805 
806 	debug_called(2);
807 
808 	for (;;) {
809 		/* look for completed FIBs on our queue */
810 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
811 				    &fib))
812 			break;	/* nothing to do */
813 
814 		/* get the command, unmap and queue for later processing */
815 		cm = (struct aac_command *)fib->Header.SenderData;
816 		if (cm == NULL) {
817 			AAC_PRINT_FIB(sc, fib);
818 		} else {
819 			aac_remove_busy(cm);
820 			aac_unmap_command(cm);		/* XXX defer? */
821 			aac_enqueue_complete(cm);
822 		}
823 	}
824 
825 	/* handle completion processing */
826 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
827 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
828 #else
829 	aac_complete(sc, 0);
830 #endif
831 }
832 
833 /*
834  * Process completed commands.
835  */
836 static void
837 aac_complete(void *context, int pending)
838 {
839 	struct aac_softc *sc;
840 	struct aac_command *cm;
841 
842 	debug_called(2);
843 
844 	sc = (struct aac_softc *)context;
845 
846 	/* pull completed commands off the queue */
847 	for (;;) {
848 		cm = aac_dequeue_complete(sc);
849 		if (cm == NULL)
850 			break;
851 		cm->cm_flags |= AAC_CMD_COMPLETED;
852 
853 		/* is there a completion handler? */
854 		if (cm->cm_complete != NULL) {
855 			cm->cm_complete(cm);
856 		} else {
857 			/* assume that someone is sleeping on this command */
858 			wakeup(cm);
859 		}
860 	}
861 
862 	/* see if we can start some more I/O */
863 	aac_startio(sc);
864 }
865 
866 /*
867  * Handle a bio submitted from a disk device.
868  */
869 void
870 aac_submit_bio(struct aac_disk *ad, struct bio *bio)
871 {
872 	struct aac_softc *sc;
873 
874 	debug_called(2);
875 
876 	bio->bio_driver_info = ad;
877 	sc = ad->ad_controller;
878 
879 	/* queue the BIO and try to get some work done */
880 	aac_enqueue_bio(sc, bio);
881 	aac_startio(sc);
882 }
883 
884 /*
885  * Get a bio and build a command to go with it.
886  */
887 static int
888 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
889 {
890 	struct aac_command *cm;
891 	struct aac_fib *fib;
892 	struct aac_blockread *br;
893 	struct aac_blockwrite *bw;
894 	struct aac_disk *ad;
895 	struct bio *bio;
896 	struct buf *bp;
897 
898 	debug_called(2);
899 
900 	/* get the resources we will need */
901 	cm = NULL;
902 	if ((bio = aac_dequeue_bio(sc)) == NULL)
903 		goto fail;
904 	if (aac_alloc_command(sc, &cm))	/* get a command */
905 		goto fail;
906 
907 	/* fill out the command */
908 	bp = bio->bio_buf;
909 	cm->cm_data = (void *)bp->b_data;
910 	cm->cm_datalen = bp->b_bcount;
911 	cm->cm_complete = aac_bio_complete;
912 	cm->cm_private = bio;
913 	cm->cm_timestamp = time_second;
914 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
915 
916 	/* build the FIB */
917 	fib = cm->cm_fib;
918 	fib->Header.XferState =
919 		AAC_FIBSTATE_HOSTOWNED   |
920 		AAC_FIBSTATE_INITIALISED |
921 		AAC_FIBSTATE_EMPTY	 |
922 		AAC_FIBSTATE_FROMHOST	 |
923 		AAC_FIBSTATE_REXPECTED   |
924 		AAC_FIBSTATE_NORM	 |
925 		AAC_FIBSTATE_ASYNC	 |
926 		AAC_FIBSTATE_FAST_RESPONSE;
927 	fib->Header.Command = ContainerCommand;
928 	fib->Header.Size = sizeof(struct aac_fib_header);
929 
930 	/* build the read/write request */
931 	ad = (struct aac_disk *)bio->bio_driver_info;
932 	if (bp->b_cmd == BUF_CMD_READ) {
933 		br = (struct aac_blockread *)&fib->data[0];
934 		br->Command = VM_CtBlockRead;
935 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
936 		br->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
937 		br->ByteCount = bp->b_bcount;
938 		fib->Header.Size += sizeof(struct aac_blockread);
939 		cm->cm_sgtable = &br->SgMap;
940 		cm->cm_flags |= AAC_CMD_DATAIN;
941 	} else {
942 		bw = (struct aac_blockwrite *)&fib->data[0];
943 		bw->Command = VM_CtBlockWrite;
944 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
945 		bw->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
946 		bw->ByteCount = bp->b_bcount;
947 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
948 		fib->Header.Size += sizeof(struct aac_blockwrite);
949 		cm->cm_flags |= AAC_CMD_DATAOUT;
950 		cm->cm_sgtable = &bw->SgMap;
951 	}
952 
953 	*cmp = cm;
954 	return(0);
955 
956 fail:
957 	if (bio != NULL)
958 		aac_enqueue_bio(sc, bio);
959 	if (cm != NULL)
960 		aac_release_command(cm);
961 	return(ENOMEM);
962 }
963 
964 /*
965  * Handle a bio-instigated command that has been completed.
966  */
967 static void
968 aac_bio_complete(struct aac_command *cm)
969 {
970 	struct aac_blockread_response *brr;
971 	struct aac_blockwrite_response *bwr;
972 	struct bio *bio;
973 	struct buf *bp;
974 	const char *code;
975 	AAC_FSAStatus status;
976 
977 	/* fetch relevant status and then release the command */
978 	bio = (struct bio *)cm->cm_private;
979 	bp = bio->bio_buf;
980 	if (bp->b_cmd == BUF_CMD_READ) {
981 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
982 		status = brr->Status;
983 	} else {
984 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
985 		status = bwr->Status;
986 	}
987 	aac_release_command(cm);
988 
989 	/* fix up the bio based on status */
990 	if (status == ST_OK) {
991 		bp->b_resid = 0;
992 		code = 0;
993 	} else {
994 		bp->b_error = EIO;
995 		bp->b_flags |= B_ERROR;
996 		/* pass an error string out to the disk layer */
997 		code = aac_describe_code(aac_command_status_table, status);
998 	}
999 	aac_biodone(bio, code);
1000 }
1001 
1002 /*
1003  * Dump a block of data to the controller.  If the queue is full, tell the
1004  * caller to hold off and wait for the queue to drain.
