xref: /dragonfly/sys/dev/raid/mpr/mpr.c (revision 2b3f93ea)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * Copyright (c) 2011-2015 LSI Corp.
4  * Copyright (c) 2013-2016 Avago Technologies
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29  *
30  * $FreeBSD: head/sys/dev/mpr/mpr.c 330789 2018-03-12 05:02:22Z scottl $
31  */
32 
33 /* Communications core for Avago Technologies (LSI) MPT3 */
34 
35 /* TODO Move headers to mprvar */
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/conf.h>
44 #include <sys/bio.h>
45 #include <sys/malloc.h>
46 #include <sys/uio.h>
47 #include <sys/sysctl.h>
48 #include <sys/queue.h>
49 #include <sys/kthread.h>
50 #include <sys/taskqueue.h>
51 #include <sys/endian.h>
52 #include <sys/eventhandler.h>
53 #include <sys/sbuf.h>
54 #include <sys/caps.h>
55 
56 #include <sys/rman.h>
57 #include <sys/proc.h>
58 
59 #include <bus/pci/pcivar.h>
60 
61 #include <bus/cam/cam.h>
62 #include <bus/cam/cam_ccb.h>
63 #include <bus/cam/scsi/scsi_all.h>
64 
65 #include <dev/raid/mpr/mpi/mpi2_type.h>
66 #include <dev/raid/mpr/mpi/mpi2.h>
67 #include <dev/raid/mpr/mpi/mpi2_ioc.h>
68 #include <dev/raid/mpr/mpi/mpi2_sas.h>
69 #include <dev/raid/mpr/mpi/mpi2_pci.h>
70 #include <dev/raid/mpr/mpi/mpi2_cnfg.h>
71 #include <dev/raid/mpr/mpi/mpi2_init.h>
72 #include <dev/raid/mpr/mpi/mpi2_tool.h>
73 #include <dev/raid/mpr/mpr_ioctl.h>
74 #include <dev/raid/mpr/mprvar.h>
75 #include <dev/raid/mpr/mpr_table.h>
76 #include <dev/raid/mpr/mpr_sas.h>
77 
78 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
79 static int mpr_init_queues(struct mpr_softc *sc);
80 static void mpr_resize_queues(struct mpr_softc *sc);
81 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
82 static int mpr_transition_operational(struct mpr_softc *sc);
83 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
84 static void mpr_iocfacts_free(struct mpr_softc *sc);
85 static void mpr_startup(void *arg);
86 static int mpr_send_iocinit(struct mpr_softc *sc);
87 static int mpr_alloc_queues(struct mpr_softc *sc);
88 static int mpr_alloc_hw_queues(struct mpr_softc *sc);
89 static int mpr_alloc_replies(struct mpr_softc *sc);
90 static int mpr_alloc_requests(struct mpr_softc *sc);
91 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
92 static int mpr_attach_log(struct mpr_softc *sc);
93 static __inline void mpr_complete_command(struct mpr_softc *sc,
94     struct mpr_command *cm);
95 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
96     MPI2_EVENT_NOTIFICATION_REPLY *reply);
97 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
98 static void mpr_periodic(void *);
99 static int mpr_reregister_events(struct mpr_softc *sc);
100 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
101 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
102 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
103 static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS);
104 
105 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
106 
107 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
108 
109 /*
110  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
111  * any state and back to its initialization state machine.
112  */
113 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
114 
115 /*
116  * Added this union to smoothly convert le64toh cm->cm_desc.Words.
117  * Compiler only supports uint64_t to be passed as an argument.
118  * Otherwise it will throw this error:
119  * "aggregate value used where an integer was expected"
120  */
121 typedef union _reply_descriptor {
122         u64 word;
123         struct {
124                 u32 low;
125                 u32 high;
126         } u;
127 } reply_descriptor, request_descriptor;
128 
129 /* Rate limit chain-fail messages to 1 per minute */
130 static struct timeval mpr_chainfail_interval = { 60, 0 };
131 
132 /*
133  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
134  * If this function is called from process context, it can sleep
135  * and there is no harm to sleep, in case if this fuction is called
136  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
137  * based on sleep flags driver will call either msleep, pause or DELAY.
138  * msleep and pause are of same variant, but pause is used when mpr_mtx
139  * is not hold by driver.
140  */
141 static int
142 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
143 {
144 	uint32_t reg;
145 	int i, error, tries = 0;
146 	uint8_t first_wait_done = FALSE;
147 
148 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
149 
150 	/* Clear any pending interrupts */
151 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
152 
153 	mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag);
154 	/* Push the magic sequence */
155 	error = ETIMEDOUT;
156 	while (tries++ < 20) {
157 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
158 			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
159 			    mpt2_reset_magic[i]);
160 
161 		/* wait 100 msec */
162 		if (lockowned(&sc->mpr_lock) && sleep_flag == CAN_SLEEP)
163 			lksleep(&sc->msleep_fake_chan, &sc->mpr_lock, 0,
164 			    "mprdiag", hz < 10 ? 1 : hz / 10);
165 		else if (sleep_flag == CAN_SLEEP)
166 			tsleep(mpr_diag_reset, 0, "mprdiag", hz < 10 ? 1 : hz / 10);
167 		else
168 			DELAY(100 * 1000);
169 
170 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
171 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
172 			error = 0;
173 			break;
174 		}
175 	}
176 	if (error) {
177 		mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n",
178 		    error);
179 		return (error);
180 	}
181 
182 	/* Send the actual reset.  XXX need to refresh the reg? */
183 	reg |= MPI2_DIAG_RESET_ADAPTER;
184 	mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n",
185 	    reg);
186 	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
187 
188 	/* Wait up to 300 seconds in 50ms intervals */
189 	error = ETIMEDOUT;
190 	for (i = 0; i < 6000; i++) {
191 		/*
192 		 * Wait 50 msec. If this is the first time through, wait 256
193 		 * msec to satisfy Diag Reset timing requirements.
194 		 */
195 		if (first_wait_done) {
196 			if (lockowned(&sc->mpr_lock) && sleep_flag == CAN_SLEEP)
197 				lksleep(&sc->msleep_fake_chan, &sc->mpr_lock, 0,
198 				    "mprdiag", hz < 20 ? 1 : hz / 20);
199 			else if (sleep_flag == CAN_SLEEP)
200 				tsleep(mpr_diag_reset, 0, "mprdiag", hz < 20 ? 1: hz / 20);
201 			else
202 				DELAY(50 * 1000);
203 		} else {
204 			DELAY(256 * 1000);
205 			first_wait_done = TRUE;
206 		}
207 		/*
208 		 * Check for the RESET_ADAPTER bit to be cleared first, then
209 		 * wait for the RESET state to be cleared, which takes a little
210 		 * longer.
211 		 */
212 		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
213 		if (reg & MPI2_DIAG_RESET_ADAPTER) {
214 			continue;
215 		}
216 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
217 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
218 			error = 0;
219 			break;
220 		}
221 	}
222 	if (error) {
223 		mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n",
224 		    error);
225 		return (error);
226 	}
227 
228 	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
229 	mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n");
230 
231 	return (0);
232 }
233 
234 static int
235 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
236 {
237 	int error;
238 
239 	MPR_FUNCTRACE(sc);
240 
241 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
242 
243 	error = 0;
244 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
245 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
246 	    MPI2_DOORBELL_FUNCTION_SHIFT);
247 
248 	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
249 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
250 		    "Doorbell handshake failed\n");
251 		error = ETIMEDOUT;
252 	}
253 
254 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
255 	return (error);
256 }
257 
258 static int
259 mpr_transition_ready(struct mpr_softc *sc)
260 {
261 	uint32_t reg, state;
262 	int error, tries = 0;
263 	int sleep_flags;
264 
265 	MPR_FUNCTRACE(sc);
266 	/* If we are in attach call, do not sleep */
267 	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
268 	    ? CAN_SLEEP : NO_SLEEP;
269 
270 	error = 0;
271 
272 	mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n",
273 	    __func__, sleep_flags);
274 
275 	while (tries++ < 1200) {
276 		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
277 		mpr_dprint(sc, MPR_INIT, "  Doorbell= 0x%x\n", reg);
278 
279 		/*
280 		 * Ensure the IOC is ready to talk.  If it's not, try
281 		 * resetting it.
282 		 */
283 		if (reg & MPI2_DOORBELL_USED) {
284 			mpr_dprint(sc, MPR_INIT, "  Not ready, sending diag "
285 			    "reset\n");
286 			mpr_diag_reset(sc, sleep_flags);
287 			DELAY(50000);
288 			continue;
289 		}
290 
291 		/* Is the adapter owned by another peer? */
292 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
293 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
294 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the "
295 			    "control of another peer host, aborting "
296 			    "initialization.\n");
297 			error = ENXIO;
298 			break;
299 		}
300 
301 		state = reg & MPI2_IOC_STATE_MASK;
302 		if (state == MPI2_IOC_STATE_READY) {
303 			/* Ready to go! */
304 			error = 0;
305 			break;
306 		} else if (state == MPI2_IOC_STATE_FAULT) {
307 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault "
308 			    "state 0x%x, resetting\n",
309 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
310 			mpr_diag_reset(sc, sleep_flags);
311 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
312 			/* Need to take ownership */
313 			mpr_message_unit_reset(sc, sleep_flags);
314 		} else if (state == MPI2_IOC_STATE_RESET) {
315 			/* Wait a bit, IOC might be in transition */
316 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
317 			    "IOC in unexpected reset state\n");
318 		} else {
319 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
320 			    "IOC in unknown state 0x%x\n", state);
321 			error = EINVAL;
322 			break;
323 		}
324 
325 		/* Wait 50ms for things to settle down. */
326 		DELAY(50000);
327 	}
328 
329 	if (error)
330 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
331 		    "Cannot transition IOC to ready\n");
332 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
333 	return (error);
334 }
335 
336 static int
337 mpr_transition_operational(struct mpr_softc *sc)
338 {
339 	uint32_t reg, state;
340 	int error;
341 
342 	MPR_FUNCTRACE(sc);
343 
344 	error = 0;
345 	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
346 	mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
347 
348 	state = reg & MPI2_IOC_STATE_MASK;
349 	if (state != MPI2_IOC_STATE_READY) {
350 		mpr_dprint(sc, MPR_INIT, "IOC not ready\n");
351 		if ((error = mpr_transition_ready(sc)) != 0) {
352 			mpr_dprint(sc, MPR_INIT|MPR_FAULT,
353 			    "failed to transition ready, exit\n");
354 			return (error);
355 		}
356 	}
357 
358 	error = mpr_send_iocinit(sc);
359 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
360 
361 	return (error);
362 }
363 
364 static void
365 mpr_resize_queues(struct mpr_softc *sc)
366 {
367 	u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size;
368 
369 	/*
370 	 * Size the queues. Since the reply queues always need one free
371 	 * entry, we'll deduct one reply message here.  The LSI documents
372 	 * suggest instead to add a count to the request queue, but I think
373 	 * that it's better to deduct from reply queue.
374 	 */
375 	prireqcr = MAX(1, sc->max_prireqframes);
376 	prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
377 
378 	reqcr = MAX(2, sc->max_reqframes);
379 	reqcr = MIN(reqcr, sc->facts->RequestCredit);
380 
381 	sc->num_reqs = prireqcr + reqcr;
382 	sc->num_prireqs = prireqcr;
383 	sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
384 	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
385 
386 	/* Store the request frame size in bytes rather than as 32bit words */
387 	sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
388 
389 	/*
390 	 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
391 	 * get the size of a Chain Frame.  Previous versions use the size as a
392 	 * Request Frame for the Chain Frame size.  If IOCMaxChainSegmentSize
393 	 * is 0, use the default value.  The IOCMaxChainSegmentSize is the
394 	 * number of 16-byte elelements that can fit in a Chain Frame, which is
395 	 * the size of an IEEE Simple SGE.
396 	 */
397 	if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
398 		chain_seg_size = htole16(sc->facts->IOCMaxChainSegmentSize);
399 		if (chain_seg_size == 0)
400 			chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE;
401 		sc->chain_frame_size = chain_seg_size *
402 		    MPR_MAX_CHAIN_ELEMENT_SIZE;
403 	} else {
404 		sc->chain_frame_size = sc->reqframesz;
405 	}
406 
407 	/*
408 	 * Max IO Size is Page Size * the following:
409 	 * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
410 	 * + 1 for no chain needed in last frame
411 	 *
412 	 * If user suggests a Max IO size to use, use the smaller of the
413 	 * user's value and the calculated value as long as the user's
414 	 * value is larger than 0. The user's value is in pages.
415 	 */
416 	sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1;
417 	maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
418 
419 	/*
420 	 * If I/O size limitation requested then use it and pass up to CAM.
421 	 * If not, use MAXPHYS as an optimization hint, but report HW limit.
422 	 */
423 	if (sc->max_io_pages > 0) {
424 		maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
425 		sc->maxio = maxio;
426 	} else {
427 		sc->maxio = maxio;
428 		maxio = min(maxio, MAXPHYS);
429 	}
430 
431 	sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
432 	    sges_per_frame * reqcr;
433 	if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
434 		sc->num_chains = sc->max_chains;
435 
436 	/*
437 	 * Figure out the number of MSIx-based queues.  If the firmware or
438 	 * user has done something crazy and not allowed enough credit for
439 	 * the queues to be useful then don't enable multi-queue.
440 	 */
441 	if (sc->facts->MaxMSIxVectors < 2)
442 		sc->msi_msgs = 1;
443 
444 	if (sc->msi_msgs > 1) {
445 		sc->msi_msgs = MIN(sc->msi_msgs, ncpus);
446 		sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
447 		if (sc->num_reqs / sc->msi_msgs < 2)
448 			sc->msi_msgs = 1;
449 	}
450 
451 	mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
452 	    sc->msi_msgs, sc->num_reqs, sc->num_replies);
453 }
454 
455 /*
456  * This is called during attach and when re-initializing due to a Diag Reset.
457  * IOC Facts is used to allocate many of the structures needed by the driver.
458  * If called from attach, de-allocation is not required because the driver has
459  * not allocated any structures yet, but if called from a Diag Reset, previously
460  * allocated structures based on IOC Facts will need to be freed and re-
461  * allocated bases on the latest IOC Facts.
462  */
463 static int
464 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
465 {
466 	int error;
467 	Mpi2IOCFactsReply_t saved_facts;
468 	uint8_t saved_mode, reallocating;
469 
470 	mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__);
471 
472 	/* Save old IOC Facts and then only reallocate if Facts have changed */
473 	if (!attaching) {
474 		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
475 	}
476 
477 	/*
478 	 * Get IOC Facts.  In all cases throughout this function, panic if doing
479 	 * a re-initialization and only return the error if attaching so the OS
480 	 * can handle it.
