xref: /dragonfly/sys/dev/raid/mps/mps.c (revision ed36d35d)
1 /*-
2  * Copyright (c) 2009 Yahoo! Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 /*-
28  * Copyright (c) 2011 LSI Corp.
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice, this list of conditions and the following disclaimer.
36  * 2. Redistributions in binary form must reproduce the above copyright
37  *    notice, this list of conditions and the following disclaimer in the
38  *    documentation and/or other materials provided with the distribution.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * LSI MPT-Fusion Host Adapter FreeBSD
53  *
54  * $FreeBSD: src/sys/dev/mps/mps.c,v 1.14 2012/01/26 18:17:21 ken Exp $
55  */
56 
57 /* Communications core for LSI MPT2 */
58 
59 /* TODO Move headers to mpsvar */
60 #include <sys/types.h>
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/kernel.h>
64 #include <sys/lock.h>
65 #include <sys/globaldata.h>
66 #include <sys/module.h>
67 #include <sys/bus.h>
68 #include <sys/conf.h>
69 #include <sys/bio.h>
70 #include <sys/malloc.h>
71 #include <sys/uio.h>
72 #include <sys/sysctl.h>
73 #include <sys/queue.h>
74 #include <sys/kthread.h>
75 #include <sys/endian.h>
76 #include <sys/eventhandler.h>
77 
78 #include <sys/rman.h>
79 
80 #include <bus/pci/pcivar.h>
81 
82 #include <bus/cam/scsi/scsi_all.h>
83 
84 #include <dev/raid/mps/mpi/mpi2_type.h>
85 #include <dev/raid/mps/mpi/mpi2.h>
86 #include <dev/raid/mps/mpi/mpi2_ioc.h>
87 #include <dev/raid/mps/mpi/mpi2_sas.h>
88 #include <dev/raid/mps/mpi/mpi2_cnfg.h>
89 #include <dev/raid/mps/mpi/mpi2_init.h>
90 #include <dev/raid/mps/mpi/mpi2_tool.h>
91 #include <dev/raid/mps/mps_ioctl.h>
92 #include <dev/raid/mps/mpsvar.h>
93 #include <dev/raid/mps/mps_table.h>
94 
95 static int mps_diag_reset(struct mps_softc *sc);
96 static int mps_init_queues(struct mps_softc *sc);
97 static int mps_message_unit_reset(struct mps_softc *sc);
98 static int mps_transition_operational(struct mps_softc *sc);
99 static void mps_startup(void *arg);
100 static int mps_send_iocinit(struct mps_softc *sc);
101 static int mps_attach_log(struct mps_softc *sc);
102 static __inline void mps_complete_command(struct mps_command *cm);
103 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
104     MPI2_EVENT_NOTIFICATION_REPLY *reply);
105 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
106 static void mps_periodic(void *);
107 static int mps_reregister_events(struct mps_softc *sc);
108 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
109 
110 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters");
111 
112 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
113 
114 /*
115  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
116  * any state and back to its initialization state machine.
117  */
118 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
119 
120 static int
121 mps_diag_reset(struct mps_softc *sc)
122 {
123 	uint32_t reg;
124 	int i, error, tries = 0;
125 
126 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
127 
128 	/* Clear any pending interrupts */
129 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
130 
131 	/* Push the magic sequence */
132 	error = ETIMEDOUT;
133 	while (tries++ < 20) {
134 		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
135 			mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
136 			    mpt2_reset_magic[i]);
137 
138 		DELAY(100 * 1000);
139 
140 		reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
141 		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
142 			error = 0;
143 			break;
144 		}
145 	}
146 	if (error)
147 		return (error);
148 
149 	/* Send the actual reset.  XXX need to refresh the reg? */
150 	mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
151 	    reg | MPI2_DIAG_RESET_ADAPTER);
152 
153 	/* Wait up to 300 seconds in 50ms intervals */
154 	error = ETIMEDOUT;
155 	for (i = 0; i < 60000; i++) {
156 		DELAY(50000);
157 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
158 		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
159 			error = 0;
160 			break;
161 		}
162 	}
163 	if (error)
164 		return (error);
165 
166 	mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
167 
168 	return (0);
169 }
170 
171 static int
172 mps_message_unit_reset(struct mps_softc *sc)
173 {
174 
175 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
176 
177 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
178 	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
179 	    MPI2_DOORBELL_FUNCTION_SHIFT);
180 	DELAY(50000);
181 
182 	return (0);
183 }
184 
185 static int
186 mps_transition_ready(struct mps_softc *sc)
187 {
188 	uint32_t reg, state;
189 	int error, tries = 0;
190 
191 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
192 
193 	error = 0;
194 	while (tries++ < 5) {
195 		reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
196 		mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
197 
198 		/*
199 		 * Ensure the IOC is ready to talk.  If it's not, try
200 		 * resetting it.
201 		 */
202 		if (reg & MPI2_DOORBELL_USED) {
203 			mps_diag_reset(sc);
204 			DELAY(50000);
205 			continue;
206 		}
207 
208 		/* Is the adapter owned by another peer? */
209 		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
210 		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
211 			device_printf(sc->mps_dev, "IOC is under the control "
212 			    "of another peer host, aborting initialization.\n");
213 			return (ENXIO);
214 		}
215 
216 		state = reg & MPI2_IOC_STATE_MASK;
217 		if (state == MPI2_IOC_STATE_READY) {
218 			/* Ready to go! */
219 			error = 0;
220 			break;
221 		} else if (state == MPI2_IOC_STATE_FAULT) {
222 			mps_dprint(sc, MPS_INFO, "IOC in fault state 0x%x\n",
223 			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
224 			mps_diag_reset(sc);
225 		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
226 			/* Need to take ownership */
227 			mps_message_unit_reset(sc);
228 		} else if (state == MPI2_IOC_STATE_RESET) {
229 			/* Wait a bit, IOC might be in transition */
230 			mps_dprint(sc, MPS_FAULT,
231 			    "IOC in unexpected reset state\n");
232 		} else {
233 			mps_dprint(sc, MPS_FAULT,
234 			    "IOC in unknown state 0x%x\n", state);
235 			error = EINVAL;
236 			break;
237 		}
238 
239 		/* Wait 50ms for things to settle down. */
240 		DELAY(50000);
241 	}
242 
243 	if (error)
244 		device_printf(sc->mps_dev, "Cannot transition IOC to ready\n");
245 
246 	return (error);
247 }
248 
249 static int
250 mps_transition_operational(struct mps_softc *sc)
251 {
252 	uint32_t reg, state;
253 	int error;
254 
255 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
256 
257 	error = 0;
258 	reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
259 	mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
260 
261 	state = reg & MPI2_IOC_STATE_MASK;
262 	if (state != MPI2_IOC_STATE_READY) {
263 		if ((error = mps_transition_ready(sc)) != 0) {
264 			mps_dprint(sc, MPS_FAULT,
265 			    "%s failed to transition ready\n", __func__);
266 			return (error);
267 		}
268 	}
269 
270 	error = mps_send_iocinit(sc);
271 	return (error);
272 }
273 
274 /*
275  * XXX Some of this should probably move to mps.c
276  *
277  * The terms diag reset and hard reset are used interchangeably in the MPI
278  * docs to mean resetting the controller chip.  In this code diag reset
279  * cleans everything up, and the hard reset function just sends the reset
280  * sequence to the chip.  This should probably be refactored so that every
281  * subsystem gets a reset notification of some sort, and can clean up
282  * appropriately.
283  */
284 int
285 mps_reinit(struct mps_softc *sc)
286 {
287 	int error;
288 	uint32_t db;
289 
290 	mps_printf(sc, "%s sc %p\n", __func__, sc);
291 
292 	KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
293 
294 	if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
295 		mps_printf(sc, "%s reset already in progress\n", __func__);
296 		return 0;
297 	}
298 
299 	/* make sure the completion callbacks can recognize they're getting
300 	 * a NULL cm_reply due to a reset.
301 	 */
302 	sc->mps_flags |= MPS_FLAGS_DIAGRESET;
303 
304 	mps_printf(sc, "%s mask interrupts\n", __func__);
305 	mps_mask_intr(sc);
306 
307 	error = mps_diag_reset(sc);
308 	if (error != 0) {
309 		panic("%s hard reset failed with error %d",
310 		    __func__, error);
311 	}
312 
313 	/* Restore the PCI state, including the MSI-X registers */
314 	mps_pci_restore(sc);
315 
316 	/* Give the I/O subsystem special priority to get itself prepared */
317 	mpssas_handle_reinit(sc);
318 
319 	/* reinitialize queues after the reset */
320 	bzero(sc->free_queue, sc->fqdepth * 4);
321 	mps_init_queues(sc);
322 
323 	/* get the chip out of the reset state */
324 	error = mps_transition_operational(sc);
325 	if (error != 0)
326 		panic("%s transition operational failed with error %d",
327 		    __func__, error);
328 
329 	/* Reinitialize the reply queue. This is delicate because this
330 	 * function is typically invoked by task mgmt completion callbacks,
331 	 * which are called by the interrupt thread.  We need to make sure
332 	 * the interrupt handler loop will exit when we return to it, and
333 	 * that it will recognize the indexes we've changed.
