xref: /dragonfly/sys/dev/raid/mpr/mpr.c (revision 03517d4e)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2016 Avago Technologies
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29  *
30  * $FreeBSD: head/sys/dev/mpr/mpr.c 330789 2018-03-12 05:02:22Z scottl $
31  */
32 
33 /* Communications core for Avago Technologies (LSI) MPT3 */
34 
35 /* TODO Move headers to mprvar */
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/conf.h>
44 #include <sys/bio.h>
45 #include <sys/malloc.h>
46 #include <sys/uio.h>
47 #include <sys/sysctl.h>
48 #include <sys/queue.h>
49 #include <sys/kthread.h>
50 #include <sys/taskqueue.h>
51 #include <sys/endian.h>
52 #include <sys/eventhandler.h>
53 #include <sys/sbuf.h>
54 #include <sys/caps.h>
55 
56 #include <sys/rman.h>
57 #include <sys/proc.h>
58 
59 #include <bus/pci/pcivar.h>
60 
61 #include <bus/cam/cam.h>
62 #include <bus/cam/cam_ccb.h>
63 #include <bus/cam/scsi/scsi_all.h>
64 
65 #include <dev/raid/mpr/mpi/mpi2_type.h>
66 #include <dev/raid/mpr/mpi/mpi2.h>
67 #include <dev/raid/mpr/mpi/mpi2_ioc.h>
68 #include <dev/raid/mpr/mpi/mpi2_sas.h>
69 #include <dev/raid/mpr/mpi/mpi2_pci.h>
70 #include <dev/raid/mpr/mpi/mpi2_cnfg.h>
71 #include <dev/raid/mpr/mpi/mpi2_init.h>
72 #include <dev/raid/mpr/mpi/mpi2_tool.h>
73 #include <dev/raid/mpr/mpr_ioctl.h>
74 #include <dev/raid/mpr/mprvar.h>
75 #include <dev/raid/mpr/mpr_table.h>
76 #include <dev/raid/mpr/mpr_sas.h>
77 
78 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
79 static int mpr_init_queues(struct mpr_softc *sc);
80 static void mpr_resize_queues(struct mpr_softc *sc);
81 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
82 static int mpr_transition_operational(struct mpr_softc *sc);
83 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
84 static void mpr_iocfacts_free(struct mpr_softc *sc);
85 static void mpr_startup(void *arg);
86 static int mpr_send_iocinit(struct mpr_softc *sc);
87 static int mpr_alloc_queues(struct mpr_softc *sc);
88 static int mpr_alloc_hw_queues(struct mpr_softc *sc);
89 static int mpr_alloc_replies(struct mpr_softc *sc);
90 static int mpr_alloc_requests(struct mpr_softc *sc);
91 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
92 static int mpr_attach_log(struct mpr_softc *sc);
93 static __inline void mpr_complete_command(struct mpr_softc *sc,
94     struct mpr_command *cm);
95 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
96     MPI2_EVENT_NOTIFICATION_REPLY *reply);
97 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
98 static void mpr_periodic(void *);
99 static int mpr_reregister_events(struct mpr_softc *sc);
100 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
101 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
102 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
103 static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS);
104 
105 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
106 
107 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
108 
109 /*
110  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
111  * any state and back to its initialization state machine.
112  */
113 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
114 
115 /*
116  * Added this union to smoothly convert le64toh cm->cm_desc.Words.
117  * Compiler only supports uint64_t to be passed as an argument.
118  * Otherwise it will throw this error:
119  * "aggregate value used where an integer was expected"
120  */
121 typedef union _reply_descriptor {
122         u64 word;
123         struct {
124                 u32 low;
125                 u32 high;
126         } u;
127 } reply_descriptor, request_descriptor;
128 
129 /* Rate limit chain-fail messages to 1 per minute */
130 static struct timeval mpr_chainfail_interval = { 60, 0 };
131 
132 /*
133  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
134  * If this function is called from process context, it can sleep
135  * and there is no harm to sleep, in case if this fuction is called
136  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
137  * based on sleep flags driver will call either msleep, pause or DELAY.
138  * msleep and pause are of same variant, but pause is used when mpr_mtx
139  * is not hold by driver.
140  */
141 static int
142 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
143 {
144 	uint32_t reg;
145 	int i, error, tries = 0;
146 	uint8_t first_wait_done = FALSE;
147 
148 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
149 
150 	/* Clear any pending interrupts */
151 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
152 
153 	mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag);
154 	/* Push the magic sequence */
155 	error = ETIMEDOUT;
156 	while (tries++ < 20) {
157 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
158 			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
159 			    mpt2_reset_magic[i]);
160 
161 		/* wait 100 msec */
162 		if (lockowned(&sc->mpr_lock) && sleep_flag == CAN_SLEEP)
163 			lksleep(&sc->msleep_fake_chan, &sc->mpr_lock, 0,
164 			    "mprdiag", hz < 10 ? 1 : hz / 10);
165 		else if (sleep_flag == CAN_SLEEP)
166 			tsleep(mpr_diag_reset, 0, "mprdiag", hz < 10 ? 1 : hz / 10);
167 		else
168 			DELAY(100 * 1000);
169 
170 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
171 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
172 			error = 0;
173 			break;
174 		}
175 	}
176 	if (error) {
177 		mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n",
178 		    error);
179 		return (error);
180 	}
181 
182 	/* Send the actual reset.  XXX need to refresh the reg? */
183 	reg |= MPI2_DIAG_RESET_ADAPTER;
184 	mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n",
185 	    reg);
186 	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
187 
188 	/* Wait up to 300 seconds in 50ms intervals */
189 	error = ETIMEDOUT;
190 	for (i = 0; i < 6000; i++) {
191 		/*
192 		 * Wait 50 msec. If this is the first time through, wait 256
193 		 * msec to satisfy Diag Reset timing requirements.
194 		 */
195 		if (first_wait_done) {
196 			if (lockowned(&sc->mpr_lock) && sleep_flag == CAN_SLEEP)
197 				lksleep(&sc->msleep_fake_chan, &sc->mpr_lock, 0,
198 				    "mprdiag", hz < 20 ? 1 : hz / 20);
199 			else if (sleep_flag == CAN_SLEEP)
200 				tsleep(mpr_diag_reset, 0, "mprdiag", hz < 20 ? 1: hz / 20);
201 			else
202 				DELAY(50 * 1000);
203 		} else {
204 			DELAY(256 * 1000);
205 			first_wait_done = TRUE;
206 		}
207 		/*
208 		 * Check for the RESET_ADAPTER bit to be cleared first, then
209 		 * wait for the RESET state to be cleared, which takes a little
210 		 * longer.
211 		 */
212 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
213 		if (reg & MPI2_DIAG_RESET_ADAPTER) {
214 			continue;
215 		}
216 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
217 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
218 			error = 0;
219 			break;
220 		}
221 	}
222 	if (error) {
223 		mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n",
224 		    error);
225 		return (error);
226 	}
227 
228 	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
229 	mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n");
230 
231 	return (0);
232 }
233 
234 static int
235 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
236 {
237 	int error;
238 
239 	MPR_FUNCTRACE(sc);
240 
241 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
242 
243 	error = 0;
244 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
245 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
246 	    MPI2_DOORBELL_FUNCTION_SHIFT);
247 
248 	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
249 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
250 		    "Doorbell handshake failed\n");
251 		error = ETIMEDOUT;
252 	}
253 
254 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
255 	return (error);
256 }
257 
258 static int
259 mpr_transition_ready(struct mpr_softc *sc)
260 {
261 	uint32_t reg, state;
262 	int error, tries = 0;
263 	int sleep_flags;
264 
265 	MPR_FUNCTRACE(sc);
266 	/* If we are in attach call, do not sleep */
267 	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
268 	    ? CAN_SLEEP : NO_SLEEP;
269 
270 	error = 0;
271 
272 	mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n",
273 	    __func__, sleep_flags);
274 
275 	while (tries++ < 1200) {
276 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
277 		mpr_dprint(sc, MPR_INIT, "  Doorbell= 0x%x\n", reg);
278 
279 		/*
280 		 * Ensure the IOC is ready to talk.  If it's not, try
281 		 * resetting it.
282 		 */
283 		if (reg & MPI2_DOORBELL_USED) {
284 			mpr_dprint(sc, MPR_INIT, "  Not ready, sending diag "
285 			    "reset\n");
286 			mpr_diag_reset(sc, sleep_flags);
287 			DELAY(50000);
288 			continue;
289 		}
290 
291 		/* Is the adapter owned by another peer? */
292 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
293 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
294 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the "
295 			    "control of another peer host, aborting "
296 			    "initialization.\n");
297 			error = ENXIO;
298 			break;
299 		}
300 
301 		state = reg & MPI2_IOC_STATE_MASK;
302 		if (state == MPI2_IOC_STATE_READY) {
303 			/* Ready to go! */
304 			error = 0;
305 			break;
306 		} else if (state == MPI2_IOC_STATE_FAULT) {
307 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault "
308 			    "state 0x%x, resetting\n",
309 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
310 			mpr_diag_reset(sc, sleep_flags);
311 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
312 			/* Need to take ownership */
313 			mpr_message_unit_reset(sc, sleep_flags);
314 		} else if (state == MPI2_IOC_STATE_RESET) {
315 			/* Wait a bit, IOC might be in transition */
316 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
317 			    "IOC in unexpected reset state\n");
318 		} else {
319 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
320 			    "IOC in unknown state 0x%x\n", state);
321 			error = EINVAL;
322 			break;
323 		}
324 
325 		/* Wait 50ms for things to settle down. */
326 		DELAY(50000);
327 	}
328 
329 	if (error)
330 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
331 		    "Cannot transition IOC to ready\n");
332 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
333 	return (error);
334 }
335 
336 static int
337 mpr_transition_operational(struct mpr_softc *sc)
338 {
339 	uint32_t reg, state;
340 	int error;
341 
342 	MPR_FUNCTRACE(sc);
343 
344 	error = 0;
345 	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
346 	mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
347 
348 	state = reg & MPI2_IOC_STATE_MASK;
349 	if (state != MPI2_IOC_STATE_READY) {
350 		mpr_dprint(sc, MPR_INIT, "IOC not ready\n");
351 		if ((error = mpr_transition_ready(sc)) != 0) {
352 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
353 			    "failed to transition ready, exit\n");
354 			return (error);
355 		}
356 	}
357 
358 	error = mpr_send_iocinit(sc);
359 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
360 
361 	return (error);
362 }
363 
364 static void
365 mpr_resize_queues(struct mpr_softc *sc)
366 {
367 	u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size;
368 
369 	/*
370 	 * Size the queues. Since the reply queues always need one free
371 	 * entry, we'll deduct one reply message here.  The LSI documents
372 	 * suggest instead to add a count to the request queue, but I think
373 	 * that it's better to deduct from reply queue.
374 	 */
375 	prireqcr = MAX(1, sc->max_prireqframes);
376 	prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
377 
378 	reqcr = MAX(2, sc->max_reqframes);
379 	reqcr = MIN(reqcr, sc->facts->RequestCredit);
380 
381 	sc->num_reqs = prireqcr + reqcr;
382 	sc->num_prireqs = prireqcr;
383 	sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
384 	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
385 
386 	/* Store the request frame size in bytes rather than as 32bit words */
387 	sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
388 
389 	/*
390 	 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
391 	 * get the size of a Chain Frame.  Previous versions use the size as a
392 	 * Request Frame for the Chain Frame size.  If IOCMaxChainSegmentSize
393 	 * is 0, use the default value.  The IOCMaxChainSegmentSize is the
394 	 * number of 16-byte elelements that can fit in a Chain Frame, which is
395 	 * the size of an IEEE Simple SGE.
396 	 */
397 	if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
398 		chain_seg_size = htole16(sc->facts->IOCMaxChainSegmentSize);
399 		if (chain_seg_size == 0)
400 			chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE;
401 		sc->chain_frame_size = chain_seg_size *
402 		    MPR_MAX_CHAIN_ELEMENT_SIZE;
403 	} else {
404 		sc->chain_frame_size = sc->reqframesz;
405 	}
406 
407 	/*
408 	 * Max IO Size is Page Size * the following:
409 	 * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
410 	 * + 1 for no chain needed in last frame
411 	 *
412 	 * If user suggests a Max IO size to use, use the smaller of the
413 	 * user's value and the calculated value as long as the user's
414 	 * value is larger than 0. The user's value is in pages.
415 	 */
416 	sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1;
417 	maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
418 
419 	/*
420 	 * If I/O size limitation requested then use it and pass up to CAM.
421 	 * If not, use MAXPHYS as an optimization hint, but report HW limit.
422 	 */
423 	if (sc->max_io_pages > 0) {
424 		maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
425 		sc->maxio = maxio;
426 	} else {
427 		sc->maxio = maxio;
428 		maxio = min(maxio, MAXPHYS);
429 	}
430 
431 	sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
432 	    sges_per_frame * reqcr;
433 	if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
434 		sc->num_chains = sc->max_chains;
435 
436 	/*
437 	 * Figure out the number of MSIx-based queues.  If the firmware or
438 	 * user has done something crazy and not allowed enough credit for
439 	 * the queues to be useful then don't enable multi-queue.
440 	 */
441 	if (sc->facts->MaxMSIxVectors < 2)
442 		sc->msi_msgs = 1;
443 
444 	if (sc->msi_msgs > 1) {
445 		sc->msi_msgs = MIN(sc->msi_msgs, ncpus);
446 		sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
447 		if (sc->num_reqs / sc->msi_msgs < 2)
448 			sc->msi_msgs = 1;
449 	}
450 
451 	mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
452 	    sc->msi_msgs, sc->num_reqs, sc->num_replies);
453 }
454 
455 /*
456  * This is called during attach and when re-initializing due to a Diag Reset.
457  * IOC Facts is used to allocate many of the structures needed by the driver.
458  * If called from attach, de-allocation is not required because the driver has
459  * not allocated any structures yet, but if called from a Diag Reset, previously
460  * allocated structures based on IOC Facts will need to be freed and re-
461  * allocated bases on the latest IOC Facts.
462  */
463 static int
464 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
465 {
466 	int error;
467 	Mpi2IOCFactsReply_t saved_facts;
468 	uint8_t saved_mode, reallocating;
469 
470 	mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__);
471 
472 	/* Save old IOC Facts and then only reallocate if Facts have changed */
473 	if (!attaching) {
474 		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
475 	}
476 
477 	/*
478 	 * Get IOC Facts.  In all cases throughout this function, panic if doing
479 	 * a re-initialization and only return the error if attaching so the OS
480 	 * can handle it.
