xref: /dragonfly/sys/dev/raid/mly/mly.c (revision 2cf4b273)
1 /*-
2  * Copyright (c) 2000, 2001 Michael Smith
3  * Copyright (c) 2000 BSDi
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  *	$FreeBSD: src/sys/dev/mly/mly.c,v 1.50 2010/01/28 08:41:30 mav Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/kernel.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 #include <sys/ctype.h>
38 #include <sys/stat.h>
39 #include <sys/rman.h>
40 #include <sys/thread2.h>
41 
42 #include <bus/cam/cam.h>
43 #include <bus/cam/cam_ccb.h>
44 #include <bus/cam/cam_periph.h>
45 #include <bus/cam/cam_sim.h>
46 #include <bus/cam/cam_xpt_periph.h>
47 #include <bus/cam/cam_xpt_sim.h>
48 #include <bus/cam/scsi/scsi_all.h>
49 #include <bus/cam/scsi/scsi_message.h>
50 
51 #include <bus/pci/pcireg.h>
52 #include <bus/pci/pcivar.h>
53 
54 #include <dev/raid/mly/mlyreg.h>
55 #include <dev/raid/mly/mlyio.h>
56 #include <dev/raid/mly/mlyvar.h>
57 #include <dev/raid/mly/mly_tables.h>
58 
59 static int	mly_probe(device_t dev);
60 static int	mly_attach(device_t dev);
61 static int	mly_pci_attach(struct mly_softc *sc);
62 static int	mly_detach(device_t dev);
63 static int	mly_shutdown(device_t dev);
64 static void	mly_intr(void *arg);
65 
66 static int	mly_sg_map(struct mly_softc *sc);
67 static void	mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
68 static int	mly_mmbox_map(struct mly_softc *sc);
69 static void	mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
70 static void	mly_free(struct mly_softc *sc);
71 
72 static int	mly_get_controllerinfo(struct mly_softc *sc);
73 static void	mly_scan_devices(struct mly_softc *sc);
74 static void	mly_rescan_btl(struct mly_softc *sc, int bus, int target);
75 static void	mly_complete_rescan(struct mly_command *mc);
76 static int	mly_get_eventstatus(struct mly_softc *sc);
77 static int	mly_enable_mmbox(struct mly_softc *sc);
78 static int	mly_flush(struct mly_softc *sc);
79 static int	mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
80 			  size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
81 static void	mly_check_event(struct mly_softc *sc);
82 static void	mly_fetch_event(struct mly_softc *sc);
83 static void	mly_complete_event(struct mly_command *mc);
84 static void	mly_process_event(struct mly_softc *sc, struct mly_event *me);
85 static void	mly_periodic(void *data);
86 
87 static int	mly_immediate_command(struct mly_command *mc);
88 static int	mly_start(struct mly_command *mc);
89 static void	mly_done(struct mly_softc *sc);
90 static void	mly_complete(void *context, int pending);
91 
92 static int	mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
93 static void	mly_release_command(struct mly_command *mc);
94 static void	mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
95 static int	mly_alloc_commands(struct mly_softc *sc);
96 static void	mly_release_commands(struct mly_softc *sc);
97 static void	mly_map_command(struct mly_command *mc);
98 static void	mly_unmap_command(struct mly_command *mc);
99 
100 static int	mly_cam_attach(struct mly_softc *sc);
101 static void	mly_cam_detach(struct mly_softc *sc);
102 static void	mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
103 static void	mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb);
104 static void	mly_cam_action(struct cam_sim *sim, union ccb *ccb);
105 static int	mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
106 static void	mly_cam_poll(struct cam_sim *sim);
107 static void	mly_cam_complete(struct mly_command *mc);
108 static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
109 static int	mly_name_device(struct mly_softc *sc, int bus, int target);
110 
111 static int	mly_fwhandshake(struct mly_softc *sc);
112 
113 static void	mly_describe_controller(struct mly_softc *sc);
114 #ifdef MLY_DEBUG
115 static void	mly_printstate(struct mly_softc *sc);
116 static void	mly_print_command(struct mly_command *mc);
117 static void	mly_print_packet(struct mly_command *mc);
118 static void	mly_panic(struct mly_softc *sc, char *reason);
119 static int	mly_timeout(struct mly_softc *sc);
120 #endif
121 void		mly_print_controller(int controller);
122 
123 
124 static d_open_t		mly_user_open;
125 static d_close_t	mly_user_close;
126 static d_ioctl_t	mly_user_ioctl;
127 static int	mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
128 static int	mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
129 
130 #define MLY_CMD_TIMEOUT		20
131 
132 static device_method_t mly_methods[] = {
133     /* Device interface */
134     DEVMETHOD(device_probe,	mly_probe),
135     DEVMETHOD(device_attach,	mly_attach),
136     DEVMETHOD(device_detach,	mly_detach),
137     DEVMETHOD(device_shutdown,	mly_shutdown),
138     DEVMETHOD_END
139 };
140 
141 static driver_t mly_pci_driver = {
142 	"mly",
143 	mly_methods,
144 	sizeof(struct mly_softc)
145 };
146 
147 static devclass_t	mly_devclass;
148 DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, NULL, NULL);
149 MODULE_DEPEND(mly, pci, 1, 1, 1);
150 MODULE_DEPEND(mly, cam, 1, 1, 1);
151 
152 static struct dev_ops mly_ops = {
153     { "mly", 0, 0 },
154     .d_open =	mly_user_open,
155     .d_close =	mly_user_close,
156     .d_ioctl =	mly_user_ioctl,
157 };
158 
159 /********************************************************************************
160  ********************************************************************************
161                                                                  Device Interface
162  ********************************************************************************
163  ********************************************************************************/
164 
165 static struct mly_ident
166 {
167     u_int16_t		vendor;
168     u_int16_t		device;
169     u_int16_t		subvendor;
170     u_int16_t		subdevice;
171     int			hwif;
172     char		*desc;
173 } mly_identifiers[] = {
174     {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
175     {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
176     {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX,    "Mylex AcceleRAID 352"},
177     {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX,    "Mylex AcceleRAID 170"},
178     {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX,    "Mylex AcceleRAID 160"},
179     {0, 0, 0, 0, 0, 0}
180 };
181 
182 /********************************************************************************
183  * Compare the provided PCI device with the list we support.
184  */
185 static int
186 mly_probe(device_t dev)
187 {
188     struct mly_ident	*m;
189 
190     debug_called(1);
191 
192     for (m = mly_identifiers; m->vendor != 0; m++) {
193 	if ((m->vendor == pci_get_vendor(dev)) &&
194 	    (m->device == pci_get_device(dev)) &&
195 	    ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
196 				     (m->subdevice == pci_get_subdevice(dev))))) {
197 
198 	    device_set_desc(dev, m->desc);
199 	    return(BUS_PROBE_DEFAULT);	/* allow room to be overridden */
200 	}
201     }
202     return(ENXIO);
203 }
204 
205 /********************************************************************************
206  * Initialise the controller and softc
207  */
208 static int
209 mly_attach(device_t dev)
210 {
211     struct mly_softc	*sc = device_get_softc(dev);
212     int			error;
213 
214     debug_called(1);
215 
216     sc->mly_dev = dev;
217 
218 #ifdef MLY_DEBUG
219     if (device_get_unit(sc->mly_dev) == 0)
220 	mly_softc0 = sc;
221 #endif
222 
223     /*
224      * Do PCI-specific initialisation.
225      */
226     if ((error = mly_pci_attach(sc)) != 0)
227 	goto out;
228 
229     callout_init(&sc->mly_periodic);
230     callout_init(&sc->mly_timeout);
231 
232     /*
233      * Initialise per-controller queues.
234      */
235     mly_initq_free(sc);
236     mly_initq_busy(sc);
237     mly_initq_complete(sc);
238 
239     /*
240      * Initialise command-completion task.
241      */
242     TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc);
243 
244     /* disable interrupts before we start talking to the controller */
245     MLY_MASK_INTERRUPTS(sc);
246 
247     /*
248      * Wait for the controller to come ready, handshake with the firmware if required.
249      * This is typically only necessary on platforms where the controller BIOS does not
250      * run.
251      */
252     if ((error = mly_fwhandshake(sc)))
253 	goto out;
254 
255     /*
256      * Allocate initial command buffers.
257      */
258     if ((error = mly_alloc_commands(sc)))
259 	goto out;
260 
261     /*
262      * Obtain controller feature information
263      */
264     if ((error = mly_get_controllerinfo(sc)))
265 	goto out;
266 
267     /*
268      * Reallocate command buffers now we know how many we want.
269      */
270     mly_release_commands(sc);
271     if ((error = mly_alloc_commands(sc)))
272 	goto out;
273 
274     /*
275      * Get the current event counter for health purposes, populate the initial
276      * health status buffer.
277      */
278     if ((error = mly_get_eventstatus(sc)))
279 	goto out;
280 
281     /*
282      * Enable memory-mailbox mode.
283      */
284     if ((error = mly_enable_mmbox(sc)))
285 	goto out;
286 
287     /*
288      * Attach to CAM.
289      */
290     if ((error = mly_cam_attach(sc)))
291 	goto out;
292 
293     /*
294      * Print a little information about the controller
295      */
296     mly_describe_controller(sc);
297 
298     /*
299      * Mark all attached devices for rescan.
300      */
301     mly_scan_devices(sc);
302 
303     /*
304      * Instigate the first status poll immediately.  Rescan completions won't
305      * happen until interrupts are enabled, which should still be before
306      * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
307      */
308     mly_periodic(sc);
309 
310     /*
311      * Create the control device.
312      */
313     sc->mly_dev_t = make_dev(&mly_ops, device_get_unit(sc->mly_dev),
314 			     UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
315 			     "mly%d", device_get_unit(sc->mly_dev));
316     sc->mly_dev_t->si_drv1 = sc;
317 
318     /* enable interrupts now */
319     MLY_UNMASK_INTERRUPTS(sc);
320 
321 #ifdef MLY_DEBUG
322     callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
323 		  (timeout_t *)mly_timeout, sc);
324 #endif
325 
326  out:
327     if (error != 0)
328 	mly_free(sc);
329     return(error);
330 }
331 
332 /********************************************************************************
333  * Perform PCI-specific initialisation.
334  */
335 static int
336 mly_pci_attach(struct mly_softc *sc)
337 {
338     int			i, error;
339     u_int32_t		command;
340 
341     debug_called(1);
342 
343     /* assume failure is 'not configured' */
344     error = ENXIO;
345 
346     /*
347      * Verify that the adapter is correctly set up in PCI space.
348      *
349      * XXX we shouldn't do this; the PCI code should.
350      */
351     command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
352     command |= PCIM_CMD_BUSMASTEREN;
353     pci_write_config(sc->mly_dev, PCIR_COMMAND, command, 2);
354     command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
355     if (!(command & PCIM_CMD_BUSMASTEREN)) {
356 	mly_printf(sc, "can't enable busmaster feature\n");
357 	goto fail;
358     }
359     if ((command & PCIM_CMD_MEMEN) == 0) {
360 	mly_printf(sc, "memory window not available\n");
361 	goto fail;
362     }
363 
364     /*
365      * Allocate the PCI register window.
366      */
367     sc->mly_regs_rid = PCIR_BAR(0);	/* first base address register */
368     if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
369 	    SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
370 	mly_printf(sc, "can't allocate register window\n");
371 	goto fail;
372     }
373     sc->mly_btag = rman_get_bustag(sc->mly_regs_resource);
374     sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource);
375 
376     /*
377      * Allocate and connect our interrupt.
378      */
379     sc->mly_irq_rid = 0;
380     if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
381 		    &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
382 	mly_printf(sc, "can't allocate interrupt\n");
383 	goto fail;
384     }
385     error = bus_setup_intr(sc->mly_dev, sc->mly_irq, 0,
386 			   mly_intr, sc, &sc->mly_intr, NULL);
387     if (error) {
388 	mly_printf(sc, "can't set up interrupt\n");
389 	goto fail;
390     }
391 
392     /* assume failure is 'out of memory' */
393     error = ENOMEM;
394 
395     /*
396      * Allocate the parent bus DMA tag appropriate for our PCI interface.
397      *
398      * Note that all of these controllers are 64-bit capable.