334 	 */
335 	sc->replypostindex = 0;
336 	mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
337 	mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
338 
339 	db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
340 	mps_printf(sc, "%s doorbell 0x%08x\n", __func__, db);
341 
342 	mps_printf(sc, "%s unmask interrupts post %u free %u\n", __func__,
343 	    sc->replypostindex, sc->replyfreeindex);
344 
345 	mps_unmask_intr(sc);
346 
347 	mps_printf(sc, "%s restarting post %u free %u\n", __func__,
348 	    sc->replypostindex, sc->replyfreeindex);
349 
350 	/* restart will reload the event masks clobbered by the reset, and
351 	 * then enable the port.
352 	 */
353 	mps_reregister_events(sc);
354 
355 	/* the end of discovery will release the simq, so we're done. */
356 	mps_printf(sc, "%s finished sc %p post %u free %u\n",
357 	    __func__, sc,
358 	    sc->replypostindex, sc->replyfreeindex);
359 
360 	sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
361 
362 	return 0;
363 }
364 
365 /* Wait for the chip to ACK a word that we've put into its FIFO */
366 static int
367 mps_wait_db_ack(struct mps_softc *sc)
368 {
369 	int retry;
370 
371 	for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
372 		if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
373 		    MPI2_HIS_SYS2IOC_DB_STATUS) == 0)
374 			return (0);
375 		DELAY(2000);
376 	}
377 	return (ETIMEDOUT);
378 }
379 
380 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
381 static int
382 mps_wait_db_int(struct mps_softc *sc)
383 {
384 	int retry;
385 
386 	for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
387 		if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
388 		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
389 			return (0);
390 		DELAY(2000);
391 	}
392 	return (ETIMEDOUT);
393 }
394 
395 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
396 static int
397 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
398     int req_sz, int reply_sz, int timeout)
399 {
400 	uint32_t *data32;
401 	uint16_t *data16;
402 	int i, count, ioc_sz, residual;
403 
404 	/* Step 1 */
405 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
406 
407 	/* Step 2 */
408 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
409 		return (EBUSY);
410 
411 	/* Step 3
412 	 * Announce that a message is coming through the doorbell.  Messages
413 	 * are pushed at 32bit words, so round up if needed.
414 	 */
415 	count = (req_sz + 3) / 4;
416 	mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
417 	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
418 	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
419 
420 	/* Step 4 */
421 	if (mps_wait_db_int(sc) ||
422 	    (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
423 		mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
424 		return (ENXIO);
425 	}
426 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
427 	if (mps_wait_db_ack(sc) != 0) {
428 		mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
429 		return (ENXIO);
430 	}
431 
432 	/* Step 5 */
433 	/* Clock out the message data synchronously in 32-bit dwords*/
434 	data32 = (uint32_t *)req;
435 	for (i = 0; i < count; i++) {
436 		mps_regwrite(sc, MPI2_DOORBELL_OFFSET, data32[i]);
437 		if (mps_wait_db_ack(sc) != 0) {
438 			mps_dprint(sc, MPS_FAULT,
439 			    "Timeout while writing doorbell\n");
440 			return (ENXIO);
441 		}
442 	}
443 
444 	/* Step 6 */
445 	/* Clock in the reply in 16-bit words.  The total length of the
446 	 * message is always in the 4th byte, so clock out the first 2 words
447 	 * manually, then loop the rest.
448 	 */
449 	data16 = (uint16_t *)reply;
450 	if (mps_wait_db_int(sc) != 0) {
451 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
452 		return (ENXIO);
453 	}
454 	data16[0] =
455 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
456 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
457 	if (mps_wait_db_int(sc) != 0) {
458 		mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
459 		return (ENXIO);
460 	}
461 	data16[1] =
462 	    mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
463 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
464 
465 	/* Number of 32bit words in the message */
466 	ioc_sz = reply->MsgLength;
467 
468 	/*
469 	 * Figure out how many 16bit words to clock in without overrunning.
470 	 * The precision loss with dividing reply_sz can safely be
471 	 * ignored because the messages can only be multiples of 32bits.
472 	 */
473 	residual = 0;
474 	count = MIN((reply_sz / 4), ioc_sz) * 2;
475 	if (count < ioc_sz * 2) {
476 		residual = ioc_sz * 2 - count;
477 		mps_dprint(sc, MPS_FAULT, "Driver error, throwing away %d "
478 		    "residual message words\n", residual);
479 	}
480 
481 	for (i = 2; i < count; i++) {
482 		if (mps_wait_db_int(sc) != 0) {
483 			mps_dprint(sc, MPS_FAULT,
484 			    "Timeout reading doorbell %d\n", i);
485 			return (ENXIO);
486 		}
487 		data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
488 		    MPI2_DOORBELL_DATA_MASK;
489 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
490 	}
491 
492 	/*
493 	 * Pull out residual words that won't fit into the provided buffer.
494 	 * This keeps the chip from hanging due to a driver programming
495 	 * error.
496 	 */
497 	while (residual--) {
498 		if (mps_wait_db_int(sc) != 0) {
499 			mps_dprint(sc, MPS_FAULT,
500 			    "Timeout reading doorbell\n");
501 			return (ENXIO);
502 		}
503 		(void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
504 		mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
505 	}
506 
507 	/* Step 7 */
508 	if (mps_wait_db_int(sc) != 0) {
509 		mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
510 		return (ENXIO);
511 	}
512 	if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
513 		mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
514 	mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
515 
516 	return (0);
517 }
518 
519 static void
520 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
521 {
522 
523 	mps_dprint(sc, MPS_TRACE, "%s SMID %u cm %p ccb %p\n", __func__,
524 	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
525 
526 	if ((sc->mps_flags & MPS_FLAGS_ATTACH_DONE) &&
527 	    !(sc->mps_flags & MPS_FLAGS_SHUTDOWN)) {
528 		KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
529 	}
530 
531 	if (++sc->io_cmds_active > sc->io_cmds_highwater)
532 		sc->io_cmds_highwater++;
533 
534 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
535 	    cm->cm_desc.Words.Low);
536 	mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
537 	    cm->cm_desc.Words.High);
538 }
539 
540 /*
541  * Just the FACTS, ma'am.
542  */
543 static int
544 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
545 {
546 	MPI2_DEFAULT_REPLY *reply;
547 	MPI2_IOC_FACTS_REQUEST request;
548 	int error, req_sz, reply_sz;
549 
550 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
551 
552 	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
553 	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
554 	reply = (MPI2_DEFAULT_REPLY *)facts;
555 
556 	bzero(&request, req_sz);
557 	request.Function = MPI2_FUNCTION_IOC_FACTS;
558 	error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
559 
560 	return (error);
561 }
562 
563 static int
564 mps_get_portfacts(struct mps_softc *sc, MPI2_PORT_FACTS_REPLY *facts, int port)
565 {
566 	MPI2_PORT_FACTS_REQUEST *request;
567 	MPI2_PORT_FACTS_REPLY *reply;
568 	struct mps_command *cm;
569 	int error;
570 
571 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
572 
573 	if ((cm = mps_alloc_command(sc)) == NULL)
574 		return (EBUSY);
575 	request = (MPI2_PORT_FACTS_REQUEST *)cm->cm_req;
576 	request->Function = MPI2_FUNCTION_PORT_FACTS;
577 	request->PortNumber = port;
578 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
579 	cm->cm_data = NULL;
580 	error = mps_request_polled(sc, cm);
581 	reply = (MPI2_PORT_FACTS_REPLY *)cm->cm_reply;
582 	if (reply == NULL) {
583 		mps_printf(sc, "%s NULL reply\n", __func__);
584 		goto done;
585 	}
586 	if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) {
587 		mps_printf(sc,
588 		    "%s error %d iocstatus 0x%x iocloginfo 0x%x type 0x%x\n",
589 		    __func__, error, reply->IOCStatus, reply->IOCLogInfo,
590 		    reply->PortType);
591 		error = ENXIO;
592 	}
593 	bcopy(reply, facts, sizeof(MPI2_PORT_FACTS_REPLY));
594 done:
595 	mps_free_command(sc, cm);
596 
597 	return (error);
598 }
599 
600 static int
601 mps_send_iocinit(struct mps_softc *sc)
602 {
603 	MPI2_IOC_INIT_REQUEST	init;
604 	MPI2_DEFAULT_REPLY	reply;
605 	int req_sz, reply_sz, error;
606 
607 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
608 
609 	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
610 	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
611 	bzero(&init, req_sz);
612 	bzero(&reply, reply_sz);
613 
614 	/*
615 	 * Fill in the init block.  Note that most addresses are
616 	 * deliberately in the lower 32bits of memory.  This is a micro-
617 	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
618 	 */
619 	init.Function = MPI2_FUNCTION_IOC_INIT;
620 	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
621 	init.MsgVersion = MPI2_VERSION;
622 	init.HeaderVersion = MPI2_HEADER_VERSION;
623 	init.SystemRequestFrameSize = sc->facts->IOCRequestFrameSize;
624 	init.ReplyDescriptorPostQueueDepth = sc->pqdepth;
625 	init.ReplyFreeQueueDepth = sc->fqdepth;
626 	init.SenseBufferAddressHigh = 0;
627 	init.SystemReplyAddressHigh = 0;
628 	init.SystemRequestFrameBaseAddress.High = 0;
629 	init.SystemRequestFrameBaseAddress.Low = (uint32_t)sc->req_busaddr;
630 	init.ReplyDescriptorPostQueueAddress.High = 0;
631 	init.ReplyDescriptorPostQueueAddress.Low = (uint32_t)sc->post_busaddr;
632 	init.ReplyFreeQueueAddress.High = 0;
633 	init.ReplyFreeQueueAddress.Low = (uint32_t)sc->free_busaddr;
634 	init.TimeStamp.High = 0;
635 	init.TimeStamp.Low = (uint32_t)time_uptime;
636 
637 	error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
638 	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
639 		error = ENXIO;
640 
641 	mps_dprint(sc, MPS_INFO, "IOCInit status= 0x%x\n", reply.IOCStatus);
642 	return (error);
643 }
644 
645 void
646 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
647 {
648 	bus_addr_t *addr;
649 
650 	addr = arg;
651 	*addr = segs[0].ds_addr;
652 }
653 
654 static int
655 mps_alloc_queues(struct mps_softc *sc)
656 {
657 	bus_addr_t queues_busaddr;
658 	uint8_t *queues;
659 	int qsize, fqsize, pqsize;
660 
661 	/*
662 	 * The reply free queue contains 4 byte entries in multiples of 16 and
663 	 * aligned on a 16 byte boundary. There must always be an unused entry.