1005  */
1006 int
1007 aac_dump_enqueue(struct aac_disk *ad, u_int64_t lba, void *data, int dumppages)
1008 {
1009 	struct aac_softc *sc;
1010 	struct aac_command *cm;
1011 	struct aac_fib *fib;
1012 	struct aac_blockwrite *bw;
1013 
1014 	sc = ad->ad_controller;
1015 	cm = NULL;
1016 
1017 	KKASSERT(lba <= 0x100000000ULL);
1018 
1019 	if (aac_alloc_command(sc, &cm))
1020 		return (EBUSY);
1021 
1022 	/* fill out the command */
1023 	cm->cm_data = data;
1024 	cm->cm_datalen = dumppages * PAGE_SIZE;
1025 	cm->cm_complete = NULL;
1026 	cm->cm_private = NULL;
1027 	cm->cm_timestamp = time_second;
1028 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1029 
1030 	/* build the FIB */
1031 	fib = cm->cm_fib;
1032 	fib->Header.XferState =
1033 	AAC_FIBSTATE_HOSTOWNED   |
1034 	AAC_FIBSTATE_INITIALISED |
1035 	AAC_FIBSTATE_FROMHOST	 |
1036 	AAC_FIBSTATE_REXPECTED   |
1037 	AAC_FIBSTATE_NORM;
1038 	fib->Header.Command = ContainerCommand;
1039 	fib->Header.Size = sizeof(struct aac_fib_header);
1040 
1041 	bw = (struct aac_blockwrite *)&fib->data[0];
1042 	bw->Command = VM_CtBlockWrite;
1043 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1044 	bw->BlockNumber = lba;
1045 	bw->ByteCount = dumppages * PAGE_SIZE;
1046 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1047 	fib->Header.Size += sizeof(struct aac_blockwrite);
1048 	cm->cm_flags |= AAC_CMD_DATAOUT;
1049 	cm->cm_sgtable = &bw->SgMap;
1050 
1051 	return (aac_start(cm));
1052 }
1053 
1054 /*
1055  * Wait for the card's queue to drain when dumping.  Also check for monitor
1056  * kprintf's
1057  */
1058 void
1059 aac_dump_complete(struct aac_softc *sc)
1060 {
1061 	struct aac_fib *fib;
1062 	struct aac_command *cm;
1063 	u_int16_t reason;
1064 	u_int32_t pi, ci, fib_size;
1065 
1066 	do {
1067 		reason = AAC_GET_ISTATUS(sc);
1068 		if (reason & AAC_DB_RESPONSE_READY) {
1069 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1070 			for (;;) {
1071 				if (aac_dequeue_fib(sc,
1072 						    AAC_HOST_NORM_RESP_QUEUE,
1073 						    &fib_size, &fib))
1074 					break;
1075 				cm = (struct aac_command *)
1076 					fib->Header.SenderData;
1077 				if (cm == NULL)
1078 					AAC_PRINT_FIB(sc, fib);
1079 				else {
1080 					aac_remove_busy(cm);
1081 					aac_unmap_command(cm);
1082 					aac_enqueue_complete(cm);
1083 					aac_release_command(cm);
1084 				}
1085 			}
1086 		}
1087 		if (reason & AAC_DB_PRINTF) {
1088 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1089 			aac_print_printf(sc);
1090 		}
1091 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1092 			AAC_PRODUCER_INDEX];
1093 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1094 			AAC_CONSUMER_INDEX];
1095 	} while (ci != pi);
1096 
1097 	return;
1098 }
1099 
1100 /*
1101  * Submit a command to the controller, return when it completes.
1102  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1103  *     be stuck here forever.  At the same time, signals are not caught
1104  *     because there is a risk that a signal could wakeup the tsleep before
1105  *     the card has a chance to complete the command.  The passed in timeout
1106  *     is ignored for the same reason.  Since there is no way to cancel a
1107  *     command in progress, we should probably create a 'dead' queue where
1108  *     commands go that have been interrupted/timed-out/etc, that keeps them
1109  *     out of the free pool.  That way, if the card is just slow, it won't
1110  *     spam the memory of a command that has been recycled.
1111  */
1112 static int
1113 aac_wait_command(struct aac_command *cm, int timeout)
1114 {
1115 	int error = 0;
1116 
1117 	debug_called(2);
1118 
1119 	/* Put the command on the ready queue and get things going */
1120 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1121 	aac_enqueue_ready(cm);
1122 	aac_startio(cm->cm_sc);
1123 	crit_enter();
1124 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1125 		error = tsleep(cm, 0, "aacwait", 0);
1126 	}
1127 	crit_exit();
1128 	return(error);
1129 }
1130 
1131 /*
1132  *Command Buffer Management
1133  */
1134 
1135 /*
1136  * Allocate a command.
1137  */
1138 int
1139 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1140 {
1141 	struct aac_command *cm;
1142 
1143 	debug_called(3);
1144 
1145 	if ((cm = aac_dequeue_free(sc)) == NULL)
1146 		return(ENOMEM);
1147 
1148 	*cmp = cm;
1149 	return(0);
1150 }
1151 
1152 /*
1153  * Release a command back to the freelist.
1154  */
1155 void
1156 aac_release_command(struct aac_command *cm)
1157 {
1158 	debug_called(3);
1159 
1160 	/* (re)initialise the command/FIB */
1161 	cm->cm_sgtable = NULL;
1162 	cm->cm_flags = 0;
1163 	cm->cm_complete = NULL;
1164 	cm->cm_private = NULL;
1165 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1166 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1167 	cm->cm_fib->Header.Flags = 0;
1168 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1169 
1170 	/*
1171 	 * These are duplicated in aac_start to cover the case where an
1172 	 * intermediate stage may have destroyed them.  They're left
1173 	 * initialised here for debugging purposes only.
1174 	 */
1175 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1176 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1177 	cm->cm_fib->Header.SenderData = 0;
1178 
1179 	aac_enqueue_free(cm);
1180 }
1181 
1182 /*
1183  * Map helper for command/FIB allocation.
1184  */
1185 static void
1186 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1187 {
1188 	struct aac_softc *sc;
1189 
1190 	sc = (struct aac_softc *)arg;
1191 
1192 	debug_called(3);
1193 
1194 	sc->aac_fibphys = segs[0].ds_addr;
1195 }
1196 
1197 /*
1198  * Allocate and initialise commands/FIBs for this adapter.
1199  */
1200 static int
1201 aac_alloc_commands(struct aac_softc *sc)
1202 {
1203 	struct aac_command *cm;
1204 	int i;
1205 
1206 	debug_called(1);
1207 
1208 	/* allocate the FIBs in DMAable memory and load them */
1209 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1210 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1211 		return(ENOMEM);
1212 	}
1213 
1214 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1215 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1216 			aac_map_command_helper, sc, 0);
1217 
1218 	/* initialise constant fields in the command structure */
1219 	bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1220 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1221 		cm = &sc->aac_command[i];
1222 		cm->cm_sc = sc;
1223 		cm->cm_fib = sc->aac_fibs + i;
1224 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1225 
1226 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1227 			aac_release_command(cm);
1228 	}
1229 	return(0);
1230 }
1231 
1232 /*
1233  * Free FIBs owned by this adapter.
1234  */
1235 static void
1236 aac_free_commands(struct aac_softc *sc)
1237 {
1238 	int i;
1239 
1240 	debug_called(1);
1241 
1242 	for (i = 0; i < AAC_FIB_COUNT; i++)
1243 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1244 				   sc->aac_command[i].cm_datamap);
1245 
1246 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1247 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1248 }
1249 
1250 /*
1251  * Command-mapping helper function - populate this command's s/g table.
1252  */
1253 static void
1254 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1255 {
1256 	struct aac_command *cm;
1257 	struct aac_fib *fib;
1258 	struct aac_sg_table *sg;
1259 	int i;
1260 
1261 	debug_called(3);
1262 
1263 	cm = (struct aac_command *)arg;
1264 	fib = cm->cm_fib;
1265 
1266 	/* find the s/g table */
1267 	sg = cm->cm_sgtable;
1268 
1269 	/* copy into the FIB */
1270 	if (sg != NULL) {
1271 		sg->SgCount = nseg;
1272 		for (i = 0; i < nseg; i++) {
1273 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1274 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1275 		}
1276 		/* update the FIB size for the s/g count */
1277 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1278 	}
1279 
1280 }
1281 
1282 /*
1283  * Map a command into controller-visible space.
1284  */
1285 static void
1286 aac_map_command(struct aac_command *cm)
1287 {
1288 	struct aac_softc *sc;
1289 
1290 	debug_called(2);
1291 
1292 	sc = cm->cm_sc;
1293 
1294 	/* don't map more than once */
1295 	if (cm->cm_flags & AAC_CMD_MAPPED)
1296 		return;
1297 
1298 	if (cm->cm_datalen != 0) {
1299 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1300 				cm->cm_data, cm->cm_datalen,
1301 				aac_map_command_sg, cm, 0);
1302 
1303 		if (cm->cm_flags & AAC_CMD_DATAIN)
1304 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1305 					BUS_DMASYNC_PREREAD);
1306 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1307 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1308 					BUS_DMASYNC_PREWRITE);
1309 	}
1310 	cm->cm_flags |= AAC_CMD_MAPPED;
1311 }
1312 
1313 /*
1314  * Unmap a command from controller-visible space.