399      */
400     if (bus_dma_tag_create(NULL, 			/* parent */
401 			   1, 0, 			/* alignment, boundary */
402 			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
403 			   BUS_SPACE_MAXADDR, 		/* highaddr */
404 			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
405 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
406 			   BUS_DMA_ALLOCNOW,		/* flags */
407 			   &sc->mly_parent_dmat)) {
408 	mly_printf(sc, "can't allocate parent DMA tag\n");
409 	goto fail;
410     }
411 
412     /*
413      * Create DMA tag for mapping buffers into controller-addressable space.
414      */
415     if (bus_dma_tag_create(sc->mly_parent_dmat, 	/* parent */
416 			   1, 0, 			/* alignment, boundary */
417 			   BUS_SPACE_MAXADDR,		/* lowaddr */
418 			   BUS_SPACE_MAXADDR, 		/* highaddr */
419 			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
420 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
421 			   0,				/* flags */
422 			   &sc->mly_buffer_dmat)) {
423 	mly_printf(sc, "can't allocate buffer DMA tag\n");
424 	goto fail;
425     }
426 
427     /*
428      * Initialise the DMA tag for command packets.
429      */
430     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
431 			   1, 0, 			/* alignment, boundary */
432 			   BUS_SPACE_MAXADDR,		/* lowaddr */
433 			   BUS_SPACE_MAXADDR, 		/* highaddr */
434 			   sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1,	/* maxsize, nsegments */
435 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
436 			   BUS_DMA_ALLOCNOW,		/* flags */
437 			   &sc->mly_packet_dmat)) {
438 	mly_printf(sc, "can't allocate command packet DMA tag\n");
439 	goto fail;
440     }
441 
442     /*
443      * Detect the hardware interface version
444      */
445     for (i = 0; mly_identifiers[i].vendor != 0; i++) {
446 	if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
447 	    (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
448 	    sc->mly_hwif = mly_identifiers[i].hwif;
449 	    switch(sc->mly_hwif) {
450 	    case MLY_HWIF_I960RX:
451 		debug(1, "set hardware up for i960RX");
452 		sc->mly_doorbell_true = 0x00;
453 		sc->mly_command_mailbox =  MLY_I960RX_COMMAND_MAILBOX;
454 		sc->mly_status_mailbox =   MLY_I960RX_STATUS_MAILBOX;
455 		sc->mly_idbr =             MLY_I960RX_IDBR;
456 		sc->mly_odbr =             MLY_I960RX_ODBR;
457 		sc->mly_error_status =     MLY_I960RX_ERROR_STATUS;
458 		sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
459 		sc->mly_interrupt_mask =   MLY_I960RX_INTERRUPT_MASK;
460 		break;
461 	    case MLY_HWIF_STRONGARM:
462 		debug(1, "set hardware up for StrongARM");
463 		sc->mly_doorbell_true = 0xff;		/* doorbell 'true' is 0 */
464 		sc->mly_command_mailbox =  MLY_STRONGARM_COMMAND_MAILBOX;
465 		sc->mly_status_mailbox =   MLY_STRONGARM_STATUS_MAILBOX;
466 		sc->mly_idbr =             MLY_STRONGARM_IDBR;
467 		sc->mly_odbr =             MLY_STRONGARM_ODBR;
468 		sc->mly_error_status =     MLY_STRONGARM_ERROR_STATUS;
469 		sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
470 		sc->mly_interrupt_mask =   MLY_STRONGARM_INTERRUPT_MASK;
471 		break;
472 	    }
473 	    break;
474 	}
475     }
476 
477     /*
478      * Create the scatter/gather mappings.
479      */
480     if ((error = mly_sg_map(sc)))
481 	goto fail;
482 
483     /*
484      * Allocate and map the memory mailbox
485      */
486     if ((error = mly_mmbox_map(sc)))
487 	goto fail;
488 
489     error = 0;
490 
491 fail:
492     return(error);
493 }
494 
495 /********************************************************************************
496  * Shut the controller down and detach all our resources.
497  */
498 static int
499 mly_detach(device_t dev)
500 {
501     int			error;
502 
503     if ((error = mly_shutdown(dev)) != 0)
504 	return(error);
505 
506     mly_free(device_get_softc(dev));
507     return(0);
508 }
509 
510 /********************************************************************************
511  * Bring the controller to a state where it can be safely left alone.
512  *
513  * Note that it should not be necessary to wait for any outstanding commands,
514  * as they should be completed prior to calling here.
515  *
516  * XXX this applies for I/O, but not status polls; we should beware of
517  *     the case where a status command is running while we detach.
518  */
519 static int
520 mly_shutdown(device_t dev)
521 {
522     struct mly_softc	*sc = device_get_softc(dev);
523 
524     debug_called(1);
525 
526     if (sc->mly_state & MLY_STATE_OPEN)
527 	return(EBUSY);
528 
529     /* kill the periodic event */
530     callout_stop(&sc->mly_periodic);
531 
532     /* flush controller */
533     mly_printf(sc, "flushing cache...");
534     kprintf("%s\n", mly_flush(sc) ? "failed" : "done");
535 
536     MLY_MASK_INTERRUPTS(sc);
537 
538     return(0);
539 }
540 
541 /*******************************************************************************
542  * Take an interrupt, or be poked by other code to look for interrupt-worthy
543  * status.
544  */
545 static void
546 mly_intr(void *arg)
547 {
548     struct mly_softc	*sc = (struct mly_softc *)arg;
549 
550     debug_called(2);
551 
552     mly_done(sc);
553 }
554 
555 /********************************************************************************
556  ********************************************************************************
557                                                 Bus-dependant Resource Management
558  ********************************************************************************
559  ********************************************************************************/
560 
561 /********************************************************************************
562  * Allocate memory for the scatter/gather tables
563  */
564 static int
565 mly_sg_map(struct mly_softc *sc)
566 {
567     size_t	segsize;
568 
569     debug_called(1);
570 
571     /*
572      * Create a single tag describing a region large enough to hold all of
573      * the s/g lists we will need.
574      */
575     segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
576     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
577 			   1, 0, 			/* alignment,boundary */
578 			   BUS_SPACE_MAXADDR,		/* lowaddr */
579 			   BUS_SPACE_MAXADDR, 		/* highaddr */
580 			   segsize, 1,			/* maxsize, nsegments */
581 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
582 			   BUS_DMA_ALLOCNOW,		/* flags */
583 			   &sc->mly_sg_dmat)) {
584 	mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
585 	return(ENOMEM);
586     }
587 
588     /*
589      * Allocate enough s/g maps for all commands and permanently map them into
590      * controller-visible space.
591      *
592      * XXX this assumes we can get enough space for all the s/g maps in one
593      * contiguous slab.
594      */
595     if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
596 			 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
597 	mly_printf(sc, "can't allocate s/g table\n");
598 	return(ENOMEM);
599     }
600     if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
601 			segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
602 	return (ENOMEM);
603     return(0);
604 }
605 
606 /********************************************************************************
607  * Save the physical address of the base of the s/g table.
608  */
609 static void
610 mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
611 {
612     struct mly_softc	*sc = (struct mly_softc *)arg;
613 
614     debug_called(1);
615 
616     /* save base of s/g table's address in bus space */
617     sc->mly_sg_busaddr = segs->ds_addr;
618 }
619 
620 /********************************************************************************
621  * Allocate memory for the memory-mailbox interface
622  */
623 static int
624 mly_mmbox_map(struct mly_softc *sc)
625 {
626 
627     /*
628      * Create a DMA tag for a single contiguous region large enough for the
629      * memory mailbox structure.
630      */
631     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
632 			   1, 0, 			/* alignment,boundary */
633 			   BUS_SPACE_MAXADDR,		/* lowaddr */
634 			   BUS_SPACE_MAXADDR, 		/* highaddr */
635 			   sizeof(struct mly_mmbox), 1,	/* maxsize, nsegments */
636 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
637 			   BUS_DMA_ALLOCNOW,		/* flags */
638 			   &sc->mly_mmbox_dmat)) {
639 	mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
640 	return(ENOMEM);
641     }
642 
643     /*
644      * Allocate the buffer
645      */
646     if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
647 	mly_printf(sc, "can't allocate memory mailbox\n");
648 	return(ENOMEM);
649     }
650     if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
651 			sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
652 			BUS_DMA_NOWAIT) != 0)
653 	return (ENOMEM);
654     bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
655     return(0);
656 
657 }
658 
659 /********************************************************************************
660  * Save the physical address of the memory mailbox
661  */
662 static void
663 mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
664 {
665     struct mly_softc	*sc = (struct mly_softc *)arg;
666 
667     debug_called(1);
668 
669     sc->mly_mmbox_busaddr = segs->ds_addr;
670 }
671 
672 /********************************************************************************
673  * Free all of the resources associated with (sc)
674  *
675  * Should not be called if the controller is active.
676  */
677 static void
678 mly_free(struct mly_softc *sc)
679 {
680 
681     debug_called(1);
682 
683     /* Remove the management device */
684     destroy_dev(sc->mly_dev_t);
685 
686     /* detach from CAM */
687     mly_cam_detach(sc);
688 
689     /* release command memory */
690     mly_release_commands(sc);
691 
692     /* throw away the controllerinfo structure */
693     if (sc->mly_controllerinfo != NULL)
694 	kfree(sc->mly_controllerinfo, M_DEVBUF);
695 
696     /* throw away the controllerparam structure */
697     if (sc->mly_controllerparam != NULL)
698 	kfree(sc->mly_controllerparam, M_DEVBUF);
699 
700     /* destroy data-transfer DMA tag */
701     if (sc->mly_buffer_dmat)
702 	bus_dma_tag_destroy(sc->mly_buffer_dmat);
703 
704     /* free and destroy DMA memory and tag for s/g lists */
705     if (sc->mly_sg_table) {
706 	bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
707 	bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
708     }
709     if (sc->mly_sg_dmat)
710 	bus_dma_tag_destroy(sc->mly_sg_dmat);
711 
712     /* free and destroy DMA memory and tag for memory mailbox */
713     if (sc->mly_mmbox) {
714 	bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
715 	bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
716     }
717     if (sc->mly_mmbox_dmat)
718 	bus_dma_tag_destroy(sc->mly_mmbox_dmat);
719 
720     /* disconnect the interrupt handler */
721     if (sc->mly_intr)
722 	bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
723     if (sc->mly_irq != NULL)
724 	bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
725 
726     /* destroy the parent DMA tag */
727     if (sc->mly_parent_dmat)
728 	bus_dma_tag_destroy(sc->mly_parent_dmat);
729 
730     /* release the register window mapping */
731     if (sc->mly_regs_resource != NULL)
732 	bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
733 }
734 
735 /********************************************************************************
736  ********************************************************************************
737                                                                  Command Wrappers
738  ********************************************************************************
739  ********************************************************************************/
740 
741 /********************************************************************************
742  * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
743  */
744 static int
745 mly_get_controllerinfo(struct mly_softc *sc)
746 {
747     struct mly_command_ioctl	mci;
748     u_int8_t			status;
749     int				error;
750 
751     debug_called(1);
752 
753     if (sc->mly_controllerinfo != NULL)
754 	kfree(sc->mly_controllerinfo, M_DEVBUF);
755 
756     /* build the getcontrollerinfo ioctl and send it */
757     bzero(&mci, sizeof(mci));
758     sc->mly_controllerinfo = NULL;
759     mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
760     if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
761 			   &status, NULL, NULL)))
762 	return(error);
763     if (status != 0)
764 	return(EIO);
765 
766     if (sc->mly_controllerparam != NULL)
767 	kfree(sc->mly_controllerparam, M_DEVBUF);
768 
769     /* build the getcontrollerparameter ioctl and send it */
770     bzero(&mci, sizeof(mci));
771     sc->mly_controllerparam = NULL;
772     mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
773     if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
774 			   &status, NULL, NULL)))
775 	return(error);
776     if (status != 0)
777 	return(EIO);
778 
779     return(0);
780 }
781 
782 /********************************************************************************
783  * Schedule all possible devices for a rescan.
784  *
785  */
786 static void
787 mly_scan_devices(struct mly_softc *sc)
788 {
789     int		bus, target;
790 
791     debug_called(1);
792 
793     /*
794      * Clear any previous BTL information.
795      */
796     bzero(&sc->mly_btl, sizeof(sc->mly_btl));
797 
798     /*
799      * Mark all devices as requiring a rescan, and let the next
800      * periodic scan collect them.