664 	 * This queue supplies fresh reply frames for the firmware to use.
665 	 *
666 	 * The reply descriptor post queue contains 8 byte entries in
667 	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
668 	 * contains filled-in reply frames sent from the firmware to the host.
669 	 *
670 	 * These two queues are allocated together for simplicity.
671 	 */
672 	sc->fqdepth = roundup2((sc->num_replies + 1), 16);
673 	sc->pqdepth = roundup2((sc->num_replies + 1), 16);
674 	fqsize= sc->fqdepth * 4;
675 	pqsize = sc->pqdepth * 8;
676 	qsize = fqsize + pqsize;
677 
678         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
679 				16, 0,			/* algnmnt, boundary */
680 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
681 				BUS_SPACE_MAXADDR,	/* highaddr */
682 				NULL, NULL,		/* filter, filterarg */
683                                 qsize,			/* maxsize */
684                                 1,			/* nsegments */
685                                 qsize,			/* maxsegsize */
686                                 0,			/* flags */
687                                 &sc->queues_dmat)) {
688 		device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n");
689 		return (ENOMEM);
690         }
691         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
692 	    &sc->queues_map)) {
693 		device_printf(sc->mps_dev, "Cannot allocate queues memory\n");
694 		return (ENOMEM);
695         }
696         bzero(queues, qsize);
697         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
698 	    mps_memaddr_cb, &queues_busaddr, 0);
699 
700 	sc->free_queue = (uint32_t *)queues;
701 	sc->free_busaddr = queues_busaddr;
702 	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
703 	sc->post_busaddr = queues_busaddr + fqsize;
704 
705 	return (0);
706 }
707 
708 static int
709 mps_alloc_replies(struct mps_softc *sc)
710 {
711 	int rsize, num_replies;
712 
713 	/*
714 	 * sc->num_replies should be one less than sc->fqdepth.  We need to
715 	 * allocate space for sc->fqdepth replies, but only sc->num_replies
716 	 * replies can be used at once.
717 	 */
718 	num_replies = max(sc->fqdepth, sc->num_replies);
719 
720 	rsize = sc->facts->ReplyFrameSize * num_replies * 4;
721         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
722 				4, 0,			/* algnmnt, boundary */
723 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
724 				BUS_SPACE_MAXADDR,	/* highaddr */
725 				NULL, NULL,		/* filter, filterarg */
726                                 rsize,			/* maxsize */
727                                 1,			/* nsegments */
728                                 rsize,			/* maxsegsize */
729                                 0,			/* flags */
730                                 &sc->reply_dmat)) {
731 		device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n");
732 		return (ENOMEM);
733         }
734         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
735 	    BUS_DMA_NOWAIT, &sc->reply_map)) {
736 		device_printf(sc->mps_dev, "Cannot allocate replies memory\n");
737 		return (ENOMEM);
738         }
739         bzero(sc->reply_frames, rsize);
740         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
741 	    mps_memaddr_cb, &sc->reply_busaddr, 0);
742 
743 	return (0);
744 }
745 
746 static int
747 mps_alloc_requests(struct mps_softc *sc)
748 {
749 	struct mps_command *cm;
750 	struct mps_chain *chain;
751 	int i, rsize, nsegs;
752 
753 	rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
754         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
755 				16, 0,			/* algnmnt, boundary */
756 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
757 				BUS_SPACE_MAXADDR,	/* highaddr */
758 				NULL, NULL,		/* filter, filterarg */
759                                 rsize,			/* maxsize */
760                                 1,			/* nsegments */
761                                 rsize,			/* maxsegsize */
762                                 0,			/* flags */
763                                 &sc->req_dmat)) {
764 		device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n");
765 		return (ENOMEM);
766         }
767         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
768 	    BUS_DMA_NOWAIT, &sc->req_map)) {
769 		device_printf(sc->mps_dev, "Cannot allocate request memory\n");
770 		return (ENOMEM);
771         }
772         bzero(sc->req_frames, rsize);
773         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
774 	    mps_memaddr_cb, &sc->req_busaddr, 0);
775 
776 	rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4;
777         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
778 				16, 0,			/* algnmnt, boundary */
779 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
780 				BUS_SPACE_MAXADDR,	/* highaddr */
781 				NULL, NULL,		/* filter, filterarg */
782                                 rsize,			/* maxsize */
783                                 1,			/* nsegments */
784                                 rsize,			/* maxsegsize */
785                                 0,			/* flags */
786                                 &sc->chain_dmat)) {
787 		device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n");
788 		return (ENOMEM);
789         }
790         if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
791 	    BUS_DMA_NOWAIT, &sc->chain_map)) {
792 		device_printf(sc->mps_dev, "Cannot allocate chain memory\n");
793 		return (ENOMEM);
794         }
795         bzero(sc->chain_frames, rsize);
796         bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
797 	    mps_memaddr_cb, &sc->chain_busaddr, 0);
798 
799 	rsize = MPS_SENSE_LEN * sc->num_reqs;
800         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
801 				1, 0,			/* algnmnt, boundary */
802 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
803 				BUS_SPACE_MAXADDR,	/* highaddr */
804 				NULL, NULL,		/* filter, filterarg */
805                                 rsize,			/* maxsize */
806                                 1,			/* nsegments */
807                                 rsize,			/* maxsegsize */
808                                 0,			/* flags */
809                                 &sc->sense_dmat)) {
810 		device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n");
811 		return (ENOMEM);
812         }
813         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
814 	    BUS_DMA_NOWAIT, &sc->sense_map)) {
815 		device_printf(sc->mps_dev, "Cannot allocate sense memory\n");
816 		return (ENOMEM);
817         }
818         bzero(sc->sense_frames, rsize);
819         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
820 	    mps_memaddr_cb, &sc->sense_busaddr, 0);
821 
822 	sc->chains = kmalloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2,
823 	    M_WAITOK | M_ZERO);
824 	for (i = 0; i < sc->max_chains; i++) {
825 		chain = &sc->chains[i];
826 		chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
827 		    i * sc->facts->IOCRequestFrameSize * 4);
828 		chain->chain_busaddr = sc->chain_busaddr +
829 		    i * sc->facts->IOCRequestFrameSize * 4;
830 		mps_free_chain(sc, chain);
831 		sc->chain_free_lowwater++;
832 	}
833 
834 	/* XXX Need to pick a more precise value */
835 	nsegs = (MAXPHYS / PAGE_SIZE) + 1;
836         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
837 				1, 0,			/* algnmnt, boundary */
838 				BUS_SPACE_MAXADDR,	/* lowaddr */
839 				BUS_SPACE_MAXADDR,	/* highaddr */
840 				NULL, NULL,		/* filter, filterarg */
841                                 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
842                                 nsegs,			/* nsegments */
843                                 BUS_SPACE_MAXSIZE_24BIT,/* maxsegsize */
844                                 BUS_DMA_ALLOCNOW,	/* flags */
845                                 &sc->buffer_dmat)) {
846 		device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n");
847 		return (ENOMEM);
848         }
849 
850 	/*
851 	 * SMID 0 cannot be used as a free command per the firmware spec.
852 	 * Just drop that command instead of risking accounting bugs.
853 	 */
854 	sc->commands = kmalloc(sizeof(struct mps_command) * sc->num_reqs,
855 	    M_MPT2, M_WAITOK | M_ZERO);
856 	for (i = 1; i < sc->num_reqs; i++) {
857 		cm = &sc->commands[i];
858 		cm->cm_req = sc->req_frames +
859 		    i * sc->facts->IOCRequestFrameSize * 4;
860 		cm->cm_req_busaddr = sc->req_busaddr +
861 		    i * sc->facts->IOCRequestFrameSize * 4;
862 		cm->cm_sense = &sc->sense_frames[i];
863 		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
864 		cm->cm_desc.Default.SMID = i;
865 		cm->cm_sc = sc;
866 		TAILQ_INIT(&cm->cm_chain_list);
867 		callout_init_mp(&cm->cm_callout);
868 
869 		/* XXX Is a failure here a critical problem? */
870 		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
871 			if (i <= sc->facts->HighPriorityCredit)
872 				mps_free_high_priority_command(sc, cm);
873 			else
874 				mps_free_command(sc, cm);
875 		else {
876 			panic("failed to allocate command %d", i);
877 			sc->num_reqs = i;
878 			break;
879 		}
880 	}
881 
882 	return (0);
883 }
884 
885 static int
886 mps_init_queues(struct mps_softc *sc)
887 {
888 	int i;
889 
890 	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
891 
892 	/*
893 	 * According to the spec, we need to use one less reply than we
894 	 * have space for on the queue.  So sc->num_replies (the number we
895 	 * use) should be less than sc->fqdepth (allocated size).
