xref: /dragonfly/sys/dev/raid/aac/aac.c (revision fcce2b94)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *	$DragonFly: src/sys/dev/raid/aac/aac.c,v 1.23 2006/04/30 17:22:16 dillon Exp $
31  */
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52 
53 #include "aac_compat.h"
54 
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 
67 #include "aacreg.h"
68 #include "aac_ioctl.h"
69 #include "aacvar.h"
70 #include "aac_tables.h"
71 #include "aac_cam.h"
72 
73 static void	aac_startup(void *arg);
74 static void	aac_add_container(struct aac_softc *sc,
75 				  struct aac_mntinforesp *mir, int f);
76 static void	aac_get_bus_info(struct aac_softc *sc);
77 
78 /* Command Processing */
79 static void	aac_timeout(void *ssc);
80 static int	aac_start(struct aac_command *cm);
81 static void	aac_complete(void *context, int pending);
82 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83 static void	aac_bio_complete(struct aac_command *cm);
84 static int	aac_wait_command(struct aac_command *cm, int timeout);
85 static void	aac_host_command(struct aac_softc *sc);
86 static void	aac_host_response(struct aac_softc *sc);
87 
88 /* Command Buffer Management */
89 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90 				       int nseg, int error);
91 static int	aac_alloc_commands(struct aac_softc *sc);
92 static void	aac_free_commands(struct aac_softc *sc);
93 static void	aac_map_command(struct aac_command *cm);
94 static void	aac_unmap_command(struct aac_command *cm);
95 
96 /* Hardware Interface */
97 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98 			       int error);
99 static int	aac_check_firmware(struct aac_softc *sc);
100 static int	aac_init(struct aac_softc *sc);
101 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
102 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103 				 u_int32_t arg3, u_int32_t *sp);
104 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
105 				struct aac_command *cm);
106 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
107 				u_int32_t *fib_size, struct aac_fib **fib_addr);
108 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
109 				     struct aac_fib *fib);
110 
111 /* Falcon/PPC interface */
112 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
113 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
114 static int	aac_fa_get_istatus(struct aac_softc *sc);
115 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117 				   u_int32_t arg0, u_int32_t arg1,
118 				   u_int32_t arg2, u_int32_t arg3);
119 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
120 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121 
122 struct aac_interface aac_fa_interface = {
123 	aac_fa_get_fwstatus,
124 	aac_fa_qnotify,
125 	aac_fa_get_istatus,
126 	aac_fa_clear_istatus,
127 	aac_fa_set_mailbox,
128 	aac_fa_get_mailbox,
129 	aac_fa_set_interrupts
130 };
131 
132 /* StrongARM interface */
133 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
134 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
135 static int	aac_sa_get_istatus(struct aac_softc *sc);
136 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138 				   u_int32_t arg0, u_int32_t arg1,
139 				   u_int32_t arg2, u_int32_t arg3);
140 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
141 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142 
143 struct aac_interface aac_sa_interface = {
144 	aac_sa_get_fwstatus,
145 	aac_sa_qnotify,
146 	aac_sa_get_istatus,
147 	aac_sa_clear_istatus,
148 	aac_sa_set_mailbox,
149 	aac_sa_get_mailbox,
150 	aac_sa_set_interrupts
151 };
152 
153 /* i960Rx interface */
154 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
155 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
156 static int	aac_rx_get_istatus(struct aac_softc *sc);
157 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159 				   u_int32_t arg0, u_int32_t arg1,
160 				   u_int32_t arg2, u_int32_t arg3);
161 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
162 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163 
164 struct aac_interface aac_rx_interface = {
165 	aac_rx_get_fwstatus,
166 	aac_rx_qnotify,
167 	aac_rx_get_istatus,
168 	aac_rx_clear_istatus,
169 	aac_rx_set_mailbox,
170 	aac_rx_get_mailbox,
171 	aac_rx_set_interrupts
172 };
173 
174 /* Debugging and Diagnostics */
175 static void	aac_describe_controller(struct aac_softc *sc);
176 static char	*aac_describe_code(struct aac_code_lookup *table,
177 				   u_int32_t code);
178 
179 /* Management Interface */
180 static d_open_t		aac_open;
181 static d_close_t	aac_close;
182 static d_ioctl_t	aac_ioctl;
183 static d_poll_t		aac_poll;
184 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185 static void		aac_handle_aif(struct aac_softc *sc,
186 					   struct aac_fib *fib);
187 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
188 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191 
192 #define AAC_CDEV_MAJOR	150
193 
194 static struct cdevsw aac_cdevsw = {
195 	"aac",			/* name */
196 	AAC_CDEV_MAJOR,		/* major */
197 	0,			/* flags */
198 	NULL,			/* port */
199 	NULL,			/* clone */
200 
201 	aac_open,		/* open */
202 	aac_close,		/* close */
203 	noread,			/* read */
204 	nowrite,		/* write */
205 	aac_ioctl,		/* ioctl */
206 	aac_poll,		/* poll */
207 	nommap,			/* mmap */
208 	nostrategy,		/* strategy */
209 	nodump,			/* dump */
210 	nopsize			/* psize */
211 };
212 
213 DECLARE_DUMMY_MODULE(aac);
214 
215 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
216 
217 /* sysctl node */
218 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
219 
220 /*
221  * Device Interface
222  */
223 
224 /*
225  * Initialise the controller and softc
226  */
227 int
228 aac_attach(struct aac_softc *sc)
229 {
230 	int error, unit;
231 
232 	debug_called(1);
233 	callout_init(&sc->aac_watchdog);
234 
235 	/*
236 	 * Initialise per-controller queues.
237 	 */
238 	aac_initq_free(sc);
239 	aac_initq_ready(sc);
240 	aac_initq_busy(sc);
241 	aac_initq_complete(sc);
242 	aac_initq_bio(sc);
243 
244 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
245 	/*
246 	 * Initialise command-completion task.
247 	 */
248 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
249 #endif
250 
251 	/* disable interrupts before we enable anything */
252 	AAC_MASK_INTERRUPTS(sc);
253 
254 	/* mark controller as suspended until we get ourselves organised */
255 	sc->aac_state |= AAC_STATE_SUSPEND;
256 
257 	/*
258 	 * Check that the firmware on the card is supported.
259 	 */
260 	if ((error = aac_check_firmware(sc)) != 0)
261 		return(error);
262 
263 	/* Init the sync fib lock */
264 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
265 
266 	/*
267 	 * Initialise the adapter.
268 	 */
269 	if ((error = aac_init(sc)) != 0)
270 		return(error);
271 
272 	/*
273 	 * Print a little information about the controller.
274 	 */
275 	aac_describe_controller(sc);
276 
277 	/*
278 	 * Register to probe our containers later.
279 	 */
280 	TAILQ_INIT(&sc->aac_container_tqh);
281 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
282 
283 	/*
284 	 * Lock for the AIF queue
285 	 */
286 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
287 
288 	sc->aac_ich.ich_func = aac_startup;
289 	sc->aac_ich.ich_arg = sc;
290 	sc->aac_ich.ich_desc = "aac";
291 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
292 		device_printf(sc->aac_dev,
293 			      "can't establish configuration hook\n");
294 		return(ENXIO);
295 	}
296 
297 	/*
298 	 * Make the control device.
299 	 */
300 	unit = device_get_unit(sc->aac_dev);
301 	cdevsw_add(&aac_cdevsw, -1, unit);
302 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
303 				 "aac%d", unit);
304 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
305 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
306 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
307 #endif
308 	sc->aac_dev_t->si_drv1 = sc;
309 	reference_dev(sc->aac_dev_t);
310 
311 	/* Create the AIF thread */
312 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
313 	if (kthread_create((void(*)(void *))aac_host_command, sc,
314 			   &sc->aifthread, 0, "aac%daif", unit))
315 #else
316 	if (kthread_create((void(*)(void *))aac_host_command, sc,
317 			   &sc->aifthread, "aac%daif", unit))
318 #endif
319 		panic("Could not create AIF thread\n");
320 
321 	/* Register the shutdown method to only be called post-dump */
322 	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
323 				   SHUTDOWN_PRI_DEFAULT)) == NULL)
324 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
325 
326 	/* Register with CAM for the non-DASD devices */
327 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
328 		aac_get_bus_info(sc);
329 
330 	return(0);
331 }
332 
333 /*
334  * Probe for containers, create disks.
335  */
336 static void
337 aac_startup(void *arg)
338 {
339 	struct aac_softc *sc;
340 	struct aac_fib *fib;
341 	struct aac_mntinfo *mi;
342 	struct aac_mntinforesp *mir = NULL;
343 	int count = 0, i = 0;
344 
345 	debug_called(1);
346 
347 	sc = (struct aac_softc *)arg;
348 
349 	/* disconnect ourselves from the intrhook chain */
350 	config_intrhook_disestablish(&sc->aac_ich);
351 
352 	aac_alloc_sync_fib(sc, &fib, 0);
353 	mi = (struct aac_mntinfo *)&fib->data[0];
354 
355 	/* loop over possible containers */
356 	do {
357 		/* request information on this container */
358 		bzero(mi, sizeof(struct aac_mntinfo));
359 		mi->Command = VM_NameServe;
360 		mi->MntType = FT_FILESYS;
361 		mi->MntCount = i;
362 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
363 				 sizeof(struct aac_mntinfo))) {
364 			device_printf(sc->aac_dev,
365 			    "error probing container %d", i);
366 
367 			continue;
368 		}
369 
370 		mir = (struct aac_mntinforesp *)&fib->data[0];
371 		/* XXX Need to check if count changed */
372 		count = mir->MntRespCount;
373 		aac_add_container(sc, mir, 0);
374 		i++;
375 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
376 
377 	aac_release_sync_fib(sc);
378 
379 	/* poke the bus to actually attach the child devices */
380 	if (bus_generic_attach(sc->aac_dev))
381 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
382 
383 	/* mark the controller up */
384 	sc->aac_state &= ~AAC_STATE_SUSPEND;
385 
386 	/* enable interrupts now */
387 	AAC_UNMASK_INTERRUPTS(sc);
388 
389 	/* enable the timeout watchdog */
390 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
391 		      aac_timeout, sc);
392 }
393 
394 /*
395  * Create a device to respresent a new container
396  */
397 static void
398 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
399 {
400 	struct aac_container *co;
401 	device_t child;
402 
403 	/*
404 	 * Check container volume type for validity.  Note that many of
405 	 * the possible types may never show up.