481 	 */
482 	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
483 		if (attaching) {
484 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get "
485 			    "IOC Facts with error %d, exit\n", error);
486 			return (error);
487 		} else {
488 			panic("%s failed to get IOC Facts with error %d\n",
489 			    __func__, error);
490 		}
491 	}
492 
493 	MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
494 
495 	ksnprintf(sc->fw_version, sizeof(sc->fw_version),
496 	    "%02d.%02d.%02d.%02d",
497 	    sc->facts->FWVersion.Struct.Major,
498 	    sc->facts->FWVersion.Struct.Minor,
499 	    sc->facts->FWVersion.Struct.Unit,
500 	    sc->facts->FWVersion.Struct.Dev);
501 
502 	mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
503 	    MPR_DRIVER_VERSION);
504 	mpr_dprint(sc, MPR_INFO,
505 	    "IOCCapabilities: %pb%i\n",
506 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
507 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
508 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
509 	    "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV",
510 	    sc->facts->IOCCapabilities);
511 
512 	/*
513 	 * If the chip doesn't support event replay then a hard reset will be
514 	 * required to trigger a full discovery.  Do the reset here then
515 	 * retransition to Ready.  A hard reset might have already been done,
516 	 * but it doesn't hurt to do it again.  Only do this if attaching, not
517 	 * for a Diag Reset.
518 	 */
519 	if (attaching && ((sc->facts->IOCCapabilities &
520 	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
521 		mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n");
522 		mpr_diag_reset(sc, NO_SLEEP);
523 		if ((error = mpr_transition_ready(sc)) != 0) {
524 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
525 			    "transition to ready with error %d, exit\n",
526 			    error);
527 			return (error);
528 		}
529 	}
530 
531 	/*
532 	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
533 	 * changed from the previous IOC Facts, log a warning, but only if
534 	 * checking this after a Diag Reset and not during attach.
535 	 */
536 	saved_mode = sc->ir_firmware;
537 	if (sc->facts->IOCCapabilities &
538 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
539 		sc->ir_firmware = 1;
540 	if (!attaching) {
541 		if (sc->ir_firmware != saved_mode) {
542 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode "
543 			    "in IOC Facts does not match previous mode\n");
544 		}
545 	}
546 
547 	/* Only deallocate and reallocate if relevant IOC Facts have changed */
548 	reallocating = FALSE;
549 	sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
550 
551 	if ((!attaching) &&
552 	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
553 	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
554 	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
555 	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
556 	    (saved_facts.ProductID != sc->facts->ProductID) ||
557 	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
558 	    (saved_facts.IOCRequestFrameSize !=
559 	    sc->facts->IOCRequestFrameSize) ||
560 	    (saved_facts.IOCMaxChainSegmentSize !=
561 	    sc->facts->IOCMaxChainSegmentSize) ||
562 	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
563 	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
564 	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
565 	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
566 	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
567 	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
568 	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
569 	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
570 	    (saved_facts.MaxPersistentEntries !=
571 	    sc->facts->MaxPersistentEntries))) {
572 		reallocating = TRUE;
573 
574 		/* Record that we reallocated everything */
575 		sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
576 	}
577 
578 	/*
579 	 * Some things should be done if attaching or re-allocating after a Diag
580 	 * Reset, but are not needed after a Diag Reset if the FW has not
581 	 * changed.
582 	 */
583 	if (attaching || reallocating) {
584 		/*
585 		 * Check if controller supports FW diag buffers and set flag to
586 		 * enable each type.
587 		 */
588 		if (sc->facts->IOCCapabilities &
589 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
590 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
591 			    enabled = TRUE;
592 		if (sc->facts->IOCCapabilities &
593 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
594 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
595 			    enabled = TRUE;
596 		if (sc->facts->IOCCapabilities &
597 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
598 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
599 			    enabled = TRUE;
600 
601 		/*
602 		 * Set flags for some supported items.
603 		 */
604 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
605 			sc->eedp_enabled = TRUE;
606 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
607 			sc->control_TLR = TRUE;
608 		if (sc->facts->IOCCapabilities &
609 		    MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
610 			sc->atomic_desc_capable = TRUE;
611 
612 		mpr_resize_queues(sc);
613 
614 		/*
615 		 * Initialize all Tail Queues
616 		 */
617 		TAILQ_INIT(&sc->req_list);
618 		TAILQ_INIT(&sc->high_priority_req_list);
619 		TAILQ_INIT(&sc->chain_list);
620 		TAILQ_INIT(&sc->prp_page_list);
621 		TAILQ_INIT(&sc->tm_list);
622 	}
623 
624 	/*
625 	 * If doing a Diag Reset and the FW is significantly different
626 	 * (reallocating will be set above in IOC Facts comparison), then all
627 	 * buffers based on the IOC Facts will need to be freed before they are
628 	 * reallocated.
629 	 */
630 	if (reallocating) {
631 		mpr_iocfacts_free(sc);
632 		mprsas_realloc_targets(sc, saved_facts.MaxTargets +
633 		    saved_facts.MaxVolumes);
634 	}
635 
636 	/*
637 	 * Any deallocation has been completed.  Now start reallocating
638 	 * if needed.  Will only need to reallocate if attaching or if the new
639 	 * IOC Facts are different from the previous IOC Facts after a Diag
640 	 * Reset. Targets have already been allocated above if needed.
641 	 */
642 	error = 0;
643 	while (attaching || reallocating) {
644 		if ((error = mpr_alloc_hw_queues(sc)) != 0)
645 			break;
646 		if ((error = mpr_alloc_replies(sc)) != 0)
647 			break;
648 		if ((error = mpr_alloc_requests(sc)) != 0)
649 			break;
650 		if ((error = mpr_alloc_queues(sc)) != 0)
651 			break;
652 		break;
653 	}
654 	if (error) {
655 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
656 		    "Failed to alloc queues with error %d\n", error);
657 		mpr_free(sc);
658 		return (error);
659 	}
660 
661 	/* Always initialize the queues */
662 	bzero(sc->free_queue, sc->fqdepth * 4);
663 	mpr_init_queues(sc);
664 
665 	/*
666 	 * Always get the chip out of the reset state, but only panic if not
667 	 * attaching.  If attaching and there is an error, that is handled by
668 	 * the OS.
669 	 */
670 	error = mpr_transition_operational(sc);
671 	if (error != 0) {
672 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
673 		    "transition to operational with error %d\n", error);
674 		mpr_free(sc);
675 		return (error);
676 	}
677 
678 	/*
679 	 * Finish the queue initialization.
680 	 * These are set here instead of in mpr_init_queues() because the
681 	 * IOC resets these values during the state transition in
682 	 * mpr_transition_operational().  The free index is set to 1
683 	 * because the corresponding index in the IOC is set to 0, and the
684 	 * IOC treats the queues as full if both are set to the same value.
685 	 * Hence the reason that the queue can't hold all of the possible
686 	 * replies.
687 	 */
688 	sc->replypostindex = 0;
689 	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
690 	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
691 
692 	/*
693 	 * Attach the subsystems so they can prepare their event masks.
694 	 * XXX Should be dynamic so that IM/IR and user modules can attach
695 	 */
696 	error = 0;
697 	while (attaching) {
698 		mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n");
699 		if ((error = mpr_attach_log(sc)) != 0)
700 			break;
701 		if ((error = mpr_attach_sas(sc)) != 0)
702 			break;
703 		if ((error = mpr_attach_user(sc)) != 0)
704 			break;
705 		break;
706 	}
707 	if (error) {
708 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
709 		    "Failed to attach all subsystems: error %d\n", error);
710 		mpr_free(sc);
711 		return (error);
712 	}
713 
714 	/*
715 	 * XXX If the number of MSI-X vectors changes during re-init, this
716 	 * won't see it and adjust.
717 	 */
718 	if (attaching && (error = mpr_pci_setup_interrupts(sc)) != 0) {
719 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
720 		    "Failed to setup interrupts\n");
721 		mpr_free(sc);
722 		return (error);
723 	}
724 
725 	return (error);
726 }
727 
728 /*
729  * This is called if memory is being free (during detach for example) and when
730  * buffers need to be reallocated due to a Diag Reset.
731  */
732 static void
733 mpr_iocfacts_free(struct mpr_softc *sc)
734 {
735 	struct mpr_command *cm;
736 	int i;
737 
738 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
739 
740 	if (sc->free_busaddr != 0)
741 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
742 	if (sc->free_queue != NULL)
743 		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
744 		    sc->queues_map);
745 	if (sc->queues_dmat != NULL)
746 		bus_dma_tag_destroy(sc->queues_dmat);
747 
748 	if (sc->chain_frames != NULL) {
749 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
750 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
751 		    sc->chain_map);
752 	}
753 	if (sc->chain_dmat != NULL)
754 		bus_dma_tag_destroy(sc->chain_dmat);
755 
756 	if (sc->sense_busaddr != 0)
757 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
758 	if (sc->sense_frames != NULL)
759 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
760 		    sc->sense_map);
761 	if (sc->sense_dmat != NULL)
762 		bus_dma_tag_destroy(sc->sense_dmat);
763 
764 	if (sc->prp_page_busaddr != 0)
765 		bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
766 	if (sc->prp_pages != NULL)
767 		bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
768 		    sc->prp_page_map);
769 	if (sc->prp_page_dmat != NULL)
770 		bus_dma_tag_destroy(sc->prp_page_dmat);
771 
772 	if (sc->reply_busaddr != 0)
773 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
774 	if (sc->reply_frames != NULL)
775 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
776 		    sc->reply_map);
777 	if (sc->reply_dmat != NULL)
778 		bus_dma_tag_destroy(sc->reply_dmat);
779 
780 	if (sc->req_busaddr != 0)
781 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
782 	if (sc->req_frames != NULL)
783 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
784 	if (sc->req_dmat != NULL)
785 		bus_dma_tag_destroy(sc->req_dmat);
786 
787 	if (sc->chains != NULL)
788 		kfree(sc->chains, M_MPR);
789 	if (sc->prps != NULL)
790 		kfree(sc->prps, M_MPR);
791 	if (sc->commands != NULL) {
792 		for (i = 1; i < sc->num_reqs; i++) {
793 			cm = &sc->commands[i];
794 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
795 		}
796 		kfree(sc->commands, M_MPR);
797 	}
798 	if (sc->buffer_dmat != NULL)
799 		bus_dma_tag_destroy(sc->buffer_dmat);
800 
801 	mpr_pci_free_interrupts(sc);
802 	kfree(sc->queues, M_MPR);
803 	sc->queues = NULL;
804 }
805 
806 /*
807  * The terms diag reset and hard reset are used interchangeably in the MPI
808  * docs to mean resetting the controller chip.  In this code diag reset
809  * cleans everything up, and the hard reset function just sends the reset
810  * sequence to the chip.  This should probably be refactored so that every
811  * subsystem gets a reset notification of some sort, and can clean up
812  * appropriately.
813  */
814 int
815 mpr_reinit(struct mpr_softc *sc)
816 {
817 	int error;
818 	struct mprsas_softc *sassc;
819 
820 	sassc = sc->sassc;
821 
822 	MPR_FUNCTRACE(sc);
823 
824 	KKASSERT(lockowned(&sc->mpr_lock));
825 
826 	mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n");
827 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
828 		mpr_dprint(sc, MPR_INIT, "Reset already in progress\n");
829 		return 0;
830 	}
831 
832 	/*
833 	 * Make sure the completion callbacks can recognize they're getting
834 	 * a NULL cm_reply due to a reset.
835 	 */
836 	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
837 
838 	/*
839 	 * Mask interrupts here.
840 	 */
841 	mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n");
842 	mpr_mask_intr(sc);
843 
844 	error = mpr_diag_reset(sc, CAN_SLEEP);
845 	if (error != 0) {
846 		panic("%s hard reset failed with error %d\n", __func__, error);
847 	}
848 
849 	/* Restore the PCI state, including the MSI-X registers */
850 	mpr_pci_restore(sc);
851 
852 	/* Give the I/O subsystem special priority to get itself prepared */
853 	mprsas_handle_reinit(sc);
854 
855 	/*
856 	 * Get IOC Facts and allocate all structures based on this information.
857 	 * The attach function will also call mpr_iocfacts_allocate at startup.
858 	 * If relevant values have changed in IOC Facts, this function will free
859 	 * all of the memory based on IOC Facts and reallocate that memory.
860 	 */
861 	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
862 		panic("%s IOC Facts based allocation failed with error %d\n",
863 		    __func__, error);
864 	}
865 
866 	/*
867 	 * Mapping structures will be re-allocated after getting IOC Page8, so
868 	 * free these structures here.
869 	 */
870 	mpr_mapping_exit(sc);
871 
872 	/*
873 	 * The static page function currently read is IOC Page8.  Others can be
874 	 * added in future.  It's possible that the values in IOC Page8 have
875 	 * changed after a Diag Reset due to user modification, so always read
876 	 * these.  Interrupts are masked, so unmask them before getting config
877 	 * pages.
878 	 */
879 	mpr_unmask_intr(sc);
880 	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
881 	mpr_base_static_config_pages(sc);
882 
883 	/*
884 	 * Some mapping info is based in IOC Page8 data, so re-initialize the
885 	 * mapping tables.
886 	 */
887 	mpr_mapping_initialize(sc);
888 
889 	/*
890 	 * Restart will reload the event masks clobbered by the reset, and
891 	 * then enable the port.
892 	 */
893 	mpr_reregister_events(sc);
894 
895 	/* the end of discovery will release the simq, so we're done. */
896 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n",
897 	    sc, sc->replypostindex, sc->replyfreeindex);
898 	mprsas_release_simq_reinit(sassc);
899 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
900 
901 	return 0;
902 }
903 
904 /* Wait for the chip to ACK a word that we've put into its FIFO
905  * Wait for <timeout> seconds. In single loop wait for busy loop
906  * for 500 microseconds.
907  * Total is [ 0.5 * (2000 * <timeout>) ] in milliseconds.
908  * */
909 static int
910 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
911 {
912 	u32 cntdn, count;
913 	u32 int_status;
914 	u32 doorbell;
915 
916 	count = 0;
917 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
918 	do {
919 		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
920 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
921 			mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), "
922 			    "timeout(%d)\n", __func__, count, timeout);
923 			return 0;
924 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
925 			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
926 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
927 			    MPI2_IOC_STATE_FAULT) {
928 				mpr_dprint(sc, MPR_FAULT,
929 				    "fault_state(0x%04x)!\n", doorbell);
930 				return (EFAULT);
931 			}
932 		} else if (int_status == 0xFFFFFFFF)
933 			goto out;
934 
935 		/*
936 		 * If it can sleep, sleep for 1 millisecond, else busy loop for
937  		 * 0.5 millisecond
938 		 */
939 		if (lockowned(&sc->mpr_lock) && sleep_flag == CAN_SLEEP)
940 			lksleep(&sc->msleep_fake_chan, &sc->mpr_lock, 0, "mprdba",
941 			    hz < 1000 ? 1 : hz / 1000);
942 		else if (sleep_flag == CAN_SLEEP)
943 			tsleep(mpr_wait_db_ack, 0, "mprdba", hz < 1000 ? 1 : hz / 1000);
944 		else
945 			DELAY(500);
946 		count++;
947 	} while (--cntdn);
948 
949 out:
950 	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
951 		"int_status(%x)!\n", __func__, count, int_status);
952 	return (ETIMEDOUT);
953 }
954 
955 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
956 static int
957 mpr_wait_db_int(struct mpr_softc *sc)
958 {
959 	int retry;
960 
961 	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
962 		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
963 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
964 			return (0);
965 		DELAY(2000);
966 	}
967 	return (ETIMEDOUT);
968 }
969 
970 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
971 static int
972 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
973     int req_sz, int reply_sz, int timeout)
974 {
975 	uint32_t *data32;
976 	uint16_t *data16;
977 	int i, count, ioc_sz, residual;
978 	int sleep_flags = CAN_SLEEP;
979 
980 	/* Step 1 */
981 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
982 
983 	/* Step 2 */
984 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
985 		return (EBUSY);
986 
987 	/* Step 3
988 	 * Announce that a message is coming through the doorbell.  Messages
989 	 * are pushed at 32bit words, so round up if needed.