801      */
802     for (bus = 0; bus < sc->mly_cam_channels; bus++)
803 	if (MLY_BUS_IS_VALID(sc, bus))
804 	    for (target = 0; target < MLY_MAX_TARGETS; target++)
805 		sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
806 
807 }
808 
809 /********************************************************************************
810  * Rescan a device, possibly as a consequence of getting an event which suggests
811  * that it may have changed.
812  *
813  * If we suffer resource starvation, we can abandon the rescan as we'll be
814  * retried.
815  */
816 static void
817 mly_rescan_btl(struct mly_softc *sc, int bus, int target)
818 {
819     struct mly_command		*mc;
820     struct mly_command_ioctl	*mci;
821 
822     debug_called(1);
823 
824     /* check that this bus is valid */
825     if (!MLY_BUS_IS_VALID(sc, bus))
826 	return;
827 
828     /* get a command */
829     if (mly_alloc_command(sc, &mc))
830 	return;
831 
832     /* set up the data buffer */
833     mc->mc_data = kmalloc(sizeof(union mly_devinfo), M_DEVBUF, M_INTWAIT | M_ZERO);
834     mc->mc_flags |= MLY_CMD_DATAIN;
835     mc->mc_complete = mly_complete_rescan;
836 
837     /*
838      * Build the ioctl.
839      */
840     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
841     mci->opcode = MDACMD_IOCTL;
842     mci->addr.phys.controller = 0;
843     mci->timeout.value = 30;
844     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
845     if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
846 	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
847 	mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
848 	mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
849 	debug(1, "logical device %d", mci->addr.log.logdev);
850     } else {
851 	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
852 	mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
853 	mci->addr.phys.lun = 0;
854 	mci->addr.phys.target = target;
855 	mci->addr.phys.channel = bus;
856 	debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
857     }
858 
859     /*
860      * Dispatch the command.  If we successfully send the command, clear the rescan
861      * bit.
862      */
863     if (mly_start(mc) != 0) {
864 	mly_release_command(mc);
865     } else {
866 	sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN;	/* success */
867     }
868 }
869 
870 /********************************************************************************
871  * Handle the completion of a rescan operation
872  */
873 static void
874 mly_complete_rescan(struct mly_command *mc)
875 {
876     struct mly_softc				*sc = mc->mc_sc;
877     struct mly_ioctl_getlogdevinfovalid		*ldi;
878     struct mly_ioctl_getphysdevinfovalid	*pdi;
879     struct mly_command_ioctl			*mci;
880     struct mly_btl				btl, *btlp;
881     int						bus, target, rescan;
882 
883     debug_called(1);
884 
885     /*
886      * Recover the bus and target from the command.  We need these even in
887      * the case where we don't have a useful response.
888      */
889     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
890     if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
891 	bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
892 	target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
893     } else {
894 	bus = mci->addr.phys.channel;
895 	target = mci->addr.phys.target;
896     }
897     /* XXX validate bus/target? */
898 
899     /* the default result is 'no device' */
900     bzero(&btl, sizeof(btl));
901 
902     /* if the rescan completed OK, we have possibly-new BTL data */
903     if (mc->mc_status == 0) {
904 	if (mc->mc_length == sizeof(*ldi)) {
905 	    ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
906 	    if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
907 		(MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
908 		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
909 			   bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
910 			   MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
911 		/* XXX what can we do about this? */
912 	    }
913 	    btl.mb_flags = MLY_BTL_LOGICAL;
914 	    btl.mb_type = ldi->raid_level;
915 	    btl.mb_state = ldi->state;
916 	    debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
917 		  mly_describe_code(mly_table_device_type, ldi->raid_level),
918 		  mly_describe_code(mly_table_device_state, ldi->state));
919 	} else if (mc->mc_length == sizeof(*pdi)) {
920 	    pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
921 	    if ((pdi->channel != bus) || (pdi->target != target)) {
922 		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
923 			   bus, target, pdi->channel, pdi->target);
924 		/* XXX what can we do about this? */
925 	    }
926 	    btl.mb_flags = MLY_BTL_PHYSICAL;
927 	    btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
928 	    btl.mb_state = pdi->state;
929 	    btl.mb_speed = pdi->speed;
930 	    btl.mb_width = pdi->width;
931 	    if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
932 		sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
933 	    debug(1, "BTL rescan for %d:%d returns %s", bus, target,
934 		  mly_describe_code(mly_table_device_state, pdi->state));
935 	} else {
936 	    mly_printf(sc, "BTL rescan result invalid\n");
937 	}
938     }
939 
940     kfree(mc->mc_data, M_DEVBUF);
941     mly_release_command(mc);
942 
943     /*
944      * Decide whether we need to rescan the device.
945      */
946     rescan = 0;
947 
948     /* device type changes (usually between 'nothing' and 'something') */
949     btlp = &sc->mly_btl[bus][target];
950     if (btl.mb_flags != btlp->mb_flags) {
951 	debug(1, "flags changed, rescanning");
952 	rescan = 1;
953     }
954 
955     /* XXX other reasons? */
956 
957     /*
958      * Update BTL information.
959      */
960     *btlp = btl;
961 
962     /*
963      * Perform CAM rescan if required.
964      */
965     if (rescan)
966 	mly_cam_rescan_btl(sc, bus, target);
967 }
968 
969 /********************************************************************************
970  * Get the current health status and set the 'next event' counter to suit.
971  */
972 static int
973 mly_get_eventstatus(struct mly_softc *sc)
974 {
975     struct mly_command_ioctl	mci;
976     struct mly_health_status	*mh;
977     u_int8_t			status;
978     int				error;
979 
980     /* build the gethealthstatus ioctl and send it */
981     bzero(&mci, sizeof(mci));
982     mh = NULL;
983     mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
984 
985     if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
986 	return(error);
987     if (status != 0)
988 	return(EIO);
989 
990     /* get the event counter */
991     sc->mly_event_change = mh->change_counter;
992     sc->mly_event_waiting = mh->next_event;
993     sc->mly_event_counter = mh->next_event;
994 
995     /* save the health status into the memory mailbox */
996     bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
997 
998     debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
999 
1000     kfree(mh, M_DEVBUF);
1001     return(0);
1002 }
1003 
1004 /********************************************************************************
1005  * Enable the memory mailbox mode.
1006  */
1007 static int
1008 mly_enable_mmbox(struct mly_softc *sc)
1009 {
1010     struct mly_command_ioctl	mci;
1011     u_int8_t			*sp, status;
1012     int				error;
1013 
1014     debug_called(1);
1015 
1016     /* build the ioctl and send it */
1017     bzero(&mci, sizeof(mci));
1018     mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1019     /* set buffer addresses */
1020     mci.param.setmemorymailbox.command_mailbox_physaddr =
1021 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1022     mci.param.setmemorymailbox.status_mailbox_physaddr =
1023 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1024     mci.param.setmemorymailbox.health_buffer_physaddr =
1025 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1026 
1027     /* set buffer sizes - abuse of data_size field is revolting */
1028     sp = (u_int8_t *)&mci.data_size;
1029     sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1030     sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1031     mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1032 
1033     debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1034 	  mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1035 	  mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1036 	  mci.param.setmemorymailbox.health_buffer_physaddr,
1037 	  mci.param.setmemorymailbox.health_buffer_size);
1038 
1039     if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1040 	return(error);
1041     if (status != 0)
1042 	return(EIO);
1043     sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1044     debug(1, "memory mailbox active");
1045     return(0);
1046 }
1047 
1048 /********************************************************************************
1049  * Flush all pending I/O from the controller.
1050  */
1051 static int
1052 mly_flush(struct mly_softc *sc)
1053 {
1054     struct mly_command_ioctl	mci;
1055     u_int8_t			status;
1056     int				error;
1057 
1058     debug_called(1);
1059 
1060     /* build the ioctl */
1061     bzero(&mci, sizeof(mci));
1062     mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1063     mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1064 
1065     /* pass it off to the controller */
1066     if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1067 	return(error);
1068 
1069     return((status == 0) ? 0 : EIO);
1070 }
1071 
1072 /********************************************************************************
1073  * Perform an ioctl command.
1074  *
1075  * If (data) is not NULL, the command requires data transfer.  If (*data) is NULL
1076  * the command requires data transfer from the controller, and we will allocate
1077  * a buffer for it.  If (*data) is not NULL, the command requires data transfer
1078  * to the controller.
1079  *
1080  * XXX passing in the whole ioctl structure is ugly.  Better ideas?
1081  *
1082  * XXX we don't even try to handle the case where datasize > 4k.  We should.
1083  */
1084 static int
1085 mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1086 	  u_int8_t *status, void *sense_buffer, size_t *sense_length)
1087 {
1088     struct mly_command		*mc;
1089     struct mly_command_ioctl	*mci;
1090     int				error;
1091 
1092     debug_called(1);
1093 
1094     mc = NULL;
1095     if (mly_alloc_command(sc, &mc)) {
1096 	error = ENOMEM;
1097 	goto out;
1098     }
1099 
1100     /* copy the ioctl structure, but save some important fields and then fixup */
1101     mci = &mc->mc_packet->ioctl;
1102     ioctl->sense_buffer_address = mci->sense_buffer_address;
1103     ioctl->maximum_sense_size = mci->maximum_sense_size;
1104     *mci = *ioctl;
1105     mci->opcode = MDACMD_IOCTL;
1106     mci->timeout.value = 30;
1107     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1108 
1109     /* handle the data buffer */
1110     if (data != NULL) {
1111 	if (*data == NULL) {
1112 	    /* allocate data buffer */
1113 	    mc->mc_data = kmalloc(datasize, M_DEVBUF, M_INTWAIT);
1114 	    mc->mc_flags |= MLY_CMD_DATAIN;
1115 	} else {
1116 	    mc->mc_data = *data;
1117 	    mc->mc_flags |= MLY_CMD_DATAOUT;
1118 	}
1119 	mc->mc_length = datasize;
1120 	mc->mc_packet->generic.data_size = datasize;
1121     }
1122 
1123     /* run the command */
1124     if ((error = mly_immediate_command(mc)))
1125 	goto out;
1126 
1127     /* clean up and return any data */
1128     *status = mc->mc_status;
1129     if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1130 	bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1131 	*sense_length = mc->mc_sense;
1132 	goto out;
1133     }
1134 
1135     /* should we return a data pointer? */
1136     if ((data != NULL) && (*data == NULL))
1137 	*data = mc->mc_data;
1138 
1139     /* command completed OK */
1140     error = 0;
1141 
1142 out:
1143     if (mc != NULL) {
1144 	/* do we need to free a data buffer we allocated? */
1145 	if (error && (mc->mc_data != NULL) && (*data == NULL))
1146 	    kfree(mc->mc_data, M_DEVBUF);
1147 	mly_release_command(mc);
1148     }
1149     return(error);
1150 }
1151 
1152 /********************************************************************************
1153  * Check for event(s) outstanding in the controller.
1154  */
1155 static void
1156 mly_check_event(struct mly_softc *sc)
1157 {
1158 
1159     /*
1160      * The controller may have updated the health status information,
1161      * so check for it here.  Note that the counters are all in host memory,
1162      * so this check is very cheap.  Also note that we depend on checking on
1163      * completion
1164      */
1165     if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1166 	sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1167 	debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1168 	      sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1169 	sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1170 
1171 	/* wake up anyone that might be interested in this */
1172 	wakeup(&sc->mly_event_change);
1173     }
1174     if (sc->mly_event_counter != sc->mly_event_waiting)
1175     mly_fetch_event(sc);
1176 }
1177 
1178 /********************************************************************************
1179  * Fetch one event from the controller.
1180  *
1181  * If we fail due to resource starvation, we'll be retried the next time a
1182  * command completes.
1183  */
1184 static void
1185 mly_fetch_event(struct mly_softc *sc)
1186 {
1187     struct mly_command		*mc;
1188     struct mly_command_ioctl	*mci;
1189     u_int32_t			event;
1190 
1191     debug_called(1);
1192 
1193     /* get a command */
1194     if (mly_alloc_command(sc, &mc))
1195 	return;
1196 
1197     /* set up the data buffer */
1198     mc->mc_data = kmalloc(sizeof(struct mly_event), M_DEVBUF, M_INTWAIT|M_ZERO);
1199     mc->mc_length = sizeof(struct mly_event);
1200     mc->mc_flags |= MLY_CMD_DATAIN;
1201     mc->mc_complete = mly_complete_event;
1202 
1203     /*
1204      * Get an event number to fetch.  It's possible that we've raced with another
1205      * context for the last event, in which case there will be no more events.