481 	 */
482 	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
483 		if (attaching) {
484 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get "
485 			    "IOC Facts with error %d, exit\n", error);
486 			return (error);
487 		} else {
488 			panic("%s failed to get IOC Facts with error %d\n",
489 			    __func__, error);
490 		}
491 	}
492 
493 	MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
494 
495 	ksnprintf(sc->fw_version, sizeof(sc->fw_version),
496 	    "%02d.%02d.%02d.%02d",
497 	    sc->facts->FWVersion.Struct.Major,
498 	    sc->facts->FWVersion.Struct.Minor,
499 	    sc->facts->FWVersion.Struct.Unit,
500 	    sc->facts->FWVersion.Struct.Dev);
501 
502 	mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
503 	    MPR_DRIVER_VERSION);
504 	mpr_dprint(sc, MPR_INFO,
505 	    "IOCCapabilities: %pb%i\n",
506 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
507 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
508 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
509 	    "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV",
510 	    sc->facts->IOCCapabilities);
511 
512 	/*
513 	 * If the chip doesn't support event replay then a hard reset will be
514 	 * required to trigger a full discovery.  Do the reset here then
515 	 * retransition to Ready.  A hard reset might have already been done,
516 	 * but it doesn't hurt to do it again.  Only do this if attaching, not
517 	 * for a Diag Reset.
518 	 */
519 	if (attaching && ((sc->facts->IOCCapabilities &
520 	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
521 		mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n");
522 		mpr_diag_reset(sc, NO_SLEEP);
523 		if ((error = mpr_transition_ready(sc)) != 0) {
524 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
525 			    "transition to ready with error %d, exit\n",
526 			    error);
527 			return (error);
528 		}
529 	}
530 
531 	/*
532 	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
533 	 * changed from the previous IOC Facts, log a warning, but only if
534 	 * checking this after a Diag Reset and not during attach.
535 	 */
536 	saved_mode = sc->ir_firmware;
537 	if (sc->facts->IOCCapabilities &
538 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
539 		sc->ir_firmware = 1;
540 	if (!attaching) {
541 		if (sc->ir_firmware != saved_mode) {
542 			mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode "
543 			    "in IOC Facts does not match previous mode\n");
544 		}
545 	}
546 
547 	/* Only deallocate and reallocate if relevant IOC Facts have changed */
548 	reallocating = FALSE;
549 	sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
550 
551 	if ((!attaching) &&
552 	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
553 	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
554 	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
555 	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
556 	    (saved_facts.ProductID != sc->facts->ProductID) ||
557 	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
558 	    (saved_facts.IOCRequestFrameSize !=
559 	    sc->facts->IOCRequestFrameSize) ||
560 	    (saved_facts.IOCMaxChainSegmentSize !=
561 	    sc->facts->IOCMaxChainSegmentSize) ||
562 	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
563 	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
564 	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
565 	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
566 	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
567 	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
568 	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
569 	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
570 	    (saved_facts.MaxPersistentEntries !=
571 	    sc->facts->MaxPersistentEntries))) {
572 		reallocating = TRUE;
573 
574 		/* Record that we reallocated everything */
575 		sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
576 	}
577 
578 	/*
579 	 * Some things should be done if attaching or re-allocating after a Diag
580 	 * Reset, but are not needed after a Diag Reset if the FW has not
581 	 * changed.
582 	 */
583 	if (attaching || reallocating) {
584 		/*
585 		 * Check if controller supports FW diag buffers and set flag to
586 		 * enable each type.
587 		 */
588 		if (sc->facts->IOCCapabilities &
589 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
590 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
591 			    enabled = TRUE;
592 		if (sc->facts->IOCCapabilities &
593 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
594 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
595 			    enabled = TRUE;
596 		if (sc->facts->IOCCapabilities &
597 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
598 			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
599 			    enabled = TRUE;
600 
601 		/*
602 		 * Set flags for some supported items.
603 		 */
604 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
605 			sc->eedp_enabled = TRUE;
606 		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
607 			sc->control_TLR = TRUE;
608 		if (sc->facts->IOCCapabilities &
609 		    MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
610 			sc->atomic_desc_capable = TRUE;
611 
612 		mpr_resize_queues(sc);
613 
614 		/*
615 		 * Initialize all Tail Queues
616 		 */
617 		TAILQ_INIT(&sc->req_list);
618 		TAILQ_INIT(&sc->high_priority_req_list);
619 		TAILQ_INIT(&sc->chain_list);
620 		TAILQ_INIT(&sc->prp_page_list);
621 		TAILQ_INIT(&sc->tm_list);
622 	}
623 
624 	/*
625 	 * If doing a Diag Reset and the FW is significantly different
626 	 * (reallocating will be set above in IOC Facts comparison), then all
627 	 * buffers based on the IOC Facts will need to be freed before they are
628 	 * reallocated.
629 	 */
630 	if (reallocating) {
631 		mpr_iocfacts_free(sc);
632 		mprsas_realloc_targets(sc, saved_facts.MaxTargets +
633 		    saved_facts.MaxVolumes);
634 	}
635 
636 	/*
637 	 * Any deallocation has been completed.  Now start reallocating
638 	 * if needed.  Will only need to reallocate if attaching or if the new
639 	 * IOC Facts are different from the previous IOC Facts after a Diag
640 	 * Reset. Targets have already been allocated above if needed.
641 	 */
642 	error = 0;
643 	while (attaching || reallocating) {
644 		if ((error = mpr_alloc_hw_queues(sc)) != 0)
645 			break;
646 		if ((error = mpr_alloc_replies(sc)) != 0)
647 			break;
648 		if ((error = mpr_alloc_requests(sc)) != 0)
649 			break;
650 		if ((error = mpr_alloc_queues(sc)) != 0)
651 			break;
652 		break;
653 	}
654 	if (error) {
655 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
656 		    "Failed to alloc queues with error %d\n", error);
657 		mpr_free(sc);
658 		return (error);
659 	}
660 
661 	/* Always initialize the queues */
662 	bzero(sc->free_queue, sc->fqdepth * 4);
663 	mpr_init_queues(sc);
664 
665 	/*
666 	 * Always get the chip out of the reset state, but only panic if not
667 	 * attaching.  If attaching and there is an error, that is handled by
668 	 * the OS.
669 	 */
670 	error = mpr_transition_operational(sc);
671 	if (error != 0) {
672 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
673 		    "transition to operational with error %d\n", error);
674 		mpr_free(sc);
675 		return (error);
676 	}
677 
678 	/*
679 	 * Finish the queue initialization.
680 	 * These are set here instead of in mpr_init_queues() because the
681 	 * IOC resets these values during the state transition in
682 	 * mpr_transition_operational().  The free index is set to 1
683 	 * because the corresponding index in the IOC is set to 0, and the
684 	 * IOC treats the queues as full if both are set to the same value.
685 	 * Hence the reason that the queue can't hold all of the possible
686 	 * replies.
687 	 */
688 	sc->replypostindex = 0;
689 	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
690 	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
691 
692 	/*
693 	 * Attach the subsystems so they can prepare their event masks.
694 	 * XXX Should be dynamic so that IM/IR and user modules can attach
695 	 */
696 	error = 0;
697 	while (attaching) {
698 		mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n");
699 		if ((error = mpr_attach_log(sc)) != 0)
700 			break;
701 		if ((error = mpr_attach_sas(sc)) != 0)
702 			break;
703 		if ((error = mpr_attach_user(sc)) != 0)
704 			break;
705 		break;
706 	}
707 	if (error) {
708 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
709 		    "Failed to attach all subsystems: error %d\n", error);
710 		mpr_free(sc);
711 		return (error);
712 	}
713 
714 	/*
715 	 * XXX If the number of MSI-X vectors changes during re-init, this
716 	 * won't see it and adjust.
717 	 */
718 	if (attaching && (error = mpr_pci_setup_interrupts(sc)) != 0) {
719 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
720 		    "Failed to setup interrupts\n");
721 		mpr_free(sc);
722 		return (error);
723 	}
724 
725 	return (error);
726 }
727 
728 /*
729  * This is called if memory is being free (during detach for example) and when
730  * buffers need to be reallocated due to a Diag Reset.
731  */
732 static void
733 mpr_iocfacts_free(struct mpr_softc *sc)
734 {
735 	struct mpr_command *cm;
736 	int i;
737 
738 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
739 
740 	if (sc->free_busaddr != 0)
741 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
742 	if (sc->free_queue != NULL)
743 		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
744 		    sc->queues_map);
745 	if (sc->queues_dmat != NULL)
746 		bus_dma_tag_destroy(sc->queues_dmat);
747 
748 	if (sc->chain_frames != NULL) {
749 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
750 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
751 		    sc->chain_map);
752 	}
753 	if (sc->chain_dmat != NULL)
754 		bus_dma_tag_destroy(sc->chain_dmat);
755 
756 	if (sc->sense_busaddr != 0)
757 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
758 	if (sc->sense_frames != NULL)
759 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
760 		    sc->sense_map);
761 	if (sc->sense_dmat != NULL)
762 		bus_dma_tag_destroy(sc->sense_dmat);
763 
764 	if (sc->prp_page_busaddr != 0)
765 		bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
766 	if (sc->prp_pages != NULL)
767 		bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
768 		    sc->prp_page_map);
769 	if (sc->prp_page_dmat != NULL)
770 		bus_dma_tag_destroy(sc->prp_page_dmat);
771 
772 	if (sc->reply_busaddr != 0)
773 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
774 	if (sc->reply_frames != NULL)
775 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
776 		    sc->reply_map);
777 	if (sc->reply_dmat != NULL)
778 		bus_dma_tag_destroy(sc->reply_dmat);
779 
780 	if (sc->req_busaddr != 0)
781 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
782 	if (sc->req_frames != NULL)
783 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
784 	if (sc->req_dmat != NULL)
785 		bus_dma_tag_destroy(sc->req_dmat);
786 
787 	if (sc->chains != NULL)
788 		kfree(sc->chains, M_MPR);
789 	if (sc->prps != NULL)
790 		kfree(sc->prps, M_MPR);
791 	if (sc->commands != NULL) {
792 		for (i = 1; i < sc->num_reqs; i++) {
793 			cm = &sc->commands[i];
794 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
795 		}
796 		kfree(sc->commands, M_MPR);
797 	}
798 	if (sc->buffer_dmat != NULL)
799 		bus_dma_tag_destroy(sc->buffer_dmat);
800 
801 	mpr_pci_free_interrupts(sc);
802 	kfree(sc->queues, M_MPR);
803 	sc->queues = NULL;
804 }
805 
806 /*
807  * The terms diag reset and hard reset are used interchangeably in the MPI
808  * docs to mean resetting the controller chip.  In this code diag reset
809  * cleans everything up, and the hard reset function just sends the reset
810  * sequence to the chip.  This should probably be refactored so that every
811  * subsystem gets a reset notification of some sort, and can clean up
812  * appropriately.
813  */
814 int
815 mpr_reinit(struct mpr_softc *sc)
816 {
817 	int error;
818 	struct mprsas_softc *sassc;
819 
820 	sassc = sc->sassc;
821 
822 	MPR_FUNCTRACE(sc);
823 
824 	KKASSERT(lockowned(&sc->mpr_lock));
825 
826 	mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n");
827 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
828 		mpr_dprint(sc, MPR_INIT, "Reset already in progress\n");
829 		return 0;
830 	}
831 
832 	/*
833 	 * Make sure the completion callbacks can recognize they're getting
834 	 * a NULL cm_reply due to a reset.
835 	 */
836 	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
837 
838 	/*
839 	 * Mask interrupts here.
840 	 */
841 	mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n");
842 	mpr_mask_intr(sc);
843 
844 	error = mpr_diag_reset(sc, CAN_SLEEP);
845 	if (error != 0) {
846 		panic("%s hard reset failed with error %d\n", __func__, error);
847 	}
848 
849 	/* Restore the PCI state, including the MSI-X registers */
850 	mpr_pci_restore(sc);
851 
852 	/* Give the I/O subsystem special priority to get itself prepared */
853 	mprsas_handle_reinit(sc);
854 
855 	/*
856 	 * Get IOC Facts and allocate all structures based on this information.
857 	 * The attach function will also call mpr_iocfacts_allocate at startup.
858 	 * If relevant values have changed in IOC Facts, this function will free
859 	 * all of the memory based on IOC Facts and reallocate that memory.
860 	 */
861 	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
862 		panic("%s IOC Facts based allocation failed with error %d\n",
863 		    __func__, error);
864 	}
865 
866 	/*
867 	 * Mapping structures will be re-allocated after getting IOC Page8, so
868 	 * free these structures here.
869 	 */
870 	mpr_mapping_exit(sc);
871 
872 	/*
873 	 * The static page function currently read is IOC Page8.  Others can be
874 	 * added in future.  It's possible that the values in IOC Page8 have
875 	 * changed after a Diag Reset due to user modification, so always read
876 	 * these.  Interrupts are masked, so unmask them before getting config
877 	 * pages.
878 	 */
879 	mpr_unmask_intr(sc);
880 	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
881 	mpr_base_static_config_pages(sc);
882 
883 	/*
884 	 * Some mapping info is based in IOC Page8 data, so re-initialize the
885 	 * mapping tables.
886 	 */
887 	mpr_mapping_initialize(sc);
888 
889 	/*
890 	 * Restart will reload the event masks clobbered by the reset, and
891 	 * then enable the port.
892 	 */
893 	mpr_reregister_events(sc);
894 
895 	/* the end of discovery will release the simq, so we're done. */
896 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n",
897 	    sc, sc->replypostindex, sc->replyfreeindex);
898 	mprsas_release_simq_reinit(sassc);
899 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
900 
901 	return 0;
902 }
903 
904 /* Wait for the chip to ACK a word that we've put into its FIFO
905  * Wait for <timeout> seconds. In single loop wait for busy loop
906  * for 500 microseconds.
907  * Total is [ 0.5 * (2000 * <timeout>) ] in milliseconds.
908  * */
909 static int
910 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
911 {
912 	u32 cntdn, count;
913 	u32 int_status;
914 	u32 doorbell;
915 
916 	count = 0;
917 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
918 	do {
919 		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
920 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
921 			mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), "
922 			    "timeout(%d)\n", __func__, count, timeout);
923 			return 0;
924 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
925 			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
926 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
927 			    MPI2_IOC_STATE_FAULT) {
928 				mpr_dprint(sc, MPR_FAULT,
929 				    "fault_state(0x%04x)!\n", doorbell);
930 				return (EFAULT);
931 			}
932 		} else if (int_status == 0xFFFFFFFF)
933 			goto out;
934 
935 		/*
936 		 * If it can sleep, sleep for 1 millisecond, else busy loop for
937  		 * 0.5 millisecond
938 		 */
939 		if (lockowned(&sc->mpr_lock) && sleep_flag == CAN_SLEEP)
940 			lksleep(&sc->msleep_fake_chan, &sc->mpr_lock, 0, "mprdba",
941 			    hz < 1000 ? 1 : hz / 1000);
942 		else if (sleep_flag == CAN_SLEEP)
943 			tsleep(mpr_wait_db_ack, 0, "mprdba", hz < 1000 ? 1 : hz / 1000);
944 		else
945 			DELAY(500);
946 		count++;
947 	} while (--cntdn);
948 
949 out:
950 	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
951 		"int_status(%x)!\n", __func__, count, int_status);
952 	return (ETIMEDOUT);
953 }
954 
955 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
956 static int
957 mpr_wait_db_int(struct mpr_softc *sc)
958 {
959 	int retry;
960 
961 	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
962 		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
963 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
964 			return (0);
965 		DELAY(2000);
966 	}
967 	return (ETIMEDOUT);
968 }
969 
970 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
971 static int
972 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
973     int req_sz, int reply_sz, int timeout)
974 {
975 	uint32_t *data32;
976 	uint16_t *data16;
977 	int i, count, ioc_sz, residual;
978 	int sleep_flags = CAN_SLEEP;
979 
980 	/* Step 1 */
981 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
982 
983 	/* Step 2 */
984 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
985 		return (EBUSY);
986 
987 	/* Step 3
988 	 * Announce that a message is coming through the doorbell.  Messages
989 	 * are pushed at 32bit words, so round up if needed.