406 	 */
407 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
408 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
409 		       M_INTWAIT);
410 		debug(1, "id %x  name '%.16s'  size %u  type %d",
411 		      mir->MntTable[0].ObjectId,
412 		      mir->MntTable[0].FileSystemName,
413 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
414 
415 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
416 			device_printf(sc->aac_dev, "device_add_child failed\n");
417 		else
418 			device_set_ivars(child, co);
419 		device_set_desc(child, aac_describe_code(aac_container_types,
420 				mir->MntTable[0].VolType));
421 		co->co_disk = child;
422 		co->co_found = f;
423 		bcopy(&mir->MntTable[0], &co->co_mntobj,
424 		      sizeof(struct aac_mntobj));
425 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
426 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
427 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
428 	}
429 }
430 
431 /*
432  * Free all of the resources associated with (sc)
433  *
434  * Should not be called if the controller is active.
435  */
436 void
437 aac_free(struct aac_softc *sc)
438 {
439 	debug_called(1);
440 
441 	/* remove the control device */
442 	if (sc->aac_dev_t != NULL)
443 		destroy_dev(sc->aac_dev_t);
444 
445 	/* throw away any FIB buffers, discard the FIB DMA tag */
446 	if (sc->aac_fibs != NULL)
447 		aac_free_commands(sc);
448 	if (sc->aac_fib_dmat)
449 		bus_dma_tag_destroy(sc->aac_fib_dmat);
450 
451 	/* destroy the common area */
452 	if (sc->aac_common) {
453 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
454 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
455 				sc->aac_common_dmamap);
456 	}
457 	if (sc->aac_common_dmat)
458 		bus_dma_tag_destroy(sc->aac_common_dmat);
459 
460 	/* disconnect the interrupt handler */
461 	if (sc->aac_intr)
462 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
463 	if (sc->aac_irq != NULL)
464 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
465 				     sc->aac_irq);
466 
467 	/* destroy data-transfer DMA tag */
468 	if (sc->aac_buffer_dmat)
469 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
470 
471 	/* destroy the parent DMA tag */
472 	if (sc->aac_parent_dmat)
473 		bus_dma_tag_destroy(sc->aac_parent_dmat);
474 
475 	/* release the register window mapping */
476 	if (sc->aac_regs_resource != NULL) {
477 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
478 				     sc->aac_regs_rid, sc->aac_regs_resource);
479 	}
480 	cdevsw_remove(&aac_cdevsw, -1, device_get_unit(sc->aac_dev));
481 }
482 
483 /*
484  * Disconnect from the controller completely, in preparation for unload.
485  */
486 int
487 aac_detach(device_t dev)
488 {
489 	struct aac_softc *sc;
490 #if AAC_BROKEN
491 	int error;
492 #endif
493 
494 	debug_called(1);
495 
496 	sc = device_get_softc(dev);
497 
498 	callout_stop(&sc->aac_watchdog);
499 
500 	if (sc->aac_state & AAC_STATE_OPEN)
501 	return(EBUSY);
502 
503 #if AAC_BROKEN
504 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
505 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
506 		wakeup(sc->aifthread);
507 		tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
508 	}
509 
510 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
511 		panic("Cannot shutdown AIF thread\n");
512 
513 	if ((error = aac_shutdown(dev)))
514 		return(error);
515 
516 	aac_free(sc);
517 
518 	return(0);
519 #else
520 	return (EBUSY);
521 #endif
522 }
523 
524 /*
525  * Bring the controller down to a dormant state and detach all child devices.
526  *
527  * This function is called before detach or system shutdown.
528  *
529  * Note that we can assume that the bioq on the controller is empty, as we won't
530  * allow shutdown if any device is open.
531  */
532 int
533 aac_shutdown(device_t dev)
534 {
535 	struct aac_softc *sc;
536 	struct aac_fib *fib;
537 	struct aac_close_command *cc;
538 
539 	debug_called(1);
540 
541 	sc = device_get_softc(dev);
542 
543 	crit_enter();
544 
545 	sc->aac_state |= AAC_STATE_SUSPEND;
546 
547 	/*
548 	 * Send a Container shutdown followed by a HostShutdown FIB to the
549 	 * controller to convince it that we don't want to talk to it anymore.
550 	 * We've been closed and all I/O completed already
551 	 */
552 	device_printf(sc->aac_dev, "shutting down controller...");
553 
554 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
555 	cc = (struct aac_close_command *)&fib->data[0];
556 
557 	bzero(cc, sizeof(struct aac_close_command));
558 	cc->Command = VM_CloseAll;
559 	cc->ContainerId = 0xffffffff;
560 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
561 	    sizeof(struct aac_close_command)))
562 		printf("FAILED.\n");
563 	else {
564 		fib->data[0] = 0;
565 		/*
566 		 * XXX Issuing this command to the controller makes it shut down
567 		 * but also keeps it from coming back up without a reset of the
568 		 * PCI bus.  This is not desirable if you are just unloading the
569 		 * driver module with the intent to reload it later.
570 		 */
571 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
572 		    fib, 1)) {
573 			printf("FAILED.\n");
574 		} else {
575 			printf("done.\n");
576 		}
577 	}
578 
579 	AAC_MASK_INTERRUPTS(sc);
580 
581 	crit_exit();
582 	return(0);
583 }
584 
585 /*
586  * Bring the controller to a quiescent state, ready for system suspend.
587  */
588 int
589 aac_suspend(device_t dev)
590 {
591 	struct aac_softc *sc;
592 
593 	debug_called(1);
594 
595 	sc = device_get_softc(dev);
596 
597 	crit_enter();
598 
599 	sc->aac_state |= AAC_STATE_SUSPEND;
600 
601 	AAC_MASK_INTERRUPTS(sc);
602 	crit_exit();
603 	return(0);
604 }
605 
606 /*
607  * Bring the controller back to a state ready for operation.
608  */
609 int
610 aac_resume(device_t dev)
611 {
612 	struct aac_softc *sc;
613 
614 	debug_called(1);
615 
616 	sc = device_get_softc(dev);
617 
618 	sc->aac_state &= ~AAC_STATE_SUSPEND;
619 	AAC_UNMASK_INTERRUPTS(sc);
620 	return(0);
621 }
622 
623 /*
624  * Take an interrupt.
625  */
626 void
627 aac_intr(void *arg)
628 {
629 	struct aac_softc *sc;
630 	u_int16_t reason;
631 	u_int32_t *resp_queue;
632 
633 	debug_called(2);
634 
635 	sc = (struct aac_softc *)arg;
636 
637 	/*
638 	 * Optimize the common case of adapter response interrupts.
639 	 * We must read from the card prior to processing the responses
640 	 * to ensure the clear is flushed prior to accessing the queues.
641 	 * Reading the queues from local memory might save us a PCI read.
642 	 */
643 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
644 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
645 		reason = AAC_DB_RESPONSE_READY;
646 	else
647 		reason = AAC_GET_ISTATUS(sc);
648 	AAC_CLEAR_ISTATUS(sc, reason);
649 	(void)AAC_GET_ISTATUS(sc);
650 
651 	/* It's not ok to return here because of races with the previous step */
652 	if (reason & AAC_DB_RESPONSE_READY)
653 		aac_host_response(sc);
654 
655 	/* controller wants to talk to the log */
656 	if (reason & AAC_DB_PRINTF)
657 		aac_print_printf(sc);
658 
659 	/* controller has a message for us? */
660 	if (reason & AAC_DB_COMMAND_READY) {
661 		/* XXX What happens if the thread is already awake? */
662 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
663 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
664 			wakeup(sc->aifthread);
665 		}
666 	}
667 }
668 
669 /*
670  * Command Processing
671  */
672 
673 /*
674  * Start as much queued I/O as possible on the controller
675  */
676 void
677 aac_startio(struct aac_softc *sc)
678 {
679 	struct aac_command *cm;
680 
681 	debug_called(2);
682 
683 	for (;;) {
684 		/*
685 		 * Try to get a command that's been put off for lack of
686 		 * resources
687 		 */
688 		cm = aac_dequeue_ready(sc);
689 
690 		/*
691 		 * Try to build a command off the bio queue (ignore error
692 		 * return)
693 		 */
694 		if (cm == NULL)
695 			aac_bio_command(sc, &cm);
696 
697 		/* nothing to do? */
698 		if (cm == NULL)
699 			break;
700 
701 		/* try to give the command to the controller */
702 		if (aac_start(cm) == EBUSY) {
703 			/* put it on the ready queue for later */
704 			aac_requeue_ready(cm);
705 			break;
706 		}
707 	}
708 }
709 
710 /*
711  * Deliver a command to the controller; allocate controller resources at the
712  * last moment when possible.
713  */
714 static int
715 aac_start(struct aac_command *cm)
716 {
717 	struct aac_softc *sc;
718 	int error;
719 
720 	debug_called(2);
721 
722 	sc = cm->cm_sc;
723 
724 	/* get the command mapped */
725 	aac_map_command(cm);
726 
727 	/* fix up the address values in the FIB */
728 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
729 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
730 
731 	/* save a pointer to the command for speedy reverse-lookup */
732 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
733 							 * address issue */
734 	/* put the FIB on the outbound queue */
735 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
736 	return(error);
737 }
738 
739 /*
740  * Handle notification of one or more FIBs coming from the controller.
741  */
742 static void
743 aac_host_command(struct aac_softc *sc)
744 {
745 	struct aac_fib *fib;
746 	u_int32_t fib_size;
747 	int size;
748 
749 	debug_called(2);
750 
751 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
752 
753 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
754 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
755 			tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
756 
757 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
758 		for (;;) {
759 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
760 					    &fib_size, &fib))
761 				break;	/* nothing to do */
762 
763 			AAC_PRINT_FIB(sc, fib);
764 
765 			switch (fib->Header.Command) {
766 			case AifRequest:
767 				aac_handle_aif(sc, fib);
768 				break;
769 			default:
770 				device_printf(sc->aac_dev, "unknown command "
771 					      "from controller\n");
772 				break;
773 			}
774 
775 			/* Return the AIF to the controller. */
776 			if ((fib->Header.XferState == 0) ||
777 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
778 				break;
779 
780 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
781 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
782 				*(AAC_FSAStatus*)fib->data = ST_OK;
783 
784 				/* XXX Compute the Size field? */
785 				size = fib->Header.Size;
786 				if (size > sizeof(struct aac_fib)) {
787 					size = sizeof(struct aac_fib);
788 					fib->Header.Size = size;
789 				}
790 				/*
791 				 * Since we did not generate this command, it
792 				 * cannot go through the normal
793 				 * enqueue->startio chain.