1315  */
1316 static void
1317 aac_unmap_command(struct aac_command *cm)
1318 {
1319 	struct aac_softc *sc;
1320 
1321 	debug_called(2);
1322 
1323 	sc = cm->cm_sc;
1324 
1325 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1326 		return;
1327 
1328 	if (cm->cm_datalen != 0) {
1329 		if (cm->cm_flags & AAC_CMD_DATAIN)
1330 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1331 					BUS_DMASYNC_POSTREAD);
1332 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1333 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1334 					BUS_DMASYNC_POSTWRITE);
1335 
1336 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1337 	}
1338 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1339 }
1340 
1341 /*
1342  * Hardware Interface
1343  */
1344 
1345 /*
1346  * Initialise the adapter.
1347  */
1348 static void
1349 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1350 {
1351 	struct aac_softc *sc;
1352 
1353 	debug_called(1);
1354 
1355 	sc = (struct aac_softc *)arg;
1356 
1357 	sc->aac_common_busaddr = segs[0].ds_addr;
1358 }
1359 
1360 static int
1361 aac_check_firmware(struct aac_softc *sc)
1362 {
1363 	u_int32_t major, minor, options;
1364 
1365 	debug_called(1);
1366 
1367 	/*
1368 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1369 	 * firmware version 1.x are not compatible with this driver.
1370 	 */
1371 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1372 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1373 				     NULL)) {
1374 			device_printf(sc->aac_dev,
1375 				      "Error reading firmware version\n");
1376 			return (EIO);
1377 		}
1378 
1379 		/* These numbers are stored as ASCII! */
1380 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1381 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1382 		if (major == 1) {
1383 			device_printf(sc->aac_dev,
1384 			    "Firmware version %d.%d is not supported.\n",
1385 			    major, minor);
1386 			return (EINVAL);
1387 		}
1388 	}
1389 
1390 	/*
1391 	 * Retrieve the capabilities/supported options word so we know what
1392 	 * work-arounds to enable.
1393 	 */
1394 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1395 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1396 		return (EIO);
1397 	}
1398 	options = AAC_GET_MAILBOX(sc, 1);
1399 	sc->supported_options = options;
1400 
1401 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1402 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1403 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1404 	if (options & AAC_SUPPORTED_NONDASD)
1405 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1406 
1407 	return (0);
1408 }
1409 
1410 static int
1411 aac_init(struct aac_softc *sc)
1412 {
1413 	struct aac_adapter_init	*ip;
1414 	time_t then;
1415 	u_int32_t code;
1416 	u_int8_t *qaddr;
1417 	int error;
1418 
1419 	debug_called(1);
1420 
1421 	/*
1422 	 * First wait for the adapter to come ready.
1423 	 */
1424 	then = time_second;
1425 	do {
1426 		code = AAC_GET_FWSTATUS(sc);
1427 		if (code & AAC_SELF_TEST_FAILED) {
1428 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1429 			return(ENXIO);
1430 		}
1431 		if (code & AAC_KERNEL_PANIC) {
1432 			device_printf(sc->aac_dev,
1433 				      "FATAL: controller kernel panic\n");
1434 			return(ENXIO);
1435 		}
1436 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1437 			device_printf(sc->aac_dev,
1438 				      "FATAL: controller not coming ready, "
1439 					   "status %x\n", code);
1440 			return(ENXIO);
1441 		}
1442 	} while (!(code & AAC_UP_AND_RUNNING));
1443 
1444  	error = ENOMEM;
1445  	/*
1446  	 * Create DMA tag for mapping buffers into controller-addressable space.
1447  	 */
1448  	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1449  			       1, 0, 			/* algnmnt, boundary */
1450  			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1451  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1452  			       NULL, NULL, 		/* filter, filterarg */
1453  			       MAXBSIZE,		/* maxsize */
1454  			       AAC_MAXSGENTRIES,	/* nsegments */
1455  			       MAXBSIZE,		/* maxsegsize */
1456  			       BUS_DMA_ALLOCNOW,	/* flags */
1457  			       &sc->aac_buffer_dmat)) {
1458  		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1459  		goto out;
1460  	}
1461 
1462  	/*
1463  	 * Create DMA tag for mapping FIBs into controller-addressable space..
1464  	 */
1465  	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1466  			       1, 0, 			/* algnmnt, boundary */
1467  			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1468  			       BUS_SPACE_MAXADDR_32BIT :
1469  			       0x7fffffff,		/* lowaddr */
1470  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1471  			       NULL, NULL, 		/* filter, filterarg */
1472  			       AAC_FIB_COUNT *
1473  			       sizeof(struct aac_fib),  /* maxsize */
1474  			       1,			/* nsegments */
1475  			       AAC_FIB_COUNT *
1476  			       sizeof(struct aac_fib),	/* maxsegsize */
1477  			       BUS_DMA_ALLOCNOW,	/* flags */
1478  			       &sc->aac_fib_dmat)) {
1479  		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");
1480  		goto out;
1481  	}
1482 
1483 	/*
1484 	 * Create DMA tag for the common structure and allocate it.
1485 	 */
1486 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1487 			       1, 0,			/* algnmnt, boundary */
1488 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1489 			       BUS_SPACE_MAXADDR_32BIT :
1490 			       0x7fffffff,		/* lowaddr */
1491 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1492 			       NULL, NULL, 		/* filter, filterarg */
1493 			       8192 + sizeof(struct aac_common), /* maxsize */
1494 			       1,			/* nsegments */
1495 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1496 			       BUS_DMA_ALLOCNOW,	/* flags */
1497 			       &sc->aac_common_dmat)) {
1498 		device_printf(sc->aac_dev,
1499 			      "can't allocate common structure DMA tag\n");
1500 		goto out;
1501 	}
1502 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1503 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1504 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1505 		goto out;
1506 	}
1507 	/*
1508 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1509 	 * below address 8192 in physical memory.
1510 	 * XXX If the padding is not needed, can it be put to use instead
1511 	 * of ignored?
1512 	 */
1513 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1514 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1515 			aac_common_map, sc, 0);
1516 
1517 	if (sc->aac_common_busaddr < 8192) {
1518 		sc->aac_common =
1519 		    (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1520 		sc->aac_common_busaddr += 8192;
1521 	}
1522 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1523 
1524 	/* Allocate some FIBs and associated command structs */
1525 	if (aac_alloc_commands(sc) != 0)
1526 		goto out;
1527 
1528 	/*
1529 	 * Fill in the init structure.  This tells the adapter about the
1530 	 * physical location of various important shared data structures.
1531 	 */
1532 	ip = &sc->aac_common->ac_init;
1533 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1534 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1535 
1536 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1537 					 offsetof(struct aac_common, ac_fibs);
1538 	ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1539 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1540 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1541 
1542 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1543 				  offsetof(struct aac_common, ac_printf);
1544 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1545 
1546 	/* The adapter assumes that pages are 4K in size */
1547 	/* XXX why should the adapter care? */
1548 	ip->HostPhysMemPages = ctob((int)Maxmem) / AAC_PAGE_SIZE;
1549 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1550 
1551 	/*
1552 	 * Initialise FIB queues.  Note that it appears that the layout of the
1553 	 * indexes and the segmentation of the entries may be mandated by the
1554 	 * adapter, which is only told about the base of the queue index fields.
1555 	 *
1556 	 * The initial values of the indices are assumed to inform the adapter
1557 	 * of the sizes of the respective queues, and theoretically it could
1558 	 * work out the entire layout of the queue structures from this.  We
1559 	 * take the easy route and just lay this area out like everyone else
1560 	 * does.