990 	 */
991 	count = (req_sz + 3) / 4;
992 	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
993 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
994 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
995 
996 	/* Step 4 */
997 	if (mpr_wait_db_int(sc) ||
998 	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
999 		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
1000 		return (ENXIO);
1001 	}
1002 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1003 	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1004 		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
1005 		return (ENXIO);
1006 	}
1007 
1008 	/* Step 5 */
1009 	/* Clock out the message data synchronously in 32-bit dwords*/
1010 	data32 = (uint32_t *)req;
1011 	for (i = 0; i < count; i++) {
1012 		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
1013 		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
1014 			mpr_dprint(sc, MPR_FAULT,
1015 			    "Timeout while writing doorbell\n");
1016 			return (ENXIO);
1017 		}
1018 	}
1019 
1020 	/* Step 6 */
1021 	/* Clock in the reply in 16-bit words.  The total length of the
1022 	 * message is always in the 4th byte, so clock out the first 2 words
1023 	 * manually, then loop the rest.
1024 	 */
1025 	data16 = (uint16_t *)reply;
1026 	if (mpr_wait_db_int(sc) != 0) {
1027 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
1028 		return (ENXIO);
1029 	}
1030 	data16[0] =
1031 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1032 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1033 	if (mpr_wait_db_int(sc) != 0) {
1034 		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
1035 		return (ENXIO);
1036 	}
1037 	data16[1] =
1038 	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1039 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1040 
1041 	/* Number of 32bit words in the message */
1042 	ioc_sz = reply->MsgLength;
1043 
1044 	/*
1045 	 * Figure out how many 16bit words to clock in without overrunning.
1046 	 * The precision loss with dividing reply_sz can safely be
1047 	 * ignored because the messages can only be multiples of 32bits.
1048 	 */
1049 	residual = 0;
1050 	count = MIN((reply_sz / 4), ioc_sz) * 2;
1051 	if (count < ioc_sz * 2) {
1052 		residual = ioc_sz * 2 - count;
1053 		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
1054 		    "residual message words\n", residual);
1055 	}
1056 
1057 	for (i = 2; i < count; i++) {
1058 		if (mpr_wait_db_int(sc) != 0) {
1059 			mpr_dprint(sc, MPR_FAULT,
1060 			    "Timeout reading doorbell %d\n", i);
1061 			return (ENXIO);
1062 		}
1063 		data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
1064 		    MPI2_DOORBELL_DATA_MASK;
1065 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1066 	}
1067 
1068 	/*
1069 	 * Pull out residual words that won't fit into the provided buffer.
1070 	 * This keeps the chip from hanging due to a driver programming
1071 	 * error.
1072 	 */
1073 	while (residual--) {
1074 		if (mpr_wait_db_int(sc) != 0) {
1075 			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
1076 			return (ENXIO);
1077 		}
1078 		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1079 		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1080 	}
1081 
1082 	/* Step 7 */
1083 	if (mpr_wait_db_int(sc) != 0) {
1084 		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
1085 		return (ENXIO);
1086 	}
1087 	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1088 		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
1089 	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1090 
1091 	return (0);
1092 }
1093 
1094 static void
1095 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
1096 {
1097 	request_descriptor rd;
1098 
1099 	MPR_FUNCTRACE(sc);
1100 	mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
1101 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1102 
1103 	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
1104 	    MPR_FLAGS_SHUTDOWN))
1105 		KKASSERT(lockowned(&sc->mpr_lock));
1106 
1107 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
1108 		sc->io_cmds_highwater++;
1109 
1110 	KASSERT(cm->cm_state == MPR_CM_STATE_BUSY, ("command not busy\n"));
1111 	cm->cm_state = MPR_CM_STATE_INQUEUE;
1112 
1113 	if (sc->atomic_desc_capable) {
1114 		rd.u.low = cm->cm_desc.Words.Low;
1115 		mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
1116 		    rd.u.low);
1117 	} else {
1118 		rd.u.low = cm->cm_desc.Words.Low;
1119 		rd.u.high = cm->cm_desc.Words.High;
1120 		rd.word = htole64(rd.word);
1121 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1122 		    rd.u.low);
1123 		mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1124 		    rd.u.high);
1125 	}
1126 }
1127 
1128 /*
1129  * Just the FACTS, ma'am.
1130  */
1131 static int
1132 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1133 {
1134 	MPI2_DEFAULT_REPLY *reply;
1135 	MPI2_IOC_FACTS_REQUEST request;
1136 	int error, req_sz, reply_sz;
1137 
1138 	MPR_FUNCTRACE(sc);
1139 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1140 
1141 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1142 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1143 	reply = (MPI2_DEFAULT_REPLY *)facts;
1144 
1145 	bzero(&request, req_sz);
1146 	request.Function = MPI2_FUNCTION_IOC_FACTS;
1147 	error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1148 
1149 	mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
1150 	return (error);
1151 }
1152 
1153 static int
1154 mpr_send_iocinit(struct mpr_softc *sc)
1155 {
1156 	MPI2_IOC_INIT_REQUEST	init;
1157 	MPI2_DEFAULT_REPLY	reply;
1158 	int req_sz, reply_sz, error;
1159 	struct timeval now;
1160 	uint64_t time_in_msec;
1161 
1162 	MPR_FUNCTRACE(sc);
1163 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1164 
1165 	/* Do a quick sanity check on proper initialization */
1166 	if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
1167 	    || (sc->replyframesz == 0)) {
1168 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
1169 		    "Driver not fully initialized for IOCInit\n");
1170 		return (EINVAL);
1171 	}
1172 
1173 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1174 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1175 	bzero(&init, req_sz);
1176 	bzero(&reply, reply_sz);
1177 
1178 	/*
1179 	 * Fill in the init block.  Note that most addresses are
1180 	 * deliberately in the lower 32bits of memory.  This is a micro-
1181 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1182 	 */
1183 	init.Function = MPI2_FUNCTION_IOC_INIT;
1184 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1185 	init.MsgVersion = htole16(MPI2_VERSION);
1186 	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1187 	init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
1188 	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1189 	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1190 	init.SenseBufferAddressHigh = 0;
1191 	init.SystemReplyAddressHigh = 0;
1192 	init.SystemRequestFrameBaseAddress.High = 0;
1193 	init.SystemRequestFrameBaseAddress.Low =
1194 	    htole32((uint32_t)sc->req_busaddr);
1195 	init.ReplyDescriptorPostQueueAddress.High = 0;
1196 	init.ReplyDescriptorPostQueueAddress.Low =
1197 	    htole32((uint32_t)sc->post_busaddr);
1198 	init.ReplyFreeQueueAddress.High = 0;
1199 	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1200 	getmicrotime(&now);
1201 	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1202 	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1203 	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1204 	init.HostPageSize = HOST_PAGE_SIZE_4K;
1205 
1206 	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1207 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1208 		error = ENXIO;
1209 
1210 	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1211 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
1212 	return (error);
1213 }
1214 
1215 void
1216 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1217 {
1218 	bus_addr_t *addr;
1219 
1220 	addr = arg;
1221 	*addr = segs[0].ds_addr;
1222 }
1223 
1224 void
1225 mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1226 {
1227 	struct mpr_busdma_context *ctx;
1228 	int need_unload, need_free;
1229 
1230 	ctx = (struct mpr_busdma_context *)arg;
1231 	need_unload = 0;
1232 	need_free = 0;
1233 
1234 	mpr_lock(ctx->softc);
1235 	ctx->error = error;
1236 	ctx->completed = 1;
1237 	if ((error == 0) && (ctx->abandoned == 0)) {
1238 		*ctx->addr = segs[0].ds_addr;
1239 	} else {
1240 		if (nsegs != 0)
1241 			need_unload = 1;
1242 		if (ctx->abandoned != 0)
1243 			need_free = 1;
1244 	}
1245 	if (need_free == 0)
1246 		wakeup(ctx);
1247 
1248 	mpr_unlock(ctx->softc);
1249 
1250 	if (need_unload != 0) {
1251 		bus_dmamap_unload(ctx->buffer_dmat,
1252 				  ctx->buffer_dmamap);
1253 		*ctx->addr = 0;
1254 	}
1255 
1256 	if (need_free != 0)
1257 		kfree(ctx, M_MPR);
1258 }
1259 
1260 static int
1261 mpr_alloc_queues(struct mpr_softc *sc)
1262 {
1263 	struct mpr_queue *q;
1264 	int nq, i;
1265 
1266 	nq = sc->msi_msgs;
1267 	mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq);
1268 
1269 	sc->queues = kmalloc(sizeof(struct mpr_queue) * nq, M_MPR,
1270 	     M_NOWAIT|M_ZERO);
1271 	if (sc->queues == NULL)
1272 		return (ENOMEM);
1273 
1274 	for (i = 0; i < nq; i++) {
1275 		q = &sc->queues[i];
1276 		mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q);
1277 		q->sc = sc;
1278 		q->qnum = i;
1279 	}
1280 	return (0);
1281 }
1282 
1283 static int
1284 mpr_alloc_hw_queues(struct mpr_softc *sc)
1285 {
1286 	bus_addr_t queues_busaddr;
1287 	uint8_t *queues;
1288 	int qsize, fqsize, pqsize;
1289 
1290 	/*
1291 	 * The reply free queue contains 4 byte entries in multiples of 16 and
1292 	 * aligned on a 16 byte boundary. There must always be an unused entry.
1293 	 * This queue supplies fresh reply frames for the firmware to use.
1294 	 *
1295 	 * The reply descriptor post queue contains 8 byte entries in
1296 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1297 	 * contains filled-in reply frames sent from the firmware to the host.
1298 	 *
1299 	 * These two queues are allocated together for simplicity.
1300 	 */
1301 	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1302 	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1303 	fqsize= sc->fqdepth * 4;
1304 	pqsize = sc->pqdepth * 8;
1305 	qsize = fqsize + pqsize;
1306 
1307         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1308 				16, 0,			/* algnmnt, boundary */
1309 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1310 				BUS_SPACE_MAXADDR,	/* highaddr */
1311 				NULL, NULL,		/* filter, filterarg */
1312                                 qsize,			/* maxsize */
1313                                 1,			/* nsegments */
1314                                 qsize,			/* maxsegsize */
1315                                 0,			/* flags */
1316                                 &sc->queues_dmat)) {
1317 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n");
1318 		return (ENOMEM);
1319         }
1320         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1321 	    &sc->queues_map)) {
1322 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n");
1323 		return (ENOMEM);
1324         }
1325         bzero(queues, qsize);
1326         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1327 	    mpr_memaddr_cb, &queues_busaddr, 0);
1328 
1329 	sc->free_queue = (uint32_t *)queues;
1330 	sc->free_busaddr = queues_busaddr;
1331 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1332 	sc->post_busaddr = queues_busaddr + fqsize;
1333 	mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n",
1334 	    (uintmax_t)sc->free_busaddr, fqsize);
1335 	mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n",
1336 	    (uintmax_t)sc->post_busaddr, pqsize);
1337 
1338 	return (0);
1339 }
1340 
1341 static int
1342 mpr_alloc_replies(struct mpr_softc *sc)
1343 {
1344 	int rsize, num_replies;
1345 
1346 	/* Store the reply frame size in bytes rather than as 32bit words */
1347 	sc->replyframesz = sc->facts->ReplyFrameSize * 4;
1348 
1349 	/*
1350 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1351 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1352 	 * replies can be used at once.
1353 	 */
1354 	num_replies = max(sc->fqdepth, sc->num_replies);
1355 
1356 	rsize = sc->replyframesz * num_replies;
1357         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1358 				4, 0,			/* algnmnt, boundary */
1359 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1360 				BUS_SPACE_MAXADDR,	/* highaddr */
1361 				NULL, NULL,		/* filter, filterarg */
1362                                 rsize,			/* maxsize */
1363                                 1,			/* nsegments */
1364                                 rsize,			/* maxsegsize */
1365                                 0,			/* flags */
1366                                 &sc->reply_dmat)) {
1367 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n");
1368 		return (ENOMEM);
1369         }
1370         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1371 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1372 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n");
1373 		return (ENOMEM);
1374         }
1375         bzero(sc->reply_frames, rsize);
1376         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1377 	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1378 	mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n",
1379 	    (uintmax_t)sc->reply_busaddr, rsize);
1380 
1381 	return (0);
1382 }
1383 
1384 static void
1385 mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1386 {
1387 	struct mpr_softc *sc = arg;
1388 	struct mpr_chain *chain;
1389 	bus_size_t bo;
1390 	int i, o, s;
1391 
1392 	if (error != 0)
1393 		return;
1394 
1395 	for (i = 0, o = 0, s = 0; s < nsegs; s++) {
1396 		for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len;
1397 		    bo += sc->chain_frame_size) {
1398 			chain = &sc->chains[i++];
1399 			chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
1400 			chain->chain_busaddr = segs[s].ds_addr + bo;
1401 			o += sc->chain_frame_size;
1402 			mpr_free_chain(sc, chain);
1403 		}
1404 		if (bo != segs[s].ds_len)
1405 			o += segs[s].ds_len - bo;
1406 	}
1407 	sc->chain_free_lowwater = i;
1408 }
1409 
1410 static int
1411 mpr_alloc_requests(struct mpr_softc *sc)
1412 {
1413 	struct mpr_command *cm;
1414 	int i, rsize, nsegs;
1415 
1416 	rsize = sc->reqframesz * sc->num_reqs;
1417         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1418 				16, 0,			/* algnmnt, boundary */
1419 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1420 				BUS_SPACE_MAXADDR,	/* highaddr */
1421 				NULL, NULL,		/* filter, filterarg */
1422                                 rsize,			/* maxsize */
1423                                 1,			/* nsegments */
1424                                 rsize,			/* maxsegsize */
1425                                 0,			/* flags */
1426                                 &sc->req_dmat)) {
1427 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n");
1428 		return (ENOMEM);
1429         }
1430         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1431 	    BUS_DMA_NOWAIT, &sc->req_map)) {
1432 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n");
1433 		return (ENOMEM);
1434         }
1435         bzero(sc->req_frames, rsize);
1436         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1437 	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1438 	mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n",
1439 	    (uintmax_t)sc->req_busaddr, rsize);
1440 
1441 	sc->chains = kmalloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR,
1442 	    M_NOWAIT | M_ZERO);
1443 	if (!sc->chains) {
1444 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1445 		return (ENOMEM);
1446 	}
1447 	rsize = sc->chain_frame_size * sc->num_chains;
1448 	if (bus_dma_tag_create( sc->mpr_parent_dmat,	/* parent */
1449 				16, 0,			/* algnmnt, boundary */
1450 				BUS_SPACE_MAXADDR,	/* lowaddr */
1451 				BUS_SPACE_MAXADDR,	/* highaddr */
1452 				NULL, NULL,		/* filter, filterarg */
1453 				rsize,			/* maxsize */
1454 				howmany(rsize, PAGE_SIZE), /* nsegments */
1455 				rsize,			/* maxsegsize */
1456 				0,			/* flags */
1457 				&sc->chain_dmat)) {
1458 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n");
1459 		return (ENOMEM);
1460 	}
1461 	if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1462 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
1463 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
1464 		return (ENOMEM);
1465 	}
1466 	if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
1467 	    rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
1468 		mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n");
1469 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
1470 		    sc->chain_map);
1471 		return (ENOMEM);
1472 	}
1473 
1474 	rsize = MPR_SENSE_LEN * sc->num_reqs;
1475 	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1476 				1, 0,			/* algnmnt, boundary */
1477 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1478 				BUS_SPACE_MAXADDR,	/* highaddr */
1479 				NULL, NULL,		/* filter, filterarg */
1480                                 rsize,			/* maxsize */
1481                                 1,			/* nsegments */
1482                                 rsize,			/* maxsegsize */
1483                                 0,			/* flags */
1484                                 &sc->sense_dmat)) {
1485 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n");
1486 		return (ENOMEM);
1487         }
1488         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1489 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1490 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n");
1491 		return (ENOMEM);
1492         }
1493         bzero(sc->sense_frames, rsize);
1494         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1495 	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1496 	mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n",
1497 	    (uintmax_t)sc->sense_busaddr, rsize);
1498 
1499 	/*
1500 	 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1501 	 * these devices.