1206      */
1207     crit_enter();
1208     if (sc->mly_event_counter == sc->mly_event_waiting) {
1209 	mly_release_command(mc);
1210 	crit_exit();
1211 	return;
1212     }
1213     event = sc->mly_event_counter++;
1214     crit_exit();
1215 
1216     /*
1217      * Build the ioctl.
1218      *
1219      * At this point we are committed to sending this request, as it
1220      * will be the only one constructed for this particular event number.
1221      */
1222     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1223     mci->opcode = MDACMD_IOCTL;
1224     mci->data_size = sizeof(struct mly_event);
1225     mci->addr.phys.lun = (event >> 16) & 0xff;
1226     mci->addr.phys.target = (event >> 24) & 0xff;
1227     mci->addr.phys.channel = 0;
1228     mci->addr.phys.controller = 0;
1229     mci->timeout.value = 30;
1230     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1231     mci->sub_ioctl = MDACIOCTL_GETEVENT;
1232     mci->param.getevent.sequence_number_low = event & 0xffff;
1233 
1234     debug(1, "fetch event %u", event);
1235 
1236     /*
1237      * Submit the command.
1238      *
1239      * Note that failure of mly_start() will result in this event never being
1240      * fetched.
1241      */
1242     if (mly_start(mc) != 0) {
1243 	mly_printf(sc, "couldn't fetch event %u\n", event);
1244 	mly_release_command(mc);
1245     }
1246 }
1247 
1248 /********************************************************************************
1249  * Handle the completion of an event poll.
1250  */
1251 static void
1252 mly_complete_event(struct mly_command *mc)
1253 {
1254     struct mly_softc	*sc = mc->mc_sc;
1255     struct mly_event	*me = (struct mly_event *)mc->mc_data;
1256 
1257     debug_called(1);
1258 
1259     /*
1260      * If the event was successfully fetched, process it.
1261      */
1262     if (mc->mc_status == SCSI_STATUS_OK) {
1263 	mly_process_event(sc, me);
1264 	kfree(me, M_DEVBUF);
1265     }
1266     mly_release_command(mc);
1267 
1268     /*
1269      * Check for another event.
1270      */
1271     mly_check_event(sc);
1272 }
1273 
1274 /********************************************************************************
1275  * Process a controller event.
1276  */
1277 static void
1278 mly_process_event(struct mly_softc *sc, struct mly_event *me)
1279 {
1280     struct scsi_sense_data	*ssd = (struct scsi_sense_data *)&me->sense[0];
1281     char			*fp, *tp;
1282     int				bus, target, event, class, action;
1283     char			hexstr[2][12];
1284     /*
1285      * Errors can be reported using vendor-unique sense data.  In this case, the
1286      * event code will be 0x1c (Request sense data present), the sense key will
1287      * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1288      * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1289      * and low seven bits of the ASC (low seven bits of the high byte).
1290      */
1291     if ((me->code == 0x1c) &&
1292 	((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1293 	(ssd->add_sense_code & 0x80)) {
1294 	event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1295     } else {
1296 	event = me->code;
1297     }
1298 
1299     /* look up event, get codes */
1300     fp = mly_describe_code(mly_table_event, event);
1301 
1302     debug(1, "Event %d  code 0x%x", me->sequence_number, me->code);
1303 
1304     /* quiet event? */
1305     class = fp[0];
1306     if (isupper(class) && bootverbose)
1307 	class = tolower(class);
1308 
1309     /* get action code, text string */
1310     action = fp[1];
1311     tp = &fp[2];
1312 
1313     /*
1314      * Print some information about the event.
1315      *
1316      * This code uses a table derived from the corresponding portion of the Linux
1317      * driver, and thus the parser is very similar.
1318      */
1319     switch(class) {
1320     case 'p':		/* error on physical device */
1321 	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1322 	if (action == 'r')
1323 	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1324 	break;
1325     case 'l':		/* error on logical unit */
1326     case 'm':		/* message about logical unit */
1327 	bus = MLY_LOGDEV_BUS(sc, me->lun);
1328 	target = MLY_LOGDEV_TARGET(sc, me->lun);
1329 	mly_name_device(sc, bus, target);
1330 	mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1331 	if (action == 'r')
1332 	    sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1333 	break;
1334     case 's':		/* report of sense data */
1335 	if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1336 	    (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1337 	     (ssd->add_sense_code == 0x04) &&
1338 	     ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1339 	    break;	/* ignore NO_SENSE or NOT_READY in one case */
1340 
1341 	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1342 	mly_printf(sc, "  sense key %d  asc %02x  ascq %02x\n",
1343 		      ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1344 	mly_printf(sc, "  info %s csi %s\n", hexncpy(ssd->info, 4, hexstr[0], 12, NULL),
1345 	    hexncpy(ssd->cmd_spec_info, 4, hexstr[1], 12, NULL));
1346 	if (action == 'r')
1347 	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1348 	break;
1349     case 'e':
1350 	mly_printf(sc, tp, me->target, me->lun);
1351 	kprintf("\n");
1352 	break;
1353     case 'c':
1354 	mly_printf(sc, "controller %s\n", tp);
1355 	break;
1356     case '?':
1357 	mly_printf(sc, "%s - %d\n", tp, me->code);
1358 	break;
1359     default:	/* probably a 'noisy' event being ignored */
1360 	break;
1361     }
1362 }
1363 
1364 /********************************************************************************
1365  * Perform periodic activities.
1366  */
1367 static void
1368 mly_periodic(void *data)
1369 {
1370     struct mly_softc	*sc = (struct mly_softc *)data;
1371     int			bus, target;
1372 
1373     debug_called(2);
1374 
1375     /*
1376      * Scan devices.
1377      */
1378     for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1379 	if (MLY_BUS_IS_VALID(sc, bus)) {
1380 	    for (target = 0; target < MLY_MAX_TARGETS; target++) {
1381 
1382 		/* ignore the controller in this scan */
1383 		if (target == sc->mly_controllerparam->initiator_id)
1384 		    continue;
1385 
1386 		/* perform device rescan? */
1387 		if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1388 		    mly_rescan_btl(sc, bus, target);
1389 	    }
1390 	}
1391     }
1392 
1393     /* check for controller events */
1394     mly_check_event(sc);
1395 
1396     /* reschedule ourselves */
1397     callout_reset(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz, mly_periodic, sc);
1398 }
1399 
1400 /********************************************************************************
1401  ********************************************************************************
1402                                                                Command Processing
1403  ********************************************************************************
1404  ********************************************************************************/
1405 
1406 /********************************************************************************
1407  * Run a command and wait for it to complete.
1408  *
1409  */
1410 static int
1411 mly_immediate_command(struct mly_command *mc)
1412 {
1413     struct mly_softc	*sc = mc->mc_sc;
1414     int			error;
1415 
1416     debug_called(1);
1417 
1418     /* spinning at splcam is ugly, but we're only used during controller init */
1419     crit_enter();
1420     if ((error = mly_start(mc))) {
1421 	crit_exit();
1422 	return(error);
1423     }
1424 
1425     if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1426 	/* sleep on the command */
1427 	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1428 	    tsleep(mc, 0, "mlywait", 0);
1429 	}
1430     } else {
1431 	/* spin and collect status while we do */
1432 	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1433 	    mly_done(mc->mc_sc);
1434 	}
1435     }
1436     crit_exit();
1437     return(0);
1438 }
1439 
1440 /********************************************************************************
1441  * Deliver a command to the controller.
1442  *
1443  * XXX it would be good to just queue commands that we can't submit immediately
1444  *     and send them later, but we probably want a wrapper for that so that
1445  *     we don't hang on a failed submission for an immediate command.
1446  */
1447 static int
1448 mly_start(struct mly_command *mc)
1449 {
1450     struct mly_softc		*sc = mc->mc_sc;
1451     union mly_command_packet	*pkt;
1452 
1453     debug_called(2);
1454 
1455     /*
1456      * Set the command up for delivery to the controller.
1457      */
1458     mly_map_command(mc);
1459     mc->mc_packet->generic.command_id = mc->mc_slot;
1460 
1461 #ifdef MLY_DEBUG
1462     mc->mc_timestamp = time_uptime;
1463 #endif
1464 
1465     crit_enter();
1466 
1467     /*
1468      * Do we have to use the hardware mailbox?
1469      */
1470     if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1471 	/*
1472 	 * Check to see if the controller is ready for us.
1473 	 */
1474 	if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1475 	    crit_exit();
1476 	    return(EBUSY);
1477 	}
1478 	mc->mc_flags |= MLY_CMD_BUSY;
1479 
1480 	/*
1481 	 * It's ready, send the command.
1482 	 */
1483 	MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1484 	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1485 
1486     } else {	/* use memory-mailbox mode */
1487 
1488 	pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1489 
1490 	/* check to see if the next index is free yet */
1491 	if (pkt->mmbox.flag != 0) {
1492 	    crit_exit();
1493 	    return(EBUSY);
1494 	}
1495 	mc->mc_flags |= MLY_CMD_BUSY;
1496 
1497 	/* copy in new command */
1498 	bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1499 	/* barrier to ensure completion of previous write before we write the flag */
1500 	bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1501 	    BUS_SPACE_BARRIER_WRITE);
1502 	/* copy flag last */
1503 	pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1504 	/* barrier to ensure completion of previous write before we notify the controller */
1505 	bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1506 	    BUS_SPACE_BARRIER_WRITE);
1507 
1508 	/* signal controller, update index */
1509 	MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1510 	sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1511     }
1512 
1513     mly_enqueue_busy(mc);
1514     crit_exit();
1515     return(0);
1516 }
1517 
1518 /********************************************************************************
1519  * Pick up command status from the controller, schedule a completion event
1520  */
1521 static void
1522 mly_done(struct mly_softc *sc)
1523 {
1524     struct mly_command		*mc;
1525     union mly_status_packet	*sp;
1526     u_int16_t			slot;
1527     int				worked;
1528 
1529     crit_enter();
1530     worked = 0;
1531 
1532     /* pick up hardware-mailbox commands */
1533     if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1534 	slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1535 	if (slot < MLY_SLOT_MAX) {
1536 	    mc = &sc->mly_command[slot - MLY_SLOT_START];
1537 	    mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1538 	    mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1539 	    mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1540 	    mly_remove_busy(mc);
1541 	    mc->mc_flags &= ~MLY_CMD_BUSY;
1542 	    mly_enqueue_complete(mc);
1543 	    worked = 1;
1544 	} else {
1545 	    /* slot 0xffff may mean "extremely bogus command" */
1546 	    mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1547 	}
1548 	/* unconditionally acknowledge status */
1549 	MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1550 	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1551     }
1552 
1553     /* pick up memory-mailbox commands */
1554     if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1555 	for (;;) {
1556 	    sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1557 
1558 	    /* check for more status */
1559 	    if (sp->mmbox.flag == 0)
1560 		break;
1561 
1562 	    /* get slot number */
1563 	    slot = sp->status.command_id;
1564 	    if (slot < MLY_SLOT_MAX) {
1565 		mc = &sc->mly_command[slot - MLY_SLOT_START];
1566 		mc->mc_status = sp->status.status;
1567 		mc->mc_sense = sp->status.sense_length;
1568 		mc->mc_resid = sp->status.residue;
1569 		mly_remove_busy(mc);
1570 		mc->mc_flags &= ~MLY_CMD_BUSY;
1571 		mly_enqueue_complete(mc);
1572 		worked = 1;
1573 	    } else {
1574 		/* slot 0xffff may mean "extremely bogus command" */
1575 		mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1576 			   slot, sc->mly_mmbox_status_index);
1577 	    }
1578 
1579 	    /* clear and move to next index */
1580 	    sp->mmbox.flag = 0;
1581 	    sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1582 	}
1583 	/* acknowledge that we have collected status value(s) */
1584 	MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1585     }
1586 
1587     crit_exit();
1588     if (worked) {
1589 	if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1590 	    taskqueue_enqueue(taskqueue_swi, &sc->mly_task_complete);
1591 	else
1592 	    mly_complete(sc, 0);
1593     }
1594 }
1595 
1596 /********************************************************************************
1597  * Process completed commands
1598  */
1599 static void
1600 mly_complete(void *context, int pending)
1601 {
1602     struct mly_softc	*sc = (struct mly_softc *)context;
1603     struct mly_command	*mc;
1604     void	        (* mc_complete)(struct mly_command *mc);
1605 
1606 
1607     debug_called(2);
1608 
1609     /*
1610      * Spin pulling commands off the completed queue and processing them.