1561 	 *
1562 	 * The Linux driver uses a much more complex scheme whereby several
1563 	 * header records are kept for each queue.  We use a couple of generic
1564 	 * list manipulation functions which 'know' the size of each list by
1565 	 * virtue of a table.
1566 	 */
1567 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1568 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1569 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1570 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1571 				((u_int32_t)sc->aac_queues -
1572 				(u_int32_t)sc->aac_common);
1573 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1574 
1575 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1576 		AAC_HOST_NORM_CMD_ENTRIES;
1577 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1578 		AAC_HOST_NORM_CMD_ENTRIES;
1579 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1580 		AAC_HOST_HIGH_CMD_ENTRIES;
1581 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1582 		AAC_HOST_HIGH_CMD_ENTRIES;
1583 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1584 		AAC_ADAP_NORM_CMD_ENTRIES;
1585 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1586 		AAC_ADAP_NORM_CMD_ENTRIES;
1587 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1588 		AAC_ADAP_HIGH_CMD_ENTRIES;
1589 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1590 		AAC_ADAP_HIGH_CMD_ENTRIES;
1591 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1592 		AAC_HOST_NORM_RESP_ENTRIES;
1593 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1594 		AAC_HOST_NORM_RESP_ENTRIES;
1595 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1596 		AAC_HOST_HIGH_RESP_ENTRIES;
1597 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1598 		AAC_HOST_HIGH_RESP_ENTRIES;
1599 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1600 		AAC_ADAP_NORM_RESP_ENTRIES;
1601 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1602 		AAC_ADAP_NORM_RESP_ENTRIES;
1603 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1604 		AAC_ADAP_HIGH_RESP_ENTRIES;
1605 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1606 		AAC_ADAP_HIGH_RESP_ENTRIES;
1607 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1608 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1609 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1610 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1611 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1612 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1613 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1614 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1615 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1616 		&sc->aac_queues->qt_HostNormRespQueue[0];
1617 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1618 		&sc->aac_queues->qt_HostHighRespQueue[0];
1619 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1620 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1621 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1622 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1623 
1624 	/*
1625 	 * Do controller-type-specific initialisation
1626 	 */
1627 	switch (sc->aac_hwif) {
1628 	case AAC_HWIF_I960RX:
1629 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1630 		break;
1631 	}
1632 
1633 	/*
1634 	 * Give the init structure to the controller.
1635 	 */
1636 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1637 			     sc->aac_common_busaddr +
1638 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1639 			     NULL)) {
1640 		device_printf(sc->aac_dev,
1641 			      "error establishing init structure\n");
1642 		error = EIO;
1643 		goto out;
1644 	}
1645 
1646 	error = 0;
1647 out:
1648 	return(error);
1649 }
1650 
1651 /*
1652  * Send a synchronous command to the controller and wait for a result.
1653  */
1654 static int
1655 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1656 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1657 		 u_int32_t *sp)
1658 {
1659 	time_t then;
1660 	u_int32_t status;
1661 
1662 	debug_called(3);
1663 
1664 	/* populate the mailbox */
1665 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1666 
1667 	/* ensure the sync command doorbell flag is cleared */
1668 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1669 
1670 	/* then set it to signal the adapter */
1671 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1672 
1673 	/* spin waiting for the command to complete */
1674 	then = time_second;
1675 	do {
1676 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1677 			debug(1, "timed out");
1678 			return(EIO);
1679 		}
1680 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1681 
1682 	/* clear the completion flag */
1683 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1684 
1685 	/* get the command status */
1686 	status = AAC_GET_MAILBOX(sc, 0);
1687 	if (sp != NULL)
1688 		*sp = status;
1689 	return(0);
1690 }
1691 
1692 /*
1693  * Grab the sync fib area.
1694  */
1695 int
1696 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1697 {
1698 
1699 	/*
1700 	 * If the force flag is set, the system is shutting down, or in
1701 	 * trouble.  Ignore the mutex.
1702 	 */
1703 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1704 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1705 
1706 	*fib = &sc->aac_common->ac_sync_fib;
1707 
1708 	return (1);
1709 }
1710 
1711 /*
1712  * Release the sync fib area.
1713  */
1714 void
1715 aac_release_sync_fib(struct aac_softc *sc)
1716 {
1717 
1718 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1719 }
1720 
1721 /*
1722  * Send a synchronous FIB to the controller and wait for a result.
1723  */
1724 int
1725 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1726 		 struct aac_fib *fib, u_int16_t datasize)
1727 {
1728 	debug_called(3);
1729 
1730 	if (datasize > AAC_FIB_DATASIZE)
1731 		return(EINVAL);
1732 
1733 	/*
1734 	 * Set up the sync FIB
1735 	 */
1736 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1737 				AAC_FIBSTATE_INITIALISED |
1738 				AAC_FIBSTATE_EMPTY;
1739 	fib->Header.XferState |= xferstate;
1740 	fib->Header.Command = command;
1741 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1742 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1743 	fib->Header.SenderSize = sizeof(struct aac_fib);
1744 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1745 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1746 					 offsetof(struct aac_common,
1747 						  ac_sync_fib);
1748 
1749 	/*
1750 	 * Give the FIB to the controller, wait for a response.
1751 	 */
1752 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1753 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1754 		debug(2, "IO error");
1755 		return(EIO);
1756 	}
1757 
1758 	return (0);
1759 }
1760 
1761 /*
1762  * Adapter-space FIB queue manipulation
1763  *
1764  * Note that the queue implementation here is a little funky; neither the PI or
1765  * CI will ever be zero.  This behaviour is a controller feature.
1766  */
1767 static struct {
1768 	int		size;
1769 	int		notify;
1770 } aac_qinfo[] = {
1771 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1772 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1773 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1774 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1775 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1776 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1777 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1778 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1779 };
1780 
1781 /*
1782  * Atomically insert an entry into the nominated queue, returns 0 on success or
1783  * EBUSY if the queue is full.
1784  *
1785  * Note: it would be more efficient to defer notifying the controller in
1786  *	 the case where we may be inserting several entries in rapid succession,
1787  *	 but implementing this usefully may be difficult (it would involve a
1788  *	 separate queue/notify interface).
1789  */
1790 static int
1791 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1792 {
1793 	u_int32_t pi, ci;
1794 	int error;
1795 	u_int32_t fib_size;
1796 	u_int32_t fib_addr;
1797 
1798 	debug_called(3);
1799 
1800 	fib_size = cm->cm_fib->Header.Size;
1801 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1802 
1803 	crit_enter();
1804 
1805 	/* get the producer/consumer indices */
1806 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1807 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1808 
1809 	/* wrap the queue? */
1810 	if (pi >= aac_qinfo[queue].size)
1811 		pi = 0;
1812 
1813 	/* check for queue full */
1814 	if ((pi + 1) == ci) {
1815 		error = EBUSY;
1816 		goto out;
1817 	}
1818 	/*
1819 	 * To avoid a race with its completion interrupt, place this command on
1820 	 * the busy queue prior to advertising it to the controller.
1821 	 */
1822 	aac_enqueue_busy(cm);
1823 
1824 
1825 
1826 	/* populate queue entry */
1827 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1828 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1829 
1830 	/* update producer index */
1831 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1832 
1833 	/* notify the adapter if we know how */
1834 	if (aac_qinfo[queue].notify != 0)
1835 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1836 
1837 	error = 0;
1838 
1839 out:
1840 	crit_exit();
1841 	return(error);
1842 }
1843 
1844 /*
1845  * Atomically remove one entry from the nominated queue, returns 0 on
1846  * success or ENOENT if the queue is empty.