1502 	 */
1503 	if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1504 	    (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1505 		if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1506 			return (ENOMEM);
1507 	}
1508 
1509 	nsegs = (sc->maxio / PAGE_SIZE) + 1;
1510         if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1511 				1, 0,			/* algnmnt, boundary */
1512 				BUS_SPACE_MAXADDR,	/* lowaddr */
1513 				BUS_SPACE_MAXADDR,	/* highaddr */
1514 				NULL, NULL,		/* filter, filterarg */
1515                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1516                                 nsegs,			/* nsegments */
1517                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1518                                 BUS_DMA_ALLOCNOW,	/* flags */
1519                                 &sc->buffer_dmat)) {
1520 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n");
1521 		return (ENOMEM);
1522         }
1523 
1524 	/*
1525 	 * SMID 0 cannot be used as a free command per the firmware spec.
1526 	 * Just drop that command instead of risking accounting bugs.
1527 	 */
1528 	sc->commands = kmalloc(sizeof(struct mpr_command) * sc->num_reqs,
1529 	    M_MPR, M_WAITOK | M_ZERO);
1530 	if (!sc->commands) {
1531 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate command memory\n");
1532 		return (ENOMEM);
1533 	}
1534 	for (i = 1; i < sc->num_reqs; i++) {
1535 		cm = &sc->commands[i];
1536 		cm->cm_req = sc->req_frames + i * sc->reqframesz;
1537 		cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
1538 		cm->cm_sense = &sc->sense_frames[i];
1539 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1540 		cm->cm_desc.Default.SMID = i;
1541 		cm->cm_sc = sc;
1542 		cm->cm_state = MPR_CM_STATE_BUSY;
1543 		TAILQ_INIT(&cm->cm_chain_list);
1544 		TAILQ_INIT(&cm->cm_prp_page_list);
1545 		callout_init_lk(&cm->cm_callout, &sc->mpr_lock);
1546 
1547 		/* XXX Is a failure here a critical problem? */
1548 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1549 		    == 0) {
1550 			if (i <= sc->num_prireqs)
1551 				mpr_free_high_priority_command(sc, cm);
1552 			else
1553 				mpr_free_command(sc, cm);
1554 		} else {
1555 			panic("failed to allocate command %d\n", i);
1556 			sc->num_reqs = i;
1557 			break;
1558 		}
1559 	}
1560 
1561 	return (0);
1562 }
1563 
1564 /*
1565  * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1566  * which are scatter/gather lists for NVMe devices.
1567  *
1568  * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1569  * and translated by FW.
1570  *
1571  * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1572  */
1573 static int
1574 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1575 {
1576 	int PRPs_per_page, PRPs_required, pages_required;
1577 	int rsize, i;
1578 	struct mpr_prp_page *prp_page;
1579 
1580 	/*
1581 	 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1582 	 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1583 	 * MAX_IO_SIZE / PAGE_SIZE = 256
1584 	 *
1585 	 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1586 	 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1587 	 * page (4096 / 8 = 512), so only one page is required for each I/O.
1588 	 *
1589 	 * Each of these buffers will need to be contiguous. For simplicity,
1590 	 * only one buffer is allocated here, which has all of the space
1591 	 * required for the NVMe Queue Depth. If there are problems allocating
1592 	 * this one buffer, this function will need to change to allocate
1593 	 * individual, contiguous NVME_QDEPTH buffers.
1594 	 *
1595 	 * The real calculation will use the real max io size. Above is just an
1596 	 * example.
1597 	 *
1598 	 */
1599 	PRPs_required = sc->maxio / PAGE_SIZE;
1600 	PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1601 	pages_required = (PRPs_required / PRPs_per_page) + 1;
1602 
1603 	sc->prp_buffer_size = PAGE_SIZE * pages_required;
1604 	rsize = sc->prp_buffer_size * NVME_QDEPTH;
1605 	if (bus_dma_tag_create( sc->mpr_parent_dmat,	/* parent */
1606 				4, 0,			/* algnmnt, boundary */
1607 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1608 				BUS_SPACE_MAXADDR,	/* highaddr */
1609 				NULL, NULL,		/* filter, filterarg */
1610 				rsize,			/* maxsize */
1611 				1,			/* nsegments */
1612 				rsize,			/* maxsegsize */
1613 				0,			/* flags */
1614 				&sc->prp_page_dmat)) {
1615 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA "
1616 		    "tag\n");
1617 		return (ENOMEM);
1618 	}
1619 	if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1620 	    BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1621 		mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n");
1622 		return (ENOMEM);
1623 	}
1624 	bzero(sc->prp_pages, rsize);
1625 	bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1626 	    rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1627 
1628 	sc->prps = kmalloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1629 	    M_WAITOK | M_ZERO);
1630 	for (i = 0; i < NVME_QDEPTH; i++) {
1631 		prp_page = &sc->prps[i];
1632 		prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1633 		    i * sc->prp_buffer_size);
1634 		prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1635 		    i * sc->prp_buffer_size);
1636 		mpr_free_prp_page(sc, prp_page);
1637 		sc->prp_pages_free_lowwater++;
1638 	}
1639 
1640 	return (0);
1641 }
1642 
1643 static int
1644 mpr_init_queues(struct mpr_softc *sc)
1645 {
1646 	int i;
1647 
1648 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1649 
1650 	/*
1651 	 * According to the spec, we need to use one less reply than we
1652 	 * have space for on the queue.  So sc->num_replies (the number we
1653 	 * use) should be less than sc->fqdepth (allocated size).
1654 	 */
1655 	if (sc->num_replies >= sc->fqdepth)
1656 		return (EINVAL);
1657 
1658 	/*
1659 	 * Initialize all of the free queue entries.
1660 	 */
1661 	for (i = 0; i < sc->fqdepth; i++) {
1662 		sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz);
1663 	}
1664 	sc->replyfreeindex = sc->num_replies;
1665 
1666 	return (0);
1667 }
1668 
1669 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1670  * Next are the global settings, if they exist.  Highest are the per-unit
1671  * settings, if they exist.
1672  */
1673 void
1674 mpr_get_tunables(struct mpr_softc *sc)
1675 {
1676 	char tmpstr[80];
1677 
1678 	/* XXX default to some debugging for now */
1679 	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1680 	sc->msi_enable = 1;
1681 	sc->max_chains = MPR_CHAIN_FRAMES;
1682 	sc->max_io_pages = MPR_MAXIO_PAGES;
1683 	sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1684 	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1685 	sc->use_phynum = 1;
1686 	sc->max_reqframes = MPR_REQ_FRAMES;
1687 	sc->max_prireqframes = MPR_PRI_REQ_FRAMES;
1688 	sc->max_replyframes = MPR_REPLY_FRAMES;
1689 	sc->max_evtframes = MPR_EVT_REPLY_FRAMES;
1690 
1691 	/*
1692 	 * Grab the global variables.
1693 	 */
1694 	TUNABLE_INT_FETCH("hw.mpr.debug_level", &sc->mpr_debug);
1695 	TUNABLE_INT_FETCH("hw.mpr.msi_enable", &sc->msi_enable);
1696 	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1697 	TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1698 	TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1699 	TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1700 	TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1701 	TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes);
1702 	TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes);
1703 	TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes);
1704 	TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes);
1705 
1706 	/* Grab the unit-instance variables */
1707 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1708 	    device_get_unit(sc->mpr_dev));
1709 	TUNABLE_INT_FETCH(tmpstr, &sc->mpr_debug);
1710 
1711 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.msi_enable",
1712 	    device_get_unit(sc->mpr_dev));
1713 	TUNABLE_INT_FETCH(tmpstr, &sc->msi_enable);
1714 
1715 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1716 	    device_get_unit(sc->mpr_dev));
1717 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1718 
1719 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1720 	    device_get_unit(sc->mpr_dev));
1721 	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1722 
1723 	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1724 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1725 	    device_get_unit(sc->mpr_dev));
1726 	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1727 
1728 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1729 	    device_get_unit(sc->mpr_dev));
1730 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1731 
1732 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1733 	    device_get_unit(sc->mpr_dev));
1734 	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1735 
1736 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1737 	    device_get_unit(sc->mpr_dev));
1738 	TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1739 
1740 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes",
1741 	    device_get_unit(sc->mpr_dev));
1742 	TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1743 
1744 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes",
1745 	    device_get_unit(sc->mpr_dev));
1746 	TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1747 
1748 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes",
1749 	    device_get_unit(sc->mpr_dev));
1750 	TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1751 
1752 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes",
1753 	    device_get_unit(sc->mpr_dev));
1754 	TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1755 }
1756 
1757 static void
1758 mpr_setup_sysctl(struct mpr_softc *sc)
1759 {
1760 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1761 	struct sysctl_oid	*sysctl_tree = NULL;
1762 	char tmpstr[80], tmpstr2[80];
1763 
1764 	/*
1765 	 * Setup the sysctl variable so the user can change the debug level
1766 	 * on the fly.
1767 	 */
1768 	ksnprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1769 	    device_get_unit(sc->mpr_dev));
1770 	ksnprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1771 
1772 	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1773 	if (sysctl_ctx != NULL)
1774 		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1775 
1776 	if (sysctl_tree == NULL) {
1777 		sysctl_ctx_init(&sc->sysctl_ctx);
1778 		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1779 		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1780 		    CTLFLAG_RD, 0, tmpstr);
1781 		if (sc->sysctl_tree == NULL)
1782 			return;
1783 		sysctl_ctx = &sc->sysctl_ctx;
1784 		sysctl_tree = sc->sysctl_tree;
1785 	}
1786 
1787 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1788 	    OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mpr_debug, 0,
1789 	    "mpr debug level");
1790 
1791 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1792 	    OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1793 	    "Total number of allocated request frames");
1794 
1795 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1796 	    OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1797 	    "Total number of allocated high priority request frames");
1798 
1799 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1800 	    OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1801 	    "Total number of allocated reply frames");
1802 
1803 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1804 	    OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1805 	    "Total number of event frames allocated");
1806 
1807 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1808 	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1809 	    strlen(sc->fw_version), "firmware version");
1810 
1811 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1812 	    OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
1813 	    strlen(MPR_DRIVER_VERSION), "driver version");
1814 
1815 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1816 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1817 	    &sc->io_cmds_active, 0, "number of currently active commands");
1818 
1819 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1820 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1821 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1822 
1823 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1824 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1825 	    &sc->chain_free, 0, "number of free chain elements");
1826 
1827 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1828 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1829 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1830 
1831 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1832 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1833 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1834 
1835 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1836 	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1837 	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1838 	    "IOCFacts)");
1839 
1840 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1841 	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1842 	    "enable SSU to SATA SSD/HDD at shutdown");
1843 
1844 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1845 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1846 	    &sc->chain_alloc_fail, 0, "chain allocation failures");
1847 
1848 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1849 	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1850 	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1851 	    "spinup after SATA ID error");
1852 
1853 	SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1854 	    OID_AUTO, "dump_reqs", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP, sc, 0,
1855 	    mpr_dump_reqs, "I", "Dump Active Requests");
1856 
1857 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1858 	    OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1859 	    "Use the phy number for enumeration");
1860 
1861 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1862 	    OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1863 	    &sc->prp_pages_free, 0, "number of free PRP pages");
1864 
1865 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1866 	    OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1867 	    &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1868 
1869 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1870 	    OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1871 	    &sc->prp_page_alloc_fail, 0, "PRP page allocation failures");
1872 }
1873 
1874 struct mpr_dumpreq_hdr {
1875 	uint32_t	smid;
1876 	uint32_t	state;
1877 	uint32_t	numframes;
1878 	uint32_t	deschi;
1879 	uint32_t	desclo;
1880 };
1881 
1882 static int
1883 mpr_dump_reqs(SYSCTL_HANDLER_ARGS)
1884 {
1885 	struct mpr_softc *sc;
1886 	struct mpr_chain *chain, *chain1;
1887 	struct mpr_command *cm;
1888 	struct mpr_dumpreq_hdr hdr;
1889 	struct sbuf *sb;
1890 	uint32_t smid, state;
1891 	int i, numreqs, error = 0;
1892 
1893 	sc = (struct mpr_softc *)arg1;
1894 
1895 	if ((error = caps_priv_check_self(SYSCAP_NODRIVER)) != 0)
1896 		return (error);
1897 
1898 	state = MPR_CM_STATE_INQUEUE;
1899 	smid = 1;
1900 	numreqs = sc->num_reqs;
1901 
1902 	if (req->newptr != NULL)
1903 		return (EINVAL);
1904 
1905 	if (smid == 0 || smid > sc->num_reqs)
1906 		return (EINVAL);
1907 	if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
1908 		numreqs = sc->num_reqs;
1909 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
1910 
1911 	/* Best effort, no locking */
1912 	for (i = smid; i < numreqs; i++) {
1913 		cm = &sc->commands[i];
1914 		if (cm->cm_state != state)
1915 			continue;
1916 		hdr.smid = i;
1917 		hdr.state = cm->cm_state;
1918 		hdr.numframes = 1;
1919 		hdr.deschi = cm->cm_desc.Words.High;
1920 		hdr.desclo = cm->cm_desc.Words.Low;
1921 		TAILQ_FOREACH_MUTABLE(chain, &cm->cm_chain_list, chain_link,
1922 		   chain1)
1923 			hdr.numframes++;
1924 		sbuf_bcat(sb, &hdr, sizeof(hdr));
1925 		sbuf_bcat(sb, cm->cm_req, 128);
1926 		TAILQ_FOREACH_MUTABLE(chain, &cm->cm_chain_list, chain_link,
1927 		    chain1)
1928 			sbuf_bcat(sb, chain->chain, 128);
1929 	}
1930 
1931 	error = sbuf_finish(sb);
1932 	sbuf_delete(sb);
1933 	return (error);
1934 }
1935 
1936 int
1937 mpr_attach(struct mpr_softc *sc)
1938 {
1939 	int error;
1940 
1941 	MPR_FUNCTRACE(sc);
1942 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
1943 
1944 	lockinit(&sc->mpr_lock, "MPR lock", 0, LK_CANRECURSE);
1945 	callout_init_lk(&sc->periodic, &sc->mpr_lock);
1946 	callout_init_lk(&sc->device_check_callout, &sc->mpr_lock);
1947 	TAILQ_INIT(&sc->event_list);
1948 	timevalclear(&sc->lastfail);
1949 
1950 	if ((error = mpr_transition_ready(sc)) != 0) {
1951 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
1952 		    "Failed to transition ready\n");
1953 		return (error);
1954 	}
1955 
1956 	sc->facts = kmalloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
1957 	    M_ZERO|M_NOWAIT);
1958 	if (!sc->facts) {
1959 		mpr_dprint(sc, MPR_INIT|MPR_FAULT,
1960 		    "Cannot allocate memory, exit\n");
1961 		return (ENOMEM);
1962 	}
1963 
1964 	/*
1965 	 * Get IOC Facts and allocate all structures based on this information.