990 	 */
991 	count = (req_sz + 3) / 4;
992 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
993 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
994 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
995 
996 	/* Step 4 */
997 	if (mpr_wait_db_int(sc) ||
998 	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
999 		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
1000 		return (ENXIO);
1001 	}
1002 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1003 	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1004 		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
1005 		return (ENXIO);
1006 	}
1007 
1008 	/* Step 5 */
1009 	/* Clock out the message data synchronously in 32-bit dwords*/
1010 	data32 = (uint32_t *)req;
1011 	for (i = 0; i < count; i++) {
1012 		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
1013 		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1014 			mpr_dprint(sc, MPR_FAULT,
1015 			    "Timeout while writing doorbell\n");
1016 			return (ENXIO);
1017 		}
1018 	}
1019 
1020 	/* Step 6 */
1021 	/* Clock in the reply in 16-bit words.  The total length of the
1022 	 * message is always in the 4th byte, so clock out the first 2 words
1023 	 * manually, then loop the rest.
1024 	 */
1025 	data16 = (uint16_t *)reply;
1026 	if (mpr_wait_db_int(sc) != 0) {
1027 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
1028 		return (ENXIO);
1029 	}
1030 	data16[0] =
1031 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1032 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1033 	if (mpr_wait_db_int(sc) != 0) {
1034 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
1035 		return (ENXIO);
1036 	}
1037 	data16[1] =
1038 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1039 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1040 
1041 	/* Number of 32bit words in the message */
1042 	ioc_sz = reply->MsgLength;
1043 
1044 	/*
1045 	 * Figure out how many 16bit words to clock in without overrunning.
1046 	 * The precision loss with dividing reply_sz can safely be
1047 	 * ignored because the messages can only be multiples of 32bits.
1048 	 */
1049 	residual = 0;
1050 	count = MIN((reply_sz / 4), ioc_sz) * 2;
1051 	if (count < ioc_sz * 2) {
1052 		residual = ioc_sz * 2 - count;
1053 		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
1054 		    "residual message words\n", residual);
1055 	}
1056 
1057 	for (i = 2; i < count; i++) {
1058 		if (mpr_wait_db_int(sc) != 0) {
1059 			mpr_dprint(sc, MPR_FAULT,
1060 			    "Timeout reading doorbell %d\n", i);
1061 			return (ENXIO);
1062 		}
1063 		data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
1064 		    MPI2_DOORBELL_DATA_MASK;
1065 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1066 	}
1067 
1068 	/*
1069 	 * Pull out residual words that won't fit into the provided buffer.
1070 	 * This keeps the chip from hanging due to a driver programming
1071 	 * error.
1072 	 */
1073 	while (residual--) {
1074 		if (mpr_wait_db_int(sc) != 0) {
1075 			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
1076 			return (ENXIO);
1077 		}
1078 		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1079 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1080 	}
1081 
1082 	/* Step 7 */
1083 	if (mpr_wait_db_int(sc) != 0) {
1084 		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
1085 		return (ENXIO);
1086 	}
1087 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1088 		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
1089 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1090 
1091 	return (0);
1092 }
1093 
1094 static void
1095 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
1096 {
1097 	request_descriptor rd;
1098 
1099 	MPR_FUNCTRACE(sc);
1100 	mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
1101 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1102 
1103 	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
1104 	    MPR_FLAGS_SHUTDOWN))
1105 		KKASSERT(lockowned(&sc->mpr_lock));
1106 
1107 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
1108 		sc->io_cmds_highwater++;
1109 
1110 	KASSERT(cm->cm_state == MPR_CM_STATE_BUSY, ("command not busy\n"));
1111 	cm->cm_state = MPR_CM_STATE_INQUEUE;
1112 
1113 	if (sc->atomic_desc_capable) {
1114 		rd.u.low = cm->cm_desc.Words.Low;
1115 		mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
1116 		    rd.u.low);
1117 	} else {
1118 		rd.u.low = cm->cm_desc.Words.Low;
1119 		rd.u.high = cm->cm_desc.Words.High;
1120 		rd.word = htole64(rd.word);
1121 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1122 		    rd.u.low);
1123 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1124 		    rd.u.high);
1125 	}
1126 }
1127 
1128 /*
1129  * Just the FACTS, ma'am.
1130  */
1131 static int
1132 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1133 {
1134 	MPI2_DEFAULT_REPLY *reply;
1135 	MPI2_IOC_FACTS_REQUEST request;
1136 	int error, req_sz, reply_sz;
1137 
1138 	MPR_FUNCTRACE(sc);
1139 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1140 
1141 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1142 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1143 	reply = (MPI2_DEFAULT_REPLY *)facts;
1144 
1145 	bzero(&request, req_sz);
1146 	request.Function = MPI2_FUNCTION_IOC_FACTS;
1147 	error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1148 
1149 	mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
1150 	return (error);
1151 }
1152 
1153 static int
1154 mpr_send_iocinit(struct mpr_softc *sc)
1155 {
1156 	MPI2_IOC_INIT_REQUEST	init;
1157 	MPI2_DEFAULT_REPLY	reply;
1158 	int req_sz, reply_sz, error;
1159 	struct timeval now;
1160 	uint64_t time_in_msec;
1161 
1162 	MPR_FUNCTRACE(sc);
1163 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1164 
1165 	/* Do a quick sanity check on proper initialization */
1166 	if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
1167 	    || (sc->replyframesz == 0)) {
1168 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
1169 		    "Driver not fully initialized for IOCInit\n");
1170 		return (EINVAL);
1171 	}
1172 
1173 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1174 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1175 	bzero(&init, req_sz);
1176 	bzero(&reply, reply_sz);
1177 
1178 	/*
1179 	 * Fill in the init block.  Note that most addresses are
1180 	 * deliberately in the lower 32bits of memory.  This is a micro-
1181 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1182 	 */
1183 	init.Function = MPI2_FUNCTION_IOC_INIT;
1184 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1185 	init.MsgVersion = htole16(MPI2_VERSION);
1186 	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1187 	init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
1188 	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1189 	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1190 	init.SenseBufferAddressHigh = 0;
1191 	init.SystemReplyAddressHigh = 0;
1192 	init.SystemRequestFrameBaseAddress.High = 0;
1193 	init.SystemRequestFrameBaseAddress.Low =
1194 	    htole32((uint32_t)sc->req_busaddr);
1195 	init.ReplyDescriptorPostQueueAddress.High = 0;
1196 	init.ReplyDescriptorPostQueueAddress.Low =
1197 	    htole32((uint32_t)sc->post_busaddr);
1198 	init.ReplyFreeQueueAddress.High = 0;
1199 	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1200 	getmicrotime(&now);
1201 	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1202 	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1203 	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1204 	init.HostPageSize = HOST_PAGE_SIZE_4K;
1205 
1206 	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1207 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1208 		error = ENXIO;
1209 
1210 	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1211 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
1212 	return (error);
1213 }
1214 
1215 void
1216 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1217 {
1218 	bus_addr_t *addr;
1219 
1220 	addr = arg;
1221 	*addr = segs[0].ds_addr;
1222 }
1223 
1224 void
1225 mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1226 {
1227 	struct mpr_busdma_context *ctx;
1228 	int need_unload, need_free;
1229 
1230 	ctx = (struct mpr_busdma_context *)arg;
1231 	need_unload = 0;
1232 	need_free = 0;
1233 
1234 	mpr_lock(ctx->softc);
1235 	ctx->error = error;
1236 	ctx->completed = 1;
1237 	if ((error == 0) && (ctx->abandoned == 0)) {
1238 		*ctx->addr = segs[0].ds_addr;
1239 	} else {
1240 		if (nsegs != 0)
1241 			need_unload = 1;
1242 		if (ctx->abandoned != 0)
1243 			need_free = 1;
1244 	}
1245 	if (need_free == 0)
1246 		wakeup(ctx);
1247 
1248 	mpr_unlock(ctx->softc);
1249 
1250 	if (need_unload != 0) {
1251 		bus_dmamap_unload(ctx->buffer_dmat,
1252 				  ctx->buffer_dmamap);
1253 		*ctx->addr = 0;
1254 	}
1255 
1256 	if (need_free != 0)
1257 		kfree(ctx, M_MPR);
1258 }
1259 
1260 static int
1261 mpr_alloc_queues(struct mpr_softc *sc)
1262 {
1263 	struct mpr_queue *q;
1264 	int nq, i;
1265 
1266 	nq = sc->msi_msgs;
1267 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq);
1268 
1269 	sc->queues = kmalloc(sizeof(struct mpr_queue) * nq, M_MPR,
1270 	     M_NOWAIT|M_ZERO);
1271 	if (sc->queues == NULL)
1272 		return (ENOMEM);
1273 
1274 	for (i = 0; i < nq; i++) {
1275 		q = &sc->queues[i];
1276 		mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q);
1277 		q->sc = sc;
1278 		q->qnum = i;
1279 	}
1280 	return (0);
1281 }
1282 
1283 static int
1284 mpr_alloc_hw_queues(struct mpr_softc *sc)
1285 {
1286 	bus_addr_t queues_busaddr;
1287 	uint8_t *queues;
1288 	int qsize, fqsize, pqsize;
1289 
1290 	/*
1291 	 * The reply free queue contains 4 byte entries in multiples of 16 and
1292 	 * aligned on a 16 byte boundary. There must always be an unused entry.
1293 	 * This queue supplies fresh reply frames for the firmware to use.
1294 	 *
1295 	 * The reply descriptor post queue contains 8 byte entries in
1296 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1297 	 * contains filled-in reply frames sent from the firmware to the host.
1298 	 *
1299 	 * These two queues are allocated together for simplicity.
1300 	 */
1301 	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1302 	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1303 	fqsize= sc->fqdepth * 4;
1304 	pqsize = sc->pqdepth * 8;
1305 	qsize = fqsize + pqsize;
1306 
1307         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1308 				16, 0,			/* algnmnt, boundary */
1309 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1310 				BUS_SPACE_MAXADDR,	/* highaddr */
1311                                 qsize,			/* maxsize */
1312                                 1,			/* nsegments */
1313                                 qsize,			/* maxsegsize */
1314                                 0,			/* flags */
1315                                 &sc->queues_dmat)) {
1316 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n");
1317 		return (ENOMEM);
1318         }
1319         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1320 	    &sc->queues_map)) {
1321 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n");
1322 		return (ENOMEM);
1323         }
1324         bzero(queues, qsize);
1325         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1326 	    mpr_memaddr_cb, &queues_busaddr, 0);
1327 
1328 	sc->free_queue = (uint32_t *)queues;
1329 	sc->free_busaddr = queues_busaddr;
1330 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1331 	sc->post_busaddr = queues_busaddr + fqsize;
1332 	mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n",
1333 	    (uintmax_t)sc->free_busaddr, fqsize);
1334 	mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n",
1335 	    (uintmax_t)sc->post_busaddr, pqsize);
1336 
1337 	return (0);
1338 }
1339 
1340 static int
1341 mpr_alloc_replies(struct mpr_softc *sc)
1342 {
1343 	int rsize, num_replies;
1344 
1345 	/* Store the reply frame size in bytes rather than as 32bit words */
1346 	sc->replyframesz = sc->facts->ReplyFrameSize * 4;
1347 
1348 	/*
1349 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1350 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1351 	 * replies can be used at once.
1352 	 */
1353 	num_replies = max(sc->fqdepth, sc->num_replies);
1354 
1355 	rsize = sc->replyframesz * num_replies;
1356         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1357 				4, 0,			/* algnmnt, boundary */
1358 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1359 				BUS_SPACE_MAXADDR,	/* highaddr */
1360                                 rsize,			/* maxsize */
1361                                 1,			/* nsegments */
1362                                 rsize,			/* maxsegsize */
1363                                 0,			/* flags */
1364                                 &sc->reply_dmat)) {
1365 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n");
1366 		return (ENOMEM);
1367         }
1368         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1369 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1370 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n");
1371 		return (ENOMEM);
1372         }
1373         bzero(sc->reply_frames, rsize);
1374         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1375 	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1376 	mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n",
1377 	    (uintmax_t)sc->reply_busaddr, rsize);
1378 
1379 	return (0);
1380 }
1381 
1382 static void
1383 mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1384 {
1385 	struct mpr_softc *sc = arg;
1386 	struct mpr_chain *chain;
1387 	bus_size_t bo;
1388 	int i, o, s;
1389 
1390 	if (error != 0)
1391 		return;
1392 
1393 	for (i = 0, o = 0, s = 0; s < nsegs; s++) {
1394 		for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len;
1395 		    bo += sc->chain_frame_size) {
1396 			chain = &sc->chains[i++];
1397 			chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
1398 			chain->chain_busaddr = segs[s].ds_addr + bo;
1399 			o += sc->chain_frame_size;
1400 			mpr_free_chain(sc, chain);
1401 		}
1402 		if (bo != segs[s].ds_len)
1403 			o += segs[s].ds_len - bo;
1404 	}
1405 	sc->chain_free_lowwater = i;
1406 }
1407 
1408 static int
1409 mpr_alloc_requests(struct mpr_softc *sc)
1410 {
1411 	struct mpr_command *cm;
1412 	int i, rsize, nsegs;
1413 
1414 	rsize = sc->reqframesz * sc->num_reqs;
1415         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1416 				16, 0,			/* algnmnt, boundary */
1417 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1418 				BUS_SPACE_MAXADDR,	/* highaddr */
1419                                 rsize,			/* maxsize */
1420                                 1,			/* nsegments */
1421                                 rsize,			/* maxsegsize */
1422                                 0,			/* flags */
1423                                 &sc->req_dmat)) {
1424 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n");
1425 		return (ENOMEM);
1426         }
1427         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1428 	    BUS_DMA_NOWAIT, &sc->req_map)) {
1429 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n");
1430 		return (ENOMEM);
1431         }
1432         bzero(sc->req_frames, rsize);
1433         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1434 	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1435 	mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n",
1436 	    (uintmax_t)sc->req_busaddr, rsize);
1437 
1438 	sc->chains = kmalloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR,
1439 	    M_NOWAIT | M_ZERO);
1440 	if (!sc->chains) {
1441 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1442 		return (ENOMEM);
1443 	}
1444 	rsize = sc->chain_frame_size * sc->num_chains;
1445 	if (bus_dma_tag_create( sc->mpr_parent_dmat,	/* parent */
1446 				16, 0,			/* algnmnt, boundary */
1447 				BUS_SPACE_MAXADDR,	/* lowaddr */
1448 				BUS_SPACE_MAXADDR,	/* highaddr */
1449 				rsize,			/* maxsize */
1450 				howmany(rsize, PAGE_SIZE), /* nsegments */
1451 				rsize,			/* maxsegsize */
1452 				0,			/* flags */
1453 				&sc->chain_dmat)) {
1454 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n");
1455 		return (ENOMEM);
1456 	}
1457 	if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1458 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
1459 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1460 		return (ENOMEM);
1461 	}
1462 	if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
1463 	    rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
1464 		mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n");
1465 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
1466 		    sc->chain_map);
1467 		return (ENOMEM);
1468 	}
1469 
1470 	rsize = MPR_SENSE_LEN * sc->num_reqs;
1471 	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1472 				1, 0,			/* algnmnt, boundary */
1473 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1474 				BUS_SPACE_MAXADDR,	/* highaddr */
1475                                 rsize,			/* maxsize */
1476                                 1,			/* nsegments */
1477                                 rsize,			/* maxsegsize */
1478                                 0,			/* flags */
1479                                 &sc->sense_dmat)) {
1480 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n");
1481 		return (ENOMEM);
1482         }
1483         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1484 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1485 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n");
1486 		return (ENOMEM);
1487         }
1488         bzero(sc->sense_frames, rsize);
1489         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1490 	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1491 	mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n",
1492 	    (uintmax_t)sc->sense_busaddr, rsize);
1493 
1494 	/*
1495 	 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1496 	 * these devices.