896 	 */
897 	if (sc->num_replies >= sc->fqdepth)
898 		return (EINVAL);
899 
900 	/*
901 	 * Initialize all of the free queue entries.
902 	 */
903 	for (i = 0; i < sc->fqdepth; i++)
904 		sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
905 	sc->replyfreeindex = sc->num_replies;
906 
907 	return (0);
908 }
909 
910 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
911  * Next are the global settings, if they exist.  Highest are the per-unit
912  * settings, if they exist.
913  */
914 static void
915 mps_get_tunables(struct mps_softc *sc)
916 {
917 	char tmpstr[80];
918 
919 	/* XXX default to some debugging for now */
920 	sc->mps_debug = MPS_FAULT;
921 #if 0 /* XXX swildner */
922 	sc->disable_msix = 0;
923 #endif
924 	sc->enable_msi = 1;
925 	sc->max_chains = MPS_CHAIN_FRAMES;
926 
927 	/*
928 	 * Grab the global variables.
929 	 */
930 	TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug);
931 #if 0 /* XXX swildner */
932 	TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
933 #endif
934 	TUNABLE_INT_FETCH("hw.mps.msi.enable", &sc->enable_msi);
935 	TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
936 
937 	/* Grab the unit-instance variables */
938 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
939 	    device_get_unit(sc->mps_dev));
940 	TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug);
941 
942 #if 0 /* XXX swildner */
943 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
944 	    device_get_unit(sc->mps_dev));
945 	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
946 #endif
947 
948 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_msi",
949 	    device_get_unit(sc->mps_dev));
950 	TUNABLE_INT_FETCH(tmpstr, &sc->enable_msi);
951 
952 	ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
953 	    device_get_unit(sc->mps_dev));
954 	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
955 }
956 
957 static void
958 mps_setup_sysctl(struct mps_softc *sc)
959 {
960 	struct sysctl_ctx_list	*sysctl_ctx = NULL;
961 	struct sysctl_oid	*sysctl_tree = NULL;
962 	char tmpstr[80], tmpstr2[80];
963 
964 	/*
965 	 * Setup the sysctl variable so the user can change the debug level
966 	 * on the fly.
967 	 */
968 	ksnprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
969 	    device_get_unit(sc->mps_dev));
970 	ksnprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
971 
972 	sysctl_ctx_init(&sc->sysctl_ctx);
973 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
974 	    SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
975 	    CTLFLAG_RD, 0, tmpstr);
976 	if (sc->sysctl_tree == NULL)
977 		return;
978 	sysctl_ctx = &sc->sysctl_ctx;
979 	sysctl_tree = sc->sysctl_tree;
980 
981 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
982 	    OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0,
983 	    "mps debug level");
984 
985 #if 0 /* XXX swildner */
986 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
987 	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
988 	    "Disable the use of MSI-X interrupts");
989 #endif
990 
991 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
992 	    OID_AUTO, "enable_msi", CTLFLAG_RD, &sc->enable_msi, 0,
993 	    "Enable the use of MSI interrupts");
994 
995 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
996 	    OID_AUTO, "firmware_version", CTLFLAG_RW, &sc->fw_version,
997 	    strlen(sc->fw_version), "firmware version");
998 
999 	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1000 	    OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION,
1001 	    strlen(MPS_DRIVER_VERSION), "driver version");
1002 
1003 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1004 	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1005 	    &sc->io_cmds_active, 0, "number of currently active commands");
1006 
1007 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1008 	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1009 	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1010 
1011 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1012 	    OID_AUTO, "chain_free", CTLFLAG_RD,
1013 	    &sc->chain_free, 0, "number of free chain elements");
1014 
1015 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1016 	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1017 	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1018 
1019 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1020 	    OID_AUTO, "max_chains", CTLFLAG_RD,
1021 	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1022 
1023 #if 0 /* __FreeBSD_version >= 900030 */
1024 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1025 	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1026 	    &sc->chain_alloc_fail, "chain allocation failures");
1027 #endif //FreeBSD_version >= 900030
1028 }
1029 
1030 int
1031 mps_attach(struct mps_softc *sc)
1032 {
1033 	int i, error;
1034 
1035 	mps_get_tunables(sc);
1036 
1037 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1038 
1039 	lockinit(&sc->mps_lock, "MPT2SAS lock", 0, LK_CANRECURSE);
1040 	callout_init_mp(&sc->periodic);
1041 	TAILQ_INIT(&sc->event_list);
1042 
1043 	if ((error = mps_transition_ready(sc)) != 0) {
1044 		mps_printf(sc, "%s failed to transition ready\n", __func__);
1045 		return (error);
1046 	}
1047 
1048 	sc->facts = kmalloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
1049 	    M_ZERO|M_WAITOK);
1050 	if ((error = mps_get_iocfacts(sc, sc->facts)) != 0)
1051 		return (error);
1052 
1053 	mps_print_iocfacts(sc, sc->facts);
1054 
1055 	ksnprintf(sc->fw_version, sizeof(sc->fw_version),
1056 	    "%02d.%02d.%02d.%02d",
1057 	    sc->facts->FWVersion.Struct.Major,
1058 	    sc->facts->FWVersion.Struct.Minor,
1059 	    sc->facts->FWVersion.Struct.Unit,
1060 	    sc->facts->FWVersion.Struct.Dev);
1061 
1062 	mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
1063 	    MPS_DRIVER_VERSION);
1064 	mps_printf(sc, "IOCCapabilities: %pb%i\n",
1065 	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
1066 	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
1067 	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc",
1068 	    sc->facts->IOCCapabilities);
1069 
1070 	/*
1071 	 * If the chip doesn't support event replay then a hard reset will be
1072 	 * required to trigger a full discovery.  Do the reset here then
1073 	 * retransition to Ready.  A hard reset might have already been done,
1074 	 * but it doesn't hurt to do it again.
1075 	 */
1076 	if ((sc->facts->IOCCapabilities &
1077 	    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
1078 		mps_diag_reset(sc);
1079 		if ((error = mps_transition_ready(sc)) != 0)
1080 			return (error);
1081 	}
1082 
1083 	/*
1084 	 * Set flag if IR Firmware is loaded.
1085 	 */
1086 	if (sc->facts->IOCCapabilities &
1087 	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
1088 		sc->ir_firmware = 1;
1089 
1090 	/*
1091 	 * Check if controller supports FW diag buffers and set flag to enable
1092 	 * each type.
1093 	 */
1094 	if (sc->facts->IOCCapabilities &
1095 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
1096 		sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].enabled =
1097 		    TRUE;
1098 	if (sc->facts->IOCCapabilities &
1099 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
1100 		sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].enabled =
1101 		    TRUE;
1102 	if (sc->facts->IOCCapabilities &
1103 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
1104 		sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].enabled =
1105 		    TRUE;
1106 
1107 	/*
1108 	 * Set flag if EEDP is supported and if TLR is supported.
1109 	 */
1110 	if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
1111 		sc->eedp_enabled = TRUE;
1112 	if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
1113 		sc->control_TLR = TRUE;
1114 
1115 	/*
1116 	 * Size the queues. Since the reply queues always need one free entry,
1117 	 * we'll just deduct one reply message here.
1118 	 */
1119 	sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit);
1120 	sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES,
1121 	    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
1122 	TAILQ_INIT(&sc->req_list);
1123 	TAILQ_INIT(&sc->high_priority_req_list);
1124 	TAILQ_INIT(&sc->chain_list);
1125 	TAILQ_INIT(&sc->tm_list);
1126 
1127 	if (((error = mps_alloc_queues(sc)) != 0) ||
1128 	    ((error = mps_alloc_replies(sc)) != 0) ||
1129 	    ((error = mps_alloc_requests(sc)) != 0)) {
1130 		mps_printf(sc, "%s failed to alloc\n", __func__);
1131 		mps_free(sc);
1132 		return (error);
1133 	}
1134 
1135 	if (((error = mps_init_queues(sc)) != 0) ||
1136 	    ((error = mps_transition_operational(sc)) != 0)) {
1137 		mps_printf(sc, "%s failed to transition operational\n", __func__);
1138 		mps_free(sc);
1139 		return (error);
1140 	}
1141 
1142 	/*
1143 	 * Finish the queue initialization.
1144 	 * These are set here instead of in mps_init_queues() because the
1145 	 * IOC resets these values during the state transition in
1146 	 * mps_transition_operational().  The free index is set to 1
1147 	 * because the corresponding index in the IOC is set to 0, and the
1148 	 * IOC treats the queues as full if both are set to the same value.
1149 	 * Hence the reason that the queue can't hold all of the possible
1150 	 * replies.