1966 	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
1967 	 * Facts. If relevant values have changed in IOC Facts, this function
1968 	 * will free all of the memory based on IOC Facts and reallocate that
1969 	 * memory.  If this fails, any allocated memory should already be freed.
1970 	 */
1971 	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
1972 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation "
1973 		    "failed with error %d\n", error);
1974 		return (error);
1975 	}
1976 
1977 	/* Start the periodic watchdog check on the IOC Doorbell */
1978 	mpr_periodic(sc);
1979 
1980 	/*
1981 	 * The portenable will kick off discovery events that will drive the
1982 	 * rest of the initialization process.  The CAM/SAS module will
1983 	 * hold up the boot sequence until discovery is complete.
1984 	 */
1985 	sc->mpr_ich.ich_func = mpr_startup;
1986 	sc->mpr_ich.ich_arg = sc;
1987 	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
1988 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
1989 		    "Cannot establish MPR config hook\n");
1990 		error = EINVAL;
1991 	}
1992 
1993 	/*
1994 	 * Allow IR to shutdown gracefully when shutdown occurs.
1995 	 */
1996 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1997 	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1998 
1999 	if (sc->shutdown_eh == NULL)
2000 		mpr_dprint(sc, MPR_INIT|MPR_ERROR,
2001 		    "shutdown event registration failed\n");
2002 
2003 	mpr_setup_sysctl(sc);
2004 
2005 	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
2006 	mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
2007 
2008 	return (error);
2009 }
2010 
2011 /* Run through any late-start handlers. */
2012 static void
2013 mpr_startup(void *arg)
2014 {
2015 	struct mpr_softc *sc;
2016 
2017 	sc = (struct mpr_softc *)arg;
2018 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2019 
2020 	mpr_lock(sc);
2021 	mpr_unmask_intr(sc);
2022 
2023 	/* initialize device mapping tables */
2024 	mpr_base_static_config_pages(sc);
2025 	mpr_mapping_initialize(sc);
2026 	mprsas_startup(sc);
2027 	mpr_unlock(sc);
2028 
2029 	mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n");
2030 	config_intrhook_disestablish(&sc->mpr_ich);
2031 	sc->mpr_ich.ich_arg = NULL;
2032 
2033 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2034 }
2035 
2036 /* Periodic watchdog.  Is called with the driver lock already held. */
2037 static void
2038 mpr_periodic(void *arg)
2039 {
2040 	struct mpr_softc *sc;
2041 	uint32_t db;
2042 
2043 	sc = (struct mpr_softc *)arg;
2044 	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
2045 		return;
2046 
2047 	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
2048 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2049 		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
2050 		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
2051 			panic("TEMPERATURE FAULT: STOPPING.");
2052 		}
2053 		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2054 		mpr_reinit(sc);
2055 	}
2056 
2057 	callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
2058 }
2059 
2060 static void
2061 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
2062     MPI2_EVENT_NOTIFICATION_REPLY *event)
2063 {
2064 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2065 
2066 	MPR_DPRINT_EVENT(sc, generic, event);
2067 
2068 	switch (event->Event) {
2069 	case MPI2_EVENT_LOG_DATA:
2070 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2071 		if (sc->mpr_debug & MPR_EVENT)
2072 			hexdump(event->EventData, event->EventDataLength, NULL,
2073 			    0);
2074 		break;
2075 	case MPI2_EVENT_LOG_ENTRY_ADDED:
2076 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2077 		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2078 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2079 		     entry->LogSequence);
2080 		break;
2081 	default:
2082 		break;
2083 	}
2084 	return;
2085 }
2086 
2087 static int
2088 mpr_attach_log(struct mpr_softc *sc)
2089 {
2090 	uint8_t events[16];
2091 
2092 	bzero(events, 16);
2093 	setbit(events, MPI2_EVENT_LOG_DATA);
2094 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2095 
2096 	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
2097 	    &sc->mpr_log_eh);
2098 
2099 	return (0);
2100 }
2101 
2102 static int
2103 mpr_detach_log(struct mpr_softc *sc)
2104 {
2105 
2106 	if (sc->mpr_log_eh != NULL)
2107 		mpr_deregister_events(sc, sc->mpr_log_eh);
2108 	return (0);
2109 }
2110 
2111 /*
2112  * Free all of the driver resources and detach submodules.  Should be called
2113  * without the lock held.
2114  */
2115 int
2116 mpr_free(struct mpr_softc *sc)
2117 {
2118 	int error;
2119 
2120 	mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
2121 	/* Turn off the watchdog */
2122 	mpr_lock(sc);
2123 	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
2124 	mpr_unlock(sc);
2125 	/* Lock must not be held for this */
2126 	callout_drain(&sc->periodic);
2127 	callout_drain(&sc->device_check_callout);
2128 
2129 	if (((error = mpr_detach_log(sc)) != 0) ||
2130 	    ((error = mpr_detach_sas(sc)) != 0)) {
2131 		mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach "
2132 		    "subsystems, error= %d, exit\n", error);
2133 		return (error);
2134 	}
2135 
2136 	mpr_detach_user(sc);
2137 
2138 	/* Put the IOC back in the READY state. */
2139 	mpr_lock(sc);
2140 	if ((error = mpr_transition_ready(sc)) != 0) {
2141 		mpr_unlock(sc);
2142 		return (error);
2143 	}
2144 	mpr_unlock(sc);
2145 
2146 	if (sc->facts != NULL)
2147 		kfree(sc->facts, M_MPR);
2148 
2149 	/*
2150 	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
2151 	 * to free these buffers too.
2152 	 */
2153 	mpr_iocfacts_free(sc);
2154 
2155 	if (sc->sysctl_tree != NULL)
2156 		sysctl_ctx_free(&sc->sysctl_ctx);
2157 
2158 	/* Deregister the shutdown function */
2159 	if (sc->shutdown_eh != NULL)
2160 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2161 
2162 	lockuninit(&sc->mpr_lock);
2163 	mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
2164 
2165 	return (0);
2166 }
2167 
2168 static __inline void
2169 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
2170 {
2171 	MPR_FUNCTRACE(sc);
2172 
2173 	if (cm == NULL) {
2174 		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
2175 		return;
2176 	}
2177 
2178 	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
2179 		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
2180 
2181 	if (cm->cm_complete != NULL) {
2182 		mpr_dprint(sc, MPR_TRACE,
2183 		    "%s cm %p calling cm_complete %p data %p reply %p\n",
2184 		    __func__, cm, cm->cm_complete, cm->cm_complete_data,
2185 		    cm->cm_reply);
2186 		cm->cm_complete(sc, cm);
2187 	}
2188 
2189 	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
2190 		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
2191 		wakeup(cm);
2192 	}
2193 
2194 	if (sc->io_cmds_active != 0) {
2195 		sc->io_cmds_active--;
2196 	} else {
2197 		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
2198 		    "out of sync - resynching to 0\n");
2199 	}
2200 }
2201 
2202 static void
2203 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
2204 {
2205 	union loginfo_type {
2206 		u32	loginfo;
2207 		struct {
2208 			u32	subcode:16;
2209 			u32	code:8;
2210 			u32	originator:4;
2211 			u32	bus_type:4;
2212 		} dw;
2213 	};
2214 	union loginfo_type sas_loginfo;
2215 	char *originator_str = NULL;
2216 
2217 	sas_loginfo.loginfo = log_info;
2218 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2219 		return;
2220 
2221 	/* each nexus loss loginfo */
2222 	if (log_info == 0x31170000)
2223 		return;
2224 
2225 	/* eat the loginfos associated with task aborts */
2226 	if ((log_info == 30050000) || (log_info == 0x31140000) ||
2227 	    (log_info == 0x31130000))
2228 		return;
2229 
2230 	switch (sas_loginfo.dw.originator) {
2231 	case 0:
2232 		originator_str = "IOP";
2233 		break;
2234 	case 1:
2235 		originator_str = "PL";
2236 		break;
2237 	case 2:
2238 		originator_str = "IR";
2239 		break;
2240 	}
2241 
2242 	mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
2243 	    "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
2244 	    sas_loginfo.dw.code, sas_loginfo.dw.subcode);
2245 }
2246 
2247 static void
2248 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
2249 {
2250 	MPI2DefaultReply_t *mpi_reply;
2251 	u16 sc_status;
2252 
2253 	mpi_reply = (MPI2DefaultReply_t*)reply;
2254 	sc_status = le16toh(mpi_reply->IOCStatus);
2255 	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2256 		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2257 }
2258 
2259 void
2260 mpr_intr(void *data)
2261 {
2262 	struct mpr_softc *sc;
2263 	uint32_t status;
2264 
2265 	sc = (struct mpr_softc *)data;
2266 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2267 
2268 	/*
2269 	 * Check interrupt status register to flush the bus.  This is
2270 	 * needed for both INTx interrupts and driver-driven polling
2271 	 */
2272 	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2273 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2274 		return;
2275 
2276 	mpr_lock(sc);
2277 	mpr_intr_locked(data);
2278 	mpr_unlock(sc);
2279 	return;
2280 }
2281 
2282 /*
2283  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2284  * chip.  Hopefully this theory is correct.
2285  */
2286 void
2287 mpr_intr_msi(void *data)
2288 {
2289 	struct mpr_softc *sc;
2290 
2291 	sc = (struct mpr_softc *)data;
2292 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2293 	mpr_lock(sc);
2294 	mpr_intr_locked(data);
2295 	mpr_unlock(sc);
2296 	return;
2297 }
2298 
2299 /*
2300  * The locking is overly broad and simplistic, but easy to deal with for now.
2301  */
2302 void
2303 mpr_intr_locked(void *data)
2304 {
2305 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
2306 	struct mpr_softc *sc;
2307 	struct mpr_command *cm = NULL;
2308 	uint8_t flags;
2309 	u_int pq;
2310 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
2311 	mpr_fw_diagnostic_buffer_t *pBuffer;
2312 
2313 	sc = (struct mpr_softc *)data;
2314 
2315 	pq = sc->replypostindex;
2316 	mpr_dprint(sc, MPR_TRACE,
2317 	    "%s sc %p starting with replypostindex %u\n",
2318 	    __func__, sc, sc->replypostindex);
2319 
2320 	for ( ;; ) {
2321 		cm = NULL;
2322 		desc = &sc->post_queue[sc->replypostindex];
2323 		flags = desc->Default.ReplyFlags &
2324 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2325 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2326 		    (le32toh(desc->Words.High) == 0xffffffff))
2327 			break;
2328 
2329 		/* increment the replypostindex now, so that event handlers
2330 		 * and cm completion handlers which decide to do a diag
2331 		 * reset can zero it without it getting incremented again
2332 		 * afterwards, and we break out of this loop on the next
2333 		 * iteration since the reply post queue has been cleared to
2334 		 * 0xFF and all descriptors look unused (which they are).
2335 		 */
2336 		if (++sc->replypostindex >= sc->pqdepth)
2337 			sc->replypostindex = 0;
2338 
2339 		switch (flags) {
2340 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2341 		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2342 		case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2343 			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2344 			KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
2345 			    ("command not inqueue\n"));
2346 			cm->cm_state = MPR_CM_STATE_BUSY;
2347 			cm->cm_reply = NULL;
2348 			break;
2349 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2350 		{
2351 			uint32_t baddr;
2352 			uint8_t *reply;
2353 
2354 			/*
2355 			 * Re-compose the reply address from the address
2356 			 * sent back from the chip.  The ReplyFrameAddress
2357 			 * is the lower 32 bits of the physical address of
2358 			 * particular reply frame.  Convert that address to
2359 			 * host format, and then use that to provide the
2360 			 * offset against the virtual address base
2361 			 * (sc->reply_frames).
2362 			 */
2363 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2364 			reply = sc->reply_frames +
2365 				(baddr - ((uint32_t)sc->reply_busaddr));
2366 			/*
2367 			 * Make sure the reply we got back is in a valid
2368 			 * range.  If not, go ahead and panic here, since
2369 			 * we'll probably panic as soon as we deference the
2370 			 * reply pointer anyway.
2371 			 */
2372 			if ((reply < sc->reply_frames)
2373 			 || (reply > (sc->reply_frames +
2374 			     (sc->fqdepth * sc->replyframesz)))) {
2375 				kprintf("%s: WARNING: reply %p out of range!\n",
2376 				       __func__, reply);
2377 				kprintf("%s: reply_frames %p, fqdepth %d, "
2378 				       "frame size %d\n", __func__,
2379 				       sc->reply_frames, sc->fqdepth,
2380 				       sc->replyframesz);
2381 				kprintf("%s: baddr %#x,\n", __func__, baddr);
2382 				/* LSI-TODO. See Linux Code for Graceful exit */
2383 				panic("Reply address out of range");
2384 			}
2385 			if (le16toh(desc->AddressReply.SMID) == 0) {
2386 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2387 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
2388 					/*
2389 					 * If SMID is 0 for Diag Buffer Post,
2390 					 * this implies that the reply is due to
2391 					 * a release function with a status that
2392 					 * the buffer has been released.  Set
2393 					 * the buffer flags accordingly.
2394 					 */
2395 					rel_rep =
2396 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
2397 					if ((le16toh(rel_rep->IOCStatus) &
2398 					    MPI2_IOCSTATUS_MASK) ==
2399 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2400 					{
2401 						pBuffer =
2402 						    &sc->fw_diag_buffer_list[
2403 						    rel_rep->BufferType];
2404 						pBuffer->valid_data = TRUE;
2405 						pBuffer->owned_by_firmware =
2406 						    FALSE;
2407 						pBuffer->immediate = FALSE;
2408 					}
2409 				} else
2410 					mpr_dispatch_event(sc, baddr,
2411 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
2412 					    reply);
2413 			} else {
2414 				cm = &sc->commands[
2415 				    le16toh(desc->AddressReply.SMID)];
2416 				KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
2417 				    ("command not inqueue\n"));
2418 				cm->cm_state = MPR_CM_STATE_BUSY;
2419 				cm->cm_reply = reply;
2420 				cm->cm_reply_data =
2421 				    le32toh(desc->AddressReply.