1497 	 */
1498 	if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1499 	    (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1500 		if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1501 			return (ENOMEM);
1502 	}
1503 
1504 	nsegs = (sc->maxio / PAGE_SIZE) + 1;
1505         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1506 				1, 0,			/* algnmnt, boundary */
1507 				BUS_SPACE_MAXADDR,	/* lowaddr */
1508 				BUS_SPACE_MAXADDR,	/* highaddr */
1509                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1510                                 nsegs,			/* nsegments */
1511                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1512                                 BUS_DMA_ALLOCNOW,	/* flags */
1513                                 &sc->buffer_dmat)) {
1514 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n");
1515 		return (ENOMEM);
1516         }
1517 
1518 	/*
1519 	 * SMID 0 cannot be used as a free command per the firmware spec.
1520 	 * Just drop that command instead of risking accounting bugs.
1521 	 */
1522 	sc->commands = kmalloc(sizeof(struct mpr_command) * sc->num_reqs,
1523 	    M_MPR, M_WAITOK | M_ZERO);
1524 	if (!sc->commands) {
1525 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate command memory\n");
1526 		return (ENOMEM);
1527 	}
1528 	for (i = 1; i < sc->num_reqs; i++) {
1529 		cm = &sc->commands[i];
1530 		cm->cm_req = sc->req_frames + i * sc->reqframesz;
1531 		cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
1532 		cm->cm_sense = &sc->sense_frames[i];
1533 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1534 		cm->cm_desc.Default.SMID = i;
1535 		cm->cm_sc = sc;
1536 		cm->cm_state = MPR_CM_STATE_BUSY;
1537 		TAILQ_INIT(&cm->cm_chain_list);
1538 		TAILQ_INIT(&cm->cm_prp_page_list);
1539 		callout_init_lk(&cm->cm_callout, &sc->mpr_lock);
1540 
1541 		/* XXX Is a failure here a critical problem? */
1542 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1543 		    == 0) {
1544 			if (i <= sc->num_prireqs)
1545 				mpr_free_high_priority_command(sc, cm);
1546 			else
1547 				mpr_free_command(sc, cm);
1548 		} else {
1549 			panic("failed to allocate command %d\n", i);
1550 			sc->num_reqs = i;
1551 			break;
1552 		}
1553 	}
1554 
1555 	return (0);
1556 }
1557 
1558 /*
1559  * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1560  * which are scatter/gather lists for NVMe devices.
1561  *
1562  * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1563  * and translated by FW.
1564  *
1565  * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1566  */
1567 static int
1568 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1569 {
1570 	int PRPs_per_page, PRPs_required, pages_required;
1571 	int rsize, i;
1572 	struct mpr_prp_page *prp_page;
1573 
1574 	/*
1575 	 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1576 	 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1577 	 * MAX_IO_SIZE / PAGE_SIZE = 256
1578 	 *
1579 	 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1580 	 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1581 	 * page (4096 / 8 = 512), so only one page is required for each I/O.
1582 	 *
1583 	 * Each of these buffers will need to be contiguous. For simplicity,
1584 	 * only one buffer is allocated here, which has all of the space
1585 	 * required for the NVMe Queue Depth. If there are problems allocating
1586 	 * this one buffer, this function will need to change to allocate
1587 	 * individual, contiguous NVME_QDEPTH buffers.
1588 	 *
1589 	 * The real calculation will use the real max io size. Above is just an
1590 	 * example.
1591 	 *
1592 	 */
1593 	PRPs_required = sc->maxio / PAGE_SIZE;
1594 	PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1595 	pages_required = (PRPs_required / PRPs_per_page) + 1;
1596 
1597 	sc->prp_buffer_size = PAGE_SIZE * pages_required;
1598 	rsize = sc->prp_buffer_size * NVME_QDEPTH;
1599 	if (bus_dma_tag_create( sc->mpr_parent_dmat,	/* parent */
1600 				4, 0,			/* algnmnt, boundary */
1601 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1602 				BUS_SPACE_MAXADDR,	/* highaddr */
1603 				rsize,			/* maxsize */
1604 				1,			/* nsegments */
1605 				rsize,			/* maxsegsize */
1606 				0,			/* flags */
1607 				&sc->prp_page_dmat)) {
1608 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA "
1609 		    "tag\n");
1610 		return (ENOMEM);
1611 	}
1612 	if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1613 	    BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1614 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n");
1615 		return (ENOMEM);
1616 	}
1617 	bzero(sc->prp_pages, rsize);
1618 	bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1619 	    rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1620 
1621 	sc->prps = kmalloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1622 	    M_WAITOK | M_ZERO);
1623 	for (i = 0; i < NVME_QDEPTH; i++) {
1624 		prp_page = &sc->prps[i];
1625 		prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1626 		    i * sc->prp_buffer_size);
1627 		prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1628 		    i * sc->prp_buffer_size);
1629 		mpr_free_prp_page(sc, prp_page);
1630 		sc->prp_pages_free_lowwater++;
1631 	}
1632 
1633 	return (0);
1634 }
1635 
1636 static int
1637 mpr_init_queues(struct mpr_softc *sc)
1638 {
1639 	int i;
1640 
1641 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1642 
1643 	/*
1644 	 * According to the spec, we need to use one less reply than we
1645 	 * have space for on the queue.  So sc->num_replies (the number we
1646 	 * use) should be less than sc->fqdepth (allocated size).
1647 	 */
1648 	if (sc->num_replies >= sc->fqdepth)
1649 		return (EINVAL);
1650 
1651 	/*
1652 	 * Initialize all of the free queue entries.
1653 	 */
1654 	for (i = 0; i < sc->fqdepth; i++) {
1655 		sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz);
1656 	}
1657 	sc->replyfreeindex = sc->num_replies;
1658 
1659 	return (0);
1660 }
1661 
1662 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1663  * Next are the global settings, if they exist.  Highest are the per-unit
1664  * settings, if they exist.
1665  */
1666 void
1667 mpr_get_tunables(struct mpr_softc *sc)
1668 {
1669 	char tmpstr[80];
1670 
1671 	/* XXX default to some debugging for now */
1672 	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1673 	sc->msi_enable = 1;
1674 	sc->max_chains = MPR_CHAIN_FRAMES;
1675 	sc->max_io_pages = MPR_MAXIO_PAGES;
1676 	sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1677 	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1678 	sc->use_phynum = 1;
1679 	sc->max_reqframes = MPR_REQ_FRAMES;
1680 	sc->max_prireqframes = MPR_PRI_REQ_FRAMES;
1681 	sc->max_replyframes = MPR_REPLY_FRAMES;
1682 	sc->max_evtframes = MPR_EVT_REPLY_FRAMES;
1683 
1684 	/*
1685 	 * Grab the global variables.
1686 	 */
1687 	TUNABLE_INT_FETCH("hw.mpr.debug_level", &sc->mpr_debug);
1688 	TUNABLE_INT_FETCH("hw.mpr.msi_enable", &sc->msi_enable);
1689 	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1690 	TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1691 	TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1692 	TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1693 	TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1694 	TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes);
1695 	TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes);
1696 	TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes);
1697 	TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes);
1698 
1699 	/* Grab the unit-instance variables */
1700 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1701 	    device_get_unit(sc->mpr_dev));
1702 	TUNABLE_INT_FETCH(tmpstr, &sc->mpr_debug);
1703 
1704 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.msi_enable",
1705 	    device_get_unit(sc->mpr_dev));
1706 	TUNABLE_INT_FETCH(tmpstr, &sc->msi_enable);
1707 
1708 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1709 	    device_get_unit(sc->mpr_dev));
1710 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1711 
1712 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1713 	    device_get_unit(sc->mpr_dev));
1714 	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1715 
1716 	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1717 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1718 	    device_get_unit(sc->mpr_dev));
1719 	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1720 
1721 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1722 	    device_get_unit(sc->mpr_dev));
1723 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1724 
1725 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1726 	    device_get_unit(sc->mpr_dev));
1727 	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1728 
1729 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1730 	    device_get_unit(sc->mpr_dev));
1731 	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1732 
1733 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes",
1734 	    device_get_unit(sc->mpr_dev));
1735 	TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1736 
1737 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes",
1738 	    device_get_unit(sc->mpr_dev));
1739 	TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1740 
1741 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes",
1742 	    device_get_unit(sc->mpr_dev));
1743 	TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1744 
1745 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes",
1746 	    device_get_unit(sc->mpr_dev));
1747 	TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1748 }
1749 
1750 static void
1751 mpr_setup_sysctl(struct mpr_softc *sc)
1752 {
1753 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1754 	struct sysctl_oid	*sysctl_tree = NULL;
1755 	char tmpstr[80], tmpstr2[80];
1756 
1757 	/*
1758 	 * Setup the sysctl variable so the user can change the debug level
1759 	 * on the fly.
1760 	 */
1761 	ksnprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1762 	    device_get_unit(sc->mpr_dev));
1763 	ksnprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1764 
1765 	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1766 	if (sysctl_ctx != NULL)
1767 		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1768 
1769 	if (sysctl_tree == NULL) {
1770 		sysctl_ctx_init(&sc->sysctl_ctx);
1771 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1772 		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1773 		    CTLFLAG_RD, 0, tmpstr);
1774 		if (sc->sysctl_tree == NULL)
1775 			return;
1776 		sysctl_ctx = &sc->sysctl_ctx;
1777 		sysctl_tree = sc->sysctl_tree;
1778 	}
1779 
1780 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1781 	    OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mpr_debug, 0,
1782 	    "mpr debug level");
1783 
1784 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1785 	    OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1786 	    "Total number of allocated request frames");
1787 
1788 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1789 	    OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1790 	    "Total number of allocated high priority request frames");
1791 
1792 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1793 	    OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1794 	    "Total number of allocated reply frames");
1795 
1796 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1797 	    OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1798 	    "Total number of event frames allocated");
1799 
1800 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1801 	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1802 	    strlen(sc->fw_version), "firmware version");
1803 
1804 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1805 	    OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
1806 	    strlen(MPR_DRIVER_VERSION), "driver version");
1807 
1808 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1809 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1810 	    &sc->io_cmds_active, 0, "number of currently active commands");
1811 
1812 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1813 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1814 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1815 
1816 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1817 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1818 	    &sc->chain_free, 0, "number of free chain elements");
1819 
1820 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1821 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1822 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1823 
1824 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1825 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1826 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1827 
1828 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1829 	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1830 	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1831 	    "IOCFacts)");
1832 
1833 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1834 	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1835 	    "enable SSU to SATA SSD/HDD at shutdown");
1836 
1837 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1838 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1839 	    &sc->chain_alloc_fail, 0, "chain allocation failures");
1840 
1841 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1842 	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1843 	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1844 	    "spinup after SATA ID error");
1845 
1846 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1847 	    OID_AUTO, "dump_reqs", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP, sc, 0,
1848 	    mpr_dump_reqs, "I", "Dump Active Requests");
1849 
1850 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1851 	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1852 	    "Use the phy number for enumeration");
1853 
1854 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1855 	    OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1856 	    &sc->prp_pages_free, 0, "number of free PRP pages");
1857 
1858 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1859 	    OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1860 	    &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1861 
1862 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1863 	    OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1864 	    &sc->prp_page_alloc_fail, 0, "PRP page allocation failures");
1865 }
1866 
1867 struct mpr_dumpreq_hdr {
1868 	uint32_t	smid;
1869 	uint32_t	state;
1870 	uint32_t	numframes;
1871 	uint32_t	deschi;
1872 	uint32_t	desclo;
1873 };
1874 
1875 static int
1876 mpr_dump_reqs(SYSCTL_HANDLER_ARGS)
1877 {
1878 	struct mpr_softc *sc;
1879 	struct mpr_chain *chain, *chain1;
1880 	struct mpr_command *cm;
1881 	struct mpr_dumpreq_hdr hdr;
1882 	struct sbuf *sb;
1883 	uint32_t smid, state;
1884 	int i, numreqs, error = 0;
1885 
1886 	sc = (struct mpr_softc *)arg1;
1887 
1888 	if ((error = caps_priv_check_self(SYSCAP_NODRIVER)) != 0)
1889 		return (error);
1890 
1891 	state = MPR_CM_STATE_INQUEUE;
1892 	smid = 1;
1893 	numreqs = sc->num_reqs;
1894 
1895 	if (req->newptr != NULL)
1896 		return (EINVAL);
1897 
1898 	if (smid == 0 || smid > sc->num_reqs)
1899 		return (EINVAL);
1900 	if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
1901 		numreqs = sc->num_reqs;
1902 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
1903 
1904 	/* Best effort, no locking */
1905 	for (i = smid; i < numreqs; i++) {
1906 		cm = &sc->commands[i];
1907 		if (cm->cm_state != state)
1908 			continue;
1909 		hdr.smid = i;
1910 		hdr.state = cm->cm_state;
1911 		hdr.numframes = 1;
1912 		hdr.deschi = cm->cm_desc.Words.High;
1913 		hdr.desclo = cm->cm_desc.Words.Low;
1914 		TAILQ_FOREACH_MUTABLE(chain, &cm->cm_chain_list, chain_link,
1915 		   chain1)
1916 			hdr.numframes++;
1917 		sbuf_bcat(sb, &hdr, sizeof(hdr));
1918 		sbuf_bcat(sb, cm->cm_req, 128);
1919 		TAILQ_FOREACH_MUTABLE(chain, &cm->cm_chain_list, chain_link,
1920 		    chain1)
1921 			sbuf_bcat(sb, chain->chain, 128);
1922 	}
1923 
1924 	error = sbuf_finish(sb);
1925 	sbuf_delete(sb);
1926 	return (error);
1927 }
1928 
1929 int
1930 mpr_attach(struct mpr_softc *sc)
1931 {
1932 	int error;
1933 
1934 	MPR_FUNCTRACE(sc);
1935 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1936 
1937 	lockinit(&sc->mpr_lock, "MPR lock", 0, LK_CANRECURSE);
1938 	callout_init_lk(&sc->periodic, &sc->mpr_lock);
1939 	callout_init_lk(&sc->device_check_callout, &sc->mpr_lock);
1940 	TAILQ_INIT(&sc->event_list);
1941 	timevalclear(&sc->lastfail);
1942 
1943 	if ((error = mpr_transition_ready(sc)) != 0) {
1944 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
1945 		    "Failed to transition ready\n");
1946 		return (error);
1947 	}
1948 
1949 	sc->facts = kmalloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
1950 	    M_ZERO|M_NOWAIT);
1951 	if (!sc->facts) {
1952 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
1953 		    "Cannot allocate memory, exit\n");
1954 		return (ENOMEM);
1955 	}
1956 
1957 	/*
1958 	 * Get IOC Facts and allocate all structures based on this information.