1151 	 */
1152 	sc->replypostindex = 0;
1153 	mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
1154 	mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
1155 
1156 	sc->pfacts = kmalloc(sizeof(MPI2_PORT_FACTS_REPLY) *
1157 	    sc->facts->NumberOfPorts, M_MPT2, M_ZERO|M_WAITOK);
1158 	for (i = 0; i < sc->facts->NumberOfPorts; i++) {
1159 		if ((error = mps_get_portfacts(sc, &sc->pfacts[i], i)) != 0) {
1160 			mps_printf(sc, "%s failed to get portfacts for port %d\n",
1161 			    __func__, i);
1162 			mps_free(sc);
1163 			return (error);
1164 		}
1165 		mps_print_portfacts(sc, &sc->pfacts[i]);
1166 	}
1167 
1168 	/* Attach the subsystems so they can prepare their event masks. */
1169 	/* XXX Should be dynamic so that IM/IR and user modules can attach */
1170 	if (((error = mps_attach_log(sc)) != 0) ||
1171 	    ((error = mps_attach_sas(sc)) != 0) ||
1172 	    ((error = mps_attach_user(sc)) != 0)) {
1173 		mps_printf(sc, "%s failed to attach all subsystems: error %d\n",
1174 		    __func__, error);
1175 		mps_free(sc);
1176 		return (error);
1177 	}
1178 
1179 	if ((error = mps_pci_setup_interrupts(sc)) != 0) {
1180 		mps_printf(sc, "%s failed to setup interrupts\n", __func__);
1181 		mps_free(sc);
1182 		return (error);
1183 	}
1184 
1185 	/*
1186 	 * The static page function currently read is ioc page8.  Others can be
1187 	 * added in future.
1188 	 */
1189 	mps_base_static_config_pages(sc);
1190 
1191 	/* Start the periodic watchdog check on the IOC Doorbell */
1192 	mps_periodic(sc);
1193 
1194 	/*
1195 	 * The portenable will kick off discovery events that will drive the
1196 	 * rest of the initialization process.  The CAM/SAS module will
1197 	 * hold up the boot sequence until discovery is complete.
1198 	 */
1199 	sc->mps_ich.ich_func = mps_startup;
1200 	sc->mps_ich.ich_arg = sc;
1201 	sc->mps_ich.ich_desc = "mps";
1202 	if (config_intrhook_establish(&sc->mps_ich) != 0) {
1203 		mps_dprint(sc, MPS_FAULT, "Cannot establish MPS config hook\n");
1204 		error = EINVAL;
1205 	}
1206 
1207 	/*
1208 	 * Allow IR to shutdown gracefully when shutdown occurs.
1209 	 */
1210 	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1211 	    mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1212 
1213 	if (sc->shutdown_eh == NULL)
1214 		mps_dprint(sc, MPS_FAULT, "shutdown event registration "
1215 		    "failed\n");
1216 
1217 	mps_setup_sysctl(sc);
1218 
1219 	sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
1220 
1221 	return (error);
1222 }
1223 
1224 /* Run through any late-start handlers. */
1225 static void
1226 mps_startup(void *arg)
1227 {
1228 	struct mps_softc *sc;
1229 
1230 	sc = (struct mps_softc *)arg;
1231 
1232 	mps_lock(sc);
1233 	mps_unmask_intr(sc);
1234 	/* initialize device mapping tables */
1235 	mps_mapping_initialize(sc);
1236 	mpssas_startup(sc);
1237 	mps_unlock(sc);
1238 }
1239 
1240 /* Periodic watchdog.  Is called with the driver lock already held. */
1241 static void
1242 mps_periodic(void *arg)
1243 {
1244 	struct mps_softc *sc;
1245 	uint32_t db;
1246 
1247 	sc = (struct mps_softc *)arg;
1248 	mps_lock(sc);
1249 	if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) {
1250 		mps_unlock(sc);
1251 		return;
1252 	}
1253 
1254 	db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
1255 	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1256 		device_printf(sc->mps_dev, "IOC Fault 0x%08x, Resetting\n", db);
1257 
1258 		mps_reinit(sc);
1259 	}
1260 
1261 	callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc);
1262 	mps_unlock(sc);
1263 }
1264 
1265 static void
1266 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
1267     MPI2_EVENT_NOTIFICATION_REPLY *event)
1268 {
1269 	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1270 
1271 	mps_print_event(sc, event);
1272 
1273 	switch (event->Event) {
1274 	case MPI2_EVENT_LOG_DATA:
1275 		device_printf(sc->mps_dev, "MPI2_EVENT_LOG_DATA:\n");
1276 		hexdump(event->EventData, event->EventDataLength, NULL, 0);
1277 		break;
1278 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1279 		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1280 		mps_dprint(sc, MPS_INFO, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1281 		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1282 		     entry->LogSequence);
1283 		break;
1284 	default:
1285 		break;
1286 	}
1287 	return;
1288 }
1289 
1290 static int
1291 mps_attach_log(struct mps_softc *sc)
1292 {
1293 	uint8_t events[16];
1294 
1295 	bzero(events, 16);
1296 	setbit(events, MPI2_EVENT_LOG_DATA);
1297 	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1298 
1299 	mps_register_events(sc, events, mps_log_evt_handler, NULL,
1300 	    &sc->mps_log_eh);
1301 
1302 	return (0);
1303 }
1304 
1305 static int
1306 mps_detach_log(struct mps_softc *sc)
1307 {
1308 
1309 	if (sc->mps_log_eh != NULL)
1310 		mps_deregister_events(sc, sc->mps_log_eh);
1311 	return (0);
1312 }
1313 
1314 /*
1315  * Free all of the driver resources and detach submodules.  Should be called
1316  * without the lock held.
1317  */
1318 int
1319 mps_free(struct mps_softc *sc)
1320 {
1321 	struct mps_command *cm;
1322 	int i, error;
1323 
1324 	/* Turn off the watchdog */
1325 	mps_lock(sc);
1326 	sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
1327 	mps_unlock(sc);
1328 	callout_stop_sync(&sc->periodic);
1329 
1330 	if (((error = mps_detach_log(sc)) != 0) ||
1331 	    ((error = mps_detach_sas(sc)) != 0))
1332 		return (error);
1333 
1334 	mps_detach_user(sc);
1335 
1336 	/* Put the IOC back in the READY state. */
1337 	mps_lock(sc);
1338 	if ((error = mps_transition_ready(sc)) != 0) {
1339 		mps_unlock(sc);
1340 		return (error);
1341 	}
1342 	mps_unlock(sc);
1343 
1344 	if (sc->facts != NULL)
1345 		kfree(sc->facts, M_MPT2);
1346 
1347 	if (sc->pfacts != NULL)
1348 		kfree(sc->pfacts, M_MPT2);
1349 
1350 	if (sc->post_busaddr != 0)
1351 		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
1352 	if (sc->post_queue != NULL)
1353 		bus_dmamem_free(sc->queues_dmat, sc->post_queue,
1354 		    sc->queues_map);
1355 	if (sc->queues_dmat != NULL)
1356 		bus_dma_tag_destroy(sc->queues_dmat);
1357 
1358 	if (sc->chain_busaddr != 0)
1359 		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
1360 	if (sc->chain_frames != NULL)
1361 		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,sc->chain_map);
1362 	if (sc->chain_dmat != NULL)
1363 		bus_dma_tag_destroy(sc->chain_dmat);
1364 
1365 	if (sc->sense_busaddr != 0)
1366 		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
1367 	if (sc->sense_frames != NULL)
1368 		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,sc->sense_map);
1369 	if (sc->sense_dmat != NULL)
1370 		bus_dma_tag_destroy(sc->sense_dmat);
1371 
1372 	if (sc->reply_busaddr != 0)
1373 		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
1374 	if (sc->reply_frames != NULL)
1375 		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,sc->reply_map);
1376 	if (sc->reply_dmat != NULL)
1377 		bus_dma_tag_destroy(sc->reply_dmat);
1378 
1379 	if (sc->req_busaddr != 0)
1380 		bus_dmamap_unload(sc->req_dmat, sc->req_map);
1381 	if (sc->req_frames != NULL)
1382 		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
1383 	if (sc->req_dmat != NULL)
1384 		bus_dma_tag_destroy(sc->req_dmat);
1385 
1386 	if (sc->chains != NULL)
1387 		kfree(sc->chains, M_MPT2);
1388 	if (sc->commands != NULL) {
1389 		for (i = 1; i < sc->num_reqs; i++) {
1390 			cm = &sc->commands[i];
1391 			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
1392 		}
1393 		kfree(sc->commands, M_MPT2);
1394 	}
1395 	if (sc->buffer_dmat != NULL)
1396 		bus_dma_tag_destroy(sc->buffer_dmat);
1397 
1398 	if (sc->sysctl_tree != NULL)
1399 		sysctl_ctx_free(&sc->sysctl_ctx);
1400 
1401 	mps_mapping_free_memory(sc);
1402 
1403 	/* Deregister the shutdown function */
1404 	if (sc->shutdown_eh != NULL)
1405 		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1406 
1407 	lockuninit(&sc->mps_lock);
1408 
1409 	return (0);
1410 }
1411 
1412 static __inline void
1413 mps_complete_command(struct mps_command *cm)
1414 {
1415 	if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
1416 		cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
1417 
1418 	if (cm->cm_complete != NULL) {
1419 		mps_dprint(cm->cm_sc, MPS_TRACE,
1420 			   "%s cm %p calling cm_complete %p data %p reply %p\n",
1421 			   __func__, cm, cm->cm_complete, cm->cm_complete_data,
1422 			   cm->cm_reply);
1423 		cm->cm_complete(cm->cm_sc, cm);
1424 	}
1425 
1426 	if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
1427 		mps_dprint(cm->cm_sc, MPS_TRACE, "%s: waking up %p\n",
1428 			   __func__, cm);
1429 		wakeup(cm);
1430 	}
1431 
1432 	if (cm->cm_sc->io_cmds_active != 0) {
1433 		cm->cm_sc->io_cmds_active--;
1434 	} else {
1435 		mps_dprint(cm->cm_sc, MPS_INFO, "Warning: io_cmds_active is "
1436 		    "out of sync - resynching to 0\n");
1437 	}
1438 }
1439 
1440 void
1441 mps_intr(void *data)
1442 {
1443 	struct mps_softc *sc;
1444 	uint32_t status;
1445 
1446 	sc = (struct mps_softc *)data;
1447 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1448 
1449 	/*
1450 	 * Check interrupt status register to flush the bus.  This is
1451 	 * needed for both INTx interrupts and driver-driven polling
1452 	 */
1453 	status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1454 	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1455 		return;
1456 
1457 	mps_lock(sc);
1458 	mps_intr_locked(data);
1459 	mps_unlock(sc);
1460 	return;
1461 }
1462 
1463 /*
1464  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1465  * chip.  Hopefully this theory is correct.