794 				 */
795 				aac_enqueue_response(sc,
796 						     AAC_ADAP_NORM_RESP_QUEUE,
797 						     fib);
798 			}
799 		}
800 	}
801 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
802 	wakeup(sc->aac_dev);
803 
804 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
805 	mtx_lock(&Giant);
806 #endif
807 	kthread_exit();
808 }
809 
810 /*
811  * Handle notification of one or more FIBs completed by the controller
812  */
813 static void
814 aac_host_response(struct aac_softc *sc)
815 {
816 	struct aac_command *cm;
817 	struct aac_fib *fib;
818 	u_int32_t fib_size;
819 
820 	debug_called(2);
821 
822 	for (;;) {
823 		/* look for completed FIBs on our queue */
824 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
825 				    &fib))
826 			break;	/* nothing to do */
827 
828 		/* get the command, unmap and queue for later processing */
829 		cm = (struct aac_command *)fib->Header.SenderData;
830 		if (cm == NULL) {
831 			AAC_PRINT_FIB(sc, fib);
832 		} else {
833 			aac_remove_busy(cm);
834 			aac_unmap_command(cm);		/* XXX defer? */
835 			aac_enqueue_complete(cm);
836 		}
837 	}
838 
839 	/* handle completion processing */
840 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
841 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
842 #else
843 	aac_complete(sc, 0);
844 #endif
845 }
846 
847 /*
848  * Process completed commands.
849  */
850 static void
851 aac_complete(void *context, int pending)
852 {
853 	struct aac_softc *sc;
854 	struct aac_command *cm;
855 
856 	debug_called(2);
857 
858 	sc = (struct aac_softc *)context;
859 
860 	/* pull completed commands off the queue */
861 	for (;;) {
862 		cm = aac_dequeue_complete(sc);
863 		if (cm == NULL)
864 			break;
865 		cm->cm_flags |= AAC_CMD_COMPLETED;
866 
867 		/* is there a completion handler? */
868 		if (cm->cm_complete != NULL) {
869 			cm->cm_complete(cm);
870 		} else {
871 			/* assume that someone is sleeping on this command */
872 			wakeup(cm);
873 		}
874 	}
875 
876 	/* see if we can start some more I/O */
877 	aac_startio(sc);
878 }
879 
880 /*
881  * Handle a bio submitted from a disk device.
882  */
883 void
884 aac_submit_bio(struct aac_disk *ad, struct bio *bio)
885 {
886 	struct aac_softc *sc;
887 
888 	debug_called(2);
889 
890 	bio->bio_driver_info = ad;
891 	sc = ad->ad_controller;
892 
893 	/* queue the BIO and try to get some work done */
894 	aac_enqueue_bio(sc, bio);
895 	aac_startio(sc);
896 }
897 
898 /*
899  * Get a bio and build a command to go with it.
900  */
901 static int
902 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
903 {
904 	struct aac_command *cm;
905 	struct aac_fib *fib;
906 	struct aac_blockread *br;
907 	struct aac_blockwrite *bw;
908 	struct aac_disk *ad;
909 	struct bio *bio;
910 	struct buf *bp;
911 
912 	debug_called(2);
913 
914 	/* get the resources we will need */
915 	cm = NULL;
916 	if ((bio = aac_dequeue_bio(sc)) == NULL)
917 		goto fail;
918 	if (aac_alloc_command(sc, &cm))	/* get a command */
919 		goto fail;
920 
921 	/* fill out the command */
922 	bp = bio->bio_buf;
923 	cm->cm_data = (void *)bp->b_data;
924 	cm->cm_datalen = bp->b_bcount;
925 	cm->cm_complete = aac_bio_complete;
926 	cm->cm_private = bio;
927 	cm->cm_timestamp = time_second;
928 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
929 
930 	/* build the FIB */
931 	fib = cm->cm_fib;
932 	fib->Header.XferState =
933 		AAC_FIBSTATE_HOSTOWNED   |
934 		AAC_FIBSTATE_INITIALISED |
935 		AAC_FIBSTATE_EMPTY	 |
936 		AAC_FIBSTATE_FROMHOST	 |
937 		AAC_FIBSTATE_REXPECTED   |
938 		AAC_FIBSTATE_NORM	 |
939 		AAC_FIBSTATE_ASYNC	 |
940 		AAC_FIBSTATE_FAST_RESPONSE;
941 	fib->Header.Command = ContainerCommand;
942 	fib->Header.Size = sizeof(struct aac_fib_header);
943 
944 	/* build the read/write request */
945 	ad = (struct aac_disk *)bio->bio_driver_info;
946 	if (bp->b_cmd == BUF_CMD_READ) {
947 		br = (struct aac_blockread *)&fib->data[0];
948 		br->Command = VM_CtBlockRead;
949 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
950 		br->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
951 		br->ByteCount = bp->b_bcount;
952 		fib->Header.Size += sizeof(struct aac_blockread);
953 		cm->cm_sgtable = &br->SgMap;
954 		cm->cm_flags |= AAC_CMD_DATAIN;
955 	} else {
956 		bw = (struct aac_blockwrite *)&fib->data[0];
957 		bw->Command = VM_CtBlockWrite;
958 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
959 		bw->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
960 		bw->ByteCount = bp->b_bcount;
961 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
962 		fib->Header.Size += sizeof(struct aac_blockwrite);
963 		cm->cm_flags |= AAC_CMD_DATAOUT;
964 		cm->cm_sgtable = &bw->SgMap;
965 	}
966 
967 	*cmp = cm;
968 	return(0);
969 
970 fail:
971 	if (bio != NULL)
972 		aac_enqueue_bio(sc, bio);
973 	if (cm != NULL)
974 		aac_release_command(cm);
975 	return(ENOMEM);
976 }
977 
978 /*
979  * Handle a bio-instigated command that has been completed.
980  */
981 static void
982 aac_bio_complete(struct aac_command *cm)
983 {
984 	struct aac_blockread_response *brr;
985 	struct aac_blockwrite_response *bwr;
986 	struct bio *bio;
987 	struct buf *bp;
988 	const char *code;
989 	AAC_FSAStatus status;
990 
991 	/* fetch relevant status and then release the command */
992 	bio = (struct bio *)cm->cm_private;
993 	bp = bio->bio_buf;
994 	if (bp->b_cmd == BUF_CMD_READ) {
995 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
996 		status = brr->Status;
997 	} else {
998 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
999 		status = bwr->Status;
1000 	}
1001 	aac_release_command(cm);
1002 
1003 	/* fix up the bio based on status */
1004 	if (status == ST_OK) {
1005 		bp->b_resid = 0;
1006 		code = 0;
1007 	} else {
1008 		bp->b_error = EIO;
1009 		bp->b_flags |= B_ERROR;
1010 		/* pass an error string out to the disk layer */
1011 		code = aac_describe_code(aac_command_status_table, status);
1012 	}
1013 	aac_biodone(bio, code);
1014 }
1015 
1016 /*
1017  * Dump a block of data to the controller.  If the queue is full, tell the
1018  * caller to hold off and wait for the queue to drain.
1019  */
1020 int
1021 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1022 {
1023 	struct aac_softc *sc;
1024 	struct aac_command *cm;
1025 	struct aac_fib *fib;
1026 	struct aac_blockwrite *bw;
1027 
1028 	sc = ad->ad_controller;
1029 	cm = NULL;
1030 
1031 	if (aac_alloc_command(sc, &cm))
1032 		return (EBUSY);
1033 
1034 	/* fill out the command */
1035 	cm->cm_data = data;
1036 	cm->cm_datalen = dumppages * PAGE_SIZE;
1037 	cm->cm_complete = NULL;
1038 	cm->cm_private = NULL;
1039 	cm->cm_timestamp = time_second;
1040 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1041 
1042 	/* build the FIB */
1043 	fib = cm->cm_fib;
1044 	fib->Header.XferState =
1045 	AAC_FIBSTATE_HOSTOWNED   |
1046 	AAC_FIBSTATE_INITIALISED |
1047 	AAC_FIBSTATE_FROMHOST	 |
1048 	AAC_FIBSTATE_REXPECTED   |
1049 	AAC_FIBSTATE_NORM;
1050 	fib->Header.Command = ContainerCommand;
1051 	fib->Header.Size = sizeof(struct aac_fib_header);
1052 
1053 	bw = (struct aac_blockwrite *)&fib->data[0];
1054 	bw->Command = VM_CtBlockWrite;
1055 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1056 	bw->BlockNumber = lba;
1057 	bw->ByteCount = dumppages * PAGE_SIZE;
1058 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1059 	fib->Header.Size += sizeof(struct aac_blockwrite);
1060 	cm->cm_flags |= AAC_CMD_DATAOUT;
1061 	cm->cm_sgtable = &bw->SgMap;
1062 
1063 	return (aac_start(cm));
1064 }
1065 
1066 /*
1067  * Wait for the card's queue to drain when dumping.  Also check for monitor
1068  * printf's
1069  */
1070 void
1071 aac_dump_complete(struct aac_softc *sc)
1072 {
1073 	struct aac_fib *fib;
1074 	struct aac_command *cm;
1075 	u_int16_t reason;
1076 	u_int32_t pi, ci, fib_size;
1077 
1078 	do {
1079 		reason = AAC_GET_ISTATUS(sc);
1080 		if (reason & AAC_DB_RESPONSE_READY) {
1081 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1082 			for (;;) {
1083 				if (aac_dequeue_fib(sc,
1084 						    AAC_HOST_NORM_RESP_QUEUE,
1085 						    &fib_size, &fib))
1086 					break;
1087 				cm = (struct aac_command *)
1088 					fib->Header.SenderData;
1089 				if (cm == NULL)
1090 					AAC_PRINT_FIB(sc, fib);
1091 				else {
1092 					aac_remove_busy(cm);
1093 					aac_unmap_command(cm);
1094 					aac_enqueue_complete(cm);
1095 					aac_release_command(cm);
1096 				}
1097 			}
1098 		}
1099 		if (reason & AAC_DB_PRINTF) {
1100 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1101 			aac_print_printf(sc);
1102 		}
1103 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1104 			AAC_PRODUCER_INDEX];
1105 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1106 			AAC_CONSUMER_INDEX];
1107 	} while (ci != pi);
1108 
1109 	return;
1110 }
1111 
1112 /*
1113  * Submit a command to the controller, return when it completes.