1611      */
1612     while ((mc = mly_dequeue_complete(sc)) != NULL) {
1613 
1614 	/*
1615 	 * Free controller resources, mark command complete.
1616 	 *
1617 	 * Note that as soon as we mark the command complete, it may be freed
1618 	 * out from under us, so we need to save the mc_complete field in
1619 	 * order to later avoid dereferencing mc.  (We would not expect to
1620 	 * have a polling/sleeping consumer with mc_complete != NULL).
1621 	 */
1622 	mly_unmap_command(mc);
1623 	mc_complete = mc->mc_complete;
1624 	mc->mc_flags |= MLY_CMD_COMPLETE;
1625 
1626 	/*
1627 	 * Call completion handler or wake up sleeping consumer.
1628 	 */
1629 	if (mc_complete != NULL) {
1630 	    mc_complete(mc);
1631 	} else {
1632 	    wakeup(mc);
1633 	}
1634     }
1635 
1636     /*
1637      * XXX if we are deferring commands due to controller-busy status, we should
1638      *     retry submitting them here.
1639      */
1640 }
1641 
1642 /********************************************************************************
1643  ********************************************************************************
1644                                                         Command Buffer Management
1645  ********************************************************************************
1646  ********************************************************************************/
1647 
1648 /********************************************************************************
1649  * Allocate a command.
1650  */
1651 static int
1652 mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1653 {
1654     struct mly_command	*mc;
1655 
1656     debug_called(3);
1657 
1658     if ((mc = mly_dequeue_free(sc)) == NULL) {
1659 	*mcp = NULL;	/* avoid gcc warning */
1660 	return(ENOMEM);
1661     }
1662 
1663     *mcp = mc;
1664     return(0);
1665 }
1666 
1667 /********************************************************************************
1668  * Release a command back to the freelist.
1669  */
1670 static void
1671 mly_release_command(struct mly_command *mc)
1672 {
1673     debug_called(3);
1674 
1675     /*
1676      * Fill in parts of the command that may cause confusion if
1677      * a consumer doesn't when we are later allocated.
1678      */
1679     mc->mc_data = NULL;
1680     mc->mc_flags = 0;
1681     mc->mc_complete = NULL;
1682     mc->mc_private = NULL;
1683 
1684     /*
1685      * By default, we set up to overwrite the command packet with
1686      * sense information.
1687      */
1688     mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1689     mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1690 
1691     mly_enqueue_free(mc);
1692 }
1693 
1694 /********************************************************************************
1695  * Map helper for command allocation.
1696  */
1697 static void
1698 mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1699 {
1700     struct mly_softc	*sc = (struct mly_softc *)arg;
1701 
1702     debug_called(1);
1703 
1704     sc->mly_packetphys = segs[0].ds_addr;
1705 }
1706 
1707 /********************************************************************************
1708  * Allocate and initialise command and packet structures.
1709  *
1710  * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1711  * allocation to that number.  If we don't yet know how many commands the
1712  * controller supports, allocate a very small set (suitable for initialisation
1713  * purposes only).
1714  */
1715 static int
1716 mly_alloc_commands(struct mly_softc *sc)
1717 {
1718     struct mly_command		*mc;
1719     int				i, ncmd;
1720 
1721     if (sc->mly_controllerinfo == NULL) {
1722 	ncmd = 4;
1723     } else {
1724 	ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1725     }
1726 
1727     /*
1728      * Allocate enough space for all the command packets in one chunk and
1729      * map them permanently into controller-visible space.
1730      */
1731     if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1732 			 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1733 	return(ENOMEM);
1734     }
1735     if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1736 			ncmd * sizeof(union mly_command_packet),
1737 			mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1738 	return (ENOMEM);
1739 
1740     for (i = 0; i < ncmd; i++) {
1741 	mc = &sc->mly_command[i];
1742 	bzero(mc, sizeof(*mc));
1743 	mc->mc_sc = sc;
1744 	mc->mc_slot = MLY_SLOT_START + i;
1745 	mc->mc_packet = sc->mly_packet + i;
1746 	mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1747 	if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1748 	    mly_release_command(mc);
1749     }
1750     return(0);
1751 }
1752 
1753 /********************************************************************************
1754  * Free all the storage held by commands.
1755  *
1756  * Must be called with all commands on the free list.
1757  */
1758 static void
1759 mly_release_commands(struct mly_softc *sc)
1760 {
1761     struct mly_command	*mc;
1762 
1763     /* throw away command buffer DMA maps */
1764     while (mly_alloc_command(sc, &mc) == 0)
1765 	bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1766 
1767     /* release the packet storage */
1768     if (sc->mly_packet != NULL) {
1769 	bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1770 	bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1771 	sc->mly_packet = NULL;
1772     }
1773 }
1774 
1775 
1776 /********************************************************************************
1777  * Command-mapping helper function - populate this command's s/g table
1778  * with the s/g entries for its data.
1779  */
1780 static void
1781 mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1782 {
1783     struct mly_command		*mc = (struct mly_command *)arg;
1784     struct mly_softc		*sc = mc->mc_sc;
1785     struct mly_command_generic	*gen = &(mc->mc_packet->generic);
1786     struct mly_sg_entry		*sg;
1787     int				i, tabofs;
1788 
1789     debug_called(2);
1790 
1791     /* can we use the transfer structure directly? */
1792     if (nseg <= 2) {
1793 	sg = &gen->transfer.direct.sg[0];
1794 	gen->command_control.extended_sg_table = 0;
1795     } else {
1796 	tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1797 	sg = sc->mly_sg_table + tabofs;
1798 	gen->transfer.indirect.entries[0] = nseg;
1799 	gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1800 	gen->command_control.extended_sg_table = 1;
1801     }
1802 
1803     /* copy the s/g table */
1804     for (i = 0; i < nseg; i++) {
1805 	sg[i].physaddr = segs[i].ds_addr;
1806 	sg[i].length = segs[i].ds_len;
1807     }
1808 
1809 }
1810 
1811 #if 0
1812 /********************************************************************************
1813  * Command-mapping helper function - save the cdb's physical address.
1814  *
1815  * We don't support 'large' SCSI commands at this time, so this is unused.
1816  */
1817 static void
1818 mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1819 {
1820     struct mly_command			*mc = (struct mly_command *)arg;
1821 
1822     debug_called(2);
1823 
1824     /* XXX can we safely assume that a CDB will never cross a page boundary? */
1825     if ((segs[0].ds_addr % PAGE_SIZE) >
1826 	((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1827 	panic("cdb crosses page boundary");
1828 
1829     /* fix up fields in the command packet */
1830     mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1831 }
1832 #endif
1833 
1834 /********************************************************************************
1835  * Map a command into controller-visible space
1836  */
1837 static void
1838 mly_map_command(struct mly_command *mc)
1839 {
1840     struct mly_softc	*sc = mc->mc_sc;
1841 
1842     debug_called(2);
1843 
1844     /* don't map more than once */
1845     if (mc->mc_flags & MLY_CMD_MAPPED)
1846 	return;
1847 
1848     /* does the command have a data buffer? */
1849     if (mc->mc_data != NULL) {
1850 	bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap, mc->mc_data, mc->mc_length,
1851 			mly_map_command_sg, mc, 0);
1852 
1853 	if (mc->mc_flags & MLY_CMD_DATAIN)
1854 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1855 	if (mc->mc_flags & MLY_CMD_DATAOUT)
1856 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1857     }
1858     mc->mc_flags |= MLY_CMD_MAPPED;
1859 }
1860 
1861 /********************************************************************************
1862  * Unmap a command from controller-visible space
1863  */
1864 static void
1865 mly_unmap_command(struct mly_command *mc)
1866 {
1867     struct mly_softc	*sc = mc->mc_sc;
1868 
1869     debug_called(2);
1870 
1871     if (!(mc->mc_flags & MLY_CMD_MAPPED))
1872 	return;
1873 
1874     /* does the command have a data buffer? */
1875     if (mc->mc_data != NULL) {
1876 	if (mc->mc_flags & MLY_CMD_DATAIN)
1877 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1878 	if (mc->mc_flags & MLY_CMD_DATAOUT)
1879 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1880 
1881 	bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1882     }
1883     mc->mc_flags &= ~MLY_CMD_MAPPED;
1884 }
1885 
1886 
1887 /********************************************************************************
1888  ********************************************************************************
1889                                                                     CAM interface
1890  ********************************************************************************
1891  ********************************************************************************/
1892 
1893 /********************************************************************************
1894  * Attach the physical and virtual SCSI busses to CAM.
1895  *
1896  * Physical bus numbering starts from 0, virtual bus numbering from one greater
1897  * than the highest physical bus.  Physical busses are only registered if
1898  * the kernel environment variable "hw.mly.register_physical_channels" is set.
1899  *
1900  * When we refer to a "bus", we are referring to the bus number registered with
1901  * the SIM, wheras a "channel" is a channel number given to the adapter.  In order
1902  * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1903  * interchangeably.
1904  */
1905 static int
1906 mly_cam_attach(struct mly_softc *sc)
1907 {
1908     struct cam_devq	*devq;
1909     int			chn, i;
1910 
1911     debug_called(1);
1912 
1913     /*
1914      * Allocate a devq for all our channels combined.
1915      */
1916     if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1917 	mly_printf(sc, "can't allocate CAM SIM queue\n");
1918 	return(ENOMEM);
1919     }
1920 
1921     /*
1922      * If physical channel registration has been requested, register these first.
1923      * Note that we enable tagged command queueing for physical channels.
1924      */
1925     if (ktestenv("hw.mly.register_physical_channels")) {
1926 	chn = 0;
1927 	for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1928 
1929 	    if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1930 						      device_get_unit(sc->mly_dev),
1931 						      &sim_mplock,
1932 						      sc->mly_controllerinfo->maximum_parallel_commands,
1933 						      1, devq)) == NULL) {
1934 		return(ENOMEM);
1935 	    }
1936 	    if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1937 		mly_printf(sc, "CAM XPT physical channel registration failed\n");
1938 		return(ENXIO);
1939 	    }
1940 	    debug(1, "registered physical channel %d", chn);
1941 	}
1942     }
1943 
1944     /*
1945      * Register our virtual channels, with bus numbers matching channel numbers.
1946      */
1947     chn = sc->mly_controllerinfo->physical_channels_present;
1948     for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1949 	if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1950 						  device_get_unit(sc->mly_dev),
1951 						  &sim_mplock,
1952 						  sc->mly_controllerinfo->maximum_parallel_commands,
1953 						  0, devq)) == NULL) {
1954 	    return(ENOMEM);
1955 	}
1956 	if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1957 	    mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1958 	    return(ENXIO);
1959 	}
1960 	debug(1, "registered virtual channel %d", chn);
1961     }
1962 
1963     /*
1964      * This is the total number of channels that (might have been) registered with
1965      * CAM.  Some may not have been; check the mly_cam_sim array to be certain.
1966      */
1967     sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
1968 	sc->mly_controllerinfo->virtual_channels_present;
1969 
1970     return(0);
1971 }
1972 
1973 /********************************************************************************
1974  * Detach from CAM
1975  */
1976 static void
1977 mly_cam_detach(struct mly_softc *sc)
1978 {
1979     int		i;
1980 
1981     debug_called(1);
1982 
1983     for (i = 0; i < sc->mly_cam_channels; i++) {
1984 	if (sc->mly_cam_sim[i] != NULL) {
1985 	    xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
1986 	    cam_sim_free(sc->mly_cam_sim[i]);
1987 	}
1988     }
1989     if (sc->mly_cam_devq != NULL)
1990 	cam_simq_release(sc->mly_cam_devq);
1991 }
1992 
1993 /************************************************************************
1994  * Rescan a device.