1466  */
1467 void
1468 mps_intr_msi(void *data)
1469 {
1470 	struct mps_softc *sc;
1471 
1472 	sc = (struct mps_softc *)data;
1473 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1474 	mps_lock(sc);
1475 	mps_intr_locked(data);
1476 	mps_unlock(sc);
1477 	return;
1478 }
1479 
1480 /*
1481  * The locking is overly broad and simplistic, but easy to deal with for now.
1482  */
1483 void
1484 mps_intr_locked(void *data)
1485 {
1486 	MPI2_REPLY_DESCRIPTORS_UNION *desc;
1487 	struct mps_softc *sc;
1488 	struct mps_command *cm = NULL;
1489 	uint8_t flags;
1490 	u_int pq;
1491 	MPI2_DIAG_RELEASE_REPLY *rel_rep;
1492 	mps_fw_diagnostic_buffer_t *pBuffer;
1493 
1494 	sc = (struct mps_softc *)data;
1495 
1496 	pq = sc->replypostindex;
1497 	mps_dprint(sc, MPS_TRACE,
1498 	    "%s sc %p starting with replypostindex %u\n",
1499 	    __func__, sc, sc->replypostindex);
1500 
1501 	for ( ;; ) {
1502 		cm = NULL;
1503 		desc = &sc->post_queue[sc->replypostindex];
1504 		flags = desc->Default.ReplyFlags &
1505 		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1506 		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1507 		 || (desc->Words.High == 0xffffffff))
1508 			break;
1509 
1510 		/* increment the replypostindex now, so that event handlers
1511 		 * and cm completion handlers which decide to do a diag
1512 		 * reset can zero it without it getting incremented again
1513 		 * afterwards, and we break out of this loop on the next
1514 		 * iteration since the reply post queue has been cleared to
1515 		 * 0xFF and all descriptors look unused (which they are).
1516 		 */
1517 		if (++sc->replypostindex >= sc->pqdepth)
1518 			sc->replypostindex = 0;
1519 
1520 		switch (flags) {
1521 		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
1522 			cm = &sc->commands[desc->SCSIIOSuccess.SMID];
1523 			cm->cm_reply = NULL;
1524 			break;
1525 		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
1526 		{
1527 			uint32_t baddr;
1528 			uint8_t *reply;
1529 
1530 			/*
1531 			 * Re-compose the reply address from the address
1532 			 * sent back from the chip.  The ReplyFrameAddress
1533 			 * is the lower 32 bits of the physical address of
1534 			 * particular reply frame.  Convert that address to
1535 			 * host format, and then use that to provide the
1536 			 * offset against the virtual address base
1537 			 * (sc->reply_frames).
1538 			 */
1539 			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
1540 			reply = sc->reply_frames +
1541 				(baddr - ((uint32_t)sc->reply_busaddr));
1542 			/*
1543 			 * Make sure the reply we got back is in a valid
1544 			 * range.  If not, go ahead and panic here, since
1545 			 * we'll probably panic as soon as we deference the
1546 			 * reply pointer anyway.
1547 			 */
1548 			if ((reply < sc->reply_frames)
1549 			 || (reply > (sc->reply_frames +
1550 			     (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
1551 				kprintf("%s: WARNING: reply %p out of range!\n",
1552 				       __func__, reply);
1553 				kprintf("%s: reply_frames %p, fqdepth %d, "
1554 				       "frame size %d\n", __func__,
1555 				       sc->reply_frames, sc->fqdepth,
1556 				       sc->facts->ReplyFrameSize * 4);
1557 				kprintf("%s: baddr %#x,\n", __func__, baddr);
1558 				panic("Reply address out of range");
1559 			}
1560 			if (desc->AddressReply.SMID == 0) {
1561 				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
1562 				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
1563 					/*
1564 					 * If SMID is 0 for Diag Buffer Post,
1565 					 * this implies that the reply is due to
1566 					 * a release function with a status that
1567 					 * the buffer has been released.  Set
1568 					 * the buffer flags accordingly.
1569 					 */
1570 					rel_rep =
1571 					    (MPI2_DIAG_RELEASE_REPLY *)reply;
1572 					if (rel_rep->IOCStatus ==
1573 					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
1574 					    {
1575 						pBuffer =
1576 						    &sc->fw_diag_buffer_list[
1577 						    rel_rep->BufferType];
1578 						pBuffer->valid_data = TRUE;
1579 						pBuffer->owned_by_firmware =
1580 						    FALSE;
1581 						pBuffer->immediate = FALSE;
1582 					}
1583 				} else
1584 					mps_dispatch_event(sc, baddr,
1585 					    (MPI2_EVENT_NOTIFICATION_REPLY *)
1586 					    reply);
1587 			} else {
1588 				cm = &sc->commands[desc->AddressReply.SMID];
1589 				cm->cm_reply = reply;
1590 				cm->cm_reply_data =
1591 				    desc->AddressReply.ReplyFrameAddress;
1592 			}
1593 			break;
1594 		}
1595 		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
1596 		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
1597 		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
1598 		default:
1599 			/* Unhandled */
1600 			device_printf(sc->mps_dev, "Unhandled reply 0x%x\n",
1601 			    desc->Default.ReplyFlags);
1602 			cm = NULL;
1603 			break;
1604 		}
1605 
1606 		if (cm != NULL)
1607 			mps_complete_command(cm);
1608 
1609 		desc->Words.Low = 0xffffffff;
1610 		desc->Words.High = 0xffffffff;
1611 	}
1612 
1613 	if (pq != sc->replypostindex) {
1614 		mps_dprint(sc, MPS_TRACE,
1615 		    "%s sc %p writing postindex %d\n",
1616 		    __func__, sc, sc->replypostindex);
1617 		mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
1618 	}
1619 
1620 	return;
1621 }
1622 
1623 static void
1624 mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
1625     MPI2_EVENT_NOTIFICATION_REPLY *reply)
1626 {
1627 	struct mps_event_handle *eh;
1628 	int event, handled = 0;
1629 
1630 	event = reply->Event;
1631 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1632 		if (isset(eh->mask, event)) {
1633 			eh->callback(sc, data, reply);
1634 			handled++;
1635 		}
1636 	}
1637 
1638 	if (handled == 0)
1639 		device_printf(sc->mps_dev, "Unhandled event 0x%x\n", event);
1640 
1641 	/*
1642 	 * This is the only place that the event/reply should be freed.
1643 	 * Anything wanting to hold onto the event data should have
1644 	 * already copied it into their own storage.
1645 	 */
1646 	mps_free_reply(sc, data);
1647 }
1648 
1649 static void
1650 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
1651 {
1652 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1653 
1654 	if (cm->cm_reply)
1655 		mps_print_event(sc,
1656 			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
1657 
1658 	mps_free_command(sc, cm);
1659 
1660 	/* next, send a port enable */
1661 	mpssas_startup(sc);
1662 }
1663 
1664 /*
1665  * For both register_events and update_events, the caller supplies a bitmap
1666  * of events that it _wants_.  These functions then turn that into a bitmask
1667  * suitable for the controller.