2422 				    ReplyFrameAddress);
2423 			}
2424 			break;
2425 		}
2426 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2427 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2428 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2429 		default:
2430 			/* Unhandled */
2431 			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2432 			    desc->Default.ReplyFlags);
2433 			cm = NULL;
2434 			break;
2435 		}
2436 
2437 		if (cm != NULL) {
2438 			// Print Error reply frame
2439 			if (cm->cm_reply)
2440 				mpr_display_reply_info(sc,cm->cm_reply);
2441 			mpr_complete_command(sc, cm);
2442 		}
2443 
2444 		desc->Words.Low = 0xffffffff;
2445 		desc->Words.High = 0xffffffff;
2446 	}
2447 
2448 	if (pq != sc->replypostindex) {
2449 		mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n",
2450 		    __func__, sc, sc->replypostindex);
2451 		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2452 		    sc->replypostindex);
2453 	}
2454 
2455 	return;
2456 }
2457 
2458 static void
2459 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2460     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2461 {
2462 	struct mpr_event_handle *eh;
2463 	int event, handled = 0;
2464 
2465 	event = le16toh(reply->Event);
2466 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2467 		if (isset(eh->mask, event)) {
2468 			eh->callback(sc, data, reply);
2469 			handled++;
2470 		}
2471 	}
2472 
2473 	if (handled == 0)
2474 		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2475 		    le16toh(event));
2476 
2477 	/*
2478 	 * This is the only place that the event/reply should be freed.
2479 	 * Anything wanting to hold onto the event data should have
2480 	 * already copied it into their own storage.
2481 	 */
2482 	mpr_free_reply(sc, data);
2483 }
2484 
2485 static void
2486 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2487 {
2488 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2489 
2490 	if (cm->cm_reply)
2491 		MPR_DPRINT_EVENT(sc, generic,
2492 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2493 
2494 	mpr_free_command(sc, cm);
2495 
2496 	/* next, send a port enable */
2497 	mprsas_startup(sc);
2498 }
2499 
2500 /*
2501  * For both register_events and update_events, the caller supplies a bitmap
2502  * of events that it _wants_.  These functions then turn that into a bitmask
2503  * suitable for the controller.
2504  */
2505 int
2506 mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2507     mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2508 {
2509 	struct mpr_event_handle *eh;
2510 	int error = 0;
2511 
2512 	eh = kmalloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2513 	if (!eh) {
2514 		mpr_dprint(sc, MPR_EVENT|MPR_ERROR,
2515 		    "Cannot allocate event memory\n");
2516 		return (ENOMEM);
2517 	}
2518 	eh->callback = cb;
2519 	eh->data = data;
2520 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2521 	if (mask != NULL)
2522 		error = mpr_update_events(sc, eh, mask);
2523 	*handle = eh;
2524 
2525 	return (error);
2526 }
2527 
2528 int
2529 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2530     uint8_t *mask)
2531 {
2532 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2533 	MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2534 	struct mpr_command *cm = NULL;
2535 	struct mpr_event_handle *eh;
2536 	int error, i;
2537 
2538 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2539 
2540 	if ((mask != NULL) && (handle != NULL))
2541 		bcopy(mask, &handle->mask[0], 16);
2542 	memset(sc->event_mask, 0xff, 16);
2543 
2544 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2545 		for (i = 0; i < 16; i++)
2546 			sc->event_mask[i] &= ~eh->mask[i];
2547 	}
2548 
2549 	if ((cm = mpr_alloc_command(sc)) == NULL)
2550 		return (EBUSY);
2551 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2552 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2553 	evtreq->MsgFlags = 0;
2554 	evtreq->SASBroadcastPrimitiveMasks = 0;
2555 #ifdef MPR_DEBUG_ALL_EVENTS
2556 	{
2557 		u_char fullmask[16];
2558 		memset(fullmask, 0x00, 16);
2559 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2560 	}
2561 #else
2562 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2563 #endif
2564 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2565 	cm->cm_data = NULL;
2566 
2567 	error = mpr_request_polled(sc, &cm);
2568 	if (cm != NULL)
2569 		reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2570 	if ((reply == NULL) ||
2571 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2572 		error = ENXIO;
2573 
2574 	if (reply)
2575 		MPR_DPRINT_EVENT(sc, generic, reply);
2576 
2577 	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2578 
2579 	if (cm != NULL)
2580 		mpr_free_command(sc, cm);
2581 	return (error);
2582 }
2583 
2584 static int
2585 mpr_reregister_events(struct mpr_softc *sc)
2586 {
2587 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2588 	struct mpr_command *cm;
2589 	struct mpr_event_handle *eh;
2590 	int error, i;
2591 
2592 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2593 
2594 	/* first, reregister events */
2595 
2596 	memset(sc->event_mask, 0xff, 16);
2597 
2598 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2599 		for (i = 0; i < 16; i++)
2600 			sc->event_mask[i] &= ~eh->mask[i];
2601 	}
2602 
2603 	if ((cm = mpr_alloc_command(sc)) == NULL)
2604 		return (EBUSY);
2605 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2606 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2607 	evtreq->MsgFlags = 0;
2608 	evtreq->SASBroadcastPrimitiveMasks = 0;
2609 #ifdef MPR_DEBUG_ALL_EVENTS
2610 	{
2611 		u_char fullmask[16];
2612 		memset(fullmask, 0x00, 16);
2613 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2614 	}
2615 #else
2616 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2617 #endif
2618 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2619 	cm->cm_data = NULL;
2620 	cm->cm_complete = mpr_reregister_events_complete;
2621 
2622 	error = mpr_map_command(sc, cm);
2623 
2624 	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2625 	    error);
2626 	return (error);
2627 }
2628 
2629 int
2630 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2631 {
2632 
2633 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2634 	kfree(handle, M_MPR);
2635 	return (mpr_update_events(sc, NULL, NULL));
2636 }
2637 
2638 /**
2639 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2640 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2641 * of the NVMe message (PRP1). If the data buffer is small enough to be described
2642 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2643 * describe a larger data buffer. If the data buffer is too large to describe
2644 * using the two PRP entriess inside the NVMe message, then PRP1 describes the
2645 * first data memory segment, and PRP2 contains a pointer to a PRP list located
2646 * elsewhere in memory to describe the remaining data memory segments. The PRP
2647 * list will be contiguous.
2648 
2649 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2650 * consists of a list of PRP entries to describe a number of noncontigous
2651 * physical memory segments as a single memory buffer, just as a SGL does. Note
2652 * however, that this function is only used by the IOCTL call, so the memory
2653 * given will be guaranteed to be contiguous. There is no need to translate
2654 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2655 * space that is one page size each.
2656 *
2657 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2658 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2659 * the second PRP element if the memory being described fits within 2 PRP
2660 * entries, or a PRP list pointer if the PRP spans more than two entries.
2661 *
2662 * A PRP list pointer contains the address of a PRP list, structured as a linear
2663 * array of PRP entries. Each PRP entry in this list describes a segment of
2664 * physical memory.
2665 *
2666 * Each 64-bit PRP entry comprises an address and an offset field. The address
2667 * always points to the beginning of a PAGE_SIZE physical memory page, and the
2668 * offset describes where within that page the memory segment begins. Only the
2669 * first element in a PRP list may contain a non-zero offest, implying that all
2670 * memory segments following the first begin at the start of a PAGE_SIZE page.
2671 *
2672 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2673 * with exceptions for the first and last elements in the list. If the memory
2674 * being described by the list begins at a non-zero offset within the first page,
2675 * then the first PRP element will contain a non-zero offset indicating where the
2676 * region begins within the page. The last memory segment may end before the end
2677 * of the PAGE_SIZE segment, depending upon the overall size of the memory being
2678 * described by the PRP list.
2679 *
2680 * Since PRP entries lack any indication of size, the overall data buffer length
2681 * is used to determine where the end of the data memory buffer is located, and
2682 * how many PRP entries are required to describe it.
2683 *
2684 * Returns nothing.
2685 */
2686 void
2687 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2688     Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2689     uint32_t data_in_sz, uint32_t data_out_sz)
2690 {
2691 	int			prp_size = PRP_ENTRY_SIZE;
2692 	uint64_t		*prp_entry, *prp1_entry, *prp2_entry;
2693 	uint64_t		*prp_entry_phys, *prp_page, *prp_page_phys;
2694 	uint32_t		offset, entry_len, page_mask_result, page_mask;
2695 	bus_addr_t		paddr;
2696 	size_t			length;
2697 	struct mpr_prp_page	*prp_page_info = NULL;
2698 
2699 	/*
2700 	 * Not all commands require a data transfer. If no data, just return
2701 	 * without constructing any PRP.
2702 	 */
2703 	if (!data_in_sz && !data_out_sz)
2704 		return;
2705 
2706 	/*
2707 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2708 	 * located at a 24 byte offset from the start of the NVMe command. Then
2709 	 * set the current PRP entry pointer to PRP1.
2710 	 */
2711 	prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2712 	    NVME_CMD_PRP1_OFFSET);
2713 	prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2714 	    NVME_CMD_PRP2_OFFSET);
2715 	prp_entry = prp1_entry;
2716 
2717 	/*
2718 	 * For the PRP entries, use the specially allocated buffer of
2719 	 * contiguous memory. PRP Page allocation failures should not happen
2720 	 * because there should be enough PRP page buffers to account for the
2721 	 * possible NVMe QDepth.
2722 	 */
2723 	prp_page_info = mpr_alloc_prp_page(sc);
2724 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2725 	    "used for building a native NVMe SGL.\n", __func__));
2726 	prp_page = (uint64_t *)prp_page_info->prp_page;
2727 	prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2728 
2729 	/*
2730 	 * Insert the allocated PRP page into the command's PRP page list. This
2731 	 * will be freed when the command is freed.
2732 	 */
2733 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2734 
2735 	/*
2736 	 * Check if we are within 1 entry of a page boundary we don't want our
2737 	 * first entry to be a PRP List entry.
2738 	 */
2739 	page_mask = PAGE_SIZE - 1;
2740 	page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2741 	    page_mask;
2742 	if (!page_mask_result)
2743 	{
2744 		/* Bump up to next page boundary. */
2745 		prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2746 		prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2747 		    prp_size);
2748 	}
2749 
2750 	/*
2751 	 * Set PRP physical pointer, which initially points to the current PRP
2752 	 * DMA memory page.
2753 	 */
2754 	prp_entry_phys = prp_page_phys;
2755 
2756 	/* Get physical address and length of the data buffer. */
2757 	paddr = (bus_addr_t)(uintptr_t)data;
2758 	if (data_in_sz)
2759 		length = data_in_sz;
2760 	else
2761 		length = data_out_sz;
2762 
2763 	/* Loop while the length is not zero. */
2764 	while (length)
2765 	{
2766 		/*
2767 		 * Check if we need to put a list pointer here if we are at page
2768 		 * boundary - prp_size (8 bytes).
2769 		 */
2770 		page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
2771 		    prp_size) & page_mask;
2772 		if (!page_mask_result)
2773 		{
2774 			/*
2775 			 * This is the last entry in a PRP List, so we need to
2776 			 * put a PRP list pointer here. What this does is:
2777 			 *   - bump the current memory pointer to the next
2778 			 *     address, which will be the next full page.
2779 			 *   - set the PRP Entry to point to that page. This is
2780 			 *     now the PRP List pointer.
2781 			 *   - bump the PRP Entry pointer the start of the next
2782 			 *     page. Since all of this PRP memory is contiguous,
2783 			 *     no need to get a new page - it's just the next
2784 			 *     address.
2785 			 */
2786 			prp_entry_phys++;
2787 			*prp_entry =
2788 			    htole64((uint64_t)(uintptr_t)prp_entry_phys);
2789 			prp_entry++;
2790 		}
2791 
2792 		/* Need to handle if entry will be part of a page. */
2793 		offset = (uint32_t)paddr & page_mask;
2794 		entry_len = PAGE_SIZE - offset;
2795 
2796 		if (prp_entry == prp1_entry)
2797 		{
2798 			/*
2799 			 * Must fill in the first PRP pointer (PRP1) before
2800 			 * moving on.
2801 			 */
2802 			*prp1_entry = htole64((uint64_t)paddr);
2803 
2804 			/*
2805 			 * Now point to the second PRP entry within the
2806 			 * command (PRP2).
2807 			 */
2808 			prp_entry = prp2_entry;
2809 		}
2810 		else if (prp_entry == prp2_entry)
2811 		{
2812 			/*
2813 			 * Should the PRP2 entry be a PRP List pointer or just a
2814 			 * regular PRP pointer? If there is more than one more
2815 			 * page of data, must use a PRP List pointer.
2816 			 */
2817 			if (length > PAGE_SIZE)
2818 			{
2819 				/*
2820 				 * PRP2 will contain a PRP List pointer because
2821 				 * more PRP's are needed with this command. The
2822 				 * list will start at the beginning of the
2823 				 * contiguous buffer.
2824 				 */
2825 				*prp2_entry =
2826 				    htole64(
2827 				    (uint64_t)(uintptr_t)prp_entry_phys);
2828 
2829 				/*
2830 				 * The next PRP Entry will be the start of the
2831 				 * first PRP List.
2832 				 */
2833 				prp_entry = prp_page;
2834 			}
2835 			else
2836 			{
2837 				/*
2838 				 * After this, the PRP Entries are complete.
2839 				 * This command uses 2 PRP's and no PRP list.
2840 				 */
2841 				*prp2_entry = htole64((uint64_t)paddr);
2842 			}
2843 		}
2844 		else
2845 		{
2846 			/*
2847 			 * Put entry in list and bump the addresses.
2848 			 *
2849 			 * After PRP1 and PRP2 are filled in, this will fill in
2850 			 * all remaining PRP entries in a PRP List, one per each
2851 			 * time through the loop.
2852 			 */
2853 			*prp_entry = htole64((uint64_t)paddr);
2854 			prp_entry++;
2855 			prp_entry_phys++;
2856 		}
2857 
2858 		/*
2859 		 * Bump the phys address of the command's data buffer by the
2860 		 * entry_len.
2861 		 */
2862 		paddr += entry_len;
2863 
2864 		/* Decrement length accounting for last partial page. */
2865 		if (entry_len > length)
2866 			length = 0;
2867 		else
2868 			length -= entry_len;
2869 	}
2870 }
2871 
2872 /*
2873  * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
2874  * determine if the driver needs to build a native SGL. If so, that native SGL
2875  * is built in the contiguous buffers allocated especially for PCIe SGL
2876  * creation. If the driver will not build a native SGL, return TRUE and a
2877  * normal IEEE SGL will be built. Currently this routine supports NVMe devices
2878  * only.
2879  *
2880  * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
2881  */
2882 static int
2883 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
2884     bus_dma_segment_t *segs, int segs_left)
2885 {
2886 	uint32_t		i, sge_dwords, length, offset, entry_len;
2887 	uint32_t		num_entries, buff_len = 0, sges_in_segment;
2888 	uint32_t		page_mask, page_mask_result, *curr_buff;
2889 	uint32_t		*ptr_sgl, *ptr_first_sgl, first_page_offset;
2890 	uint32_t		first_page_data_size, end_residual;
2891 	uint64_t		*msg_phys;
2892 	bus_addr_t		paddr;
2893 	int			build_native_sgl = 0, first_prp_entry;
2894 	int			prp_size = PRP_ENTRY_SIZE;
2895 	Mpi25IeeeSgeChain64_t	*main_chain_element = NULL;
2896 	struct mpr_prp_page	*prp_page_info = NULL;
2897 
2898 	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2899 
2900 	/*
2901 	 * Add up the sizes of each segment length to get the total transfer
2902 	 * size, which will be checked against the Maximum Data Transfer Size.