1847  */
1848 static int
1849 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1850 		struct aac_fib **fib_addr)
1851 {
1852 	u_int32_t pi, ci;
1853 	int error;
1854 	int notify;
1855 
1856 	debug_called(3);
1857 
1858 	crit_enter();
1859 
1860 	/* get the producer/consumer indices */
1861 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1862 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1863 
1864 	/* check for queue empty */
1865 	if (ci == pi) {
1866 		error = ENOENT;
1867 		goto out;
1868 	}
1869 
1870 	/* wrap the pi so the following test works */
1871 	if (pi >= aac_qinfo[queue].size)
1872 		pi = 0;
1873 
1874 	notify = 0;
1875 	if (ci == pi + 1)
1876 		notify++;
1877 
1878 	/* wrap the queue? */
1879 	if (ci >= aac_qinfo[queue].size)
1880 		ci = 0;
1881 
1882 	/* fetch the entry */
1883 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1884 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1885 				       ci)->aq_fib_addr;
1886 
1887 	/*
1888 	 * Is this a fast response? If it is, update the fib fields in
1889 	 * local memory so the whole fib doesn't have to be DMA'd back up.
1890 	 */
1891 	if (*(uintptr_t *)fib_addr & 0x01) {
1892 		*(uintptr_t *)fib_addr &= ~0x01;
1893 		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1894 		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1895 	}
1896 	/* update consumer index */
1897 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1898 
1899 	/* if we have made the queue un-full, notify the adapter */
1900 	if (notify && (aac_qinfo[queue].notify != 0))
1901 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1902 	error = 0;
1903 
1904 out:
1905 	crit_exit();
1906 	return(error);
1907 }
1908 
1909 /*
1910  * Put our response to an Adapter Initialed Fib on the response queue
1911  */
1912 static int
1913 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1914 {
1915 	u_int32_t pi, ci;
1916 	int error;
1917 	u_int32_t fib_size;
1918 	u_int32_t fib_addr;
1919 
1920 	debug_called(1);
1921 
1922 	/* Tell the adapter where the FIB is */
1923 	fib_size = fib->Header.Size;
1924 	fib_addr = fib->Header.SenderFibAddress;
1925 	fib->Header.ReceiverFibAddress = fib_addr;
1926 
1927 	crit_enter();
1928 
1929 	/* get the producer/consumer indices */
1930 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1931 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1932 
1933 	/* wrap the queue? */
1934 	if (pi >= aac_qinfo[queue].size)
1935 		pi = 0;
1936 
1937 	/* check for queue full */
1938 	if ((pi + 1) == ci) {
1939 		error = EBUSY;
1940 		goto out;
1941 	}
1942 
1943 	/* populate queue entry */
1944 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1945 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1946 
1947 	/* update producer index */
1948 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1949 
1950 	/* notify the adapter if we know how */
1951 	if (aac_qinfo[queue].notify != 0)
1952 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1953 
1954 	error = 0;
1955 
1956 out:
1957 	crit_exit();
1958 	return(error);
1959 }
1960 
1961 /*
1962  * Check for commands that have been outstanding for a suspiciously long time,
1963  * and complain about them.
1964  */
1965 static void
1966 aac_timeout(void *xsc)
1967 {
1968 	struct aac_softc *sc = xsc;
1969 	struct aac_command *cm;
1970 	time_t deadline;
1971 	int timedout, code;
1972 #if 0
1973 	/* simulate an interrupt to handle possibly-missed interrupts */
1974 	/*
1975 	 * XXX This was done to work around another bug which has since been
1976 	 * fixed.  It is dangerous anyways because you don't want multiple
1977 	 * threads in the interrupt handler at the same time!  If calling
1978 	 * is deamed neccesary in the future, proper mutexes must be used.
1979 	 */
1980 	crit_enter();
1981 	aac_intr(sc);
1982 	crit_exit();
1983 
1984 	/* kick the I/O queue to restart it in the case of deadlock */
1985 	aac_startio(sc);
1986 #endif
1987 
1988 	/*
1989 	 * traverse the busy command list, bitch about late commands once
1990 	 * only.
1991 	 */
1992 	timedout = 0;
1993 	deadline = time_second - AAC_CMD_TIMEOUT;
1994 	crit_enter();
1995 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1996 		if ((cm->cm_timestamp  < deadline)
1997 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1998 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1999 			device_printf(sc->aac_dev,
2000 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2001 				      cm, (int)(time_second-cm->cm_timestamp));
2002 			AAC_PRINT_FIB(sc, cm->cm_fib);
2003 			timedout++;
2004 		}
2005 	}
2006 	if (timedout) {
2007 		code = AAC_GET_FWSTATUS(sc);
2008 		if (code != AAC_UP_AND_RUNNING) {
2009 			device_printf(sc->aac_dev, "WARNING! Controller is no "
2010 				      "longer running! code= 0x%x\n", code);
2011 
2012 		}
2013 	}
2014 	crit_exit();
2015 
2016 	/* reset the timer for next time */
2017 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2018 		      aac_timeout, sc);
2019 }
2020 
2021 /*
2022  * Interface Function Vectors
2023  */
2024 
2025 /*
2026  * Read the current firmware status word.
2027  */
2028 static int
2029 aac_sa_get_fwstatus(struct aac_softc *sc)
2030 {
2031 	debug_called(3);
2032 
2033 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2034 }
2035 
2036 static int
2037 aac_rx_get_fwstatus(struct aac_softc *sc)
2038 {
2039 	debug_called(3);
2040 
2041 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2042 }
2043 
2044 static int
2045 aac_fa_get_fwstatus(struct aac_softc *sc)
2046 {
2047 	int val;
2048 
2049 	debug_called(3);
2050 
2051 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2052 	return (val);
2053 }
2054 
2055 /*
2056  * Notify the controller of a change in a given queue
2057  */
2058 
2059 static void
2060 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2061 {
2062 	debug_called(3);
2063 
2064 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2065 }
2066 
2067 static void
2068 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2069 {
2070 	debug_called(3);
2071 
2072 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2073 }
2074 
2075 static void
2076 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2077 {
2078 	debug_called(3);
2079 
2080 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2081 	AAC_FA_HACK(sc);
2082 }
2083 
2084 /*
2085  * Get the interrupt reason bits
2086  */
2087 static int
2088 aac_sa_get_istatus(struct aac_softc *sc)
2089 {
2090 	debug_called(3);
2091 
2092 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2093 }
2094 
2095 static int
2096 aac_rx_get_istatus(struct aac_softc *sc)
2097 {
2098 	debug_called(3);
2099 
2100 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2101 }
2102 
2103 static int
2104 aac_fa_get_istatus(struct aac_softc *sc)
2105 {
2106 	int val;
2107 
2108 	debug_called(3);
2109 
2110 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2111 	return (val);
2112 }
2113 
2114 /*
2115  * Clear some interrupt reason bits
2116  */
2117 static void
2118 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2119 {
2120 	debug_called(3);
2121 
2122 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2123 }
2124 
2125 static void
2126 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2127 {
2128 	debug_called(3);
2129 
2130 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2131 }
2132 
2133 static void
2134 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2135 {
2136 	debug_called(3);
2137 
2138 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2139 	AAC_FA_HACK(sc);
2140 }
2141 
2142 /*
2143  * Populate the mailbox and set the command word
2144  */
2145 static void
2146 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2147 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2148 {
2149 	debug_called(4);
2150 
2151 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2152 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2153 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2154 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2155 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2156 }
2157 
2158 static void
2159 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2160 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2161 {
2162 	debug_called(4);
2163 
2164 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2165 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2166 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2167 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2168 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2169 }
2170 
2171 static void
2172 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2173 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2174 {
2175 	debug_called(4);
2176 
2177 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2178 	AAC_FA_HACK(sc);
2179 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2180 	AAC_FA_HACK(sc);
2181 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2182 	AAC_FA_HACK(sc);
2183 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2184 	AAC_FA_HACK(sc);
2185 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2186 	AAC_FA_HACK(sc);
2187 }
2188 
2189 /*
2190  * Fetch the immediate command status word
2191  */
2192 static int
2193 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2194 {
2195 	debug_called(4);
2196 
2197 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2198 }
2199 
2200 static int
2201 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2202 {
2203 	debug_called(4);
2204 
2205 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2206 }
2207 
2208 static int
2209 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2210 {
2211 	int val;
2212 
2213 	debug_called(4);
2214 
2215 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2216 	return (val);
2217 }
2218 
2219 /*
2220  * Set/clear interrupt masks
2221  */
2222 static void
2223 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2224 {
2225 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2226 
2227 	if (enable) {
2228 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2229 	} else {
2230 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2231 	}
2232 }
2233 
2234 static void
2235 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2236 {
2237 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2238 
2239 	if (enable) {
2240 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2241 	} else {
2242 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2243 	}
2244 }
2245 
2246 static void
2247 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2248 {
2249 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2250 
2251 	if (enable) {
2252 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2253 		AAC_FA_HACK(sc);
2254 	} else {
2255 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2256 		AAC_FA_HACK(sc);
2257 	}
2258 }
2259 
2260 /*
2261  * Debugging and Diagnostics
2262  */
2263 
2264 /*
2265  * Print some information about the controller.