1959 	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
1960 	 * Facts. If relevant values have changed in IOC Facts, this function
1961 	 * will free all of the memory based on IOC Facts and reallocate that
1962 	 * memory.  If this fails, any allocated memory should already be freed.
1963 	 */
1964 	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
1965 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation "
1966 		    "failed with error %d\n", error);
1967 		return (error);
1968 	}
1969 
1970 	/* Start the periodic watchdog check on the IOC Doorbell */
1971 	mpr_periodic(sc);
1972 
1973 	/*
1974 	 * The portenable will kick off discovery events that will drive the
1975 	 * rest of the initialization process.  The CAM/SAS module will
1976 	 * hold up the boot sequence until discovery is complete.
1977 	 */
1978 	sc->mpr_ich.ich_func = mpr_startup;
1979 	sc->mpr_ich.ich_arg = sc;
1980 	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
1981 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
1982 		    "Cannot establish MPR config hook\n");
1983 		error = EINVAL;
1984 	}
1985 
1986 	/*
1987 	 * Allow IR to shutdown gracefully when shutdown occurs.
1988 	 */
1989 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1990 	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1991 
1992 	if (sc->shutdown_eh == NULL)
1993 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
1994 		    "shutdown event registration failed\n");
1995 
1996 	mpr_setup_sysctl(sc);
1997 
1998 	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
1999 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
2000 
2001 	return (error);
2002 }
2003 
2004 /* Run through any late-start handlers. */
2005 static void
2006 mpr_startup(void *arg)
2007 {
2008 	struct mpr_softc *sc;
2009 
2010 	sc = (struct mpr_softc *)arg;
2011 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2012 
2013 	mpr_lock(sc);
2014 	mpr_unmask_intr(sc);
2015 
2016 	/* initialize device mapping tables */
2017 	mpr_base_static_config_pages(sc);
2018 	mpr_mapping_initialize(sc);
2019 	mprsas_startup(sc);
2020 	mpr_unlock(sc);
2021 
2022 	mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n");
2023 	config_intrhook_disestablish(&sc->mpr_ich);
2024 	sc->mpr_ich.ich_arg = NULL;
2025 
2026 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2027 }
2028 
2029 /* Periodic watchdog.  Is called with the driver lock already held. */
2030 static void
2031 mpr_periodic(void *arg)
2032 {
2033 	struct mpr_softc *sc;
2034 	uint32_t db;
2035 
2036 	sc = (struct mpr_softc *)arg;
2037 	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
2038 		return;
2039 
2040 	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
2041 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2042 		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
2043 		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
2044 			panic("TEMPERATURE FAULT: STOPPING.");
2045 		}
2046 		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2047 		mpr_reinit(sc);
2048 	}
2049 
2050 	callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
2051 }
2052 
2053 static void
2054 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
2055     MPI2_EVENT_NOTIFICATION_REPLY *event)
2056 {
2057 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2058 
2059 	MPR_DPRINT_EVENT(sc, generic, event);
2060 
2061 	switch (event->Event) {
2062 	case MPI2_EVENT_LOG_DATA:
2063 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2064 		if (sc->mpr_debug & MPR_EVENT)
2065 			hexdump(event->EventData, event->EventDataLength, NULL,
2066 			    0);
2067 		break;
2068 	case MPI2_EVENT_LOG_ENTRY_ADDED:
2069 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2070 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2071 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2072 		     entry->LogSequence);
2073 		break;
2074 	default:
2075 		break;
2076 	}
2077 	return;
2078 }
2079 
2080 static int
2081 mpr_attach_log(struct mpr_softc *sc)
2082 {
2083 	uint8_t events[16];
2084 
2085 	bzero(events, 16);
2086 	setbit(events, MPI2_EVENT_LOG_DATA);
2087 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2088 
2089 	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
2090 	    &sc->mpr_log_eh);
2091 
2092 	return (0);
2093 }
2094 
2095 static int
2096 mpr_detach_log(struct mpr_softc *sc)
2097 {
2098 
2099 	if (sc->mpr_log_eh != NULL)
2100 		mpr_deregister_events(sc, sc->mpr_log_eh);
2101 	return (0);
2102 }
2103 
2104 /*
2105  * Free all of the driver resources and detach submodules.  Should be called
2106  * without the lock held.
2107  */
2108 int
2109 mpr_free(struct mpr_softc *sc)
2110 {
2111 	int error;
2112 
2113 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2114 	/* Turn off the watchdog */
2115 	mpr_lock(sc);
2116 	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
2117 	mpr_unlock(sc);
2118 	/* Lock must not be held for this */
2119 	callout_drain(&sc->periodic);
2120 	callout_drain(&sc->device_check_callout);
2121 
2122 	if (((error = mpr_detach_log(sc)) != 0) ||
2123 	    ((error = mpr_detach_sas(sc)) != 0)) {
2124 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach "
2125 		    "subsystems, error= %d, exit\n", error);
2126 		return (error);
2127 	}
2128 
2129 	mpr_detach_user(sc);
2130 
2131 	/* Put the IOC back in the READY state. */
2132 	mpr_lock(sc);
2133 	if ((error = mpr_transition_ready(sc)) != 0) {
2134 		mpr_unlock(sc);
2135 		return (error);
2136 	}
2137 	mpr_unlock(sc);
2138 
2139 	if (sc->facts != NULL)
2140 		kfree(sc->facts, M_MPR);
2141 
2142 	/*
2143 	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
2144 	 * to free these buffers too.
2145 	 */
2146 	mpr_iocfacts_free(sc);
2147 
2148 	if (sc->sysctl_tree != NULL)
2149 		sysctl_ctx_free(&sc->sysctl_ctx);
2150 
2151 	/* Deregister the shutdown function */
2152 	if (sc->shutdown_eh != NULL)
2153 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2154 
2155 	lockuninit(&sc->mpr_lock);
2156 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2157 
2158 	return (0);
2159 }
2160 
2161 static __inline void
2162 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
2163 {
2164 	MPR_FUNCTRACE(sc);
2165 
2166 	if (cm == NULL) {
2167 		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
2168 		return;
2169 	}
2170 
2171 	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
2172 		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
2173 
2174 	if (cm->cm_complete != NULL) {
2175 		mpr_dprint(sc, MPR_TRACE,
2176 		    "%s cm %p calling cm_complete %p data %p reply %p\n",
2177 		    __func__, cm, cm->cm_complete, cm->cm_complete_data,
2178 		    cm->cm_reply);
2179 		cm->cm_complete(sc, cm);
2180 	}
2181 
2182 	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
2183 		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
2184 		wakeup(cm);
2185 	}
2186 
2187 	if (sc->io_cmds_active != 0) {
2188 		sc->io_cmds_active--;
2189 	} else {
2190 		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
2191 		    "out of sync - resynching to 0\n");
2192 	}
2193 }
2194 
2195 static void
2196 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
2197 {
2198 	union loginfo_type {
2199 		u32	loginfo;
2200 		struct {
2201 			u32	subcode:16;
2202 			u32	code:8;
2203 			u32	originator:4;
2204 			u32	bus_type:4;
2205 		} dw;
2206 	};
2207 	union loginfo_type sas_loginfo;
2208 	char *originator_str = NULL;
2209 
2210 	sas_loginfo.loginfo = log_info;
2211 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2212 		return;
2213 
2214 	/* each nexus loss loginfo */
2215 	if (log_info == 0x31170000)
2216 		return;
2217 
2218 	/* eat the loginfos associated with task aborts */
2219 	if ((log_info == 30050000) || (log_info == 0x31140000) ||
2220 	    (log_info == 0x31130000))
2221 		return;
2222 
2223 	switch (sas_loginfo.dw.originator) {
2224 	case 0:
2225 		originator_str = "IOP";
2226 		break;
2227 	case 1:
2228 		originator_str = "PL";
2229 		break;
2230 	case 2:
2231 		originator_str = "IR";
2232 		break;
2233 	}
2234 
2235 	mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
2236 	    "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
2237 	    sas_loginfo.dw.code, sas_loginfo.dw.subcode);
2238 }
2239 
2240 static void
2241 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
2242 {
2243 	MPI2DefaultReply_t *mpi_reply;
2244 	u16 sc_status;
2245 
2246 	mpi_reply = (MPI2DefaultReply_t*)reply;
2247 	sc_status = le16toh(mpi_reply->IOCStatus);
2248 	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2249 		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2250 }
2251 
2252 void
2253 mpr_intr(void *data)
2254 {
2255 	struct mpr_softc *sc;
2256 	uint32_t status;
2257 
2258 	sc = (struct mpr_softc *)data;
2259 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2260 
2261 	/*
2262 	 * Check interrupt status register to flush the bus.  This is
2263 	 * needed for both INTx interrupts and driver-driven polling
2264 	 */
2265 	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2266 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2267 		return;
2268 
2269 	mpr_lock(sc);
2270 	mpr_intr_locked(data);
2271 	mpr_unlock(sc);
2272 	return;
2273 }
2274 
2275 /*
2276  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2277  * chip.  Hopefully this theory is correct.
2278  */
2279 void
2280 mpr_intr_msi(void *data)
2281 {
2282 	struct mpr_softc *sc;
2283 
2284 	sc = (struct mpr_softc *)data;
2285 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2286 	mpr_lock(sc);
2287 	mpr_intr_locked(data);
2288 	mpr_unlock(sc);
2289 	return;
2290 }
2291 
2292 /*
2293  * The locking is overly broad and simplistic, but easy to deal with for now.
2294  */
2295 void
2296 mpr_intr_locked(void *data)
2297 {
2298 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2299 	struct mpr_softc *sc;
2300 	struct mpr_command *cm = NULL;
2301 	uint8_t flags;
2302 	u_int pq;
2303 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2304 	mpr_fw_diagnostic_buffer_t *pBuffer;
2305 
2306 	sc = (struct mpr_softc *)data;
2307 
2308 	pq = sc->replypostindex;
2309 	mpr_dprint(sc, MPR_TRACE,
2310 	    "%s sc %p starting with replypostindex %u\n",
2311 	    __func__, sc, sc->replypostindex);
2312 
2313 	for ( ;; ) {
2314 		cm = NULL;
2315 		desc = &sc->post_queue[sc->replypostindex];
2316 		flags = desc->Default.ReplyFlags &
2317 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2318 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2319 		    (le32toh(desc->Words.High) == 0xffffffff))
2320 			break;
2321 
2322 		/* increment the replypostindex now, so that event handlers
2323 		 * and cm completion handlers which decide to do a diag
2324 		 * reset can zero it without it getting incremented again
2325 		 * afterwards, and we break out of this loop on the next
2326 		 * iteration since the reply post queue has been cleared to
2327 		 * 0xFF and all descriptors look unused (which they are).
2328 		 */
2329 		if (++sc->replypostindex >= sc->pqdepth)
2330 			sc->replypostindex = 0;
2331 
2332 		switch (flags) {
2333 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2334 		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2335 		case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2336 			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2337 			KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
2338 			    ("command not inqueue\n"));
2339 			cm->cm_state = MPR_CM_STATE_BUSY;
2340 			cm->cm_reply = NULL;
2341 			break;
2342 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2343 		{
2344 			uint32_t baddr;
2345 			uint8_t *reply;
2346 
2347 			/*
2348 			 * Re-compose the reply address from the address
2349 			 * sent back from the chip.  The ReplyFrameAddress
2350 			 * is the lower 32 bits of the physical address of
2351 			 * particular reply frame.  Convert that address to
2352 			 * host format, and then use that to provide the
2353 			 * offset against the virtual address base
2354 			 * (sc->reply_frames).
2355 			 */
2356 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2357 			reply = sc->reply_frames +
2358 				(baddr - ((uint32_t)sc->reply_busaddr));
2359 			/*
2360 			 * Make sure the reply we got back is in a valid
2361 			 * range.  If not, go ahead and panic here, since
2362 			 * we'll probably panic as soon as we deference the
2363 			 * reply pointer anyway.
2364 			 */
2365 			if ((reply < sc->reply_frames)
2366 			 || (reply > (sc->reply_frames +
2367 			     (sc->fqdepth * sc->replyframesz)))) {
2368 				kprintf("%s: WARNING: reply %p out of range!\n",
2369 				       __func__, reply);
2370 				kprintf("%s: reply_frames %p, fqdepth %d, "
2371 				       "frame size %d\n", __func__,
2372 				       sc->reply_frames, sc->fqdepth,
2373 				       sc->replyframesz);
2374 				kprintf("%s: baddr %#x,\n", __func__, baddr);
2375 				/* LSI-TODO. See Linux Code for Graceful exit */
2376 				panic("Reply address out of range");
2377 			}
2378 			if (le16toh(desc->AddressReply.SMID) == 0) {
2379 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2380 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2381 					/*
2382 					 * If SMID is 0 for Diag Buffer Post,
2383 					 * this implies that the reply is due to
2384 					 * a release function with a status that
2385 					 * the buffer has been released.  Set
2386 					 * the buffer flags accordingly.
2387 					 */
2388 					rel_rep =
2389 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2390 					if ((le16toh(rel_rep->IOCStatus) &
2391 					    MPI2_IOCSTATUS_MASK) ==
2392 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2393 					{
2394 						pBuffer =
2395 						    &sc->fw_diag_buffer_list[
2396 						    rel_rep->BufferType];
2397 						pBuffer->valid_data = TRUE;
2398 						pBuffer->owned_by_firmware =
2399 						    FALSE;
2400 						pBuffer->immediate = FALSE;
2401 					}
2402 				} else
2403 					mpr_dispatch_event(sc, baddr,
2404 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2405 					    reply);
2406 			} else {
2407 				cm = &sc->commands[
2408 				    le16toh(desc->AddressReply.SMID)];
2409 				KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
2410 				    ("command not inqueue\n"));
2411 				cm->cm_state = MPR_CM_STATE_BUSY;
2412 				cm->cm_reply = reply;
2413 				cm->cm_reply_data =
2414 				    le32toh(desc->AddressReply.