1114  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1115  *     be stuck here forever.  At the same time, signals are not caught
1116  *     because there is a risk that a signal could wakeup the tsleep before
1117  *     the card has a chance to complete the command.  The passed in timeout
1118  *     is ignored for the same reason.  Since there is no way to cancel a
1119  *     command in progress, we should probably create a 'dead' queue where
1120  *     commands go that have been interrupted/timed-out/etc, that keeps them
1121  *     out of the free pool.  That way, if the card is just slow, it won't
1122  *     spam the memory of a command that has been recycled.
1123  */
1124 static int
1125 aac_wait_command(struct aac_command *cm, int timeout)
1126 {
1127 	int error = 0;
1128 
1129 	debug_called(2);
1130 
1131 	/* Put the command on the ready queue and get things going */
1132 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1133 	aac_enqueue_ready(cm);
1134 	aac_startio(cm->cm_sc);
1135 	crit_enter();
1136 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1137 		error = tsleep(cm, 0, "aacwait", 0);
1138 	}
1139 	crit_exit();
1140 	return(error);
1141 }
1142 
1143 /*
1144  *Command Buffer Management
1145  */
1146 
1147 /*
1148  * Allocate a command.
1149  */
1150 int
1151 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1152 {
1153 	struct aac_command *cm;
1154 
1155 	debug_called(3);
1156 
1157 	if ((cm = aac_dequeue_free(sc)) == NULL)
1158 		return(ENOMEM);
1159 
1160 	*cmp = cm;
1161 	return(0);
1162 }
1163 
1164 /*
1165  * Release a command back to the freelist.
1166  */
1167 void
1168 aac_release_command(struct aac_command *cm)
1169 {
1170 	debug_called(3);
1171 
1172 	/* (re)initialise the command/FIB */
1173 	cm->cm_sgtable = NULL;
1174 	cm->cm_flags = 0;
1175 	cm->cm_complete = NULL;
1176 	cm->cm_private = NULL;
1177 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1178 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1179 	cm->cm_fib->Header.Flags = 0;
1180 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1181 
1182 	/*
1183 	 * These are duplicated in aac_start to cover the case where an
1184 	 * intermediate stage may have destroyed them.  They're left
1185 	 * initialised here for debugging purposes only.
1186 	 */
1187 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1188 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1189 	cm->cm_fib->Header.SenderData = 0;
1190 
1191 	aac_enqueue_free(cm);
1192 }
1193 
1194 /*
1195  * Map helper for command/FIB allocation.
1196  */
1197 static void
1198 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1199 {
1200 	struct aac_softc *sc;
1201 
1202 	sc = (struct aac_softc *)arg;
1203 
1204 	debug_called(3);
1205 
1206 	sc->aac_fibphys = segs[0].ds_addr;
1207 }
1208 
1209 /*
1210  * Allocate and initialise commands/FIBs for this adapter.
1211  */
1212 static int
1213 aac_alloc_commands(struct aac_softc *sc)
1214 {
1215 	struct aac_command *cm;
1216 	int i;
1217 
1218 	debug_called(1);
1219 
1220 	/* allocate the FIBs in DMAable memory and load them */
1221 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1222 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1223 		return(ENOMEM);
1224 	}
1225 
1226 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1227 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1228 			aac_map_command_helper, sc, 0);
1229 
1230 	/* initialise constant fields in the command structure */
1231 	bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1232 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1233 		cm = &sc->aac_command[i];
1234 		cm->cm_sc = sc;
1235 		cm->cm_fib = sc->aac_fibs + i;
1236 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1237 
1238 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1239 			aac_release_command(cm);
1240 	}
1241 	return(0);
1242 }
1243 
1244 /*
1245  * Free FIBs owned by this adapter.
1246  */
1247 static void
1248 aac_free_commands(struct aac_softc *sc)
1249 {
1250 	int i;
1251 
1252 	debug_called(1);
1253 
1254 	for (i = 0; i < AAC_FIB_COUNT; i++)
1255 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1256 				   sc->aac_command[i].cm_datamap);
1257 
1258 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1259 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1260 }
1261 
1262 /*
1263  * Command-mapping helper function - populate this command's s/g table.
1264  */
1265 static void
1266 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1267 {
1268 	struct aac_command *cm;
1269 	struct aac_fib *fib;
1270 	struct aac_sg_table *sg;
1271 	int i;
1272 
1273 	debug_called(3);
1274 
1275 	cm = (struct aac_command *)arg;
1276 	fib = cm->cm_fib;
1277 
1278 	/* find the s/g table */
1279 	sg = cm->cm_sgtable;
1280 
1281 	/* copy into the FIB */
1282 	if (sg != NULL) {
1283 		sg->SgCount = nseg;
1284 		for (i = 0; i < nseg; i++) {
1285 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1286 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1287 		}
1288 		/* update the FIB size for the s/g count */
1289 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1290 	}
1291 
1292 }
1293 
1294 /*
1295  * Map a command into controller-visible space.
1296  */
1297 static void
1298 aac_map_command(struct aac_command *cm)
1299 {
1300 	struct aac_softc *sc;
1301 
1302 	debug_called(2);
1303 
1304 	sc = cm->cm_sc;
1305 
1306 	/* don't map more than once */
1307 	if (cm->cm_flags & AAC_CMD_MAPPED)
1308 		return;
1309 
1310 	if (cm->cm_datalen != 0) {
1311 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1312 				cm->cm_data, cm->cm_datalen,
1313 				aac_map_command_sg, cm, 0);
1314 
1315 		if (cm->cm_flags & AAC_CMD_DATAIN)
1316 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1317 					BUS_DMASYNC_PREREAD);
1318 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1319 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1320 					BUS_DMASYNC_PREWRITE);
1321 	}
1322 	cm->cm_flags |= AAC_CMD_MAPPED;
1323 }
1324 
1325 /*
1326  * Unmap a command from controller-visible space.
1327  */
1328 static void
1329 aac_unmap_command(struct aac_command *cm)
1330 {
1331 	struct aac_softc *sc;
1332 
1333 	debug_called(2);
1334 
1335 	sc = cm->cm_sc;
1336 
1337 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1338 		return;
1339 
1340 	if (cm->cm_datalen != 0) {
1341 		if (cm->cm_flags & AAC_CMD_DATAIN)
1342 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1343 					BUS_DMASYNC_POSTREAD);
1344 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1345 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1346 					BUS_DMASYNC_POSTWRITE);
1347 
1348 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1349 	}
1350 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1351 }
1352 
1353 /*
1354  * Hardware Interface
1355  */
1356 
1357 /*
1358  * Initialise the adapter.
1359  */
1360 static void
1361 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1362 {
1363 	struct aac_softc *sc;
1364 
1365 	debug_called(1);
1366 
1367 	sc = (struct aac_softc *)arg;
1368 
1369 	sc->aac_common_busaddr = segs[0].ds_addr;
1370 }
1371 
1372 static int
1373 aac_check_firmware(struct aac_softc *sc)
1374 {
1375 	u_int32_t major, minor, options;
1376 
1377 	debug_called(1);
1378 
1379 	/*
1380 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1381 	 * firmware version 1.x are not compatible with this driver.
1382 	 */
1383 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1384 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1385 				     NULL)) {
1386 			device_printf(sc->aac_dev,
1387 				      "Error reading firmware version\n");
1388 			return (EIO);
1389 		}
1390 
1391 		/* These numbers are stored as ASCII! */
1392 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1393 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1394 		if (major == 1) {
1395 			device_printf(sc->aac_dev,
1396 			    "Firmware version %d.%d is not supported.\n",
1397 			    major, minor);
1398 			return (EINVAL);
1399 		}
1400 	}
1401 
1402 	/*
1403 	 * Retrieve the capabilities/supported options word so we know what
1404 	 * work-arounds to enable.
1405 	 */
1406 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1407 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1408 		return (EIO);
1409 	}
1410 	options = AAC_GET_MAILBOX(sc, 1);
1411 	sc->supported_options = options;
1412 
1413 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1414 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1415 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1416 	if (options & AAC_SUPPORTED_NONDASD)
1417 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1418 
1419 	return (0);
1420 }
1421 
1422 static int
1423 aac_init(struct aac_softc *sc)
1424 {
1425 	struct aac_adapter_init	*ip;
1426 	time_t then;
1427 	u_int32_t code;
1428 	u_int8_t *qaddr;
1429 	int error;
1430 
1431 	debug_called(1);
1432 
1433 	/*
1434 	 * First wait for the adapter to come ready.
1435 	 */
1436 	then = time_second;
1437 	do {
1438 		code = AAC_GET_FWSTATUS(sc);
1439 		if (code & AAC_SELF_TEST_FAILED) {
1440 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1441 			return(ENXIO);
1442 		}
1443 		if (code & AAC_KERNEL_PANIC) {
1444 			device_printf(sc->aac_dev,
1445 				      "FATAL: controller kernel panic\n");
1446 			return(ENXIO);
1447 		}
1448 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1449 			device_printf(sc->aac_dev,
1450 				      "FATAL: controller not coming ready, "
1451 					   "status %x\n", code);
1452 			return(ENXIO);
1453 		}
1454 	} while (!(code & AAC_UP_AND_RUNNING));
1455 
1456  	error = ENOMEM;
1457  	/*
1458  	 * Create DMA tag for mapping buffers into controller-addressable space.
1459  	 */
1460  	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1461  			       1, 0, 			/* algnmnt, boundary */
1462  			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1463  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1464  			       NULL, NULL, 		/* filter, filterarg */
1465  			       MAXBSIZE,		/* maxsize */
1466  			       AAC_MAXSGENTRIES,	/* nsegments */
1467  			       MAXBSIZE,		/* maxsegsize */
1468  			       BUS_DMA_ALLOCNOW,	/* flags */
1469  			       &sc->aac_buffer_dmat)) {
1470  		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1471  		goto out;
1472  	}
1473 
1474  	/*
1475  	 * Create DMA tag for mapping FIBs into controller-addressable space..