1668  */
1669 int
1670 mps_register_events(struct mps_softc *sc, uint8_t *mask,
1671     mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
1672 {
1673 	struct mps_event_handle *eh;
1674 	int error = 0;
1675 
1676 	eh = kmalloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
1677 	eh->callback = cb;
1678 	eh->data = data;
1679 	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
1680 	if (mask != NULL)
1681 		error = mps_update_events(sc, eh, mask);
1682 	*handle = eh;
1683 
1684 	return (error);
1685 }
1686 
1687 int
1688 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
1689     uint8_t *mask)
1690 {
1691 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
1692 	MPI2_EVENT_NOTIFICATION_REPLY *reply;
1693 	struct mps_command *cm;
1694 	struct mps_event_handle *eh;
1695 	int error, i;
1696 
1697 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1698 
1699 	if ((mask != NULL) && (handle != NULL))
1700 		bcopy(mask, &handle->mask[0], 16);
1701 	memset(sc->event_mask, 0xff, 16);
1702 
1703 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1704 		for (i = 0; i < 16; i++)
1705 			sc->event_mask[i] &= ~eh->mask[i];
1706 	}
1707 
1708 	if ((cm = mps_alloc_command(sc)) == NULL)
1709 		return (EBUSY);
1710 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
1711 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
1712 	evtreq->MsgFlags = 0;
1713 	evtreq->SASBroadcastPrimitiveMasks = 0;
1714 #ifdef MPS_DEBUG_ALL_EVENTS
1715 	{
1716 		u_char fullmask[16];
1717 		memset(fullmask, 0x00, 16);
1718 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
1719 	}
1720 #else
1721 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
1722 #endif
1723 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1724 	cm->cm_data = NULL;
1725 
1726 	error = mps_request_polled(sc, cm);
1727 	reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
1728 	if ((reply == NULL) ||
1729 	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1730 		error = ENXIO;
1731 	mps_print_event(sc, reply);
1732 	mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
1733 
1734 	mps_free_command(sc, cm);
1735 	return (error);
1736 }
1737 
1738 static int
1739 mps_reregister_events(struct mps_softc *sc)
1740 {
1741 	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
1742 	struct mps_command *cm;
1743 	struct mps_event_handle *eh;
1744 	int error, i;
1745 
1746 	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1747 
1748 	/* first, reregister events */
1749 
1750 	memset(sc->event_mask, 0xff, 16);
1751 
1752 	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1753 		for (i = 0; i < 16; i++)
1754 			sc->event_mask[i] &= ~eh->mask[i];
1755 	}
1756 
1757 	if ((cm = mps_alloc_command(sc)) == NULL)
1758 		return (EBUSY);
1759 	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
1760 	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
1761 	evtreq->MsgFlags = 0;
1762 	evtreq->SASBroadcastPrimitiveMasks = 0;
1763 #ifdef MPS_DEBUG_ALL_EVENTS
1764 	{
1765 		u_char fullmask[16];
1766 		memset(fullmask, 0x00, 16);
1767 		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
1768 	}
1769 #else
1770 		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
1771 #endif
1772 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1773 	cm->cm_data = NULL;
1774 	cm->cm_complete = mps_reregister_events_complete;
1775 
1776 	error = mps_map_command(sc, cm);
1777 
1778 	mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, error);
1779 	return (error);
1780 }
1781 
1782 int
1783 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
1784 {
1785 
1786 	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
1787 	kfree(handle, M_MPT2);
1788 	return (mps_update_events(sc, NULL, NULL));
1789 }
1790 
1791 /*
1792  * Add a chain element as the next SGE for the specified command.
1793  * Reset cm_sge and cm_sgesize to indicate all the available space.
1794  */
1795 static int
1796 mps_add_chain(struct mps_command *cm)
1797 {
1798 	MPI2_SGE_CHAIN32 *sgc;
1799 	struct mps_chain *chain;
1800 	int space;
1801 
1802 	if (cm->cm_sglsize < MPS_SGC_SIZE)
1803 		panic("MPS: Need SGE Error Code");
1804 
1805 	chain = mps_alloc_chain(cm->cm_sc);
1806 	if (chain == NULL)
1807 		return (ENOBUFS);
1808 
1809 	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
1810 
1811 	/*
1812 	 * Note: a double-linked list is used to make it easier to
1813 	 * walk for debugging.
1814 	 */
1815 	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
1816 
1817 	sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain;
1818 	sgc->Length = space;
1819 	sgc->NextChainOffset = 0;
1820 	sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT;
1821 	sgc->Address = chain->chain_busaddr;
1822 
1823 	cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
1824 	cm->cm_sglsize = space;
1825 	return (0);
1826 }
1827 
1828 /*
1829  * Add one scatter-gather element (chain, simple, transaction context)
1830  * to the scatter-gather list for a command.  Maintain cm_sglsize and
1831  * cm_sge as the remaining size and pointer to the next SGE to fill
1832  * in, respectively.
1833  */
1834 int
1835 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
1836 {
1837 	MPI2_SGE_TRANSACTION_UNION *tc = sgep;
1838 	MPI2_SGE_SIMPLE64 *sge = sgep;
1839 	int error, type;
1840 	uint32_t saved_buf_len, saved_address_low, saved_address_high;
1841 
1842 	type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
1843 
1844 #ifdef INVARIANTS
1845 	switch (type) {
1846 	case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
1847 		if (len != tc->DetailsLength + 4)
1848 			panic("TC %p length %u or %zu?", tc,
1849 			    tc->DetailsLength + 4, len);
1850 		}
1851 		break;
1852 	case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
1853 		/* Driver only uses 32-bit chain elements */
1854 		if (len != MPS_SGC_SIZE)
1855 			panic("CHAIN %p length %u or %zu?", sgep,
1856 			    MPS_SGC_SIZE, len);
1857 		break;
1858 	case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
1859 		/* Driver only uses 64-bit SGE simple elements */
1860 		if (len != MPS_SGE64_SIZE)
1861 			panic("SGE simple %p length %u or %zu?", sge,
1862 			    MPS_SGE64_SIZE, len);
1863 		if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) &
1864 		    MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
1865 			panic("SGE simple %p not marked 64-bit?", sge);
1866 
1867 		break;
1868 	default:
1869 		panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
1870 	}
1871 #endif
1872 
1873 	/*
1874 	 * case 1: 1 more segment, enough room for it
1875 	 * case 2: 2 more segments, enough room for both
1876 	 * case 3: >=2 more segments, only enough room for 1 and a chain
1877 	 * case 4: >=1 more segment, enough room for only a chain
1878 	 * case 5: >=1 more segment, no room for anything (error)
1879          */
1880 
1881 	/*
1882 	 * There should be room for at least a chain element, or this
1883 	 * code is buggy.  Case (5).
1884 	 */
1885 	if (cm->cm_sglsize < MPS_SGC_SIZE)
1886 		panic("MPS: Need SGE Error Code");
1887 
1888 	if (segsleft >= 2 &&
1889 	    cm->cm_sglsize >= len + MPS_SGC_SIZE &&
1890 	    cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
1891 		/*
1892 		 * There are 2 or more segments left to add, and only
1893 		 * enough room for 1 and a chain.  Case (3).
1894 		 *
1895 		 * Mark as last element in this chain if necessary.
1896 		 */
1897 		if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
1898 			sge->FlagsLength |= htole32(
1899 				MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
1900 		}
1901 
1902 		/*
1903 		 * Add the item then a chain.  Do the chain now,
1904 		 * rather than on the next iteration, to simplify
1905 		 * understanding the code.
1906 		 */
1907 		cm->cm_sglsize -= len;
1908 		bcopy(sgep, cm->cm_sge, len);
1909 		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
1910 		return (mps_add_chain(cm));
1911 	}
1912 
1913 	if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
1914 		/*
1915 		 * 1 or more segment, enough room for only a chain.
1916 		 * Hope the previous element wasn't a Simple entry
1917 		 * that needed to be marked with
1918 		 * MPI2_SGE_FLAGS_LAST_ELEMENT.  Case (4).
1919 		 */
1920 		if ((error = mps_add_chain(cm)) != 0)
1921 			return (error);
1922 	}
1923 
1924 #ifdef INVARIANTS
1925 	/* Case 1: 1 more segment, enough room for it. */
1926 	if (segsleft == 1 && cm->cm_sglsize < len)
1927 		panic("1 seg left and no room? %u versus %zu",
1928 		    cm->cm_sglsize, len);
1929 
1930 	/* Case 2: 2 more segments, enough room for both */
1931 	if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
1932 		panic("2 segs left and no room? %u versus %zu",
1933 		    cm->cm_sglsize, len);
1934 #endif
1935 
1936 	if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
1937 		/*
1938 		 * If this is a bi-directional request, need to account for that
1939 		 * here.  Save the pre-filled sge values.  These will be used
1940 		 * either for the 2nd SGL or for a single direction SGL.  If
1941 		 * cm_out_len is non-zero, this is a bi-directional request, so
1942 		 * fill in the OUT SGL first, then the IN SGL, otherwise just
1943 		 * fill in the IN SGL.  Note that at this time, when filling in
1944 		 * 2 SGL's for a bi-directional request, they both use the same
1945 		 * DMA buffer (same cm command).
1946 		 */
1947 		saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF;
1948 		saved_address_low = sge->Address.Low;
1949 		saved_address_high = sge->Address.High;
1950 		if (cm->cm_out_len) {
1951 			sge->FlagsLength = htole32(cm->cm_out_len |
1952 			    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1953 			    MPI2_SGE_FLAGS_END_OF_BUFFER |
1954 			    MPI2_SGE_FLAGS_HOST_TO_IOC |
1955 			    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
1956 			    MPI2_SGE_FLAGS_SHIFT));
1957 			cm->cm_sglsize -= len;
1958 			bcopy(sgep, cm->cm_sge, len);
1959 			cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
1960 			    + len);
1961 		}
1962 		saved_buf_len |=
1963 		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1964 		    MPI2_SGE_FLAGS_END_OF_BUFFER |
1965 		    MPI2_SGE_FLAGS_LAST_ELEMENT |
1966 		    MPI2_SGE_FLAGS_END_OF_LIST |
1967 		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
1968 		    MPI2_SGE_FLAGS_SHIFT);
1969 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
1970 			saved_buf_len |=
1971 			    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
1972 			    MPI2_SGE_FLAGS_SHIFT);
1973 		} else {
1974 			saved_buf_len |=
1975 			    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
1976 			    MPI2_SGE_FLAGS_SHIFT);
1977 		}
1978 		sge->FlagsLength = htole32(saved_buf_len);
1979 		sge->Address.Low = saved_address_low;
1980 		sge->Address.High = saved_address_high;
1981 	}
1982 
1983 	cm->cm_sglsize -= len;
1984 	bcopy(sgep, cm->cm_sge, len);
1985 	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
1986 	return (0);
1987 }
1988 
1989 /*
1990  * Add one dma segment to the scatter-gather list for a command.
1991  */
1992 int
1993 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
1994     int segsleft)
1995 {
1996 	MPI2_SGE_SIMPLE64 sge;
1997 
1998 	/*
1999 	 * This driver always uses 64-bit address elements for simplicity.