2415 				    ReplyFrameAddress);
2416 			}
2417 			break;
2418 		}
2419 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2420 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2421 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2422 		default:
2423 			/* Unhandled */
2424 			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2425 			    desc->Default.ReplyFlags);
2426 			cm = NULL;
2427 			break;
2428 		}
2429 
2430 		if (cm != NULL) {
2431 			// Print Error reply frame
2432 			if (cm->cm_reply)
2433 				mpr_display_reply_info(sc,cm->cm_reply);
2434 			mpr_complete_command(sc, cm);
2435 		}
2436 
2437 		desc->Words.Low = 0xffffffff;
2438 		desc->Words.High = 0xffffffff;
2439 	}
2440 
2441 	if (pq != sc->replypostindex) {
2442 		mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n",
2443 		    __func__, sc, sc->replypostindex);
2444 		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2445 		    sc->replypostindex);
2446 	}
2447 
2448 	return;
2449 }
2450 
2451 static void
2452 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2453     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2454 {
2455 	struct mpr_event_handle *eh;
2456 	int event, handled = 0;
2457 
2458 	event = le16toh(reply->Event);
2459 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2460 		if (isset(eh->mask, event)) {
2461 			eh->callback(sc, data, reply);
2462 			handled++;
2463 		}
2464 	}
2465 
2466 	if (handled == 0)
2467 		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2468 		    le16toh(event));
2469 
2470 	/*
2471 	 * This is the only place that the event/reply should be freed.
2472 	 * Anything wanting to hold onto the event data should have
2473 	 * already copied it into their own storage.
2474 	 */
2475 	mpr_free_reply(sc, data);
2476 }
2477 
2478 static void
2479 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2480 {
2481 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2482 
2483 	if (cm->cm_reply)
2484 		MPR_DPRINT_EVENT(sc, generic,
2485 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2486 
2487 	mpr_free_command(sc, cm);
2488 
2489 	/* next, send a port enable */
2490 	mprsas_startup(sc);
2491 }
2492 
2493 /*
2494  * For both register_events and update_events, the caller supplies a bitmap
2495  * of events that it _wants_.  These functions then turn that into a bitmask
2496  * suitable for the controller.
2497  */
2498 int
2499 mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2500     mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2501 {
2502 	struct mpr_event_handle *eh;
2503 	int error = 0;
2504 
2505 	eh = kmalloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2506 	if (!eh) {
2507 		mpr_dprint(sc, MPR_EVENT|MPR_ERROR,
2508 		    "Cannot allocate event memory\n");
2509 		return (ENOMEM);
2510 	}
2511 	eh->callback = cb;
2512 	eh->data = data;
2513 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2514 	if (mask != NULL)
2515 		error = mpr_update_events(sc, eh, mask);
2516 	*handle = eh;
2517 
2518 	return (error);
2519 }
2520 
2521 int
2522 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2523     uint8_t *mask)
2524 {
2525 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2526 	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2527 	struct mpr_command *cm = NULL;
2528 	struct mpr_event_handle *eh;
2529 	int error, i;
2530 
2531 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2532 
2533 	if ((mask != NULL) && (handle != NULL))
2534 		bcopy(mask, &handle->mask[0], 16);
2535 	memset(sc->event_mask, 0xff, 16);
2536 
2537 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2538 		for (i = 0; i < 16; i++)
2539 			sc->event_mask[i] &= ~eh->mask[i];
2540 	}
2541 
2542 	if ((cm = mpr_alloc_command(sc)) == NULL)
2543 		return (EBUSY);
2544 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2545 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2546 	evtreq->MsgFlags = 0;
2547 	evtreq->SASBroadcastPrimitiveMasks = 0;
2548 #ifdef MPR_DEBUG_ALL_EVENTS
2549 	{
2550 		u_char fullmask[16];
2551 		memset(fullmask, 0x00, 16);
2552 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2553 	}
2554 #else
2555 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2556 #endif
2557 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2558 	cm->cm_data = NULL;
2559 
2560 	error = mpr_request_polled(sc, &cm);
2561 	if (cm != NULL)
2562 		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2563 	if ((reply == NULL) ||
2564 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2565 		error = ENXIO;
2566 
2567 	if (reply)
2568 		MPR_DPRINT_EVENT(sc, generic, reply);
2569 
2570 	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2571 
2572 	if (cm != NULL)
2573 		mpr_free_command(sc, cm);
2574 	return (error);
2575 }
2576 
2577 static int
2578 mpr_reregister_events(struct mpr_softc *sc)
2579 {
2580 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2581 	struct mpr_command *cm;
2582 	struct mpr_event_handle *eh;
2583 	int error, i;
2584 
2585 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2586 
2587 	/* first, reregister events */
2588 
2589 	memset(sc->event_mask, 0xff, 16);
2590 
2591 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2592 		for (i = 0; i < 16; i++)
2593 			sc->event_mask[i] &= ~eh->mask[i];
2594 	}
2595 
2596 	if ((cm = mpr_alloc_command(sc)) == NULL)
2597 		return (EBUSY);
2598 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2599 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2600 	evtreq->MsgFlags = 0;
2601 	evtreq->SASBroadcastPrimitiveMasks = 0;
2602 #ifdef MPR_DEBUG_ALL_EVENTS
2603 	{
2604 		u_char fullmask[16];
2605 		memset(fullmask, 0x00, 16);
2606 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2607 	}
2608 #else
2609 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2610 #endif
2611 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2612 	cm->cm_data = NULL;
2613 	cm->cm_complete = mpr_reregister_events_complete;
2614 
2615 	error = mpr_map_command(sc, cm);
2616 
2617 	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2618 	    error);
2619 	return (error);
2620 }
2621 
2622 int
2623 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2624 {
2625 
2626 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2627 	kfree(handle, M_MPR);
2628 	return (mpr_update_events(sc, NULL, NULL));
2629 }
2630 
2631 /**
2632 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2633 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2634 * of the NVMe message (PRP1). If the data buffer is small enough to be described
2635 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2636 * describe a larger data buffer. If the data buffer is too large to describe
2637 * using the two PRP entriess inside the NVMe message, then PRP1 describes the
2638 * first data memory segment, and PRP2 contains a pointer to a PRP list located
2639 * elsewhere in memory to describe the remaining data memory segments. The PRP
2640 * list will be contiguous.
2641 
2642 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2643 * consists of a list of PRP entries to describe a number of noncontigous
2644 * physical memory segments as a single memory buffer, just as a SGL does. Note
2645 * however, that this function is only used by the IOCTL call, so the memory
2646 * given will be guaranteed to be contiguous. There is no need to translate
2647 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2648 * space that is one page size each.
2649 *
2650 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2651 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2652 * the second PRP element if the memory being described fits within 2 PRP
2653 * entries, or a PRP list pointer if the PRP spans more than two entries.
2654 *
2655 * A PRP list pointer contains the address of a PRP list, structured as a linear
2656 * array of PRP entries. Each PRP entry in this list describes a segment of
2657 * physical memory.
2658 *
2659 * Each 64-bit PRP entry comprises an address and an offset field. The address
2660 * always points to the beginning of a PAGE_SIZE physical memory page, and the
2661 * offset describes where within that page the memory segment begins. Only the
2662 * first element in a PRP list may contain a non-zero offest, implying that all
2663 * memory segments following the first begin at the start of a PAGE_SIZE page.
2664 *
2665 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2666 * with exceptions for the first and last elements in the list. If the memory
2667 * being described by the list begins at a non-zero offset within the first page,
2668 * then the first PRP element will contain a non-zero offset indicating where the
2669 * region begins within the page. The last memory segment may end before the end
2670 * of the PAGE_SIZE segment, depending upon the overall size of the memory being
2671 * described by the PRP list.
2672 *
2673 * Since PRP entries lack any indication of size, the overall data buffer length
2674 * is used to determine where the end of the data memory buffer is located, and
2675 * how many PRP entries are required to describe it.
2676 *
2677 * Returns nothing.
2678 */
2679 void
2680 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2681     Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2682     uint32_t data_in_sz, uint32_t data_out_sz)
2683 {
2684 	int			prp_size = PRP_ENTRY_SIZE;
2685 	uint64_t		*prp_entry, *prp1_entry, *prp2_entry;
2686 	uint64_t		*prp_entry_phys, *prp_page, *prp_page_phys;
2687 	uint32_t		offset, entry_len, page_mask_result, page_mask;
2688 	bus_addr_t		paddr;
2689 	size_t			length;
2690 	struct mpr_prp_page	*prp_page_info = NULL;
2691 
2692 	/*
2693 	 * Not all commands require a data transfer. If no data, just return
2694 	 * without constructing any PRP.
2695 	 */
2696 	if (!data_in_sz && !data_out_sz)
2697 		return;
2698 
2699 	/*
2700 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2701 	 * located at a 24 byte offset from the start of the NVMe command. Then
2702 	 * set the current PRP entry pointer to PRP1.
2703 	 */
2704 	prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2705 	    NVME_CMD_PRP1_OFFSET);
2706 	prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2707 	    NVME_CMD_PRP2_OFFSET);
2708 	prp_entry = prp1_entry;
2709 
2710 	/*
2711 	 * For the PRP entries, use the specially allocated buffer of
2712 	 * contiguous memory. PRP Page allocation failures should not happen
2713 	 * because there should be enough PRP page buffers to account for the
2714 	 * possible NVMe QDepth.
2715 	 */
2716 	prp_page_info = mpr_alloc_prp_page(sc);
2717 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2718 	    "used for building a native NVMe SGL.\n", __func__));
2719 	prp_page = (uint64_t *)prp_page_info->prp_page;
2720 	prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2721 
2722 	/*
2723 	 * Insert the allocated PRP page into the command's PRP page list. This
2724 	 * will be freed when the command is freed.
2725 	 */
2726 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2727 
2728 	/*
2729 	 * Check if we are within 1 entry of a page boundary we don't want our
2730 	 * first entry to be a PRP List entry.
2731 	 */
2732 	page_mask = PAGE_SIZE - 1;
2733 	page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2734 	    page_mask;
2735 	if (!page_mask_result)
2736 	{
2737 		/* Bump up to next page boundary. */
2738 		prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2739 		prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2740 		    prp_size);
2741 	}
2742 
2743 	/*
2744 	 * Set PRP physical pointer, which initially points to the current PRP
2745 	 * DMA memory page.
2746 	 */
2747 	prp_entry_phys = prp_page_phys;
2748 
2749 	/* Get physical address and length of the data buffer. */
2750 	paddr = (bus_addr_t)(uintptr_t)data;
2751 	if (data_in_sz)
2752 		length = data_in_sz;
2753 	else
2754 		length = data_out_sz;
2755 
2756 	/* Loop while the length is not zero. */
2757 	while (length)
2758 	{
2759 		/*
2760 		 * Check if we need to put a list pointer here if we are at page
2761 		 * boundary - prp_size (8 bytes).
2762 		 */
2763 		page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
2764 		    prp_size) & page_mask;
2765 		if (!page_mask_result)
2766 		{
2767 			/*
2768 			 * This is the last entry in a PRP List, so we need to
2769 			 * put a PRP list pointer here. What this does is:
2770 			 *   - bump the current memory pointer to the next
2771 			 *     address, which will be the next full page.
2772 			 *   - set the PRP Entry to point to that page. This is
2773 			 *     now the PRP List pointer.
2774 			 *   - bump the PRP Entry pointer the start of the next
2775 			 *     page. Since all of this PRP memory is contiguous,
2776 			 *     no need to get a new page - it's just the next
2777 			 *     address.
2778 			 */
2779 			prp_entry_phys++;
2780 			*prp_entry =
2781 			    htole64((uint64_t)(uintptr_t)prp_entry_phys);
2782 			prp_entry++;
2783 		}
2784 
2785 		/* Need to handle if entry will be part of a page. */
2786 		offset = (uint32_t)paddr & page_mask;
2787 		entry_len = PAGE_SIZE - offset;
2788 
2789 		if (prp_entry == prp1_entry)
2790 		{
2791 			/*
2792 			 * Must fill in the first PRP pointer (PRP1) before
2793 			 * moving on.
2794 			 */
2795 			*prp1_entry = htole64((uint64_t)paddr);
2796 
2797 			/*
2798 			 * Now point to the second PRP entry within the
2799 			 * command (PRP2).
2800 			 */
2801 			prp_entry = prp2_entry;
2802 		}
2803 		else if (prp_entry == prp2_entry)
2804 		{
2805 			/*
2806 			 * Should the PRP2 entry be a PRP List pointer or just a
2807 			 * regular PRP pointer? If there is more than one more
2808 			 * page of data, must use a PRP List pointer.
2809 			 */
2810 			if (length > PAGE_SIZE)
2811 			{
2812 				/*
2813 				 * PRP2 will contain a PRP List pointer because
2814 				 * more PRP's are needed with this command. The
2815 				 * list will start at the beginning of the
2816 				 * contiguous buffer.
2817 				 */
2818 				*prp2_entry =
2819 				    htole64(
2820 				    (uint64_t)(uintptr_t)prp_entry_phys);
2821 
2822 				/*
2823 				 * The next PRP Entry will be the start of the
2824 				 * first PRP List.
2825 				 */
2826 				prp_entry = prp_page;
2827 			}
2828 			else
2829 			{
2830 				/*
2831 				 * After this, the PRP Entries are complete.
2832 				 * This command uses 2 PRP's and no PRP list.
2833 				 */
2834 				*prp2_entry = htole64((uint64_t)paddr);
2835 			}
2836 		}
2837 		else
2838 		{
2839 			/*
2840 			 * Put entry in list and bump the addresses.
2841 			 *
2842 			 * After PRP1 and PRP2 are filled in, this will fill in
2843 			 * all remaining PRP entries in a PRP List, one per each
2844 			 * time through the loop.
2845 			 */
2846 			*prp_entry = htole64((uint64_t)paddr);
2847 			prp_entry++;
2848 			prp_entry_phys++;
2849 		}
2850 
2851 		/*
2852 		 * Bump the phys address of the command's data buffer by the
2853 		 * entry_len.
2854 		 */
2855 		paddr += entry_len;
2856 
2857 		/* Decrement length accounting for last partial page. */
2858 		if (entry_len > length)
2859 			length = 0;
2860 		else
2861 			length -= entry_len;
2862 	}
2863 }
2864 
2865 /*
2866  * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
2867  * determine if the driver needs to build a native SGL. If so, that native SGL
2868  * is built in the contiguous buffers allocated especially for PCIe SGL
2869  * creation. If the driver will not build a native SGL, return TRUE and a
2870  * normal IEEE SGL will be built. Currently this routine supports NVMe devices
2871  * only.
2872  *
2873  * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
2874  */
2875 static int
2876 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
2877     bus_dma_segment_t *segs, int segs_left)
2878 {
2879 	uint32_t		i, sge_dwords, length, offset, entry_len;
2880 	uint32_t		num_entries, buff_len = 0, sges_in_segment;
2881 	uint32_t		page_mask, page_mask_result, *curr_buff;
2882 	uint32_t		*ptr_sgl, *ptr_first_sgl, first_page_offset;
2883 	uint32_t		first_page_data_size, end_residual;
2884 	uint64_t		*msg_phys;
2885 	bus_addr_t		paddr;
2886 	int			build_native_sgl = 0, first_prp_entry;
2887 	int			prp_size = PRP_ENTRY_SIZE;
2888 	Mpi25IeeeSgeChain64_t	*main_chain_element = NULL;
2889 	struct mpr_prp_page	*prp_page_info = NULL;
2890 
2891 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2892 
2893 	/*
2894 	 * Add up the sizes of each segment length to get the total transfer
2895 	 * size, which will be checked against the Maximum Data Transfer Size.