1476  	 */
1477  	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1478  			       1, 0, 			/* algnmnt, boundary */
1479  			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1480  			       BUS_SPACE_MAXADDR_32BIT :
1481  			       0x7fffffff,		/* lowaddr */
1482  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1483  			       NULL, NULL, 		/* filter, filterarg */
1484  			       AAC_FIB_COUNT *
1485  			       sizeof(struct aac_fib),  /* maxsize */
1486  			       1,			/* nsegments */
1487  			       AAC_FIB_COUNT *
1488  			       sizeof(struct aac_fib),	/* maxsegsize */
1489  			       BUS_DMA_ALLOCNOW,	/* flags */
1490  			       &sc->aac_fib_dmat)) {
1491  		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1492  		goto out;
1493  	}
1494 
1495 	/*
1496 	 * Create DMA tag for the common structure and allocate it.
1497 	 */
1498 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1499 			       1, 0,			/* algnmnt, boundary */
1500 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1501 			       BUS_SPACE_MAXADDR_32BIT :
1502 			       0x7fffffff,		/* lowaddr */
1503 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1504 			       NULL, NULL, 		/* filter, filterarg */
1505 			       8192 + sizeof(struct aac_common), /* maxsize */
1506 			       1,			/* nsegments */
1507 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1508 			       BUS_DMA_ALLOCNOW,	/* flags */
1509 			       &sc->aac_common_dmat)) {
1510 		device_printf(sc->aac_dev,
1511 			      "can't allocate common structure DMA tag\n");
1512 		goto out;
1513 	}
1514 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1515 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1516 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1517 		goto out;
1518 	}
1519 	/*
1520 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1521 	 * below address 8192 in physical memory.
1522 	 * XXX If the padding is not needed, can it be put to use instead
1523 	 * of ignored?
1524 	 */
1525 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1526 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1527 			aac_common_map, sc, 0);
1528 
1529 	if (sc->aac_common_busaddr < 8192) {
1530 		sc->aac_common =
1531 		    (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1532 		sc->aac_common_busaddr += 8192;
1533 	}
1534 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1535 
1536 	/* Allocate some FIBs and associated command structs */
1537 	if (aac_alloc_commands(sc) != 0)
1538 		goto out;
1539 
1540 	/*
1541 	 * Fill in the init structure.  This tells the adapter about the
1542 	 * physical location of various important shared data structures.
1543 	 */
1544 	ip = &sc->aac_common->ac_init;
1545 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1546 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1547 
1548 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1549 					 offsetof(struct aac_common, ac_fibs);
1550 	ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1551 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1552 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1553 
1554 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1555 				  offsetof(struct aac_common, ac_printf);
1556 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1557 
1558 	/* The adapter assumes that pages are 4K in size */
1559 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1560 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1561 
1562 	/*
1563 	 * Initialise FIB queues.  Note that it appears that the layout of the
1564 	 * indexes and the segmentation of the entries may be mandated by the
1565 	 * adapter, which is only told about the base of the queue index fields.
1566 	 *
1567 	 * The initial values of the indices are assumed to inform the adapter
1568 	 * of the sizes of the respective queues, and theoretically it could
1569 	 * work out the entire layout of the queue structures from this.  We
1570 	 * take the easy route and just lay this area out like everyone else
1571 	 * does.
1572 	 *
1573 	 * The Linux driver uses a much more complex scheme whereby several
1574 	 * header records are kept for each queue.  We use a couple of generic
1575 	 * list manipulation functions which 'know' the size of each list by
1576 	 * virtue of a table.
1577 	 */
1578 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1579 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1580 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1581 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1582 				((u_int32_t)sc->aac_queues -
1583 				(u_int32_t)sc->aac_common);
1584 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1585 
1586 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1587 		AAC_HOST_NORM_CMD_ENTRIES;
1588 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1589 		AAC_HOST_NORM_CMD_ENTRIES;
1590 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1591 		AAC_HOST_HIGH_CMD_ENTRIES;
1592 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1593 		AAC_HOST_HIGH_CMD_ENTRIES;
1594 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1595 		AAC_ADAP_NORM_CMD_ENTRIES;
1596 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1597 		AAC_ADAP_NORM_CMD_ENTRIES;
1598 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1599 		AAC_ADAP_HIGH_CMD_ENTRIES;
1600 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1601 		AAC_ADAP_HIGH_CMD_ENTRIES;
1602 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1603 		AAC_HOST_NORM_RESP_ENTRIES;
1604 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1605 		AAC_HOST_NORM_RESP_ENTRIES;
1606 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1607 		AAC_HOST_HIGH_RESP_ENTRIES;
1608 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1609 		AAC_HOST_HIGH_RESP_ENTRIES;
1610 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1611 		AAC_ADAP_NORM_RESP_ENTRIES;
1612 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1613 		AAC_ADAP_NORM_RESP_ENTRIES;
1614 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1615 		AAC_ADAP_HIGH_RESP_ENTRIES;
1616 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1617 		AAC_ADAP_HIGH_RESP_ENTRIES;
1618 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1619 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1620 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1621 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1622 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1623 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1624 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1625 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1626 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1627 		&sc->aac_queues->qt_HostNormRespQueue[0];
1628 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1629 		&sc->aac_queues->qt_HostHighRespQueue[0];
1630 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1631 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1632 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1633 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1634 
1635 	/*
1636 	 * Do controller-type-specific initialisation
1637 	 */
1638 	switch (sc->aac_hwif) {
1639 	case AAC_HWIF_I960RX:
1640 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1641 		break;
1642 	}
1643 
1644 	/*
1645 	 * Give the init structure to the controller.
1646 	 */
1647 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1648 			     sc->aac_common_busaddr +
1649 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1650 			     NULL)) {
1651 		device_printf(sc->aac_dev,
1652 			      "error establishing init structure\n");
1653 		error = EIO;
1654 		goto out;
1655 	}
1656 
1657 	error = 0;
1658 out:
1659 	return(error);
1660 }
1661 
1662 /*
1663  * Send a synchronous command to the controller and wait for a result.
1664  */
1665 static int
1666 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1667 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1668 		 u_int32_t *sp)
1669 {
1670 	time_t then;
1671 	u_int32_t status;
1672 
1673 	debug_called(3);
1674 
1675 	/* populate the mailbox */
1676 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1677 
1678 	/* ensure the sync command doorbell flag is cleared */
1679 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1680 
1681 	/* then set it to signal the adapter */
1682 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1683 
1684 	/* spin waiting for the command to complete */
1685 	then = time_second;
1686 	do {
1687 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1688 			debug(1, "timed out");
1689 			return(EIO);
1690 		}
1691 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1692 
1693 	/* clear the completion flag */
1694 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1695 
1696 	/* get the command status */
1697 	status = AAC_GET_MAILBOX(sc, 0);
1698 	if (sp != NULL)
1699 		*sp = status;
1700 	return(0);
1701 }
1702 
1703 /*
1704  * Grab the sync fib area.
1705  */
1706 int
1707 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1708 {
1709 
1710 	/*
1711 	 * If the force flag is set, the system is shutting down, or in
1712 	 * trouble.  Ignore the mutex.
1713 	 */
1714 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1715 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1716 
1717 	*fib = &sc->aac_common->ac_sync_fib;
1718 
1719 	return (1);
1720 }
1721 
1722 /*
1723  * Release the sync fib area.
1724  */
1725 void
1726 aac_release_sync_fib(struct aac_softc *sc)
1727 {
1728 
1729 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1730 }
1731 
1732 /*
1733  * Send a synchronous FIB to the controller and wait for a result.
1734  */
1735 int
1736 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1737 		 struct aac_fib *fib, u_int16_t datasize)
1738 {
1739 	debug_called(3);
1740 
1741 	if (datasize > AAC_FIB_DATASIZE)
1742 		return(EINVAL);
1743 
1744 	/*
1745 	 * Set up the sync FIB
1746 	 */
1747 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1748 				AAC_FIBSTATE_INITIALISED |
1749 				AAC_FIBSTATE_EMPTY;
1750 	fib->Header.XferState |= xferstate;
1751 	fib->Header.Command = command;
1752 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1753 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1754 	fib->Header.SenderSize = sizeof(struct aac_fib);
1755 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1756 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1757 					 offsetof(struct aac_common,
1758 						  ac_sync_fib);
1759 
1760 	/*
1761 	 * Give the FIB to the controller, wait for a response.
1762 	 */
1763 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1764 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1765 		debug(2, "IO error");
1766 		return(EIO);
1767 	}
1768 
1769 	return (0);
1770 }
1771 
1772 /*
1773  * Adapter-space FIB queue manipulation
1774  *
1775  * Note that the queue implementation here is a little funky; neither the PI or
1776  * CI will ever be zero.  This behaviour is a controller feature.
1777  */
1778 static struct {
1779 	int		size;
1780 	int		notify;
1781 } aac_qinfo[] = {
1782 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1783 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1784 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1785 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1786 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1787 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1788 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1789 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1790 };
1791 
1792 /*
1793  * Atomically insert an entry into the nominated queue, returns 0 on success or
1794  * EBUSY if the queue is full.
1795  *
1796  * Note: it would be more efficient to defer notifying the controller in
1797  *	 the case where we may be inserting several entries in rapid succession,
1798  *	 but implementing this usefully may be difficult (it would involve a
1799  *	 separate queue/notify interface).
1800  */
1801 static int
1802 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1803 {
1804 	u_int32_t pi, ci;
1805 	int error;
1806 	u_int32_t fib_size;
1807 	u_int32_t fib_addr;
1808 
1809 	debug_called(3);
1810 
1811 	fib_size = cm->cm_fib->Header.Size;
1812 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1813 
1814 	crit_enter();
1815 
1816 	/* get the producer/consumer indices */
1817 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1818 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1819 
1820 	/* wrap the queue? */
1821 	if (pi >= aac_qinfo[queue].size)
1822 		pi = 0;
1823 
1824 	/* check for queue full */
1825 	if ((pi + 1) == ci) {
1826 		error = EBUSY;
1827 		goto out;
1828 	}
1829 	/*
1830 	 * To avoid a race with its completion interrupt, place this command on
1831 	 * the busy queue prior to advertising it to the controller.