1995  */
1996 static void
1997 mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
1998 {
1999     union ccb	*ccb;
2000 
2001     debug_called(1);
2002 
2003     if ((ccb = xpt_alloc_ccb()) == NULL) {
2004 	mly_printf(sc, "rescan failed (can't allocate CCB)\n");
2005 	return;
2006     }
2007     if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
2008 			cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2009 	mly_printf(sc, "rescan failed (can't create path)\n");
2010 	xpt_free_ccb(&ccb->ccb_h);
2011 	return;
2012     }
2013 
2014     xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5/*priority (low)*/);
2015     ccb->ccb_h.func_code = XPT_SCAN_LUN;
2016     ccb->ccb_h.cbfcnp = mly_cam_rescan_callback;
2017     ccb->crcn.flags = CAM_FLAG_NONE;
2018     debug(1, "rescan target %d:%d", bus, target);
2019     xpt_action(ccb);
2020 }
2021 
2022 static void
2023 mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb)
2024 {
2025     xpt_free_ccb(&ccb->ccb_h);
2026 }
2027 
2028 /********************************************************************************
2029  * Handle an action requested by CAM
2030  */
2031 static void
2032 mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2033 {
2034     struct mly_softc	*sc = cam_sim_softc(sim);
2035 
2036     debug_called(2);
2037 
2038     switch (ccb->ccb_h.func_code) {
2039 
2040 	/* perform SCSI I/O */
2041     case XPT_SCSI_IO:
2042 	if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2043 	    return;
2044 	break;
2045 
2046 	/* perform geometry calculations */
2047     case XPT_CALC_GEOMETRY:
2048     {
2049 	struct ccb_calc_geometry	*ccg = &ccb->ccg;
2050         u_int32_t			secs_per_cylinder;
2051 
2052 	debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2053 
2054 	if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2055 	    ccg->heads = 255;
2056             ccg->secs_per_track = 63;
2057 	} else {				/* MLY_BIOSGEOM_2G */
2058 	    ccg->heads = 128;
2059             ccg->secs_per_track = 32;
2060 	}
2061 	secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2062         ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2063         ccb->ccb_h.status = CAM_REQ_CMP;
2064         break;
2065     }
2066 
2067 	/* handle path attribute inquiry */
2068     case XPT_PATH_INQ:
2069     {
2070 	struct ccb_pathinq	*cpi = &ccb->cpi;
2071 
2072 	debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2073 
2074 	cpi->version_num = 1;
2075 	cpi->hba_inquiry = PI_TAG_ABLE;		/* XXX extra flags for physical channels? */
2076 	cpi->target_sprt = 0;
2077 	cpi->hba_misc = 0;
2078 	cpi->max_target = MLY_MAX_TARGETS - 1;
2079 	cpi->max_lun = MLY_MAX_LUNS - 1;
2080 	cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2081 	strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2082         strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
2083         strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2084         cpi->unit_number = cam_sim_unit(sim);
2085         cpi->bus_id = cam_sim_bus(sim);
2086 	cpi->base_transfer_speed = 132 * 1024;	/* XXX what to set this to? */
2087 	cpi->transport = XPORT_SPI;
2088 	cpi->transport_version = 2;
2089 	cpi->protocol = PROTO_SCSI;
2090 	cpi->protocol_version = SCSI_REV_2;
2091 	ccb->ccb_h.status = CAM_REQ_CMP;
2092 	break;
2093     }
2094 
2095     case XPT_GET_TRAN_SETTINGS:
2096     {
2097 	struct ccb_trans_settings	*cts = &ccb->cts;
2098 	int				bus, target;
2099 	struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2100 	struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2101 
2102 	cts->protocol = PROTO_SCSI;
2103 	cts->protocol_version = SCSI_REV_2;
2104 	cts->transport = XPORT_SPI;
2105 	cts->transport_version = 2;
2106 
2107 	scsi->flags = 0;
2108 	scsi->valid = 0;
2109 	spi->flags = 0;
2110 	spi->valid = 0;
2111 
2112 	bus = cam_sim_bus(sim);
2113 	target = cts->ccb_h.target_id;
2114 	debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2115 	/* logical device? */
2116 	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2117 	    /* nothing special for these */
2118 	/* physical device? */
2119 	} else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2120 	    /* allow CAM to try tagged transactions */
2121 	    scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2122 	    scsi->valid |= CTS_SCSI_VALID_TQ;
2123 
2124 	    /* convert speed (MHz) to usec */
2125 	    if (sc->mly_btl[bus][target].mb_speed == 0) {
2126 		spi->sync_period = 1000000 / 5;
2127 	    } else {
2128 		spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2129 	    }
2130 
2131 	    /* convert bus width to CAM internal encoding */
2132 	    switch (sc->mly_btl[bus][target].mb_width) {
2133 	    case 32:
2134 		spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2135 		break;
2136 	    case 16:
2137 		spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2138 		break;
2139 	    case 8:
2140 	    default:
2141 		spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2142 		break;
2143 	    }
2144 	    spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2145 
2146 	    /* not a device, bail out */
2147 	} else {
2148 	    cts->ccb_h.status = CAM_REQ_CMP_ERR;
2149 	    break;
2150 	}
2151 
2152 	/* disconnect always OK */
2153 	spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2154 	spi->valid |= CTS_SPI_VALID_DISC;
2155 
2156 	cts->ccb_h.status = CAM_REQ_CMP;
2157 	break;
2158     }
2159 
2160     default:		/* we can't do this */
2161 	debug(2, "unsupported func_code = 0x%x", ccb->ccb_h.func_code);
2162 	ccb->ccb_h.status = CAM_REQ_INVALID;
2163 	break;
2164     }
2165 
2166     xpt_done(ccb);
2167 }
2168 
2169 /********************************************************************************
2170  * Handle an I/O operation requested by CAM
2171  */
2172 static int
2173 mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2174 {
2175     struct mly_softc			*sc = cam_sim_softc(sim);
2176     struct mly_command			*mc;
2177     struct mly_command_scsi_small	*ss;
2178     int					bus, target;
2179     int					error;
2180 
2181     bus = cam_sim_bus(sim);
2182     target = csio->ccb_h.target_id;
2183 
2184     debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2185 
2186     /* validate bus number */
2187     if (!MLY_BUS_IS_VALID(sc, bus)) {
2188 	debug(0, " invalid bus %d", bus);
2189 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2190     }
2191 
2192     /*  check for I/O attempt to a protected device */
2193     if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2194 	debug(2, "  device protected");
2195 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2196     }
2197 
2198     /* check for I/O attempt to nonexistent device */
2199     if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2200 	debug(2, "  device %d:%d does not exist", bus, target);
2201 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2202     }
2203 
2204     /* XXX increase if/when we support large SCSI commands */
2205     if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2206 	debug(0, "  command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2207 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2208     }
2209 
2210     /* check that the CDB pointer is not to a physical address */
2211     if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2212 	debug(0, "  CDB pointer is to physical address");
2213 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2214     }
2215 
2216     /* if there is data transfer, it must be to/from a virtual address */
2217     if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
2218 	if (csio->ccb_h.flags & CAM_DATA_PHYS) {		/* we can't map it */
2219 	    debug(0, "  data pointer is to physical address");
2220 	    csio->ccb_h.status = CAM_REQ_CMP_ERR;
2221 	}
2222 	if (csio->ccb_h.flags & CAM_SCATTER_VALID) {	/* we want to do the s/g setup */
2223 	    debug(0, "  data has premature s/g setup");
2224 	    csio->ccb_h.status = CAM_REQ_CMP_ERR;
2225 	}
2226     }
2227 
2228     /* abandon aborted ccbs or those that have failed validation */
2229     if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2230 	debug(2, "abandoning CCB due to abort/validation failure");
2231 	return(EINVAL);
2232     }
2233 
2234     /*
2235      * Get a command, or push the ccb back to CAM and freeze the queue.
2236      */
2237     if ((error = mly_alloc_command(sc, &mc))) {
2238 	crit_enter();
2239 	xpt_freeze_simq(sim, 1);
2240 	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2241 	sc->mly_qfrzn_cnt++;
2242 	crit_exit();
2243 	return(error);
2244     }
2245 
2246     /* build the command */
2247     mc->mc_data = csio->data_ptr;
2248     mc->mc_length = csio->dxfer_len;
2249     mc->mc_complete = mly_cam_complete;
2250     mc->mc_private = csio;
2251 
2252     /* save the bus number in the ccb for later recovery XXX should be a better way */
2253      csio->ccb_h.sim_priv.entries[0].field = bus;
2254 
2255     /* build the packet for the controller */
2256     ss = &mc->mc_packet->scsi_small;
2257     ss->opcode = MDACMD_SCSI;
2258     if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2259 	ss->command_control.disable_disconnect = 1;
2260     if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2261 	ss->command_control.data_direction = MLY_CCB_WRITE;
2262     ss->data_size = csio->dxfer_len;
2263     ss->addr.phys.lun = csio->ccb_h.target_lun;
2264     ss->addr.phys.target = csio->ccb_h.target_id;
2265     ss->addr.phys.channel = bus;
2266     if (csio->ccb_h.timeout < (60 * 1000)) {
2267 	ss->timeout.value = csio->ccb_h.timeout / 1000;
2268 	ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2269     } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2270 	ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2271 	ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2272     } else {
2273 	ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000);	/* overflow? */
2274 	ss->timeout.scale = MLY_TIMEOUT_HOURS;
2275     }
2276     ss->maximum_sense_size = csio->sense_len;
2277     ss->cdb_length = csio->cdb_len;
2278     if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2279 	bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2280     } else {
2281 	bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2282     }
2283 
2284     /* give the command to the controller */
2285     if ((error = mly_start(mc))) {
2286 	crit_enter();
2287 	xpt_freeze_simq(sim, 1);
2288 	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2289 	sc->mly_qfrzn_cnt++;
2290 	crit_exit();
2291 	return(error);
2292     }
2293 
2294     return(0);
2295 }
2296 
2297 /********************************************************************************
2298  * Check for possibly-completed commands.
2299  */
2300 static void
2301 mly_cam_poll(struct cam_sim *sim)
2302 {
2303     struct mly_softc	*sc = cam_sim_softc(sim);
2304 
2305     debug_called(2);
2306 
2307     mly_done(sc);
2308 }
2309 
2310 /********************************************************************************
2311  * Handle completion of a command - pass results back through the CCB
2312  */
2313 static void
2314 mly_cam_complete(struct mly_command *mc)
2315 {
2316     struct mly_softc		*sc = mc->mc_sc;
2317     struct ccb_scsiio		*csio = (struct ccb_scsiio *)mc->mc_private;
2318     struct scsi_inquiry_data	*inq = (struct scsi_inquiry_data *)csio->data_ptr;
2319     struct mly_btl		*btl;
2320     u_int8_t			cmd;
2321     int				bus, target;
2322 
2323     debug_called(2);
2324 
2325     csio->scsi_status = mc->mc_status;
2326     switch(mc->mc_status) {
2327     case SCSI_STATUS_OK:
2328 	/*
2329 	 * In order to report logical device type and status, we overwrite
2330 	 * the result of the INQUIRY command to logical devices.