2896 	 * If the data transfer length exceeds the MDTS for this device, just
2897 	 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
2898 	 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
2899 	 */
2900 	for (i = 0; i < segs_left; i++)
2901 		buff_len += htole32(segs[i].ds_len);
2902 	if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
2903 		return 1;
2904 
2905 	/* Create page_mask (to get offset within page) */
2906 	page_mask = PAGE_SIZE - 1;
2907 
2908 	/*
2909 	 * Check if the number of elements exceeds the max number that can be
2910 	 * put in the main message frame (H/W can only translate an SGL that
2911 	 * is contained entirely in the main message frame).
2912 	 */
2913 	sges_in_segment = (sc->reqframesz -
2914 	    offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
2915 	if (segs_left > sges_in_segment)
2916 		build_native_sgl = 1;
2917 	else
2918 	{
2919 		/*
2920 		 * NVMe uses one PRP for each physical page (or part of physical
2921 		 * page).
2922 		 *    if 4 pages or less then IEEE is OK
2923 		 *    if > 5 pages then we need to build a native SGL
2924 		 *    if > 4 and <= 5 pages, then check the physical address of
2925 		 *      the first SG entry, then if this first size in the page
2926 		 *      is >= the residual beyond 4 pages then use IEEE,
2927 		 *      otherwise use native SGL
2928 		 */
2929 		if (buff_len > (PAGE_SIZE * 5))
2930 			build_native_sgl = 1;
2931 		else if ((buff_len > (PAGE_SIZE * 4)) &&
2932 		    (buff_len <= (PAGE_SIZE * 5)) )
2933 		{
2934 			msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr;
2935 			first_page_offset =
2936 			    ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
2937 			    page_mask);
2938 			first_page_data_size = PAGE_SIZE - first_page_offset;
2939 			end_residual = buff_len % PAGE_SIZE;
2940 
2941 			/*
2942 			 * If offset into first page pushes the end of the data
2943 			 * beyond end of the 5th page, we need the extra PRP
2944 			 * list.
2945 			 */
2946 			if (first_page_data_size < end_residual)
2947 				build_native_sgl = 1;
2948 
2949 			/*
2950 			 * Check if first SG entry size is < residual beyond 4
2951 			 * pages.
2952 			 */
2953 			if (htole32(segs[0].ds_len) <
2954 			    (buff_len - (PAGE_SIZE * 4)))
2955 				build_native_sgl = 1;
2956 		}
2957 	}
2958 
2959 	/* check if native SGL is needed */
2960 	if (!build_native_sgl)
2961 		return 1;
2962 
2963 	/*
2964 	 * Native SGL is needed.
2965 	 * Put a chain element in main message frame that points to the first
2966 	 * chain buffer.
2967 	 *
2968 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2969 	 *        a native SGL.
2970 	 */
2971 
2972 	/* Set main message chain element pointer */
2973 	main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
2974 
2975 	/*
2976 	 * For NVMe the chain element needs to be the 2nd SGL entry in the main
2977 	 * message.
2978 	 */
2979 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2980 	    ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2981 
2982 	/*
2983 	 * For the PRP entries, use the specially allocated buffer of
2984 	 * contiguous memory. PRP Page allocation failures should not happen
2985 	 * because there should be enough PRP page buffers to account for the
2986 	 * possible NVMe QDepth.
2987 	 */
2988 	prp_page_info = mpr_alloc_prp_page(sc);
2989 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2990 	    "used for building a native NVMe SGL.\n", __func__));
2991 	curr_buff = (uint32_t *)prp_page_info->prp_page;
2992 	msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2993 
2994 	/*
2995 	 * Insert the allocated PRP page into the command's PRP page list. This
2996 	 * will be freed when the command is freed.
2997 	 */
2998 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2999 
3000 	/*
3001 	 * Check if we are within 1 entry of a page boundary we don't want our
3002 	 * first entry to be a PRP List entry.
3003 	 */
3004 	page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
3005 	    page_mask;
3006 	if (!page_mask_result) {
3007 		/* Bump up to next page boundary. */
3008 		curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
3009 		msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
3010 	}
3011 
3012 	/* Fill in the chain element and make it an NVMe segment type. */
3013 	main_chain_element->Address.High =
3014 	    htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
3015 	main_chain_element->Address.Low =
3016 	    htole32((uint32_t)(uintptr_t)msg_phys);
3017 	main_chain_element->NextChainOffset = 0;
3018 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3019 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3020 	    MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
3021 
3022 	/* Set SGL pointer to start of contiguous PCIe buffer. */
3023 	ptr_sgl = curr_buff;
3024 	sge_dwords = 2;
3025 	num_entries = 0;
3026 
3027 	/*
3028 	 * NVMe has a very convoluted PRP format. One PRP is required for each
3029 	 * page or partial page. We need to split up OS SG entries if they are
3030 	 * longer than one page or cross a page boundary. We also have to insert
3031 	 * a PRP list pointer entry as the last entry in each physical page of
3032 	 * the PRP list.
3033 	 *
3034 	 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
3035 	 * in the main message in IEEE 64 format. The 2nd entry in the main
3036 	 * message is the chain element, and the rest of the PRP entries are
3037 	 * built in the contiguous PCIe buffer.
3038 	 */
3039 	first_prp_entry = 1;
3040 	ptr_first_sgl = (uint32_t *)cm->cm_sge;
3041 
3042 	for (i = 0; i < segs_left; i++) {
3043 		/* Get physical address and length of this SG entry. */
3044 		paddr = segs[i].ds_addr;
3045 		length = segs[i].ds_len;
3046 
3047 		/*
3048 		 * Check whether a given SGE buffer lies on a non-PAGED
3049 		 * boundary if this is not the first page. If so, this is not
3050 		 * expected so have FW build the SGL.
3051 		 */
3052 		if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) {
3053 			mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
3054 			    "building NVMe PRPs, low address is 0x%x\n",
3055 			    (uint32_t)paddr);
3056 			return 1;
3057 		}
3058 
3059 		/* Apart from last SGE, if any other SGE boundary is not page
3060 		 * aligned then it means that hole exists. Existence of hole
3061 		 * leads to data corruption. So fallback to IEEE SGEs.
3062 		 */
3063 		if (i != (segs_left - 1)) {
3064 			if (((uint32_t)paddr + length) & page_mask) {
3065 				mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
3066 				    "boundary while building NVMe PRPs, low "
3067 				    "address: 0x%x and length: %u\n",
3068 				    (uint32_t)paddr, length);
3069 				return 1;
3070 			}
3071 		}
3072 
3073 		/* Loop while the length is not zero. */
3074 		while (length) {
3075 			/*
3076 			 * Check if we need to put a list pointer here if we are
3077 			 * at page boundary - prp_size.
3078 			 */
3079 			page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
3080 			    prp_size) & page_mask;
3081 			if (!page_mask_result) {
3082 				/*
3083 				 * Need to put a PRP list pointer here.
3084 				 */
3085 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3086 				    prp_size);
3087 				*ptr_sgl = htole32((uintptr_t)msg_phys);
3088 				*(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
3089 				    msg_phys >> 32);
3090 				ptr_sgl += sge_dwords;
3091 				num_entries++;
3092 			}
3093 
3094 			/* Need to handle if entry will be part of a page. */
3095 			offset = (uint32_t)paddr & page_mask;
3096 			entry_len = PAGE_SIZE - offset;
3097 			if (first_prp_entry) {
3098 				/*
3099 				 * Put IEEE entry in first SGE in main message.
3100 				 * (Simple element, System addr, not end of
3101 				 * list.)
3102 				 */
3103 				*ptr_first_sgl = htole32((uint32_t)paddr);
3104 				*(ptr_first_sgl + 1) =
3105 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3106 				*(ptr_first_sgl + 2) = htole32(entry_len);
3107 				*(ptr_first_sgl + 3) = 0;
3108 
3109 				/* No longer the first PRP entry. */
3110 				first_prp_entry = 0;
3111 			} else {
3112 				/* Put entry in list. */
3113 				*ptr_sgl = htole32((uint32_t)paddr);
3114 				*(ptr_sgl + 1) =
3115 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3116 
3117 				/* Bump ptr_sgl, msg_phys, and num_entries. */
3118 				ptr_sgl += sge_dwords;
3119 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3120 				    prp_size);
3121 				num_entries++;
3122 			}
3123 
3124 			/* Bump the phys address by the entry_len. */
3125 			paddr += entry_len;
3126 
3127 			/* Decrement length accounting for last partial page. */
3128 			if (entry_len > length)
3129 				length = 0;
3130 			else
3131 				length -= entry_len;
3132 		}
3133 	}
3134 
3135 	/* Set chain element Length. */
3136 	main_chain_element->Length = htole32(num_entries * prp_size);
3137 
3138 	/* Return 0, indicating we built a native SGL. */
3139 	return 0;
3140 }
3141 
3142 /*
3143  * Add a chain element as the next SGE for the specified command.
3144  * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
3145  * only required for IEEE commands.  Therefore there is no code for commands
3146  * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
3147  * shouldn't be requesting chains).
3148  */
3149 static int
3150 mpr_add_chain(struct mpr_command *cm, int segsleft)
3151 {
3152 	struct mpr_softc *sc = cm->cm_sc;
3153 	MPI2_REQUEST_HEADER *req;
3154 	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
3155 	struct mpr_chain *chain;
3156 	int sgc_size, current_segs, rem_segs, segs_per_frame;
3157 	uint8_t next_chain_offset = 0;
3158 
3159 	/*
3160 	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
3161 	 * only IEEE commands should be requesting chains.  Return some error
3162 	 * code other than 0.
3163 	 */
3164 	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
3165 		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
3166 		    "an MPI SGL.\n");
3167 		return(ENOBUFS);
3168 	}
3169 
3170 	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
3171 	if (cm->cm_sglsize < sgc_size)
3172 		panic("MPR: Need SGE Error Code\n");
3173 
3174 	chain = mpr_alloc_chain(cm->cm_sc);
3175 	if (chain == NULL)
3176 		return (ENOBUFS);
3177 
3178 	/*
3179 	 * Note: a double-linked list is used to make it easier to walk for
3180 	 * debugging.
3181 	 */
3182 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
3183 
3184 	/*
3185 	 * Need to know if the number of frames left is more than 1 or not.  If
3186 	 * more than 1 frame is required, NextChainOffset will need to be set,
3187 	 * which will just be the last segment of the frame.
3188 	 */
3189 	rem_segs = 0;
3190 	if (cm->cm_sglsize < (sgc_size * segsleft)) {
3191 		/*
3192 		 * rem_segs is the number of segements remaining after the
3193 		 * segments that will go into the current frame.  Since it is
3194 		 * known that at least one more frame is required, account for
3195 		 * the chain element.  To know if more than one more frame is
3196 		 * required, just check if there will be a remainder after using
3197 		 * the current frame (with this chain) and the next frame.  If
3198 		 * so the NextChainOffset must be the last element of the next
3199 		 * frame.
3200 		 */
3201 		current_segs = (cm->cm_sglsize / sgc_size) - 1;
3202 		rem_segs = segsleft - current_segs;
3203 		segs_per_frame = sc->chain_frame_size / sgc_size;
3204 		if (rem_segs > segs_per_frame) {
3205 			next_chain_offset = segs_per_frame - 1;
3206 		}
3207 	}
3208 	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
3209 	ieee_sgc->Length = next_chain_offset ?
3210 	    htole32((uint32_t)sc->chain_frame_size) :
3211 	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
3212 	ieee_sgc->NextChainOffset = next_chain_offset;
3213 	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3214 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3215 	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
3216 	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
3217 	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
3218 	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
3219 	req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
3220 
3221 	cm->cm_sglsize = sc->chain_frame_size;
3222 	return (0);
3223 }
3224 
3225 /*
3226  * Add one scatter-gather element to the scatter-gather list for a command.
3227  * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
3228  * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
3229  * chain, so don't consider any chain additions.
3230  */
3231 int
3232 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
3233     int segsleft)
3234 {
3235 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3236 	u32 sge_flags;
3237 
3238 	/*
3239 	 * case 1: >=1 more segment, no room for anything (error)
3240 	 * case 2: 1 more segment and enough room for it
3241          */
3242 
3243 	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
3244 		mpr_dprint(cm->cm_sc, MPR_ERROR,
3245 		    "%s: warning: Not enough room for MPI SGL in frame.\n",
3246 		    __func__);
3247 		return(ENOBUFS);
3248 	}
3249 
3250 	KASSERT(segsleft == 1,
3251 	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
3252 	    segsleft));
3253 
3254 	/*
3255 	 * There is one more segment left to add for the MPI SGL and there is
3256 	 * enough room in the frame to add it.  This is the normal case because
3257 	 * MPI SGL's don't have chains, otherwise something is wrong.
3258 	 *
3259 	 * If this is a bi-directional request, need to account for that
3260 	 * here.  Save the pre-filled sge values.  These will be used
3261 	 * either for the 2nd SGL or for a single direction SGL.  If
3262 	 * cm_out_len is non-zero, this is a bi-directional request, so
3263 	 * fill in the OUT SGL first, then the IN SGL, otherwise just
3264 	 * fill in the IN SGL.  Note that at this time, when filling in
3265 	 * 2 SGL's for a bi-directional request, they both use the same
3266 	 * DMA buffer (same cm command).
3267 	 */
3268 	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
3269 	saved_address_low = sge->Address.Low;
3270 	saved_address_high = sge->Address.High;
3271 	if (cm->cm_out_len) {
3272 		sge->FlagsLength = cm->cm_out_len |
3273 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3274 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
3275 		    MPI2_SGE_FLAGS_HOST_TO_IOC |
3276 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3277 		    MPI2_SGE_FLAGS_SHIFT);
3278 		cm->cm_sglsize -= len;
3279 		/* Endian Safe code */
3280 		sge_flags = sge->FlagsLength;
3281 		sge->FlagsLength = htole32(sge_flags);
3282 		sge->Address.High = htole32(sge->Address.High);
3283 		sge->Address.Low = htole32(sge->Address.Low);
3284 		bcopy(sge, cm->cm_sge, len);
3285 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3286 	}
3287 	sge->FlagsLength = saved_buf_len |
3288 	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3289 	    MPI2_SGE_FLAGS_END_OF_BUFFER |
3290 	    MPI2_SGE_FLAGS_LAST_ELEMENT |
3291 	    MPI2_SGE_FLAGS_END_OF_LIST |
3292 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3293 	    MPI2_SGE_FLAGS_SHIFT);
3294 	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3295 		sge->FlagsLength |=
3296 		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3297 		    MPI2_SGE_FLAGS_SHIFT);
3298 	} else {
3299 		sge->FlagsLength |=
3300 		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3301 		    MPI2_SGE_FLAGS_SHIFT);
3302 	}
3303 	sge->Address.Low = saved_address_low;
3304 	sge->Address.High = saved_address_high;
3305 
3306 	cm->cm_sglsize -= len;
3307 	/* Endian Safe code */
3308 	sge_flags = sge->FlagsLength;
3309 	sge->FlagsLength = htole32(sge_flags);
3310 	sge->Address.High = htole32(sge->Address.High);
3311 	sge->Address.Low = htole32(sge->Address.Low);
3312 	bcopy(sge, cm->cm_sge, len);
3313 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3314 	return (0);
3315 }
3316 
3317 /*
3318  * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3319  * gather list for a command.  Maintain cm_sglsize and cm_sge as the
3320  * remaining size and pointer to the next SGE to fill in, respectively.