2266  */
2267 static void
2268 aac_describe_controller(struct aac_softc *sc)
2269 {
2270 	struct aac_fib *fib;
2271 	struct aac_adapter_info	*info;
2272 
2273 	debug_called(2);
2274 
2275 	aac_alloc_sync_fib(sc, &fib, 0);
2276 
2277 	fib->data[0] = 0;
2278 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2279 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2280 		aac_release_sync_fib(sc);
2281 		return;
2282 	}
2283 	info = (struct aac_adapter_info *)&fib->data[0];
2284 
2285 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2286 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2287 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2288 		      aac_describe_code(aac_battery_platform,
2289 					info->batteryPlatform));
2290 
2291 	/* save the kernel revision structure for later use */
2292 	sc->aac_revision = info->KernelRevision;
2293 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2294 		      info->KernelRevision.external.comp.major,
2295 		      info->KernelRevision.external.comp.minor,
2296 		      info->KernelRevision.external.comp.dash,
2297 		      info->KernelRevision.buildNumber,
2298 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2299 
2300 	aac_release_sync_fib(sc);
2301 
2302 	if (1 || bootverbose) {
2303 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2304 			      sc->supported_options,
2305 			      "\20"
2306 			      "\1SNAPSHOT"
2307 			      "\2CLUSTERS"
2308 			      "\3WCACHE"
2309 			      "\4DATA64"
2310 			      "\5HOSTTIME"
2311 			      "\6RAID50"
2312 			      "\7WINDOW4GB"
2313 			      "\10SCSIUPGD"
2314 			      "\11SOFTERR"
2315 			      "\12NORECOND"
2316 			      "\13SGMAP64"
2317 			      "\14ALARM"
2318 			      "\15NONDASD");
2319 	}
2320 }
2321 
2322 /*
2323  * Look up a text description of a numeric error code and return a pointer to
2324  * same.
2325  */
2326 static char *
2327 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2328 {
2329 	int i;
2330 
2331 	for (i = 0; table[i].string != NULL; i++)
2332 		if (table[i].code == code)
2333 			return(table[i].string);
2334 	return(table[i + 1].string);
2335 }
2336 
2337 /*
2338  * Management Interface
2339  */
2340 
2341 static int
2342 aac_open(struct dev_open_args *ap)
2343 {
2344 	cdev_t dev = ap->a_head.a_dev;
2345 	struct aac_softc *sc;
2346 
2347 	debug_called(2);
2348 
2349 	sc = dev->si_drv1;
2350 
2351 	/* Check to make sure the device isn't already open */
2352 	if (sc->aac_state & AAC_STATE_OPEN) {
2353 		return EBUSY;
2354 	}
2355 	sc->aac_state |= AAC_STATE_OPEN;
2356 
2357 	return 0;
2358 }
2359 
2360 static int
2361 aac_close(struct dev_close_args *ap)
2362 {
2363 	cdev_t dev = ap->a_head.a_dev;
2364 	struct aac_softc *sc;
2365 
2366 	debug_called(2);
2367 
2368 	sc = dev->si_drv1;
2369 
2370 	/* Mark this unit as no longer open  */
2371 	sc->aac_state &= ~AAC_STATE_OPEN;
2372 
2373 	return 0;
2374 }
2375 
2376 static int
2377 aac_ioctl(struct dev_ioctl_args *ap)
2378 {
2379 	cdev_t dev = ap->a_head.a_dev;
2380 	caddr_t arg = ap->a_data;
2381 	struct aac_softc *sc = dev->si_drv1;
2382 	int error = 0;
2383 	int i;
2384 
2385 	debug_called(2);
2386 
2387 	if (ap->a_cmd == AACIO_STATS) {
2388 		union aac_statrequest *as = (union aac_statrequest *)arg;
2389 
2390 		switch (as->as_item) {
2391 		case AACQ_FREE:
2392 		case AACQ_BIO:
2393 		case AACQ_READY:
2394 		case AACQ_BUSY:
2395 		case AACQ_COMPLETE:
2396 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2397 			      sizeof(struct aac_qstat));
2398 			break;
2399 		default:
2400 			error = ENOENT;
2401 			break;
2402 		}
2403 		return(error);
2404 	}
2405 
2406 	arg = *(caddr_t *)arg;
2407 
2408 	switch (ap->a_cmd) {
2409 	/* AACIO_STATS already handled above */
2410 	case FSACTL_SENDFIB:
2411 		debug(1, "FSACTL_SENDFIB");
2412 		error = aac_ioctl_sendfib(sc, arg);
2413 		break;
2414 	case FSACTL_AIF_THREAD:
2415 		debug(1, "FSACTL_AIF_THREAD");
2416 		error = EINVAL;
2417 		break;
2418 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2419 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2420 		/*
2421 		 * Pass the caller out an AdapterFibContext.
2422 		 *
2423 		 * Note that because we only support one opener, we
2424 		 * basically ignore this.  Set the caller's context to a magic
2425 		 * number just in case.
2426 		 *
2427 		 * The Linux code hands the driver a pointer into kernel space,
2428 		 * and then trusts it when the caller hands it back.  Aiee!
2429 		 * Here, we give it the proc pointer of the per-adapter aif
2430 		 * thread. It's only used as a sanity check in other calls.