2903 	 * If the data transfer length exceeds the MDTS for this device, just
2904 	 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
2905 	 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
2906 	 */
2907 	for (i = 0; i < segs_left; i++)
2908 		buff_len += htole32(segs[i].ds_len);
2909 	if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
2910 		return 1;
2911 
2912 	/* Create page_mask (to get offset within page) */
2913 	page_mask = PAGE_SIZE - 1;
2914 
2915 	/*
2916 	 * Check if the number of elements exceeds the max number that can be
2917 	 * put in the main message frame (H/W can only translate an SGL that
2918 	 * is contained entirely in the main message frame).
2919 	 */
2920 	sges_in_segment = (sc->reqframesz -
2921 	    offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
2922 	if (segs_left > sges_in_segment)
2923 		build_native_sgl = 1;
2924 	else
2925 	{
2926 		/*
2927 		 * NVMe uses one PRP for each physical page (or part of physical
2928 		 * page).
2929 		 *    if 4 pages or less then IEEE is OK
2930 		 *    if > 5 pages then we need to build a native SGL
2931 		 *    if > 4 and <= 5 pages, then check the physical address of
2932 		 *      the first SG entry, then if this first size in the page
2933 		 *      is >= the residual beyond 4 pages then use IEEE,
2934 		 *      otherwise use native SGL
2935 		 */
2936 		if (buff_len > (PAGE_SIZE * 5))
2937 			build_native_sgl = 1;
2938 		else if ((buff_len > (PAGE_SIZE * 4)) &&
2939 		    (buff_len <= (PAGE_SIZE * 5)) )
2940 		{
2941 			msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr;
2942 			first_page_offset =
2943 			    ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
2944 			    page_mask);
2945 			first_page_data_size = PAGE_SIZE - first_page_offset;
2946 			end_residual = buff_len % PAGE_SIZE;
2947 
2948 			/*
2949 			 * If offset into first page pushes the end of the data
2950 			 * beyond end of the 5th page, we need the extra PRP
2951 			 * list.
2952 			 */
2953 			if (first_page_data_size < end_residual)
2954 				build_native_sgl = 1;
2955 
2956 			/*
2957 			 * Check if first SG entry size is < residual beyond 4
2958 			 * pages.
2959 			 */
2960 			if (htole32(segs[0].ds_len) <
2961 			    (buff_len - (PAGE_SIZE * 4)))
2962 				build_native_sgl = 1;
2963 		}
2964 	}
2965 
2966 	/* check if native SGL is needed */
2967 	if (!build_native_sgl)
2968 		return 1;
2969 
2970 	/*
2971 	 * Native SGL is needed.
2972 	 * Put a chain element in main message frame that points to the first
2973 	 * chain buffer.
2974 	 *
2975 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2976 	 *        a native SGL.
2977 	 */
2978 
2979 	/* Set main message chain element pointer */
2980 	main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
2981 
2982 	/*
2983 	 * For NVMe the chain element needs to be the 2nd SGL entry in the main
2984 	 * message.
2985 	 */
2986 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2987 	    ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2988 
2989 	/*
2990 	 * For the PRP entries, use the specially allocated buffer of
2991 	 * contiguous memory. PRP Page allocation failures should not happen
2992 	 * because there should be enough PRP page buffers to account for the
2993 	 * possible NVMe QDepth.
2994 	 */
2995 	prp_page_info = mpr_alloc_prp_page(sc);
2996 	KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2997 	    "used for building a native NVMe SGL.\n", __func__));
2998 	curr_buff = (uint32_t *)prp_page_info->prp_page;
2999 	msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
3000 
3001 	/*
3002 	 * Insert the allocated PRP page into the command's PRP page list. This
3003 	 * will be freed when the command is freed.
3004 	 */
3005 	TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
3006 
3007 	/*
3008 	 * Check if we are within 1 entry of a page boundary we don't want our
3009 	 * first entry to be a PRP List entry.
3010 	 */
3011 	page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
3012 	    page_mask;
3013 	if (!page_mask_result) {
3014 		/* Bump up to next page boundary. */
3015 		curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
3016 		msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
3017 	}
3018 
3019 	/* Fill in the chain element and make it an NVMe segment type. */
3020 	main_chain_element->Address.High =
3021 	    htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
3022 	main_chain_element->Address.Low =
3023 	    htole32((uint32_t)(uintptr_t)msg_phys);
3024 	main_chain_element->NextChainOffset = 0;
3025 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3026 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3027 	    MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
3028 
3029 	/* Set SGL pointer to start of contiguous PCIe buffer. */
3030 	ptr_sgl = curr_buff;
3031 	sge_dwords = 2;
3032 	num_entries = 0;
3033 
3034 	/*
3035 	 * NVMe has a very convoluted PRP format. One PRP is required for each
3036 	 * page or partial page. We need to split up OS SG entries if they are
3037 	 * longer than one page or cross a page boundary. We also have to insert
3038 	 * a PRP list pointer entry as the last entry in each physical page of
3039 	 * the PRP list.
3040 	 *
3041 	 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
3042 	 * in the main message in IEEE 64 format. The 2nd entry in the main
3043 	 * message is the chain element, and the rest of the PRP entries are
3044 	 * built in the contiguous PCIe buffer.
3045 	 */
3046 	first_prp_entry = 1;
3047 	ptr_first_sgl = (uint32_t *)cm->cm_sge;
3048 
3049 	for (i = 0; i < segs_left; i++) {
3050 		/* Get physical address and length of this SG entry. */
3051 		paddr = segs[i].ds_addr;
3052 		length = segs[i].ds_len;
3053 
3054 		/*
3055 		 * Check whether a given SGE buffer lies on a non-PAGED
3056 		 * boundary if this is not the first page. If so, this is not
3057 		 * expected so have FW build the SGL.
3058 		 */
3059 		if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) {
3060 			mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
3061 			    "building NVMe PRPs, low address is 0x%x\n",
3062 			    (uint32_t)paddr);
3063 			return 1;
3064 		}
3065 
3066 		/* Apart from last SGE, if any other SGE boundary is not page
3067 		 * aligned then it means that hole exists. Existence of hole
3068 		 * leads to data corruption. So fallback to IEEE SGEs.
3069 		 */
3070 		if (i != (segs_left - 1)) {
3071 			if (((uint32_t)paddr + length) & page_mask) {
3072 				mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
3073 				    "boundary while building NVMe PRPs, low "
3074 				    "address: 0x%x and length: %u\n",
3075 				    (uint32_t)paddr, length);
3076 				return 1;
3077 			}
3078 		}
3079 
3080 		/* Loop while the length is not zero. */
3081 		while (length) {
3082 			/*
3083 			 * Check if we need to put a list pointer here if we are
3084 			 * at page boundary - prp_size.
3085 			 */
3086 			page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
3087 			    prp_size) & page_mask;
3088 			if (!page_mask_result) {
3089 				/*
3090 				 * Need to put a PRP list pointer here.
3091 				 */
3092 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3093 				    prp_size);
3094 				*ptr_sgl = htole32((uintptr_t)msg_phys);
3095 				*(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
3096 				    msg_phys >> 32);
3097 				ptr_sgl += sge_dwords;
3098 				num_entries++;
3099 			}
3100 
3101 			/* Need to handle if entry will be part of a page. */
3102 			offset = (uint32_t)paddr & page_mask;
3103 			entry_len = PAGE_SIZE - offset;
3104 			if (first_prp_entry) {
3105 				/*
3106 				 * Put IEEE entry in first SGE in main message.
3107 				 * (Simple element, System addr, not end of
3108 				 * list.)
3109 				 */
3110 				*ptr_first_sgl = htole32((uint32_t)paddr);
3111 				*(ptr_first_sgl + 1) =
3112 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3113 				*(ptr_first_sgl + 2) = htole32(entry_len);
3114 				*(ptr_first_sgl + 3) = 0;
3115 
3116 				/* No longer the first PRP entry. */
3117 				first_prp_entry = 0;
3118 			} else {
3119 				/* Put entry in list. */
3120 				*ptr_sgl = htole32((uint32_t)paddr);
3121 				*(ptr_sgl + 1) =
3122 				    htole32((uint32_t)((uint64_t)paddr >> 32));
3123 
3124 				/* Bump ptr_sgl, msg_phys, and num_entries. */
3125 				ptr_sgl += sge_dwords;
3126 				msg_phys = (uint64_t *)((uint8_t *)msg_phys +
3127 				    prp_size);
3128 				num_entries++;
3129 			}
3130 
3131 			/* Bump the phys address by the entry_len. */
3132 			paddr += entry_len;
3133 
3134 			/* Decrement length accounting for last partial page. */
3135 			if (entry_len > length)
3136 				length = 0;
3137 			else
3138 				length -= entry_len;
3139 		}
3140 	}
3141 
3142 	/* Set chain element Length. */
3143 	main_chain_element->Length = htole32(num_entries * prp_size);
3144 
3145 	/* Return 0, indicating we built a native SGL. */
3146 	return 0;
3147 }
3148 
3149 /*
3150  * Add a chain element as the next SGE for the specified command.
3151  * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
3152  * only required for IEEE commands.  Therefore there is no code for commands
3153  * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
3154  * shouldn't be requesting chains).
3155  */
3156 static int
3157 mpr_add_chain(struct mpr_command *cm, int segsleft)
3158 {
3159 	struct mpr_softc *sc = cm->cm_sc;
3160 	MPI2_REQUEST_HEADER *req;
3161 	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
3162 	struct mpr_chain *chain;
3163 	int sgc_size, current_segs, rem_segs, segs_per_frame;
3164 	uint8_t next_chain_offset = 0;
3165 
3166 	/*
3167 	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
3168 	 * only IEEE commands should be requesting chains.  Return some error
3169 	 * code other than 0.
3170 	 */
3171 	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
3172 		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
3173 		    "an MPI SGL.\n");
3174 		return(ENOBUFS);
3175 	}
3176 
3177 	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
3178 	if (cm->cm_sglsize < sgc_size)
3179 		panic("MPR: Need SGE Error Code\n");
3180 
3181 	chain = mpr_alloc_chain(cm->cm_sc);
3182 	if (chain == NULL)
3183 		return (ENOBUFS);
3184 
3185 	/*
3186 	 * Note: a double-linked list is used to make it easier to walk for
3187 	 * debugging.
3188 	 */
3189 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
3190 
3191 	/*
3192 	 * Need to know if the number of frames left is more than 1 or not.  If
3193 	 * more than 1 frame is required, NextChainOffset will need to be set,
3194 	 * which will just be the last segment of the frame.
3195 	 */
3196 	rem_segs = 0;
3197 	if (cm->cm_sglsize < (sgc_size * segsleft)) {
3198 		/*
3199 		 * rem_segs is the number of segements remaining after the
3200 		 * segments that will go into the current frame.  Since it is
3201 		 * known that at least one more frame is required, account for
3202 		 * the chain element.  To know if more than one more frame is
3203 		 * required, just check if there will be a remainder after using
3204 		 * the current frame (with this chain) and the next frame.  If
3205 		 * so the NextChainOffset must be the last element of the next
3206 		 * frame.
3207 		 */
3208 		current_segs = (cm->cm_sglsize / sgc_size) - 1;
3209 		rem_segs = segsleft - current_segs;
3210 		segs_per_frame = sc->chain_frame_size / sgc_size;
3211 		if (rem_segs > segs_per_frame) {
3212 			next_chain_offset = segs_per_frame - 1;
3213 		}
3214 	}
3215 	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
3216 	ieee_sgc->Length = next_chain_offset ?
3217 	    htole32((uint32_t)sc->chain_frame_size) :
3218 	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
3219 	ieee_sgc->NextChainOffset = next_chain_offset;
3220 	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3221 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3222 	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
3223 	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
3224 	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
3225 	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
3226 	req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
3227 
3228 	cm->cm_sglsize = sc->chain_frame_size;
3229 	return (0);
3230 }
3231 
3232 /*
3233  * Add one scatter-gather element to the scatter-gather list for a command.
3234  * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
3235  * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
3236  * chain, so don't consider any chain additions.
3237  */
3238 int
3239 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
3240     int segsleft)
3241 {
3242 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3243 	u32 sge_flags;
3244 
3245 	/*
3246 	 * case 1: >=1 more segment, no room for anything (error)
3247 	 * case 2: 1 more segment and enough room for it
3248          */
3249 
3250 	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
3251 		mpr_dprint(cm->cm_sc, MPR_ERROR,
3252 		    "%s: warning: Not enough room for MPI SGL in frame.\n",
3253 		    __func__);
3254 		return(ENOBUFS);
3255 	}
3256 
3257 	KASSERT(segsleft == 1,
3258 	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
3259 	    segsleft));
3260 
3261 	/*
3262 	 * There is one more segment left to add for the MPI SGL and there is
3263 	 * enough room in the frame to add it.  This is the normal case because
3264 	 * MPI SGL's don't have chains, otherwise something is wrong.
3265 	 *
3266 	 * If this is a bi-directional request, need to account for that
3267 	 * here.  Save the pre-filled sge values.  These will be used
3268 	 * either for the 2nd SGL or for a single direction SGL.  If
3269 	 * cm_out_len is non-zero, this is a bi-directional request, so
3270 	 * fill in the OUT SGL first, then the IN SGL, otherwise just
3271 	 * fill in the IN SGL.  Note that at this time, when filling in
3272 	 * 2 SGL's for a bi-directional request, they both use the same
3273 	 * DMA buffer (same cm command).
3274 	 */
3275 	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
3276 	saved_address_low = sge->Address.Low;
3277 	saved_address_high = sge->Address.High;
3278 	if (cm->cm_out_len) {
3279 		sge->FlagsLength = cm->cm_out_len |
3280 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3281 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
3282 		    MPI2_SGE_FLAGS_HOST_TO_IOC |
3283 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3284 		    MPI2_SGE_FLAGS_SHIFT);
3285 		cm->cm_sglsize -= len;
3286 		/* Endian Safe code */
3287 		sge_flags = sge->FlagsLength;
3288 		sge->FlagsLength = htole32(sge_flags);
3289 		sge->Address.High = htole32(sge->Address.High);
3290 		sge->Address.Low = htole32(sge->Address.Low);
3291 		bcopy(sge, cm->cm_sge, len);
3292 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3293 	}
3294 	sge->FlagsLength = saved_buf_len |
3295 	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3296 	    MPI2_SGE_FLAGS_END_OF_BUFFER |
3297 	    MPI2_SGE_FLAGS_LAST_ELEMENT |
3298 	    MPI2_SGE_FLAGS_END_OF_LIST |
3299 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3300 	    MPI2_SGE_FLAGS_SHIFT);
3301 	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3302 		sge->FlagsLength |=
3303 		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3304 		    MPI2_SGE_FLAGS_SHIFT);
3305 	} else {
3306 		sge->FlagsLength |=
3307 		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3308 		    MPI2_SGE_FLAGS_SHIFT);
3309 	}
3310 	sge->Address.Low = saved_address_low;
3311 	sge->Address.High = saved_address_high;
3312 
3313 	cm->cm_sglsize -= len;
3314 	/* Endian Safe code */
3315 	sge_flags = sge->FlagsLength;
3316 	sge->FlagsLength = htole32(sge_flags);
3317 	sge->Address.High = htole32(sge->Address.High);
3318 	sge->Address.Low = htole32(sge->Address.Low);
3319 	bcopy(sge, cm->cm_sge, len);
3320 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3321 	return (0);
3322 }
3323 
3324 /*
3325  * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3326  * gather list for a command.  Maintain cm_sglsize and cm_sge as the
3327  * remaining size and pointer to the next SGE to fill in, respectively.