3321  */
3322 int
3323 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3324 {
3325 	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3326 	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3327 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3328 	uint32_t sge_length;
3329 
3330 	/*
3331 	 * case 1: No room for chain or segment (error).
3332 	 * case 2: Two or more segments left but only room for chain.
3333 	 * case 3: Last segment and room for it, so set flags.
3334 	 */
3335 
3336 	/*
3337 	 * There should be room for at least one element, or there is a big
3338 	 * problem.
3339 	 */
3340 	if (cm->cm_sglsize < ieee_sge_size)
3341 		panic("MPR: Need SGE Error Code\n");
3342 
3343 	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3344 		if ((error = mpr_add_chain(cm, segsleft)) != 0)
3345 			return (error);
3346 	}
3347 
3348 	if (segsleft == 1) {
3349 		/*
3350 		 * If this is a bi-directional request, need to account for that
3351 		 * here.  Save the pre-filled sge values.  These will be used
3352 		 * either for the 2nd SGL or for a single direction SGL.  If
3353 		 * cm_out_len is non-zero, this is a bi-directional request, so
3354 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
3355 		 * fill in the IN SGL.  Note that at this time, when filling in
3356 		 * 2 SGL's for a bi-directional request, they both use the same
3357 		 * DMA buffer (same cm command).
3358 		 */
3359 		saved_buf_len = sge->Length;
3360 		saved_address_low = sge->Address.Low;
3361 		saved_address_high = sge->Address.High;
3362 		if (cm->cm_out_len) {
3363 			sge->Length = cm->cm_out_len;
3364 			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3365 			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3366 			cm->cm_sglsize -= ieee_sge_size;
3367 			/* Endian Safe code */
3368 			sge_length = sge->Length;
3369 			sge->Length = htole32(sge_length);
3370 			sge->Address.High = htole32(sge->Address.High);
3371 			sge->Address.Low = htole32(sge->Address.Low);
3372 			bcopy(sgep, cm->cm_sge, ieee_sge_size);
3373 			cm->cm_sge =
3374 			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3375 			    ieee_sge_size);
3376 		}
3377 		sge->Length = saved_buf_len;
3378 		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3379 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3380 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3381 		sge->Address.Low = saved_address_low;
3382 		sge->Address.High = saved_address_high;
3383 	}
3384 
3385 	cm->cm_sglsize -= ieee_sge_size;
3386 	/* Endian Safe code */
3387 	sge_length = sge->Length;
3388 	sge->Length = htole32(sge_length);
3389 	sge->Address.High = htole32(sge->Address.High);
3390 	sge->Address.Low = htole32(sge->Address.Low);
3391 	bcopy(sgep, cm->cm_sge, ieee_sge_size);
3392 	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3393 	    ieee_sge_size);
3394 	return (0);
3395 }
3396 
3397 /*
3398  * Add one dma segment to the scatter-gather list for a command.
3399  */
3400 int
3401 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3402     int segsleft)
3403 {
3404 	MPI2_SGE_SIMPLE64 sge;
3405 	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3406 
3407 	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3408 		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3409 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3410 		ieee_sge.Length = len;
3411 		mpr_from_u64(pa, &ieee_sge.Address);
3412 
3413 		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3414 	} else {
3415 		/*
3416 		 * This driver always uses 64-bit address elements for
3417 		 * simplicity.
3418 		 */
3419 		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3420 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3421 		/* Set Endian safe macro in mpr_push_sge */
3422 		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3423 		mpr_from_u64(pa, &sge.Address);
3424 
3425 		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3426 	}
3427 }
3428 
3429 static void
3430 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3431 {
3432 	struct mpr_softc *sc;
3433 	struct mpr_command *cm;
3434 	u_int i, dir, sflags;
3435 
3436 	cm = (struct mpr_command *)arg;
3437 	sc = cm->cm_sc;
3438 
3439 	/*
3440 	 * In this case, just print out a warning and let the chip tell the
3441 	 * user they did the wrong thing.
3442 	 */
3443 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3444 		mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3445 		    "segments, more than the %d allowed\n", __func__, nsegs,
3446 		    cm->cm_max_segs);
3447 	}
3448 
3449 	/*
3450 	 * Set up DMA direction flags.  Bi-directional requests are also handled
3451 	 * here.  In that case, both direction flags will be set.
3452 	 */
3453 	sflags = 0;
3454 	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3455 		/*
3456 		 * We have to add a special case for SMP passthrough, there
3457 		 * is no easy way to generically handle it.  The first
3458 		 * S/G element is used for the command (therefore the
3459 		 * direction bit needs to be set).  The second one is used
3460 		 * for the reply.  We'll leave it to the caller to make
3461 		 * sure we only have two buffers.
3462 		 */
3463 		/*
3464 		 * Even though the busdma man page says it doesn't make
3465 		 * sense to have both direction flags, it does in this case.
3466 		 * We have one s/g element being accessed in each direction.
3467 		 */
3468 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3469 
3470 		/*
3471 		 * Set the direction flag on the first buffer in the SMP
3472 		 * passthrough request.  We'll clear it for the second one.
3473 		 */
3474 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
3475 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
3476 	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3477 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3478 		dir = BUS_DMASYNC_PREWRITE;
3479 	} else
3480 		dir = BUS_DMASYNC_PREREAD;
3481 
3482 	/* Check if a native SG list is needed for an NVMe PCIe device. */
3483 	if (cm->cm_targ && cm->cm_targ->is_nvme &&
3484 	    mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3485 		/* A native SG list was built, skip to end. */
3486 		goto out;
3487 	}
3488 
3489 	for (i = 0; i < nsegs; i++) {
3490 		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3491 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3492 		}
3493 		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3494 		    sflags, nsegs - i);
3495 		if (error != 0) {
3496 			/* Resource shortage, roll back! */
3497 			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3498 				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3499 				    "consider increasing hw.mpr.max_chains.\n");
3500 			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3501 			mpr_complete_command(sc, cm);
3502 			return;
3503 		}
3504 	}
3505 
3506 out:
3507 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3508 	mpr_enqueue_request(sc, cm);
3509 
3510 	return;
3511 }
3512 
3513 static void
3514 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3515 	     int error)
3516 {
3517 	mpr_data_cb(arg, segs, nsegs, error);
3518 }
3519 
3520 /*
3521  * This is the routine to enqueue commands ansynchronously.
3522  * Note that the only error path here is from bus_dmamap_load(), which can
3523  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3524  * assumed that if you have a command in-hand, then you have enough credits
3525  * to use it.
3526  */
3527 int
3528 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3529 {
3530 	int error = 0;
3531 
3532 	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3533 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3534 		    &cm->cm_uio, mpr_data_cb2, cm, 0);
3535 	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3536 		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3537 		    cm->cm_data, mpr_data_cb, cm, 0);
3538 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3539 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3540 		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3541 	} else {
3542 		/* Add a zero-length element as needed */
3543 		if (cm->cm_sge != NULL)
3544 			mpr_add_dmaseg(cm, 0, 0, 0, 1);
3545 		mpr_enqueue_request(sc, cm);
3546 	}
3547 
3548 	return (error);
3549 }
3550 
3551 /*
3552  * This is the routine to enqueue commands synchronously.  An error of
3553  * EINPROGRESS from mpr_map_command() is ignored since the command will
3554  * be executed and enqueued automatically.  Other errors come from msleep().
3555  */
3556 int
3557 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
3558     int sleep_flag)
3559 {
3560 	int error, rc;
3561 	struct timeval cur_time, start_time;
3562 	struct mpr_command *cm = *cmp;
3563 
3564 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3565 		return  EBUSY;
3566 
3567 	cm->cm_complete = NULL;
3568 	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3569 	error = mpr_map_command(sc, cm);
3570 	if ((error != 0) && (error != EINPROGRESS))
3571 		return (error);
3572 
3573 	// Check for context and wait for 50 mSec at a time until time has
3574 	// expired or the command has finished.  If msleep can't be used, need
3575 	// to poll.
3576 	getmicrouptime(&start_time);
3577 	if (lockowned(&sc->mpr_lock) && sleep_flag == CAN_SLEEP) {
3578 		error = lksleep(cm, &sc->mpr_lock, 0, "mprwait", timeout*hz);
3579 		if (error == EWOULDBLOCK) {
3580 			/*
3581 			 * Record the actual elapsed time in the case of a
3582 			 * timeout for the message below.
3583 			 */
3584 			getmicrouptime(&cur_time);
3585 			timevalsub(&cur_time, &start_time);
3586 		}
3587 	} else {
3588 		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3589 			mpr_intr_locked(sc);
3590 			if (sleep_flag == CAN_SLEEP)
3591 				tsleep(mpr_wait_command, 0, "mprwait", hz < 20 ? 1 : hz / 20);
3592 			else
3593 				DELAY(50000);
3594 
3595 			getmicrouptime(&cur_time);
3596 			timevalsub(&cur_time, &start_time);
3597 			if (cur_time.tv_sec > timeout) {
3598 				error = EWOULDBLOCK;
3599 				break;
3600 			}
3601 		}
3602 	}
3603 
3604 	if (error == EWOULDBLOCK) {
3605 		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3606 		    " elapsed=%jd\n", __func__, timeout,
3607 		    (intmax_t)cur_time.tv_sec);
3608 		rc = mpr_reinit(sc);
3609 		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3610 		    "failed");
3611 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3612 			/*
3613 			 * Tell the caller that we freed the command in a
3614 			 * reinit.
3615 			 */
3616 			*cmp = NULL;
3617 		}
3618 		error = ETIMEDOUT;
3619 	}
3620 	return (error);
3621 }
3622 
3623 /*
3624  * This is the routine to enqueue a command synchonously and poll for
3625  * completion.  Its use should be rare.
3626  */
3627 int
3628 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
3629 {
3630 	int error, rc;
3631 	struct timeval cur_time, start_time;
3632 	struct mpr_command *cm = *cmp;
3633 
3634 	error = 0;
3635 
3636 	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3637 	cm->cm_complete = NULL;
3638 	mpr_map_command(sc, cm);
3639 
3640 	getmicrouptime(&start_time);
3641 	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3642 		mpr_intr_locked(sc);
3643 
3644 		if (lockowned(&sc->mpr_lock))
3645 			lksleep(&sc->msleep_fake_chan, &sc->mpr_lock, 0,
3646 			    "mprpoll", hz < 20 ? 1 : hz / 20);
3647 		else
3648 			tsleep(mpr_request_polled, 0, "mprpoll", hz < 20 ? 1 : hz / 20);
3649 
3650 		/*
3651 		 * Check for real-time timeout and fail if more than 60 seconds.
3652 		 */
3653 		getmicrouptime(&cur_time);
3654 		timevalsub(&cur_time, &start_time);
3655 		if (cur_time.tv_sec > 60) {
3656 			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3657 			error = ETIMEDOUT;
3658 			break;
3659 		}
3660 	}
3661 
3662 	if (error) {
3663 		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3664 		rc = mpr_reinit(sc);
3665 		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3666 		    "failed");
3667 
3668 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3669 			/*
3670 			 * Tell the caller that we freed the command in a
3671 			 * reinit.
3672 			 */
3673 			*cmp = NULL;
3674 		}
3675 	}
3676 	return (error);
3677 }
3678 
3679 /*
3680  * The MPT driver had a verbose interface for config pages.  In this driver,
3681  * reduce it to much simpler terms, similar to the Linux driver.
3682  */
3683 int
3684 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3685 {
3686 	MPI2_CONFIG_REQUEST *req;
3687 	struct mpr_command *cm;
3688 	int error;
3689 
3690 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3691 		return (EBUSY);
3692 	}
3693 
3694 	cm = mpr_alloc_command(sc);
3695 	if (cm == NULL) {
3696 		return (EBUSY);
3697 	}
3698 
3699 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3700 	req->Function = MPI2_FUNCTION_CONFIG;
3701 	req->Action = params->action;
3702 	req->SGLFlags = 0;
3703 	req->ChainOffset = 0;
3704 	req->PageAddress = params->page_address;
3705 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3706 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3707 
3708 		hdr = &params->hdr.Ext;
3709 		req->ExtPageType = hdr->ExtPageType;
3710 		req->ExtPageLength = hdr->ExtPageLength;
3711 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3712 		req->Header.PageLength = 0; /* Must be set to zero */
3713 		req->Header.PageNumber = hdr->PageNumber;
3714 		req->Header.PageVersion = hdr->PageVersion;
3715 	} else {
3716 		MPI2_CONFIG_PAGE_HEADER *hdr;
3717 
3718 		hdr = &params->hdr.Struct;
3719 		req->Header.PageType = hdr->PageType;
3720 		req->Header.PageNumber = hdr->PageNumber;
3721 		req->Header.PageLength = hdr->PageLength;
3722 		req->Header.PageVersion = hdr->PageVersion;
3723 	}
3724 
3725 	cm->cm_data = params->buffer;
3726 	cm->cm_length = params->length;
3727 	if (cm->cm_data != NULL) {
3728 		cm->cm_sge = &req->PageBufferSGE;
3729 		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3730 		cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3731 	} else
3732 		cm->cm_sge = NULL;
3733 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3734 
3735 	cm->cm_complete_data = params;
3736 	if (params->callback != NULL) {
3737 		cm->cm_complete = mpr_config_complete;
3738 		return (mpr_map_command(sc, cm));
3739 	} else {
3740 		error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
3741 		if (error) {
3742 			mpr_dprint(sc, MPR_FAULT,
3743 			    "Error %d reading config page\n", error);
3744 			if (cm != NULL)
3745 				mpr_free_command(sc, cm);
3746 			return (error);
3747 		}
3748 		mpr_config_complete(sc, cm);
3749 	}
3750 
3751 	return (0);
3752 }
3753 
3754 int
3755 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3756 {
3757 	return (EINVAL);
3758 }
3759 
3760 static void
3761 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
3762 {
3763 	MPI2_CONFIG_REPLY *reply;
3764 	struct mpr_config_params *params;
3765 
3766 	MPR_FUNCTRACE(sc);
3767 	params = cm->cm_complete_data;
3768 
3769 	if (cm->cm_data != NULL) {
3770 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3771 		    BUS_DMASYNC_POSTREAD);
3772 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3773 	}
3774 
3775 	/*
3776 	 * XXX KDM need to do more error recovery?  This results in the
3777 	 * device in question not getting probed.
3778 	 */
3779 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3780 		params->status = MPI2_IOCSTATUS_BUSY;
3781 		goto done;
3782 	}
3783 
3784 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3785 	if (reply == NULL) {
3786 		params->status = MPI2_IOCSTATUS_BUSY;
3787 		goto done;
3788 	}
3789 	params->status = reply->IOCStatus;
3790 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3791 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
3792 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3793 		params->hdr.Ext.PageType = reply->Header.PageType;
3794 		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3795 		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3796 	} else {
3797 		params->hdr.Struct.PageType = reply->Header.PageType;
3798 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3799 		params->hdr.Struct.PageLength = reply->Header.PageLength;
3800 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3801 	}
3802 
3803 done:
3804 	mpr_free_command(sc, cm);
3805 	if (params->callback != NULL)
3806 		params->callback(sc, params);
3807 
3808 	return;
3809 }
3810