2431 		 */
2432 		i = (int)sc->aifthread;
2433 		error = copyout(&i, arg, sizeof(i));
2434 		break;
2435 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2436 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2437 		error = aac_getnext_aif(sc, arg);
2438 		break;
2439 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2440 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2441 		/* don't do anything here */
2442 		break;
2443 	case FSACTL_MINIPORT_REV_CHECK:
2444 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2445 		error = aac_rev_check(sc, arg);
2446 		break;
2447 	case FSACTL_QUERY_DISK:
2448 		debug(1, "FSACTL_QUERY_DISK");
2449 		error = aac_query_disk(sc, arg);
2450 			break;
2451 	case FSACTL_DELETE_DISK:
2452 		/*
2453 		 * We don't trust the underland to tell us when to delete a
2454 		 * container, rather we rely on an AIF coming from the
2455 		 * controller
2456 		 */
2457 		error = 0;
2458 		break;
2459 	default:
2460 		debug(1, "unsupported cmd 0x%lx\n", ap->a_cmd);
2461 		error = EINVAL;
2462 		break;
2463 	}
2464 	return(error);
2465 }
2466 
2467 static int
2468 aac_poll(struct dev_poll_args *ap)
2469 {
2470 	cdev_t dev = ap->a_head.a_dev;
2471 	struct aac_softc *sc;
2472 	int revents;
2473 
2474 	sc = dev->si_drv1;
2475 	revents = 0;
2476 
2477 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2478 	if ((ap->a_events & (POLLRDNORM | POLLIN)) != 0) {
2479 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2480 			revents |= ap->a_events & (POLLIN | POLLRDNORM);
2481 	}
2482 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2483 
2484 	if (revents == 0) {
2485 		if (ap->a_events & (POLLIN | POLLRDNORM))
2486 			selrecord(curthread, &sc->rcv_select);
2487 	}
2488 	ap->a_events = revents;
2489 	return (0);
2490 }
2491 
2492 /*
2493  * Send a FIB supplied from userspace
2494  */
2495 static int
2496 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2497 {
2498 	struct aac_command *cm;
2499 	int size, error;
2500 
2501 	debug_called(2);
2502 
2503 	cm = NULL;
2504 
2505 	/*
2506 	 * Get a command
2507 	 */
2508 	if (aac_alloc_command(sc, &cm)) {
2509 		error = EBUSY;
2510 		goto out;
2511 	}
2512 
2513 	/*
2514 	 * Fetch the FIB header, then re-copy to get data as well.
2515 	 */
2516 	if ((error = copyin(ufib, cm->cm_fib,
2517 			    sizeof(struct aac_fib_header))) != 0)
2518 		goto out;
2519 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2520 	if (size > sizeof(struct aac_fib)) {
2521 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2522 			      size, sizeof(struct aac_fib));
2523 		size = sizeof(struct aac_fib);
2524 	}
2525 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2526 		goto out;
2527 	cm->cm_fib->Header.Size = size;
2528 	cm->cm_timestamp = time_second;
2529 
2530 	/*
2531 	 * Pass the FIB to the controller, wait for it to complete.
2532 	 */
2533 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2534 		kprintf("aac_wait_command return %d\n", error);
2535 		goto out;
2536 	}
2537 
2538 	/*
2539 	 * Copy the FIB and data back out to the caller.
2540 	 */
2541 	size = cm->cm_fib->Header.Size;
2542 	if (size > sizeof(struct aac_fib)) {
2543 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2544 			      size, sizeof(struct aac_fib));
2545 		size = sizeof(struct aac_fib);
2546 	}
2547 	error = copyout(cm->cm_fib, ufib, size);
2548 
2549 out:
2550 	if (cm != NULL) {
2551 		aac_release_command(cm);
2552 	}
2553 	return(error);
2554 }
2555 
2556 /*
2557  * Handle an AIF sent to us by the controller; queue it for later reference.
2558  * If the queue fills up, then drop the older entries.
2559  */
2560 static void
2561 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2562 {
2563 	struct aac_aif_command *aif;
2564 	struct aac_container *co, *co_next;
2565 	struct aac_mntinfo *mi;
2566 	struct aac_mntinforesp *mir = NULL;
2567 	u_int16_t rsize;
2568 	int next, found;
2569 	int count = 0, added = 0, i = 0;
2570 
2571 	debug_called(2);
2572 
2573 	aif = (struct aac_aif_command*)&fib->data[0];
2574 	aac_print_aif(sc, aif);
2575 
2576 	/* Is it an event that we should care about? */
2577 	switch (aif->command) {
2578 	case AifCmdEventNotify:
2579 		switch (aif->data.EN.type) {
2580 		case AifEnAddContainer:
2581 		case AifEnDeleteContainer:
2582 			/*
2583 			 * A container was added or deleted, but the message
2584 			 * doesn't tell us anything else!  Re-enumerate the
2585 			 * containers and sort things out.
2586 			 */
2587 			aac_alloc_sync_fib(sc, &fib, 0);
2588 			mi = (struct aac_mntinfo *)&fib->data[0];
2589 			do {
2590 				/*
2591 				 * Ask the controller for its containers one at
2592 				 * a time.
2593 				 * XXX What if the controller's list changes
2594 				 * midway through this enumaration?
2595 				 * XXX This should be done async.
2596 				 */
2597 				bzero(mi, sizeof(struct aac_mntinfo));
2598 				mi->Command = VM_NameServe;
2599 				mi->MntType = FT_FILESYS;
2600 				mi->MntCount = i;
2601 				rsize = sizeof(mir);
2602 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2603 						 sizeof(struct aac_mntinfo))) {
2604 					device_printf(sc->aac_dev,
2605 					    "Error probing container %d\n", i);
2606 
2607 					continue;
2608 				}
2609 				mir = (struct aac_mntinforesp *)&fib->data[0];
2610 				/* XXX Need to check if count changed */
2611 				count = mir->MntRespCount;
2612 
2613 				/*
2614 				 * Check the container against our list.
2615 				 * co->co_found was already set to 0 in a
2616 				 * previous run.
2617 				 */
2618 				if ((mir->Status == ST_OK) &&
2619 				    (mir->MntTable[0].VolType != CT_NONE)) {
2620 					found = 0;
2621 					TAILQ_FOREACH(co,
2622 						      &sc->aac_container_tqh,
2623 						      co_link) {
2624 						if (co->co_mntobj.ObjectId ==
2625 						    mir->MntTable[0].ObjectId) {
2626 							co->co_found = 1;
2627 							found = 1;
2628 							break;
2629 						}
2630 					}
2631 					/*
2632 					 * If the container matched, continue
2633 					 * in the list.
2634 					 */
2635 					if (found) {
2636 						i++;
2637 						continue;
2638 					}
2639 
2640 					/*
2641 					 * This is a new container.  Do all the
2642 					 * appropriate things to set it up.						 */
2643 					aac_add_container(sc, mir, 1);
2644 					added = 1;
2645 				}
2646 				i++;
2647 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2648 			aac_release_sync_fib(sc);
2649 
2650 			/*
2651 			 * Go through our list of containers and see which ones
2652 			 * were not marked 'found'.  Since the controller didn't
2653 			 * list them they must have been deleted.  Do the
2654 			 * appropriate steps to destroy the device.  Also reset
2655 			 * the co->co_found field.
2656 			 */
2657 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2658 			while (co != NULL) {
2659 				if (co->co_found == 0) {
2660 					device_delete_child(sc->aac_dev,
2661 							    co->co_disk);
2662 					co_next = TAILQ_NEXT(co, co_link);
2663 					AAC_LOCK_ACQUIRE(&sc->
2664 							aac_container_lock);
2665 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2666 						     co_link);
2667 					AAC_LOCK_RELEASE(&sc->
2668 							 aac_container_lock);
2669 					FREE(co, M_AACBUF);
2670 					co = co_next;
2671 				} else {
2672 					co->co_found = 0;
2673 					co = TAILQ_NEXT(co, co_link);
2674 				}
2675 			}
2676 
2677 			/* Attach the newly created containers */
2678 			if (added)
2679 				bus_generic_attach(sc->aac_dev);
2680 
2681 				break;
2682 
2683 		default:
2684 			break;
2685 		}
2686 
2687 	default:
2688 		break;
2689 	}
2690 
2691 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2692 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2693 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2694 	if (next != sc->aac_aifq_tail) {
2695 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2696 		sc->aac_aifq_head = next;
2697 
2698 		/* On the off chance that someone is sleeping for an aif... */
2699 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2700 			wakeup(sc->aac_aifq);
2701 		/* token may have been lost */
2702 		/* Wakeup any poll()ers */
2703 		selwakeup(&sc->rcv_select);
2704 		/* token may have been lost */
2705 	}
2706 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2707 
2708 	return;
2709 }
2710 
2711 /*
2712  * Return the Revision of the driver to userspace and check to see if the
2713  * userspace app is possibly compatible.  This is extremely bogus since
2714  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2715  * returning what the card reported.
