xref: /dragonfly/sys/dev/raid/mps/mps_user.c (revision 62dc643e)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * LSI MPT-Fusion Host Adapter FreeBSD userland interface
31  */
32 /*-
33  * Copyright (c) 2011 LSI Corp.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  * LSI MPT-Fusion Host Adapter FreeBSD
58  *
59  * $FreeBSD: src/sys/dev/mps/mps_user.c,v 1.10 2012/01/26 18:17:21 ken Exp $
60  */
61 
62 /* TODO Move headers to mpsvar */
63 #include <sys/types.h>
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/module.h>
68 #include <sys/bus.h>
69 #include <sys/conf.h>
70 #include <sys/eventhandler.h>
71 #include <sys/bio.h>
72 #include <sys/malloc.h>
73 #include <sys/uio.h>
74 #include <sys/sysctl.h>
75 #include <sys/ioccom.h>
76 #include <sys/endian.h>
77 #include <sys/queue.h>
78 #include <sys/kthread.h>
79 #include <sys/taskqueue.h>
80 #include <sys/proc.h>
81 #include <sys/sysent.h>
82 
83 #include <sys/rman.h>
84 #include <sys/device.h>
85 
86 #include <bus/cam/cam.h>
87 #include <bus/cam/scsi/scsi_all.h>
88 
89 #include <dev/raid/mps/mpi/mpi2_type.h>
90 #include <dev/raid/mps/mpi/mpi2.h>
91 #include <dev/raid/mps/mpi/mpi2_ioc.h>
92 #include <dev/raid/mps/mpi/mpi2_cnfg.h>
93 #include <dev/raid/mps/mpi/mpi2_init.h>
94 #include <dev/raid/mps/mpi/mpi2_tool.h>
95 #include <dev/raid/mps/mps_ioctl.h>
96 #include <dev/raid/mps/mpsvar.h>
97 #include <dev/raid/mps/mps_table.h>
98 #include <dev/raid/mps/mps_sas.h>
99 #include <bus/pci/pcivar.h>
100 #include <bus/pci/pcireg.h>
101 
102 static d_open_t		mps_open;
103 static d_close_t	mps_close;
104 static d_ioctl_t	mps_ioctl_devsw;
105 
106 static struct dev_ops mps_ops = {
107 	{ "mps", 0, D_MPSAFE },
108 	.d_open =	mps_open,
109 	.d_close =	mps_close,
110 	.d_ioctl =	mps_ioctl_devsw,
111 };
112 
113 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *);
114 static mps_user_f	mpi_pre_ioc_facts;
115 static mps_user_f	mpi_pre_port_facts;
116 static mps_user_f	mpi_pre_fw_download;
117 static mps_user_f	mpi_pre_fw_upload;
118 static mps_user_f	mpi_pre_sata_passthrough;
119 static mps_user_f	mpi_pre_smp_passthrough;
120 static mps_user_f	mpi_pre_config;
121 static mps_user_f	mpi_pre_sas_io_unit_control;
122 
123 static int mps_user_read_cfg_header(struct mps_softc *,
124 				    struct mps_cfg_page_req *);
125 static int mps_user_read_cfg_page(struct mps_softc *,
126 				  struct mps_cfg_page_req *, void *);
127 static int mps_user_read_extcfg_header(struct mps_softc *,
128 				     struct mps_ext_cfg_page_req *);
129 static int mps_user_read_extcfg_page(struct mps_softc *,
130 				     struct mps_ext_cfg_page_req *, void *);
131 static int mps_user_write_cfg_page(struct mps_softc *,
132 				   struct mps_cfg_page_req *, void *);
133 static int mps_user_setup_request(struct mps_command *,
134 				  struct mps_usr_command *);
135 static int mps_user_command(struct mps_softc *, struct mps_usr_command *);
136 
137 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data);
138 static void mps_user_get_adapter_data(struct mps_softc *sc,
139     mps_adapter_data_t *data);
140 static void mps_user_read_pci_info(struct mps_softc *sc,
141     mps_pci_info_t *data);
142 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc,
143     uint32_t unique_id);
144 static int mps_post_fw_diag_buffer(struct mps_softc *sc,
145     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
146 static int mps_release_fw_diag_buffer(struct mps_softc *sc,
147     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
148     uint32_t diag_type);
149 static int mps_diag_register(struct mps_softc *sc,
150     mps_fw_diag_register_t *diag_register, uint32_t *return_code);
151 static int mps_diag_unregister(struct mps_softc *sc,
152     mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