2331 	 */
2332 	bus = csio->ccb_h.sim_priv.entries[0].field;
2333 	target = csio->ccb_h.target_id;
2334 	/* XXX validate bus/target? */
2335 	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2336 	    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2337 		cmd = *csio->cdb_io.cdb_ptr;
2338 	    } else {
2339 		cmd = csio->cdb_io.cdb_bytes[0];
2340 	    }
2341 	    if (cmd == INQUIRY) {
2342 		btl = &sc->mly_btl[bus][target];
2343 		padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2344 		padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2345 		padstr(inq->revision, "MYLX", 4);
2346 	    }
2347 	}
2348 
2349 	debug(2, "SCSI_STATUS_OK");
2350 	csio->ccb_h.status = CAM_REQ_CMP;
2351 	break;
2352 
2353     case SCSI_STATUS_CHECK_COND:
2354 	debug(1, "SCSI_STATUS_CHECK_COND  sense %d  resid %d", mc->mc_sense, mc->mc_resid);
2355 	csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2356 	bzero(&csio->sense_data, SSD_FULL_SIZE);
2357 	bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2358 	csio->sense_len = mc->mc_sense;
2359 	csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2360 	csio->resid = mc->mc_resid;	/* XXX this is a signed value... */
2361 	break;
2362 
2363     case SCSI_STATUS_BUSY:
2364 	debug(1, "SCSI_STATUS_BUSY");
2365 	csio->ccb_h.status = CAM_SCSI_BUSY;
2366 	break;
2367 
2368     default:
2369 	debug(1, "unknown status 0x%x", csio->scsi_status);
2370 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2371 	break;
2372     }
2373 
2374     crit_enter();
2375     if (sc->mly_qfrzn_cnt) {
2376 	csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2377 	sc->mly_qfrzn_cnt--;
2378     }
2379     crit_exit();
2380 
2381     xpt_done((union ccb *)csio);
2382     mly_release_command(mc);
2383 }
2384 
2385 /********************************************************************************
2386  * Find a peripheral attahed at (bus),(target)
2387  */
2388 static struct cam_periph *
2389 mly_find_periph(struct mly_softc *sc, int bus, int target)
2390 {
2391     struct cam_periph	*periph;
2392     struct cam_path	*path;
2393     int			status;
2394 
2395     status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2396     if (status == CAM_REQ_CMP) {
2397 	periph = cam_periph_find(path, NULL);
2398 	xpt_free_path(path);
2399     } else {
2400 	periph = NULL;
2401     }
2402     return(periph);
2403 }
2404 
2405 /********************************************************************************
2406  * Name the device at (bus)(target)
2407  */
2408 static int
2409 mly_name_device(struct mly_softc *sc, int bus, int target)
2410 {
2411     struct cam_periph	*periph;
2412 
2413     if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2414 	ksprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2415 	return(0);
2416     }
2417     sc->mly_btl[bus][target].mb_name[0] = 0;
2418     return(ENOENT);
2419 }
2420 
2421 /********************************************************************************
2422  ********************************************************************************
2423                                                                  Hardware Control
2424  ********************************************************************************
2425  ********************************************************************************/
2426 
2427 /********************************************************************************
2428  * Handshake with the firmware while the card is being initialised.
2429  */
2430 static int
2431 mly_fwhandshake(struct mly_softc *sc)
2432 {
2433     u_int8_t	error, param0, param1;
2434     int		spinup = 0;
2435 
2436     debug_called(1);
2437 
2438     /* set HM_STSACK and let the firmware initialise */
2439     MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2440     DELAY(1000);	/* too short? */
2441 
2442     /* if HM_STSACK is still true, the controller is initialising */
2443     if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2444 	return(0);
2445     mly_printf(sc, "controller initialisation started\n");
2446 
2447     /* spin waiting for initialisation to finish, or for a message to be delivered */
2448     while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2449 	/* check for a message */
2450 	if (MLY_ERROR_VALID(sc)) {
2451 	    error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2452 	    param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2453 	    param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2454 
2455 	    switch(error) {
2456 	    case MLY_MSG_SPINUP:
2457 		if (!spinup) {
2458 		    mly_printf(sc, "drive spinup in progress\n");
2459 		    spinup = 1;			/* only print this once (should print drive being spun?) */
2460 		}
2461 		break;
2462 	    case MLY_MSG_RACE_RECOVERY_FAIL:
2463 		mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2464 		break;
2465 	    case MLY_MSG_RACE_IN_PROGRESS:
2466 		mly_printf(sc, "mirror race recovery in progress\n");
2467 		break;
2468 	    case MLY_MSG_RACE_ON_CRITICAL:
2469 		mly_printf(sc, "mirror race recovery on a critical drive\n");
2470 		break;
2471 	    case MLY_MSG_PARITY_ERROR:
2472 		mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2473 		return(ENXIO);
2474 	    default:
2475 		mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2476 	    }
2477 	}
2478     }
2479     return(0);
2480 }
2481 
2482 /********************************************************************************
2483  ********************************************************************************
2484                                                         Debugging and Diagnostics
2485  ********************************************************************************
2486  ********************************************************************************/
2487 
2488 /********************************************************************************
2489  * Print some information about the controller.
2490  */
2491 static void
2492 mly_describe_controller(struct mly_softc *sc)
2493 {
2494     struct mly_ioctl_getcontrollerinfo	*mi = sc->mly_controllerinfo;
2495 
2496     mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2497 	       mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2498 	       mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,	/* XXX turn encoding? */
2499 	       mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2500 	       mi->memory_size);
2501 
2502     if (bootverbose) {
2503 	mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2504 		   mly_describe_code(mly_table_oemname, mi->oem_information),
2505 		   mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2506 		   mi->interface_speed, mi->interface_width, mi->interface_name);
2507 	mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2508 		   mi->memory_size, mi->memory_speed, mi->memory_width,
2509 		   mly_describe_code(mly_table_memorytype, mi->memory_type),
2510 		   mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2511 		   mi->cache_size);
2512 	mly_printf(sc, "CPU: %s @ %dMHz\n",
2513 		   mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2514 	if (mi->l2cache_size != 0)
2515 	    mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2516 	if (mi->exmemory_size != 0)
2517 	    mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2518 		       mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2519 		       mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2520 		       mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2521 	mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2522 	mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2523 		   mi->maximum_block_count, mi->maximum_sg_entries);
2524 	mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2525 		   mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2526 	mly_printf(sc, "physical devices present %d\n",
2527 		   mi->physical_devices_present);
2528 	mly_printf(sc, "physical disks present/offline %d/%d\n",
2529 		   mi->physical_disks_present, mi->physical_disks_offline);
2530 	mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2531 		   mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2532 		   mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2533 		   mi->virtual_channels_possible);
2534 	mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2535 	mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2536 		   mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2537     }
2538 }
2539 
2540 #ifdef MLY_DEBUG
2541 /********************************************************************************
2542  * Print some controller state
2543  */
2544 static void
2545 mly_printstate(struct mly_softc *sc)
2546 {
2547     mly_printf(sc, "IDBR %02x  ODBR %02x  ERROR %02x  (%x %x %x)\n",
2548 		  MLY_GET_REG(sc, sc->mly_idbr),
2549 		  MLY_GET_REG(sc, sc->mly_odbr),
2550 		  MLY_GET_REG(sc, sc->mly_error_status),
2551 		  sc->mly_idbr,
2552 		  sc->mly_odbr,
2553 		  sc->mly_error_status);
2554     mly_printf(sc, "IMASK %02x  ISTATUS %02x\n",
2555 		  MLY_GET_REG(sc, sc->mly_interrupt_mask),
2556 		  MLY_GET_REG(sc, sc->mly_interrupt_status));
2557     mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2558 		  MLY_GET_REG(sc, sc->mly_command_mailbox),
2559 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2560 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2561 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2562 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2563 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2564 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2565 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2566     mly_printf(sc, "STATUS  %02x %02x %02x %02x %02x %02x %02x %02x\n",
2567 		  MLY_GET_REG(sc, sc->mly_status_mailbox),
2568 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2569 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2570 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2571 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2572 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2573 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2574 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2575     mly_printf(sc, "        %04x        %08x\n",
2576 		  MLY_GET_REG2(sc, sc->mly_status_mailbox),
2577 		  MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2578 }
2579 
2580 struct mly_softc	*mly_softc0 = NULL;
2581 void
2582 mly_printstate0(void)
2583 {
2584     if (mly_softc0 != NULL)
2585 	mly_printstate(mly_softc0);
2586 }
2587 
2588 /********************************************************************************
2589  * Print a command
2590  */
2591 static void
2592 mly_print_command(struct mly_command *mc)
2593 {
2594     struct mly_softc	*sc = mc->mc_sc;
2595 
2596     mly_printf(sc, "COMMAND @ %p\n", mc);
2597     mly_printf(sc, "  slot      %d\n", mc->mc_slot);
2598     mly_printf(sc, "  status    0x%x\n", mc->mc_status);
2599     mly_printf(sc, "  sense len %d\n", mc->mc_sense);
2600     mly_printf(sc, "  resid     %d\n", mc->mc_resid);
2601     mly_printf(sc, "  packet    %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2602     if (mc->mc_packet != NULL)
2603 	mly_print_packet(mc);
2604     mly_printf(sc, "  data      %p/%d\n", mc->mc_data, mc->mc_length);
2605     mly_printf(sc, "  flags     %pb%i\n",
2606 	       "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n",
2607 	       mc->mc_flags);
2608     mly_printf(sc, "  complete  %p\n", mc->mc_complete);
2609     mly_printf(sc, "  private   %p\n", mc->mc_private);
2610 }
2611 
2612 /********************************************************************************
2613  * Print a command packet
2614  */
2615 static void
2616 mly_print_packet(struct mly_command *mc)
2617 {
2618     struct mly_softc			*sc = mc->mc_sc;
2619     struct mly_command_generic		*ge = (struct mly_command_generic *)mc->mc_packet;
2620     struct mly_command_scsi_small	*ss = (struct mly_command_scsi_small *)mc->mc_packet;
2621     struct mly_command_scsi_large	*sl = (struct mly_command_scsi_large *)mc->mc_packet;
2622     struct mly_command_ioctl		*io = (struct mly_command_ioctl *)mc->mc_packet;
2623     int					transfer;
2624     char				hexstr[HEX_NCPYLEN(MLY_CMD_SCSI_SMALL_CDB)];
2625 
2626     mly_printf(sc, "   command_id           %d\n", ge->command_id);
2627     mly_printf(sc, "   opcode               %d\n", ge->opcode);
2628     mly_printf(sc, "   command_control      fua %d  dpo %d  est %d  dd %s  nas %d ddis %d\n",
2629 		  ge->command_control.force_unit_access,
2630 		  ge->command_control.disable_page_out,
2631 		  ge->command_control.extended_sg_table,
2632 		  (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2633 		  ge->command_control.no_auto_sense,
2634 		  ge->command_control.disable_disconnect);
2635     mly_printf(sc, "   data_size            %d\n", ge->data_size);
2636     mly_printf(sc, "   sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2637     mly_printf(sc, "   lun                  %d\n", ge->addr.phys.lun);
2638     mly_printf(sc, "   target               %d\n", ge->addr.phys.target);
2639     mly_printf(sc, "   channel              %d\n", ge->addr.phys.channel);
2640     mly_printf(sc, "   logical device       %d\n", ge->addr.log.logdev);