1832 	 */
1833 	aac_enqueue_busy(cm);
1834 
1835 
1836 
1837 	/* populate queue entry */
1838 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1839 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1840 
1841 	/* update producer index */
1842 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1843 
1844 	/* notify the adapter if we know how */
1845 	if (aac_qinfo[queue].notify != 0)
1846 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1847 
1848 	error = 0;
1849 
1850 out:
1851 	crit_exit();
1852 	return(error);
1853 }
1854 
1855 /*
1856  * Atomically remove one entry from the nominated queue, returns 0 on
1857  * success or ENOENT if the queue is empty.
1858  */
1859 static int
1860 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1861 		struct aac_fib **fib_addr)
1862 {
1863 	u_int32_t pi, ci;
1864 	int error;
1865 	int notify;
1866 
1867 	debug_called(3);
1868 
1869 	crit_enter();
1870 
1871 	/* get the producer/consumer indices */
1872 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1873 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1874 
1875 	/* check for queue empty */
1876 	if (ci == pi) {
1877 		error = ENOENT;
1878 		goto out;
1879 	}
1880 
1881 	/* wrap the pi so the following test works */
1882 	if (pi >= aac_qinfo[queue].size)
1883 		pi = 0;
1884 
1885 	notify = 0;
1886 	if (ci == pi + 1)
1887 		notify++;
1888 
1889 	/* wrap the queue? */
1890 	if (ci >= aac_qinfo[queue].size)
1891 		ci = 0;
1892 
1893 	/* fetch the entry */
1894 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1895 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1896 				       ci)->aq_fib_addr;
1897 
1898 	/*
1899 	 * Is this a fast response? If it is, update the fib fields in
1900 	 * local memory so the whole fib doesn't have to be DMA'd back up.
1901 	 */
1902 	if (*(uintptr_t *)fib_addr & 0x01) {
1903 		*(uintptr_t *)fib_addr &= ~0x01;
1904 		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1905 		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1906 	}
1907 	/* update consumer index */
1908 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1909 
1910 	/* if we have made the queue un-full, notify the adapter */
1911 	if (notify && (aac_qinfo[queue].notify != 0))
1912 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1913 	error = 0;
1914 
1915 out:
1916 	crit_exit();
1917 	return(error);
1918 }
1919 
1920 /*
1921  * Put our response to an Adapter Initialed Fib on the response queue
1922  */
1923 static int
1924 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1925 {
1926 	u_int32_t pi, ci;
1927 	int error;
1928 	u_int32_t fib_size;
1929 	u_int32_t fib_addr;
1930 
1931 	debug_called(1);
1932 
1933 	/* Tell the adapter where the FIB is */
1934 	fib_size = fib->Header.Size;
1935 	fib_addr = fib->Header.SenderFibAddress;
1936 	fib->Header.ReceiverFibAddress = fib_addr;
1937 
1938 	crit_enter();
1939 
1940 	/* get the producer/consumer indices */
1941 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1942 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1943 
1944 	/* wrap the queue? */
1945 	if (pi >= aac_qinfo[queue].size)
1946 		pi = 0;
1947 
1948 	/* check for queue full */
1949 	if ((pi + 1) == ci) {
1950 		error = EBUSY;
1951 		goto out;
1952 	}
1953 
1954 	/* populate queue entry */
1955 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1956 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1957 
1958 	/* update producer index */
1959 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1960 
1961 	/* notify the adapter if we know how */
1962 	if (aac_qinfo[queue].notify != 0)
1963 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1964 
1965 	error = 0;
1966 
1967 out:
1968 	crit_exit();
1969 	return(error);
1970 }
1971 
1972 /*
1973  * Check for commands that have been outstanding for a suspiciously long time,
1974  * and complain about them.
1975  */
1976 static void
1977 aac_timeout(void *xsc)
1978 {
1979 	struct aac_softc *sc = xsc;
1980 	struct aac_command *cm;
1981 	time_t deadline;
1982 	int timedout, code;
1983 #if 0
1984 	/* simulate an interrupt to handle possibly-missed interrupts */
1985 	/*
1986 	 * XXX This was done to work around another bug which has since been
1987 	 * fixed.  It is dangerous anyways because you don't want multiple
1988 	 * threads in the interrupt handler at the same time!  If calling
1989 	 * is deamed neccesary in the future, proper mutexes must be used.
1990 	 */
1991 	crit_enter();
1992 	aac_intr(sc);
1993 	crit_exit();
1994 
1995 	/* kick the I/O queue to restart it in the case of deadlock */
1996 	aac_startio(sc);
1997 #endif
1998 
1999 	/*
2000 	 * traverse the busy command list, bitch about late commands once
2001 	 * only.
2002 	 */
2003 	timedout = 0;
2004 	deadline = time_second - AAC_CMD_TIMEOUT;
2005 	crit_enter();
2006 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2007 		if ((cm->cm_timestamp  < deadline)
2008 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2009 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2010 			device_printf(sc->aac_dev,
2011 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2012 				      cm, (int)(time_second-cm->cm_timestamp));
2013 			AAC_PRINT_FIB(sc, cm->cm_fib);
2014 			timedout++;
2015 		}
2016 	}
2017 	if (timedout) {
2018 		code = AAC_GET_FWSTATUS(sc);
2019 		if (code != AAC_UP_AND_RUNNING) {
2020 			device_printf(sc->aac_dev, "WARNING! Controller is no "
2021 				      "longer running! code= 0x%x\n", code);
2022 
2023 		}
2024 	}
2025 	crit_exit();
2026 
2027 	/* reset the timer for next time */
2028 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2029 		      aac_timeout, sc);
2030 }
2031 
2032 /*
2033  * Interface Function Vectors
2034  */
2035 
2036 /*
2037  * Read the current firmware status word.
2038  */
2039 static int
2040 aac_sa_get_fwstatus(struct aac_softc *sc)
2041 {
2042 	debug_called(3);
2043 
2044 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2045 }
2046 
2047 static int
2048 aac_rx_get_fwstatus(struct aac_softc *sc)
2049 {
2050 	debug_called(3);
2051 
2052 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2053 }
2054 
2055 static int
2056 aac_fa_get_fwstatus(struct aac_softc *sc)
2057 {
2058 	int val;
2059 
2060 	debug_called(3);
2061 
2062 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2063 	return (val);
2064 }
2065 
2066 /*
2067  * Notify the controller of a change in a given queue
2068  */
2069 
2070 static void
2071 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2072 {
2073 	debug_called(3);
2074 
2075 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2076 }
2077 
2078 static void
2079 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2080 {
2081 	debug_called(3);
2082 
2083 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2084 }
2085 
2086 static void
2087 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2088 {
2089 	debug_called(3);
2090 
2091 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2092 	AAC_FA_HACK(sc);
2093 }
2094 
2095 /*
2096  * Get the interrupt reason bits
2097  */
2098 static int
2099 aac_sa_get_istatus(struct aac_softc *sc)
2100 {
2101 	debug_called(3);
2102 
2103 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2104 }
2105 
2106 static int
2107 aac_rx_get_istatus(struct aac_softc *sc)
2108 {
2109 	debug_called(3);
2110 
2111 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2112 }
2113 
2114 static int
2115 aac_fa_get_istatus(struct aac_softc *sc)
2116 {
2117 	int val;
2118 
2119 	debug_called(3);
2120 
2121 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2122 	return (val);
2123 }
2124 
2125 /*
2126  * Clear some interrupt reason bits
2127  */
2128 static void
2129 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2130 {
2131 	debug_called(3);
2132 
2133 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2134 }
2135 
2136 static void
2137 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2138 {
2139 	debug_called(3);
2140 
2141 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2142 }
2143 
2144 static void
2145 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2146 {
2147 	debug_called(3);
2148 
2149 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2150 	AAC_FA_HACK(sc);
2151 }
2152 
2153 /*
2154  * Populate the mailbox and set the command word
2155  */
2156 static void
2157 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2158 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2159 {
2160 	debug_called(4);
2161 
2162 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2163 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2164 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2165 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2166 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2167 }
2168 
2169 static void
2170 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2171 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2172 {
2173 	debug_called(4);
2174 
2175 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2176 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2177 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2178 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2179 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2180 }
2181 
2182 static void
2183 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2184 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2185 {
2186 	debug_called(4);
2187 
2188 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2189 	AAC_FA_HACK(sc);
2190 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2191 	AAC_FA_HACK(sc);
2192 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2193 	AAC_FA_HACK(sc);
2194 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2195 	AAC_FA_HACK(sc);
2196 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2197 	AAC_FA_HACK(sc);
2198 }
2199 
2200 /*
2201  * Fetch the immediate command status word
2202  */
2203 static int
2204 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2205 {
2206 	debug_called(4);
2207 
2208 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2209 }
2210 
2211 static int
2212 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2213 {
2214 	debug_called(4);
2215 
2216 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2217 }
2218 
2219 static int
2220 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2221 {
2222 	int val;
2223 
2224 	debug_called(4);
2225 
2226 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2227 	return (val);
2228 }
2229 
2230 /*
2231  * Set/clear interrupt masks
2232  */
2233 static void
2234 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2235 {
2236 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2237 
2238 	if (enable) {
2239 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2240 	} else {
2241 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2242 	}
2243 }
2244 
2245 static void
2246 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2247 {
2248 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2249 
2250 	if (enable) {
2251 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2252 	} else {
2253 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2254 	}
2255 }
2256 
2257 static void
2258 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2259 {
2260 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2261 
2262 	if (enable) {
2263 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2264 		AAC_FA_HACK(sc);
2265 	} else {
2266 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2267 		AAC_FA_HACK(sc);
2268 	}
2269 }
2270 
2271 /*
2272  * Debugging and Diagnostics
2273  */
2274 
2275 /*
2276  * Print some information about the controller.