2716  */
2717 static int
2718 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2719 {
2720 	struct aac_rev_check rev_check;
2721 	struct aac_rev_check_resp rev_check_resp;
2722 	int error = 0;
2723 
2724 	debug_called(2);
2725 
2726 	/*
2727 	 * Copyin the revision struct from userspace
2728 	 */
2729 	if ((error = copyin(udata, (caddr_t)&rev_check,
2730 			sizeof(struct aac_rev_check))) != 0) {
2731 		return error;
2732 	}
2733 
2734 	debug(2, "Userland revision= %d\n",
2735 	      rev_check.callingRevision.buildNumber);
2736 
2737 	/*
2738 	 * Doctor up the response struct.
2739 	 */
2740 	rev_check_resp.possiblyCompatible = 1;
2741 	rev_check_resp.adapterSWRevision.external.ul =
2742 	    sc->aac_revision.external.ul;
2743 	rev_check_resp.adapterSWRevision.buildNumber =
2744 	    sc->aac_revision.buildNumber;
2745 
2746 	return(copyout((caddr_t)&rev_check_resp, udata,
2747 			sizeof(struct aac_rev_check_resp)));
2748 }
2749 
2750 /*
2751  * Pass the caller the next AIF in their queue
2752  */
2753 static int
2754 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2755 {
2756 	struct get_adapter_fib_ioctl agf;
2757 	int error;
2758 
2759 	debug_called(2);
2760 
2761 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2762 
2763 		/*
2764 		 * Check the magic number that we gave the caller.
2765 		 */
2766 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2767 			error = EFAULT;
2768 		} else {
2769 
2770 			crit_enter();
2771 			error = aac_return_aif(sc, agf.AifFib);
2772 
2773 			if ((error == EAGAIN) && (agf.Wait)) {
2774 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2775 				while (error == EAGAIN) {
2776 					error = tsleep(sc->aac_aifq,
2777 						       PCATCH, "aacaif", 0);
2778 					if (error == 0)
2779 						error = aac_return_aif(sc,
2780 						    agf.AifFib);
2781 				}
2782 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2783 			}
2784 			crit_exit();
2785 		}
2786 	}
2787 	return(error);
2788 }
2789 
2790 /*
2791  * Hand the next AIF off the top of the queue out to userspace.
2792  *
2793  * YYY token could be lost during copyout
2794  */
2795 static int
2796 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2797 {
2798 	int error;
2799 
2800 	debug_called(2);
2801 
2802 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2803 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2804 		error = EAGAIN;
2805 	} else {
2806 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2807 				sizeof(struct aac_aif_command));
2808 		if (error)
2809 			kprintf("aac_return_aif: copyout returned %d\n", error);
2810 		if (!error)
2811 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2812 					    AAC_AIFQ_LENGTH;
2813 	}
2814 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2815 	return(error);
2816 }
2817 
2818 /*
2819  * Give the userland some information about the container.  The AAC arch
2820  * expects the driver to be a SCSI passthrough type driver, so it expects
2821  * the containers to have b:t:l numbers.  Fake it.
2822  */
2823 static int
2824 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2825 {
2826 	struct aac_query_disk query_disk;
2827 	struct aac_container *co;
2828 	struct aac_disk	*disk;
2829 	int error, id;
2830 
2831 	debug_called(2);
2832 
2833 	disk = NULL;
2834 
2835 	error = copyin(uptr, (caddr_t)&query_disk,
2836 		       sizeof(struct aac_query_disk));
2837 	if (error)
2838 		return (error);
2839 
2840 	id = query_disk.ContainerNumber;
2841 	if (id == -1)
2842 		return (EINVAL);
2843 
2844 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2845 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2846 		if (co->co_mntobj.ObjectId == id)
2847 			break;
2848 		}
2849 
2850 		if (co == NULL) {
2851 			query_disk.Valid = 0;
2852 			query_disk.Locked = 0;
2853 			query_disk.Deleted = 1;		/* XXX is this right? */
2854 		} else {
2855 			disk = device_get_softc(co->co_disk);
2856 			query_disk.Valid = 1;
2857 			query_disk.Locked =
2858 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2859 			query_disk.Deleted = 0;
2860 			query_disk.Bus = device_get_unit(sc->aac_dev);
2861 			query_disk.Target = disk->unit;
2862 			query_disk.Lun = 0;
2863 			query_disk.UnMapped = 0;
2864 			bcopy(disk->ad_dev_t->si_name,
2865 			      &query_disk.diskDeviceName[0], 10);
2866 		}
2867 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2868 
2869 	error = copyout((caddr_t)&query_disk, uptr,
2870 			sizeof(struct aac_query_disk));
2871 
2872 	return (error);
2873 }
2874 
2875 static void
2876 aac_get_bus_info(struct aac_softc *sc)
2877 {
2878 	struct aac_fib *fib;
2879 	struct aac_ctcfg *c_cmd;
2880 	struct aac_ctcfg_resp *c_resp;
2881 	struct aac_vmioctl *vmi;
2882 	struct aac_vmi_businf_resp *vmi_resp;
2883 	struct aac_getbusinf businfo;
2884 	struct aac_cam_inf *caminf;
2885 	device_t child;
2886 	int i, found, error;
2887 
2888 	aac_alloc_sync_fib(sc, &fib, 0);
2889 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2890 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2891 
2892 	c_cmd->Command = VM_ContainerConfig;
2893 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2894 	c_cmd->param = 0;
2895 
2896 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2897 	    sizeof(struct aac_ctcfg));
2898 	if (error) {
2899 		device_printf(sc->aac_dev, "Error %d sending "
2900 		    "VM_ContainerConfig command\n", error);
2901 		aac_release_sync_fib(sc);
2902 		return;
2903 	}
2904 
2905 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2906 	if (c_resp->Status != ST_OK) {
2907 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2908 		    c_resp->Status);
2909 		aac_release_sync_fib(sc);
2910 		return;
2911 	}
2912 
2913 	sc->scsi_method_id = c_resp->param;
2914 
2915 	vmi = (struct aac_vmioctl *)&fib->data[0];
2916 	bzero(vmi, sizeof(struct aac_vmioctl));
2917 
2918 	vmi->Command = VM_Ioctl;
2919 	vmi->ObjType = FT_DRIVE;
2920 	vmi->MethId = sc->scsi_method_id;
2921 	vmi->ObjId = 0;
2922 	vmi->IoctlCmd = GetBusInfo;
2923 
2924 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2925 	    sizeof(struct aac_vmioctl));
2926 	if (error) {
2927 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2928 		    error);
2929 		aac_release_sync_fib(sc);
2930 		return;
2931 	}
2932 
2933 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2934 	if (vmi_resp->Status != ST_OK) {
2935 		debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2936 		aac_release_sync_fib(sc);
2937 		return;
2938 	}
2939 
2940 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2941 	aac_release_sync_fib(sc);
2942 
2943 	found = 0;
2944 	for (i = 0; i < businfo.BusCount; i++) {
2945 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2946 			continue;
2947 
2948 		MALLOC(caminf, struct aac_cam_inf *,
2949 		    sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2950 
2951 		child = device_add_child(sc->aac_dev, "aacp", -1);
2952 		if (child == NULL) {
2953 			device_printf(sc->aac_dev, "device_add_child failed\n");
2954 			continue;
2955 		}
2956 
2957 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2958 		caminf->BusNumber = i;
2959 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2960 		caminf->aac_sc = sc;
2961 
2962 		device_set_ivars(child, caminf);
2963 		device_set_desc(child, "SCSI Passthrough Bus");
2964 
2965 		found = 1;
2966 	}
2967 
2968 	if (found)
2969 		bus_generic_attach(sc->aac_dev);
2970 
2971 	return;
2972 }
2973