2641     mly_printf(sc, "   controller           %d\n", ge->addr.phys.controller);
2642     mly_printf(sc, "   timeout              %d %s\n",
2643 		  ge->timeout.value,
2644 		  (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2645 		  ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2646     mly_printf(sc, "   maximum_sense_size   %d\n", ge->maximum_sense_size);
2647     switch(ge->opcode) {
2648     case MDACMD_SCSIPT:
2649     case MDACMD_SCSI:
2650 	mly_printf(sc, "   cdb length           %d\n", ss->cdb_length);
2651 	mly_printf(sc, "   cdb                  %s\n",
2652 	    hexncpy(ss->cdb, ss->cdb_length, hexstr, HEX_NCPYLEN(ss->cdb_length), " "));
2653 	transfer = 1;
2654 	break;
2655     case MDACMD_SCSILC:
2656     case MDACMD_SCSILCPT:
2657 	mly_printf(sc, "   cdb length           %d\n", sl->cdb_length);
2658 	mly_printf(sc, "   cdb                  0x%llx\n", sl->cdb_physaddr);
2659 	transfer = 1;
2660 	break;
2661     case MDACMD_IOCTL:
2662 	mly_printf(sc, "   sub_ioctl            0x%x\n", io->sub_ioctl);
2663 	switch(io->sub_ioctl) {
2664 	case MDACIOCTL_SETMEMORYMAILBOX:
2665 	    mly_printf(sc, "   health_buffer_size   %d\n",
2666 			  io->param.setmemorymailbox.health_buffer_size);
2667 	    mly_printf(sc, "   health_buffer_phys   0x%llx\n",
2668 			  io->param.setmemorymailbox.health_buffer_physaddr);
2669 	    mly_printf(sc, "   command_mailbox      0x%llx\n",
2670 			  io->param.setmemorymailbox.command_mailbox_physaddr);
2671 	    mly_printf(sc, "   status_mailbox       0x%llx\n",
2672 			  io->param.setmemorymailbox.status_mailbox_physaddr);
2673 	    transfer = 0;
2674 	    break;
2675 
2676 	case MDACIOCTL_SETREALTIMECLOCK:
2677 	case MDACIOCTL_GETHEALTHSTATUS:
2678 	case MDACIOCTL_GETCONTROLLERINFO:
2679 	case MDACIOCTL_GETLOGDEVINFOVALID:
2680 	case MDACIOCTL_GETPHYSDEVINFOVALID:
2681 	case MDACIOCTL_GETPHYSDEVSTATISTICS:
2682 	case MDACIOCTL_GETLOGDEVSTATISTICS:
2683 	case MDACIOCTL_GETCONTROLLERSTATISTICS:
2684 	case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2685 	case MDACIOCTL_CREATENEWCONF:
2686 	case MDACIOCTL_ADDNEWCONF:
2687 	case MDACIOCTL_GETDEVCONFINFO:
2688 	case MDACIOCTL_GETFREESPACELIST:
2689 	case MDACIOCTL_MORE:
2690 	case MDACIOCTL_SETPHYSDEVPARAMETER:
2691 	case MDACIOCTL_GETPHYSDEVPARAMETER:
2692 	case MDACIOCTL_GETLOGDEVPARAMETER:
2693 	case MDACIOCTL_SETLOGDEVPARAMETER:
2694 	    mly_printf(sc, "   param                %10D\n", io->param.data.param, " ");
2695 	    transfer = 1;
2696 	    break;
2697 
2698 	case MDACIOCTL_GETEVENT:
2699 	    mly_printf(sc, "   event                %d\n",
2700 		       io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2701 	    transfer = 1;
2702 	    break;
2703 
2704 	case MDACIOCTL_SETRAIDDEVSTATE:
2705 	    mly_printf(sc, "   state                %d\n", io->param.setraiddevstate.state);
2706 	    transfer = 0;
2707 	    break;
2708 
2709 	case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2710 	    mly_printf(sc, "   raid_device          %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2711 	    mly_printf(sc, "   controller           %d\n", io->param.xlatephysdevtoraiddev.controller);
2712 	    mly_printf(sc, "   channel              %d\n", io->param.xlatephysdevtoraiddev.channel);
2713 	    mly_printf(sc, "   target               %d\n", io->param.xlatephysdevtoraiddev.target);
2714 	    mly_printf(sc, "   lun                  %d\n", io->param.xlatephysdevtoraiddev.lun);
2715 	    transfer = 0;
2716 	    break;
2717 
2718 	case MDACIOCTL_GETGROUPCONFINFO:
2719 	    mly_printf(sc, "   group                %d\n", io->param.getgroupconfinfo.group);
2720 	    transfer = 1;
2721 	    break;
2722 
2723 	case MDACIOCTL_GET_SUBSYSTEM_DATA:
2724 	case MDACIOCTL_SET_SUBSYSTEM_DATA:
2725 	case MDACIOCTL_STARTDISOCVERY:
2726 	case MDACIOCTL_INITPHYSDEVSTART:
2727 	case MDACIOCTL_INITPHYSDEVSTOP:
2728 	case MDACIOCTL_INITRAIDDEVSTART:
2729 	case MDACIOCTL_INITRAIDDEVSTOP:
2730 	case MDACIOCTL_REBUILDRAIDDEVSTART:
2731 	case MDACIOCTL_REBUILDRAIDDEVSTOP:
2732 	case MDACIOCTL_MAKECONSISTENTDATASTART:
2733 	case MDACIOCTL_MAKECONSISTENTDATASTOP:
2734 	case MDACIOCTL_CONSISTENCYCHECKSTART:
2735 	case MDACIOCTL_CONSISTENCYCHECKSTOP:
2736 	case MDACIOCTL_RESETDEVICE:
2737 	case MDACIOCTL_FLUSHDEVICEDATA:
2738 	case MDACIOCTL_PAUSEDEVICE:
2739 	case MDACIOCTL_UNPAUSEDEVICE:
2740 	case MDACIOCTL_LOCATEDEVICE:
2741 	case MDACIOCTL_SETMASTERSLAVEMODE:
2742 	case MDACIOCTL_DELETERAIDDEV:
2743 	case MDACIOCTL_REPLACEINTERNALDEV:
2744 	case MDACIOCTL_CLEARCONF:
2745 	case MDACIOCTL_GETCONTROLLERPARAMETER:
2746 	case MDACIOCTL_SETCONTRLLERPARAMETER:
2747 	case MDACIOCTL_CLEARCONFSUSPMODE:
2748 	case MDACIOCTL_STOREIMAGE:
2749 	case MDACIOCTL_READIMAGE:
2750 	case MDACIOCTL_FLASHIMAGES:
2751 	case MDACIOCTL_RENAMERAIDDEV:
2752 	default:			/* no idea what to print */
2753 	    transfer = 0;
2754 	    break;
2755 	}
2756 	break;
2757 
2758     case MDACMD_IOCTLCHECK:
2759     case MDACMD_MEMCOPY:
2760     default:
2761 	transfer = 0;
2762 	break;	/* print nothing */
2763     }
2764     if (transfer) {
2765 	if (ge->command_control.extended_sg_table) {
2766 	    mly_printf(sc, "   sg table             0x%llx/%d\n",
2767 			  ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2768 	} else {
2769 	    mly_printf(sc, "   0000                 0x%llx/%lld\n",
2770 			  ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2771 	    mly_printf(sc, "   0001                 0x%llx/%lld\n",
2772 			  ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2773 	}
2774     }
2775 }
2776 
2777 /********************************************************************************
2778  * Panic in a slightly informative fashion
2779  */
2780 static void
2781 mly_panic(struct mly_softc *sc, char *reason)
2782 {
2783     mly_printstate(sc);
2784     panic(reason);
2785 }
2786 
2787 /********************************************************************************
2788  * Print queue statistics, callable from DDB.
2789  */
2790 void
2791 mly_print_controller(int controller)
2792 {
2793     struct mly_softc	*sc;
2794 
2795     if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2796 	kprintf("mly: controller %d invalid\n", controller);
2797     } else {
2798 	device_printf(sc->mly_dev, "queue    curr max\n");
2799 	device_printf(sc->mly_dev, "free     %04d/%04d\n",
2800 		      sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2801 	device_printf(sc->mly_dev, "busy     %04d/%04d\n",
2802 		      sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2803 	device_printf(sc->mly_dev, "complete %04d/%04d\n",
2804 		      sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2805     }
2806 }
2807 #endif
2808 
2809 
2810 /********************************************************************************
2811  ********************************************************************************
2812                                                          Control device interface
2813  ********************************************************************************
2814  ********************************************************************************/
2815 
2816 /********************************************************************************
2817  * Accept an open operation on the control device.
2818  */
2819 static int
2820 mly_user_open(struct dev_open_args *ap)
2821 {
2822     cdev_t		dev = ap->a_head.a_dev;
2823     int			unit = minor(dev);
2824     struct mly_softc	*sc = devclass_get_softc(devclass_find("mly"), unit);
2825 
2826     sc->mly_state |= MLY_STATE_OPEN;
2827     return(0);
2828 }
2829 
2830 /********************************************************************************
2831  * Accept the last close on the control device.
2832  */
2833 static int
2834 mly_user_close(struct dev_close_args *ap)
2835 {
2836     cdev_t		dev = ap->a_head.a_dev;
2837     int			unit = minor(dev);
2838     struct mly_softc	*sc = devclass_get_softc(devclass_find("mly"), unit);
2839 
2840     sc->mly_state &= ~MLY_STATE_OPEN;
2841     return (0);
2842 }
2843 
2844 /********************************************************************************
2845  * Handle controller-specific control operations.
2846  */
2847 static int
2848 mly_user_ioctl(struct dev_ioctl_args *ap)
2849 {
2850     cdev_t			dev = ap->a_head.a_dev;
2851     caddr_t			addr = ap->a_data;
2852     u_long			cmd = ap->a_cmd;
2853     struct mly_softc		*sc = (struct mly_softc *)dev->si_drv1;
2854     struct mly_user_command	*uc = (struct mly_user_command *)addr;
2855     struct mly_user_health	*uh = (struct mly_user_health *)addr;
2856 
2857     switch(cmd) {
2858     case MLYIO_COMMAND:
2859 	return(mly_user_command(sc, uc));
2860     case MLYIO_HEALTH:
2861 	return(mly_user_health(sc, uh));
2862     default:
2863 	return(ENOIOCTL);
2864     }
2865 }
2866 
2867 /********************************************************************************
2868  * Execute a command passed in from userspace.
2869  *
2870  * The control structure contains the actual command for the controller, as well
2871  * as the user-space data pointer and data size, and an optional sense buffer
2872  * size/pointer.  On completion, the data size is adjusted to the command
2873  * residual, and the sense buffer size to the size of the returned sense data.
2874  *
2875  */
2876 static int
2877 mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2878 {
2879     struct mly_command	*mc;
2880     int			error;
2881 
2882     /* allocate a command */
2883     if (mly_alloc_command(sc, &mc)) {
2884 	error = ENOMEM;
2885 	goto out;		/* XXX Linux version will wait for a command */
2886     }
2887 
2888     /* handle data size/direction */
2889     mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2890     if (mc->mc_length > 0)
2891 	mc->mc_data = kmalloc(mc->mc_length, M_DEVBUF, M_INTWAIT);
2892     if (uc->DataTransferLength > 0) {
2893 	mc->mc_flags |= MLY_CMD_DATAIN;
2894 	bzero(mc->mc_data, mc->mc_length);
2895     }
2896     if (uc->DataTransferLength < 0) {
2897 	mc->mc_flags |= MLY_CMD_DATAOUT;
2898 	if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2899 	    goto out;
2900     }
2901 
2902     /* copy the controller command */
2903     bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2904 
2905     /* clear command completion handler so that we get woken up */
2906     mc->mc_complete = NULL;
2907 
2908     /* execute the command */
2909     if ((error = mly_start(mc)) != 0)
2910 	goto out;
2911     crit_enter();
2912     while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2913 	tsleep(mc, 0, "mlyioctl", 0);
2914     crit_exit();
2915 
2916     /* return the data to userspace */
2917     if (uc->DataTransferLength > 0)
2918 	if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2919 	    goto out;
2920 
2921     /* return the sense buffer to userspace */
2922     if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2923 	if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2924 			     min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2925 	    goto out;
2926     }
2927 
2928     /* return command results to userspace (caller will copy out) */
2929     uc->DataTransferLength = mc->mc_resid;
2930     uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2931     uc->CommandStatus = mc->mc_status;
2932     error = 0;
2933 
2934  out:
2935     if (mc->mc_data != NULL)
2936 	kfree(mc->mc_data, M_DEVBUF);
2937     if (mc != NULL)
2938 	mly_release_command(mc);
2939     return(error);
2940 }
2941 
2942 /********************************************************************************
2943  * Return health status to userspace.  If the health change index in the user
2944  * structure does not match that currently exported by the controller, we
2945  * return the current status immediately.  Otherwise, we block until either
2946  * interrupted or new status is delivered.
2947  */
2948 static int
2949 mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2950 {
2951     struct mly_health_status		mh;
2952     int					error;
2953 
2954     /* fetch the current health status from userspace */
2955     if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2956 	return(error);
2957 
2958     /* spin waiting for a status update */
2959     crit_enter();
2960     error = EWOULDBLOCK;
2961     while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2962 	error = tsleep(&sc->mly_event_change, PCATCH, "mlyhealth", 0);
2963     crit_exit();
2964 
2965     /* copy the controller's health status buffer out (there is a race here if it changes again) */
2966     error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer,
2967 		    sizeof(uh->HealthStatusBuffer));
2968     return(error);
2969 }
2970 
2971 #ifdef MLY_DEBUG
2972 static int
2973 mly_timeout(struct mly_softc *sc)
2974 {
2975 	struct mly_command *mc;
2976 	int deadline;
2977 
2978 	deadline = time_uptime - MLY_CMD_TIMEOUT;
2979 	TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
2980 		if ((mc->mc_timestamp < deadline)) {
2981 			device_printf(sc->mly_dev,
2982 			    "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
2983 			    (int)(time_uptime - mc->mc_timestamp));
2984 		}
2985 	}
2986 
2987 	callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
2988 		      (timeout_t *)mly_timeout, sc);
2989 
2990 	return (0);
2991 }
2992 #endif
2993