2277  */
2278 static void
2279 aac_describe_controller(struct aac_softc *sc)
2280 {
2281 	struct aac_fib *fib;
2282 	struct aac_adapter_info	*info;
2283 
2284 	debug_called(2);
2285 
2286 	aac_alloc_sync_fib(sc, &fib, 0);
2287 
2288 	fib->data[0] = 0;
2289 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2290 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2291 		aac_release_sync_fib(sc);
2292 		return;
2293 	}
2294 	info = (struct aac_adapter_info *)&fib->data[0];
2295 
2296 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2297 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2298 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2299 		      aac_describe_code(aac_battery_platform,
2300 					info->batteryPlatform));
2301 
2302 	/* save the kernel revision structure for later use */
2303 	sc->aac_revision = info->KernelRevision;
2304 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2305 		      info->KernelRevision.external.comp.major,
2306 		      info->KernelRevision.external.comp.minor,
2307 		      info->KernelRevision.external.comp.dash,
2308 		      info->KernelRevision.buildNumber,
2309 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2310 
2311 	aac_release_sync_fib(sc);
2312 
2313 	if (1 || bootverbose) {
2314 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2315 			      sc->supported_options,
2316 			      "\20"
2317 			      "\1SNAPSHOT"
2318 			      "\2CLUSTERS"
2319 			      "\3WCACHE"
2320 			      "\4DATA64"
2321 			      "\5HOSTTIME"
2322 			      "\6RAID50"
2323 			      "\7WINDOW4GB"
2324 			      "\10SCSIUPGD"
2325 			      "\11SOFTERR"
2326 			      "\12NORECOND"
2327 			      "\13SGMAP64"
2328 			      "\14ALARM"
2329 			      "\15NONDASD");
2330 	}
2331 }
2332 
2333 /*
2334  * Look up a text description of a numeric error code and return a pointer to
2335  * same.
2336  */
2337 static char *
2338 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2339 {
2340 	int i;
2341 
2342 	for (i = 0; table[i].string != NULL; i++)
2343 		if (table[i].code == code)
2344 			return(table[i].string);
2345 	return(table[i + 1].string);
2346 }
2347 
2348 /*
2349  * Management Interface
2350  */
2351 
2352 static int
2353 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2354 {
2355 	struct aac_softc *sc;
2356 
2357 	debug_called(2);
2358 
2359 	sc = dev->si_drv1;
2360 
2361 	/* Check to make sure the device isn't already open */
2362 	if (sc->aac_state & AAC_STATE_OPEN) {
2363 		return EBUSY;
2364 	}
2365 	sc->aac_state |= AAC_STATE_OPEN;
2366 
2367 	return 0;
2368 }
2369 
2370 static int
2371 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2372 {
2373 	struct aac_softc *sc;
2374 
2375 	debug_called(2);
2376 
2377 	sc = dev->si_drv1;
2378 
2379 	/* Mark this unit as no longer open  */
2380 	sc->aac_state &= ~AAC_STATE_OPEN;
2381 
2382 	return 0;
2383 }
2384 
2385 static int
2386 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2387 {
2388 	struct aac_softc *sc = dev->si_drv1;
2389 	int error = 0;
2390 	int i;
2391 
2392 	debug_called(2);
2393 
2394 	if (cmd == AACIO_STATS) {
2395 		union aac_statrequest *as = (union aac_statrequest *)arg;
2396 
2397 		switch (as->as_item) {
2398 		case AACQ_FREE:
2399 		case AACQ_BIO:
2400 		case AACQ_READY:
2401 		case AACQ_BUSY:
2402 		case AACQ_COMPLETE:
2403 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2404 			      sizeof(struct aac_qstat));
2405 			break;
2406 		default:
2407 			error = ENOENT;
2408 			break;
2409 		}
2410 		return(error);
2411 	}
2412 
2413 	arg = *(caddr_t *)arg;
2414 
2415 	switch (cmd) {
2416 	/* AACIO_STATS already handled above */
2417 	case FSACTL_SENDFIB:
2418 		debug(1, "FSACTL_SENDFIB");
2419 		error = aac_ioctl_sendfib(sc, arg);
2420 		break;
2421 	case FSACTL_AIF_THREAD:
2422 		debug(1, "FSACTL_AIF_THREAD");
2423 		error = EINVAL;
2424 		break;
2425 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2426 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2427 		/*
2428 		 * Pass the caller out an AdapterFibContext.
2429 		 *
2430 		 * Note that because we only support one opener, we
2431 		 * basically ignore this.  Set the caller's context to a magic
2432 		 * number just in case.
2433 		 *
2434 		 * The Linux code hands the driver a pointer into kernel space,
2435 		 * and then trusts it when the caller hands it back.  Aiee!
2436 		 * Here, we give it the proc pointer of the per-adapter aif
2437 		 * thread. It's only used as a sanity check in other calls.
2438 		 */
2439 		i = (int)sc->aifthread;
2440 		error = copyout(&i, arg, sizeof(i));
2441 		break;
2442 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2443 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2444 		error = aac_getnext_aif(sc, arg);
2445 		break;
2446 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2447 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2448 		/* don't do anything here */
2449 		break;
2450 	case FSACTL_MINIPORT_REV_CHECK:
2451 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2452 		error = aac_rev_check(sc, arg);
2453 		break;
2454 	case FSACTL_QUERY_DISK:
2455 		debug(1, "FSACTL_QUERY_DISK");
2456 		error = aac_query_disk(sc, arg);
2457 			break;
2458 	case FSACTL_DELETE_DISK:
2459 		/*
2460 		 * We don't trust the underland to tell us when to delete a
2461 		 * container, rather we rely on an AIF coming from the
2462 		 * controller
2463 		 */
2464 		error = 0;
2465 		break;
2466 	default:
2467 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2468 		error = EINVAL;
2469 		break;
2470 	}
2471 	return(error);
2472 }
2473 
2474 static int
2475 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2476 {
2477 	struct aac_softc *sc;
2478 	int revents;
2479 
2480 	sc = dev->si_drv1;
2481 	revents = 0;
2482 
2483 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2484 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2485 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2486 			revents |= poll_events & (POLLIN | POLLRDNORM);
2487 	}
2488 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2489 
2490 	if (revents == 0) {
2491 		if (poll_events & (POLLIN | POLLRDNORM))
2492 			selrecord(td, &sc->rcv_select);
2493 	}
2494 
2495 	return (revents);
2496 }
2497 
2498 /*
2499  * Send a FIB supplied from userspace
2500  */
2501 static int
2502 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2503 {
2504 	struct aac_command *cm;
2505 	int size, error;
2506 
2507 	debug_called(2);
2508 
2509 	cm = NULL;
2510 
2511 	/*
2512 	 * Get a command
2513 	 */
2514 	if (aac_alloc_command(sc, &cm)) {
2515 		error = EBUSY;
2516 		goto out;
2517 	}
2518 
2519 	/*
2520 	 * Fetch the FIB header, then re-copy to get data as well.
2521 	 */
2522 	if ((error = copyin(ufib, cm->cm_fib,
2523 			    sizeof(struct aac_fib_header))) != 0)
2524 		goto out;
2525 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2526 	if (size > sizeof(struct aac_fib)) {
2527 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2528 			      size, sizeof(struct aac_fib));
2529 		size = sizeof(struct aac_fib);
2530 	}
2531 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2532 		goto out;
2533 	cm->cm_fib->Header.Size = size;
2534 	cm->cm_timestamp = time_second;
2535 
2536 	/*
2537 	 * Pass the FIB to the controller, wait for it to complete.
2538 	 */
2539 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2540 		printf("aac_wait_command return %d\n", error);
2541 		goto out;
2542 	}
2543 
2544 	/*
2545 	 * Copy the FIB and data back out to the caller.
2546 	 */
2547 	size = cm->cm_fib->Header.Size;
2548 	if (size > sizeof(struct aac_fib)) {
2549 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2550 			      size, sizeof(struct aac_fib));
2551 		size = sizeof(struct aac_fib);
2552 	}
2553 	error = copyout(cm->cm_fib, ufib, size);
2554 
2555 out:
2556 	if (cm != NULL) {
2557 		aac_release_command(cm);
2558 	}
2559 	return(error);
2560 }
2561 
2562 /*
2563  * Handle an AIF sent to us by the controller; queue it for later reference.
2564  * If the queue fills up, then drop the older entries.
2565  */
2566 static void
2567 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2568 {
2569 	struct aac_aif_command *aif;
2570 	struct aac_container *co, *co_next;
2571 	struct aac_mntinfo *mi;
2572 	struct aac_mntinforesp *mir = NULL;
2573 	u_int16_t rsize;
2574 	int next, found;
2575 	int count = 0, added = 0, i = 0;
2576 
2577 	debug_called(2);
2578 
2579 	aif = (struct aac_aif_command*)&fib->data[0];
2580 	aac_print_aif(sc, aif);
2581 
2582 	/* Is it an event that we should care about? */
2583 	switch (aif->command) {
2584 	case AifCmdEventNotify:
2585 		switch (aif->data.EN.type) {
2586 		case AifEnAddContainer:
2587 		case AifEnDeleteContainer:
2588 			/*
2589 			 * A container was added or deleted, but the message
2590 			 * doesn't tell us anything else!  Re-enumerate the
2591 			 * containers and sort things out.
2592 			 */
2593 			aac_alloc_sync_fib(sc, &fib, 0);
2594 			mi = (struct aac_mntinfo *)&fib->data[0];
2595 			do {
2596 				/*
2597 				 * Ask the controller for its containers one at
2598 				 * a time.
2599 				 * XXX What if the controller's list changes
2600 				 * midway through this enumaration?
2601 				 * XXX This should be done async.
2602 				 */
2603 				bzero(mi, sizeof(struct aac_mntinfo));
2604 				mi->Command = VM_NameServe;
2605 				mi->MntType = FT_FILESYS;
2606 				mi->MntCount = i;
2607 				rsize = sizeof(mir);
2608 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2609 						 sizeof(struct aac_mntinfo))) {
2610 					device_printf(sc->aac_dev,
2611 					    "Error probing container %d\n", i);
2612 
2613 					continue;
2614 				}
2615 				mir = (struct aac_mntinforesp *)&fib->data[0];
2616 				/* XXX Need to check if count changed */
2617 				count = mir->MntRespCount;
2618 
2619 				/*
2620 				 * Check the container against our list.
2621 				 * co->co_found was already set to 0 in a
2622 				 * previous run.
2623 				 */
2624 				if ((mir->Status == ST_OK) &&
2625 				    (mir->MntTable[0].VolType != CT_NONE)) {
2626 					found = 0;
2627 					TAILQ_FOREACH(co,
2628 						      &sc->aac_container_tqh,
2629 						      co_link) {
2630 						if (co->co_mntobj.ObjectId ==
2631 						    mir->MntTable[0].ObjectId) {
2632 							co->co_found = 1;
2633 							found = 1;
2634 							break;
2635 						}
2636 					}
2637 					/*
2638 					 * If the container matched, continue
2639 					 * in the list.