2000 	 */
2001 	bzero(&sge, sizeof(sge));
2002 	flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2003 	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2004 	sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT));
2005 	mps_from_u64(pa, &sge.Address);
2006 
2007 	return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
2008 }
2009 
2010 static void
2011 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2012 {
2013 	struct mps_softc *sc;
2014 	struct mps_command *cm;
2015 	u_int i, dir, sflags;
2016 
2017 	cm = (struct mps_command *)arg;
2018 	sc = cm->cm_sc;
2019 
2020 	/*
2021 	 * In this case, just print out a warning and let the chip tell the
2022 	 * user they did the wrong thing.
2023 	 */
2024 	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2025 		mps_printf(sc, "%s: warning: busdma returned %d segments, "
2026 			   "more than the %d allowed\n", __func__, nsegs,
2027 			   cm->cm_max_segs);
2028 	}
2029 
2030 	/*
2031 	 * Set up DMA direction flags.  Bi-directional requests are also handled
2032 	 * here.  In that case, both direction flags will be set.
2033 	 */
2034 	sflags = 0;
2035 	if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
2036 		/*
2037 		 * We have to add a special case for SMP passthrough, there
2038 		 * is no easy way to generically handle it.  The first
2039 		 * S/G element is used for the command (therefore the
2040 		 * direction bit needs to be set).  The second one is used
2041 		 * for the reply.  We'll leave it to the caller to make
2042 		 * sure we only have two buffers.
2043 		 */
2044 		/*
2045 		 * Even though the busdma man page says it doesn't make
2046 		 * sense to have both direction flags, it does in this case.
2047 		 * We have one s/g element being accessed in each direction.
2048 		 */
2049 		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2050 
2051 		/*
2052 		 * Set the direction flag on the first buffer in the SMP
2053 		 * passthrough request.  We'll clear it for the second one.
2054 		 */
2055 		sflags |= MPI2_SGE_FLAGS_DIRECTION |
2056 			  MPI2_SGE_FLAGS_END_OF_BUFFER;
2057 	} else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
2058 		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2059 		dir = BUS_DMASYNC_PREWRITE;
2060 	} else
2061 		dir = BUS_DMASYNC_PREREAD;
2062 
2063 	for (i = 0; i < nsegs; i++) {
2064 		if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
2065 			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2066 		}
2067 		error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2068 		    sflags, nsegs - i);
2069 		if (error != 0) {
2070 			/* Resource shortage, roll back! */
2071 			mps_dprint(sc, MPS_INFO, "out of chain frames\n");
2072 			cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
2073 			mps_complete_command(cm);
2074 			return;
2075 		}
2076 	}
2077 
2078 	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2079 	mps_enqueue_request(sc, cm);
2080 
2081 	return;
2082 }
2083 
2084 static void
2085 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
2086 	     int error)
2087 {
2088 	mps_data_cb(arg, segs, nsegs, error);
2089 }
2090 
2091 /*
2092  * This is the routine to enqueue commands ansynchronously.
2093  * Note that the only error path here is from bus_dmamap_load(), which can
2094  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
2095  * assumed that if you have a command in-hand, then you have enough credits
2096  * to use it.
2097  */
2098 int
2099 mps_map_command(struct mps_softc *sc, struct mps_command *cm)
2100 {
2101 	int error = 0;
2102 
2103 	if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
2104 		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
2105 		    &cm->cm_uio, mps_data_cb2, cm, 0);
2106 	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
2107 		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
2108 		    cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
2109 	} else {
2110 		/* Add a zero-length element as needed */
2111 		if (cm->cm_sge != NULL)
2112 			mps_add_dmaseg(cm, 0, 0, 0, 1);
2113 		mps_enqueue_request(sc, cm);
2114 	}
2115 
2116 	return (error);
2117 }
2118 
2119 /*
2120  * This is the routine to enqueue commands synchronously.  An error of
2121  * EINPROGRESS from mps_map_command() is ignored since the command will
2122  * be executed and enqueued automatically.  Other errors come from msleep().
2123  */
2124 int
2125 mps_wait_command(struct mps_softc *sc, struct mps_command *cm, int timeout)
2126 {
2127 	int error;
2128 
2129 	KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
2130 
2131 	cm->cm_complete = NULL;
2132 	cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
2133 	error = mps_map_command(sc, cm);
2134 	if ((error != 0) && (error != EINPROGRESS))
2135 		return (error);
2136 	error = lksleep(cm, &sc->mps_lock, 0, "mpswait", timeout*hz);
2137 	if (error == EWOULDBLOCK)
2138 		error = ETIMEDOUT;
2139 	return (error);
2140 }
2141 
2142 /*
2143  * This is the routine to enqueue a command synchonously and poll for
2144  * completion.  Its use should be rare.
2145  */
2146 int
2147 mps_request_polled(struct mps_softc *sc, struct mps_command *cm)
2148 {
2149 	int error, timeout = 0;
2150 
2151 	error = 0;
2152 
2153 	cm->cm_flags |= MPS_CM_FLAGS_POLLED;
2154 	cm->cm_complete = NULL;
2155 	mps_map_command(sc, cm);
2156 
2157 	while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
2158 		mps_intr_locked(sc);
2159 		DELAY(50 * 1000);
2160 		if (timeout++ > 1000) {
2161 			mps_dprint(sc, MPS_FAULT, "polling failed\n");
2162 			error = ETIMEDOUT;
2163 			break;
2164 		}
2165 	}
2166 
2167 	return (error);
2168 }
2169 
2170 /*
2171  * The MPT driver had a verbose interface for config pages.  In this driver,
2172  * reduce it to much simplier terms, similar to the Linux driver.
2173  */
2174 int
2175 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
2176 {
2177 	MPI2_CONFIG_REQUEST *req;
2178 	struct mps_command *cm;
2179 	int error;
2180 
2181 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
2182 		return (EBUSY);
2183 	}
2184 
2185 	cm = mps_alloc_command(sc);
2186 	if (cm == NULL) {
2187 		return (EBUSY);
2188 	}
2189 
2190 	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
2191 	req->Function = MPI2_FUNCTION_CONFIG;
2192 	req->Action = params->action;
2193 	req->SGLFlags = 0;
2194 	req->ChainOffset = 0;
2195 	req->PageAddress = params->page_address;
2196 	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2197 		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
2198 
2199 		hdr = &params->hdr.Ext;
2200 		req->ExtPageType = hdr->ExtPageType;
2201 		req->ExtPageLength = hdr->ExtPageLength;
2202 		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
2203 		req->Header.PageLength = 0; /* Must be set to zero */
2204 		req->Header.PageNumber = hdr->PageNumber;
2205 		req->Header.PageVersion = hdr->PageVersion;
2206 	} else {
2207 		MPI2_CONFIG_PAGE_HEADER *hdr;
2208 
2209 		hdr = &params->hdr.Struct;
2210 		req->Header.PageType = hdr->PageType;
2211 		req->Header.PageNumber = hdr->PageNumber;
2212 		req->Header.PageLength = hdr->PageLength;
2213 		req->Header.PageVersion = hdr->PageVersion;
2214 	}
2215 
2216 	cm->cm_data = params->buffer;
2217 	cm->cm_length = params->length;
2218 	cm->cm_sge = &req->PageBufferSGE;
2219 	cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
2220 	cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
2221 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2222 
2223 	cm->cm_complete_data = params;
2224 	if (params->callback != NULL) {
2225 		cm->cm_complete = mps_config_complete;
2226 		return (mps_map_command(sc, cm));
2227 	} else {
2228 		error = mps_wait_command(sc, cm, 0);
2229 		if (error) {
2230 			mps_dprint(sc, MPS_FAULT,
2231 			    "Error %d reading config page\n", error);
2232 			mps_free_command(sc, cm);
2233 			return (error);
2234 		}
2235 		mps_config_complete(sc, cm);
2236 	}
2237 
2238 	return (0);
2239 }
2240 
2241 int
2242 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
2243 {
2244 	return (EINVAL);
2245 }
2246 
2247 static void
2248 mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
2249 {
2250 	MPI2_CONFIG_REPLY *reply;
2251 	struct mps_config_params *params;
2252 
2253 	params = cm->cm_complete_data;
2254 
2255 	if (cm->cm_data != NULL) {
2256 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2257 		    BUS_DMASYNC_POSTREAD);
2258 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2259 	}
2260 
2261 	/*
2262 	 * XXX KDM need to do more error recovery?  This results in the
2263 	 * device in question not getting probed.
2264 	 */
2265 	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
2266 		params->status = MPI2_IOCSTATUS_BUSY;
2267 		goto done;
2268 	}
2269 
2270 	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
2271 	if (reply == NULL) {
2272 		params->status = MPI2_IOCSTATUS_BUSY;
2273 		goto done;
2274 	}
2275 	params->status = reply->IOCStatus;
2276 	if (params->hdr.Ext.ExtPageType != 0) {
2277 		params->hdr.Ext.ExtPageType = reply->ExtPageType;
2278 		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
2279 	} else {
2280 		params->hdr.Struct.PageType = reply->Header.PageType;
2281 		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
2282 		params->hdr.Struct.PageLength = reply->Header.PageLength;
2283 		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
2284 	}
2285 
2286 done:
2287 	mps_free_command(sc, cm);
2288 	if (params->callback != NULL)
2289 		params->callback(sc, params);
2290 
2291 	return;
2292 }
2293