3328  */
3329 int
3330 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3331 {
3332 	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3333 	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3334 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
3335 	uint32_t sge_length;
3336 
3337 	/*
3338 	 * case 1: No room for chain or segment (error).
3339 	 * case 2: Two or more segments left but only room for chain.
3340 	 * case 3: Last segment and room for it, so set flags.
3341 	 */
3342 
3343 	/*
3344 	 * There should be room for at least one element, or there is a big
3345 	 * problem.
3346 	 */
3347 	if (cm->cm_sglsize < ieee_sge_size)
3348 		panic("MPR: Need SGE Error Code\n");
3349 
3350 	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3351 		if ((error = mpr_add_chain(cm, segsleft)) != 0)
3352 			return (error);
3353 	}
3354 
3355 	if (segsleft == 1) {
3356 		/*
3357 		 * If this is a bi-directional request, need to account for that
3358 		 * here.  Save the pre-filled sge values.  These will be used
3359 		 * either for the 2nd SGL or for a single direction SGL.  If
3360 		 * cm_out_len is non-zero, this is a bi-directional request, so
3361 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
3362 		 * fill in the IN SGL.  Note that at this time, when filling in
3363 		 * 2 SGL's for a bi-directional request, they both use the same
3364 		 * DMA buffer (same cm command).
3365 		 */
3366 		saved_buf_len = sge->Length;
3367 		saved_address_low = sge->Address.Low;
3368 		saved_address_high = sge->Address.High;
3369 		if (cm->cm_out_len) {
3370 			sge->Length = cm->cm_out_len;
3371 			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3372 			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3373 			cm->cm_sglsize -= ieee_sge_size;
3374 			/* Endian Safe code */
3375 			sge_length = sge->Length;
3376 			sge->Length = htole32(sge_length);
3377 			sge->Address.High = htole32(sge->Address.High);
3378 			sge->Address.Low = htole32(sge->Address.Low);
3379 			bcopy(sgep, cm->cm_sge, ieee_sge_size);
3380 			cm->cm_sge =
3381 			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3382 			    ieee_sge_size);
3383 		}
3384 		sge->Length = saved_buf_len;
3385 		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3386 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3387 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3388 		sge->Address.Low = saved_address_low;
3389 		sge->Address.High = saved_address_high;
3390 	}
3391 
3392 	cm->cm_sglsize -= ieee_sge_size;
3393 	/* Endian Safe code */
3394 	sge_length = sge->Length;
3395 	sge->Length = htole32(sge_length);
3396 	sge->Address.High = htole32(sge->Address.High);
3397 	sge->Address.Low = htole32(sge->Address.Low);
3398 	bcopy(sgep, cm->cm_sge, ieee_sge_size);
3399 	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3400 	    ieee_sge_size);
3401 	return (0);
3402 }
3403 
3404 /*
3405  * Add one dma segment to the scatter-gather list for a command.
3406  */
3407 int
3408 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3409     int segsleft)
3410 {
3411 	MPI2_SGE_SIMPLE64 sge;
3412 	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3413 
3414 	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3415 		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3416 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3417 		ieee_sge.Length = len;
3418 		mpr_from_u64(pa, &ieee_sge.Address);
3419 
3420 		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3421 	} else {
3422 		/*
3423 		 * This driver always uses 64-bit address elements for
3424 		 * simplicity.
3425 		 */
3426 		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3427 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3428 		/* Set Endian safe macro in mpr_push_sge */
3429 		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3430 		mpr_from_u64(pa, &sge.Address);
3431 
3432 		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3433 	}
3434 }
3435 
3436 static void
3437 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3438 {
3439 	struct mpr_softc *sc;
3440 	struct mpr_command *cm;
3441 	u_int i, dir, sflags;
3442 
3443 	cm = (struct mpr_command *)arg;
3444 	sc = cm->cm_sc;
3445 
3446 	/*
3447 	 * In this case, just print out a warning and let the chip tell the
3448 	 * user they did the wrong thing.
3449 	 */
3450 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3451 		mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3452 		    "segments, more than the %d allowed\n", __func__, nsegs,
3453 		    cm->cm_max_segs);
3454 	}
3455 
3456 	/*
3457 	 * Set up DMA direction flags.  Bi-directional requests are also handled
3458 	 * here.  In that case, both direction flags will be set.
3459 	 */
3460 	sflags = 0;
3461 	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3462 		/*
3463 		 * We have to add a special case for SMP passthrough, there
3464 		 * is no easy way to generically handle it.  The first
3465 		 * S/G element is used for the command (therefore the
3466 		 * direction bit needs to be set).  The second one is used
3467 		 * for the reply.  We'll leave it to the caller to make
3468 		 * sure we only have two buffers.
3469 		 */
3470 		/*
3471 		 * Even though the busdma man page says it doesn't make
3472 		 * sense to have both direction flags, it does in this case.
3473 		 * We have one s/g element being accessed in each direction.
3474 		 */
3475 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3476 
3477 		/*
3478 		 * Set the direction flag on the first buffer in the SMP
3479 		 * passthrough request.  We'll clear it for the second one.
3480 		 */
3481 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
3482 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
3483 	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3484 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3485 		dir = BUS_DMASYNC_PREWRITE;
3486 	} else
3487 		dir = BUS_DMASYNC_PREREAD;
3488 
3489 	/* Check if a native SG list is needed for an NVMe PCIe device. */
3490 	if (cm->cm_targ && cm->cm_targ->is_nvme &&
3491 	    mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3492 		/* A native SG list was built, skip to end. */
3493 		goto out;
3494 	}
3495 
3496 	for (i = 0; i < nsegs; i++) {
3497 		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3498 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3499 		}
3500 		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3501 		    sflags, nsegs - i);
3502 		if (error != 0) {
3503 			/* Resource shortage, roll back! */
3504 			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3505 				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3506 				    "consider increasing hw.mpr.max_chains.\n");
3507 			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3508 			mpr_complete_command(sc, cm);
3509 			return;
3510 		}
3511 	}
3512 
3513 out:
3514 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3515 	mpr_enqueue_request(sc, cm);
3516 
3517 	return;
3518 }
3519 
3520 static void
3521 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3522 	     int error)
3523 {
3524 	mpr_data_cb(arg, segs, nsegs, error);
3525 }
3526 
3527 /*
3528  * This is the routine to enqueue commands ansynchronously.
3529  * Note that the only error path here is from bus_dmamap_load(), which can
3530  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3531  * assumed that if you have a command in-hand, then you have enough credits
3532  * to use it.
3533  */
3534 int
3535 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3536 {
3537 	int error = 0;
3538 
3539 	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3540 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3541 		    &cm->cm_uio, mpr_data_cb2, cm, 0);
3542 	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3543 		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3544 		    cm->cm_data, mpr_data_cb, cm, 0);
3545 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3546 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3547 		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3548 	} else {
3549 		/* Add a zero-length element as needed */
3550 		if (cm->cm_sge != NULL)
3551 			mpr_add_dmaseg(cm, 0, 0, 0, 1);
3552 		mpr_enqueue_request(sc, cm);
3553 	}
3554 
3555 	return (error);
3556 }
3557 
3558 /*
3559  * This is the routine to enqueue commands synchronously.  An error of
3560  * EINPROGRESS from mpr_map_command() is ignored since the command will
3561  * be executed and enqueued automatically.  Other errors come from msleep().
3562  */
3563 int
3564 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
3565     int sleep_flag)
3566 {
3567 	int error, rc;
3568 	struct timeval cur_time, start_time;
3569 	struct mpr_command *cm = *cmp;
3570 
3571 	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3572 		return  EBUSY;
3573 
3574 	cm->cm_complete = NULL;
3575 	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3576 	error = mpr_map_command(sc, cm);
3577 	if ((error != 0) && (error != EINPROGRESS))
3578 		return (error);
3579 
3580 	// Check for context and wait for 50 mSec at a time until time has
3581 	// expired or the command has finished.  If msleep can't be used, need
3582 	// to poll.
3583 	getmicrouptime(&start_time);
3584 	if (lockowned(&sc->mpr_lock) && sleep_flag == CAN_SLEEP) {
3585 		error = lksleep(cm, &sc->mpr_lock, 0, "mprwait", timeout*hz);
3586 		if (error == EWOULDBLOCK) {
3587 			/*
3588 			 * Record the actual elapsed time in the case of a
3589 			 * timeout for the message below.
3590 			 */
3591 			getmicrouptime(&cur_time);
3592 			timevalsub(&cur_time, &start_time);
3593 		}
3594 	} else {
3595 		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3596 			mpr_intr_locked(sc);
3597 			if (sleep_flag == CAN_SLEEP)
3598 				tsleep(mpr_wait_command, 0, "mprwait", hz < 20 ? 1 : hz / 20);
3599 			else
3600 				DELAY(50000);
3601 
3602 			getmicrouptime(&cur_time);
3603 			timevalsub(&cur_time, &start_time);
3604 			if (cur_time.tv_sec > timeout) {
3605 				error = EWOULDBLOCK;
3606 				break;
3607 			}
3608 		}
3609 	}
3610 
3611 	if (error == EWOULDBLOCK) {
3612 		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3613 		    " elapsed=%jd\n", __func__, timeout,
3614 		    (intmax_t)cur_time.tv_sec);
3615 		rc = mpr_reinit(sc);
3616 		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3617 		    "failed");
3618 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3619 			/*
3620 			 * Tell the caller that we freed the command in a
3621 			 * reinit.
3622 			 */
3623 			*cmp = NULL;
3624 		}
3625 		error = ETIMEDOUT;
3626 	}
3627 	return (error);
3628 }
3629 
3630 /*
3631  * This is the routine to enqueue a command synchonously and poll for
3632  * completion.  Its use should be rare.
3633  */
3634 int
3635 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
3636 {
3637 	int error, rc;
3638 	struct timeval cur_time, start_time;
3639 	struct mpr_command *cm = *cmp;
3640 
3641 	error = 0;
3642 
3643 	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3644 	cm->cm_complete = NULL;
3645 	mpr_map_command(sc, cm);
3646 
3647 	getmicrouptime(&start_time);
3648 	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3649 		mpr_intr_locked(sc);
3650 
3651 		if (lockowned(&sc->mpr_lock))
3652 			lksleep(&sc->msleep_fake_chan, &sc->mpr_lock, 0,
3653 			    "mprpoll", hz < 20 ? 1 : hz / 20);
3654 		else
3655 			tsleep(mpr_request_polled, 0, "mprpoll", hz < 20 ? 1 : hz / 20);
3656 
3657 		/*
3658 		 * Check for real-time timeout and fail if more than 60 seconds.
3659 		 */
3660 		getmicrouptime(&cur_time);
3661 		timevalsub(&cur_time, &start_time);
3662 		if (cur_time.tv_sec > 60) {
3663 			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3664 			error = ETIMEDOUT;
3665 			break;
3666 		}
3667 	}
3668 
3669 	if (error) {
3670 		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3671 		rc = mpr_reinit(sc);
3672 		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3673 		    "failed");
3674 
3675 		if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3676 			/*
3677 			 * Tell the caller that we freed the command in a
3678 			 * reinit.
3679 			 */
3680 			*cmp = NULL;
3681 		}
3682 	}
3683 	return (error);
3684 }
3685 
3686 /*
3687  * The MPT driver had a verbose interface for config pages.  In this driver,
3688  * reduce it to much simpler terms, similar to the Linux driver.
3689  */
3690 int
3691 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3692 {
3693 	MPI2_CONFIG_REQUEST *req;
3694 	struct mpr_command *cm;
3695 	int error;
3696 
3697 	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3698 		return (EBUSY);
3699 	}
3700 
3701 	cm = mpr_alloc_command(sc);
3702 	if (cm == NULL) {
3703 		return (EBUSY);
3704 	}
3705 
3706 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3707 	req->Function = MPI2_FUNCTION_CONFIG;
3708 	req->Action = params->action;
3709 	req->SGLFlags = 0;
3710 	req->ChainOffset = 0;
3711 	req->PageAddress = params->page_address;
3712 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3713 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3714 
3715 		hdr = &params->hdr.Ext;
3716 		req->ExtPageType = hdr->ExtPageType;
3717 		req->ExtPageLength = hdr->ExtPageLength;
3718 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3719 		req->Header.PageLength = 0; /* Must be set to zero */
3720 		req->Header.PageNumber = hdr->PageNumber;
3721 		req->Header.PageVersion = hdr->PageVersion;
3722 	} else {
3723 		MPI2_CONFIG_PAGE_HEADER *hdr;
3724 
3725 		hdr = &params->hdr.Struct;
3726 		req->Header.PageType = hdr->PageType;
3727 		req->Header.PageNumber = hdr->PageNumber;
3728 		req->Header.PageLength = hdr->PageLength;
3729 		req->Header.PageVersion = hdr->PageVersion;
3730 	}
3731 
3732 	cm->cm_data = params->buffer;
3733 	cm->cm_length = params->length;
3734 	if (cm->cm_data != NULL) {
3735 		cm->cm_sge = &req->PageBufferSGE;
3736 		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3737 		cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3738 	} else
3739 		cm->cm_sge = NULL;
3740 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3741 
3742 	cm->cm_complete_data = params;
3743 	if (params->callback != NULL) {
3744 		cm->cm_complete = mpr_config_complete;
3745 		return (mpr_map_command(sc, cm));
3746 	} else {
3747 		error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
3748 		if (error) {
3749 			mpr_dprint(sc, MPR_FAULT,
3750 			    "Error %d reading config page\n", error);
3751 			if (cm != NULL)
3752 				mpr_free_command(sc, cm);
3753 			return (error);
3754 		}
3755 		mpr_config_complete(sc, cm);
3756 	}
3757 
3758 	return (0);
3759 }
3760 
3761 int
3762 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3763 {
3764 	return (EINVAL);
3765 }
3766 
3767 static void
3768 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
3769 {
3770 	MPI2_CONFIG_REPLY *reply;
3771 	struct mpr_config_params *params;
3772 
3773 	MPR_FUNCTRACE(sc);
3774 	params = cm->cm_complete_data;
3775 
3776 	if (cm->cm_data != NULL) {
3777 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3778 		    BUS_DMASYNC_POSTREAD);
3779 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3780 	}
3781 
3782 	/*
3783 	 * XXX KDM need to do more error recovery?  This results in the
3784 	 * device in question not getting probed.
3785 	 */
3786 	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3787 		params->status = MPI2_IOCSTATUS_BUSY;
3788 		goto done;
3789 	}
3790 
3791 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3792 	if (reply == NULL) {
3793 		params->status = MPI2_IOCSTATUS_BUSY;
3794 		goto done;
3795 	}
3796 	params->status = reply->IOCStatus;
3797 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3798 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
3799 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3800 		params->hdr.Ext.PageType = reply->Header.PageType;
3801 		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3802 		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3803 	} else {
3804 		params->hdr.Struct.PageType = reply->Header.PageType;
3805 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3806 		params->hdr.Struct.PageLength = reply->Header.PageLength;
3807 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3808 	}
3809 
3810 done:
3811 	mpr_free_command(sc, cm);
3812 	if (params->callback != NULL)
3813 		params->callback(sc, params);
3814 
3815 	return;
3816 }
3817