2640 					 */
2641 					if (found) {
2642 						i++;
2643 						continue;
2644 					}
2645 
2646 					/*
2647 					 * This is a new container.  Do all the
2648 					 * appropriate things to set it up.						 */
2649 					aac_add_container(sc, mir, 1);
2650 					added = 1;
2651 				}
2652 				i++;
2653 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2654 			aac_release_sync_fib(sc);
2655 
2656 			/*
2657 			 * Go through our list of containers and see which ones
2658 			 * were not marked 'found'.  Since the controller didn't
2659 			 * list them they must have been deleted.  Do the
2660 			 * appropriate steps to destroy the device.  Also reset
2661 			 * the co->co_found field.
2662 			 */
2663 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2664 			while (co != NULL) {
2665 				if (co->co_found == 0) {
2666 					device_delete_child(sc->aac_dev,
2667 							    co->co_disk);
2668 					co_next = TAILQ_NEXT(co, co_link);
2669 					AAC_LOCK_ACQUIRE(&sc->
2670 							aac_container_lock);
2671 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2672 						     co_link);
2673 					AAC_LOCK_RELEASE(&sc->
2674 							 aac_container_lock);
2675 					FREE(co, M_AACBUF);
2676 					co = co_next;
2677 				} else {
2678 					co->co_found = 0;
2679 					co = TAILQ_NEXT(co, co_link);
2680 				}
2681 			}
2682 
2683 			/* Attach the newly created containers */
2684 			if (added)
2685 				bus_generic_attach(sc->aac_dev);
2686 
2687 				break;
2688 
2689 		default:
2690 			break;
2691 		}
2692 
2693 	default:
2694 		break;
2695 	}
2696 
2697 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2698 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2699 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2700 	if (next != sc->aac_aifq_tail) {
2701 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2702 		sc->aac_aifq_head = next;
2703 
2704 		/* On the off chance that someone is sleeping for an aif... */
2705 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2706 			wakeup(sc->aac_aifq);
2707 		/* token may have been lost */
2708 		/* Wakeup any poll()ers */
2709 		selwakeup(&sc->rcv_select);
2710 		/* token may have been lost */
2711 	}
2712 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2713 
2714 	return;
2715 }
2716 
2717 /*
2718  * Return the Revision of the driver to userspace and check to see if the
2719  * userspace app is possibly compatible.  This is extremely bogus since
2720  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2721  * returning what the card reported.
2722  */
2723 static int
2724 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2725 {
2726 	struct aac_rev_check rev_check;
2727 	struct aac_rev_check_resp rev_check_resp;
2728 	int error = 0;
2729 
2730 	debug_called(2);
2731 
2732 	/*
2733 	 * Copyin the revision struct from userspace
2734 	 */
2735 	if ((error = copyin(udata, (caddr_t)&rev_check,
2736 			sizeof(struct aac_rev_check))) != 0) {
2737 		return error;
2738 	}
2739 
2740 	debug(2, "Userland revision= %d\n",
2741 	      rev_check.callingRevision.buildNumber);
2742 
2743 	/*
2744 	 * Doctor up the response struct.
2745 	 */
2746 	rev_check_resp.possiblyCompatible = 1;
2747 	rev_check_resp.adapterSWRevision.external.ul =
2748 	    sc->aac_revision.external.ul;
2749 	rev_check_resp.adapterSWRevision.buildNumber =
2750 	    sc->aac_revision.buildNumber;
2751 
2752 	return(copyout((caddr_t)&rev_check_resp, udata,
2753 			sizeof(struct aac_rev_check_resp)));
2754 }
2755 
2756 /*
2757  * Pass the caller the next AIF in their queue
2758  */
2759 static int
2760 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2761 {
2762 	struct get_adapter_fib_ioctl agf;
2763 	int error;
2764 
2765 	debug_called(2);
2766 
2767 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2768 
2769 		/*
2770 		 * Check the magic number that we gave the caller.
2771 		 */
2772 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2773 			error = EFAULT;
2774 		} else {
2775 
2776 			crit_enter();
2777 			error = aac_return_aif(sc, agf.AifFib);
2778 
2779 			if ((error == EAGAIN) && (agf.Wait)) {
2780 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2781 				while (error == EAGAIN) {
2782 					error = tsleep(sc->aac_aifq,
2783 						       PCATCH, "aacaif", 0);
2784 					if (error == 0)
2785 						error = aac_return_aif(sc,
2786 						    agf.AifFib);
2787 				}
2788 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2789 			}
2790 			crit_exit();
2791 		}
2792 	}
2793 	return(error);
2794 }
2795 
2796 /*
2797  * Hand the next AIF off the top of the queue out to userspace.
2798  *
2799  * YYY token could be lost during copyout
2800  */
2801 static int
2802 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2803 {
2804 	int error;
2805 
2806 	debug_called(2);
2807 
2808 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2809 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2810 		error = EAGAIN;
2811 	} else {
2812 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2813 				sizeof(struct aac_aif_command));
2814 		if (error)
2815 			printf("aac_return_aif: copyout returned %d\n", error);
2816 		if (!error)
2817 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2818 					    AAC_AIFQ_LENGTH;
2819 	}
2820 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2821 	return(error);
2822 }
2823 
2824 /*
2825  * Give the userland some information about the container.  The AAC arch
2826  * expects the driver to be a SCSI passthrough type driver, so it expects
2827  * the containers to have b:t:l numbers.  Fake it.
2828  */
2829 static int
2830 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2831 {
2832 	struct aac_query_disk query_disk;
2833 	struct aac_container *co;
2834 	struct aac_disk	*disk;
2835 	int error, id;
2836 
2837 	debug_called(2);
2838 
2839 	disk = NULL;
2840 
2841 	error = copyin(uptr, (caddr_t)&query_disk,
2842 		       sizeof(struct aac_query_disk));
2843 	if (error)
2844 		return (error);
2845 
2846 	id = query_disk.ContainerNumber;
2847 	if (id == -1)
2848 		return (EINVAL);
2849 
2850 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2851 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2852 		if (co->co_mntobj.ObjectId == id)
2853 			break;
2854 		}
2855 
2856 		if (co == NULL) {
2857 			query_disk.Valid = 0;
2858 			query_disk.Locked = 0;
2859 			query_disk.Deleted = 1;		/* XXX is this right? */
2860 		} else {
2861 			disk = device_get_softc(co->co_disk);
2862 			query_disk.Valid = 1;
2863 			query_disk.Locked =
2864 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2865 			query_disk.Deleted = 0;
2866 			query_disk.Bus = device_get_unit(sc->aac_dev);
2867 			query_disk.Target = disk->unit;
2868 			query_disk.Lun = 0;
2869 			query_disk.UnMapped = 0;
2870 			bcopy(disk->ad_dev_t->si_name,
2871 			      &query_disk.diskDeviceName[0], 10);
2872 		}
2873 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2874 
2875 	error = copyout((caddr_t)&query_disk, uptr,
2876 			sizeof(struct aac_query_disk));
2877 
2878 	return (error);
2879 }
2880 
2881 static void
2882 aac_get_bus_info(struct aac_softc *sc)
2883 {
2884 	struct aac_fib *fib;
2885 	struct aac_ctcfg *c_cmd;
2886 	struct aac_ctcfg_resp *c_resp;
2887 	struct aac_vmioctl *vmi;
2888 	struct aac_vmi_businf_resp *vmi_resp;
2889 	struct aac_getbusinf businfo;
2890 	struct aac_cam_inf *caminf;
2891 	device_t child;
2892 	int i, found, error;
2893 
2894 	aac_alloc_sync_fib(sc, &fib, 0);
2895 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2896 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2897 
2898 	c_cmd->Command = VM_ContainerConfig;
2899 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2900 	c_cmd->param = 0;
2901 
2902 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2903 	    sizeof(struct aac_ctcfg));
2904 	if (error) {
2905 		device_printf(sc->aac_dev, "Error %d sending "
2906 		    "VM_ContainerConfig command\n", error);
2907 		aac_release_sync_fib(sc);
2908 		return;
2909 	}
2910 
2911 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2912 	if (c_resp->Status != ST_OK) {
2913 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2914 		    c_resp->Status);
2915 		aac_release_sync_fib(sc);
2916 		return;
2917 	}
2918 
2919 	sc->scsi_method_id = c_resp->param;
2920 
2921 	vmi = (struct aac_vmioctl *)&fib->data[0];
2922 	bzero(vmi, sizeof(struct aac_vmioctl));
2923 
2924 	vmi->Command = VM_Ioctl;
2925 	vmi->ObjType = FT_DRIVE;
2926 	vmi->MethId = sc->scsi_method_id;
2927 	vmi->ObjId = 0;
2928 	vmi->IoctlCmd = GetBusInfo;
2929 
2930 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2931 	    sizeof(struct aac_vmioctl));
2932 	if (error) {
2933 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2934 		    error);
2935 		aac_release_sync_fib(sc);
2936 		return;
2937 	}
2938 
2939 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2940 	if (vmi_resp->Status != ST_OK) {
2941 		debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2942 		aac_release_sync_fib(sc);
2943 		return;
2944 	}
2945 
2946 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2947 	aac_release_sync_fib(sc);
2948 
2949 	found = 0;
2950 	for (i = 0; i < businfo.BusCount; i++) {
2951 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2952 			continue;
2953 
2954 		MALLOC(caminf, struct aac_cam_inf *,
2955 		    sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2956 
2957 		child = device_add_child(sc->aac_dev, "aacp", -1);
2958 		if (child == NULL) {
2959 			device_printf(sc->aac_dev, "device_add_child failed\n");
2960 			continue;
2961 		}
2962 
2963 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2964 		caminf->BusNumber = i;
2965 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2966 		caminf->aac_sc = sc;
2967 
2968 		device_set_ivars(child, caminf);
2969 		device_set_desc(child, "SCSI Passthrough Bus");
2970 
2971 		found = 1;
2972 	}
2973 
2974 	if (found)
2975 		bus_generic_attach(sc->aac_dev);
2976 
2977 	return;
2978 }
2979