153 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query,
154     uint32_t *return_code);
155 static int mps_diag_read_buffer(struct mps_softc *sc,
156     mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
157     uint32_t *return_code);
158 static int mps_diag_release(struct mps_softc *sc,
159     mps_fw_diag_release_t *diag_release, uint32_t *return_code);
160 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action,
161     uint8_t *diag_action, uint32_t length, uint32_t *return_code);
162 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data);
163 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data);
164 static void mps_user_event_enable(struct mps_softc *sc,
165     mps_event_enable_t *data);
166 static int mps_user_event_report(struct mps_softc *sc,
167     mps_event_report_t *data);
168 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data);
169 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data);
170 
171 static MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls");
172 
173 /* Macros from compat/freebsd32/freebsd32.h */
174 #define	PTRIN(v)	(void *)(uintptr_t)(v)
175 #define	PTROUT(v)	(uint32_t)(uintptr_t)(v)
176 
177 #define	CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
178 #define	PTRIN_CP(src,dst,fld)				\
179 	do { (dst).fld = PTRIN((src).fld); } while (0)
180 #define	PTROUT_CP(src,dst,fld) \
181 	do { (dst).fld = PTROUT((src).fld); } while (0)
182 
183 int
184 mps_attach_user(struct mps_softc *sc)
185 {
186 	int unit;
187 
188 	unit = device_get_unit(sc->mps_dev);
189 	sc->mps_cdev = make_dev(&mps_ops, unit, UID_ROOT, GID_OPERATOR, 0640,
190 	    "mps%d", unit);
191 	if (sc->mps_cdev == NULL) {
192 		return (ENOMEM);
193 	}
194 	sc->mps_cdev->si_drv1 = sc;
195 	return (0);
196 }
197 
198 void
199 mps_detach_user(struct mps_softc *sc)
200 {
201 
202 	/* XXX: do a purge of pending requests? */
203 	if (sc->mps_cdev != NULL)
204 		destroy_dev(sc->mps_cdev);
205 }
206 
207 static int
208 mps_open(struct dev_open_args *ap)
209 {
210 
211 	return (0);
212 }
213 
214 static int
215 mps_close(struct dev_close_args *ap)
216 {
217 
218 	return (0);
219 }
220 
221 static int
222 mps_user_read_cfg_header(struct mps_softc *sc,
223     struct mps_cfg_page_req *page_req)
224 {
225 	MPI2_CONFIG_PAGE_HEADER *hdr;
226 	struct mps_config_params params;
227 	int	    error;
228 
229 	hdr = &params.hdr.Struct;
230 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
231 	params.page_address = le32toh(page_req->page_address);
232 	hdr->PageVersion = 0;
233 	hdr->PageLength = 0;
234 	hdr->PageNumber = page_req->header.PageNumber;
235 	hdr->PageType = page_req->header.PageType;
236 	params.buffer = NULL;
237 	params.length = 0;
238 	params.callback = NULL;
239 
240 	if ((error = mps_read_config_page(sc, &params)) != 0) {
241 		/*
242 		 * Leave the request. Without resetting the chip, it's
243 		 * still owned by it and we'll just get into trouble
244 		 * freeing it now. Mark it as abandoned so that if it
245 		 * shows up later it can be freed.
246 		 */
247 		mps_printf(sc, "read_cfg_header timed out\n");
248 		return (ETIMEDOUT);
249 	}
250 
251 	page_req->ioc_status = htole16(params.status);
252 	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
253 	    MPI2_IOCSTATUS_SUCCESS) {
254 		bcopy(hdr, &page_req->header, sizeof(page_req->header));
255 	}
256 
257 	return (0);
258 }
259 
260 static int
261 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req,
262     void *buf)
263 {
264 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
265 	struct mps_config_params params;
266 	int	      error;
267 
268 	reqhdr = buf;
269 	hdr = &params.hdr.Struct;
270 	hdr->PageVersion = reqhdr->PageVersion;
271 	hdr->PageLength = reqhdr->PageLength;
272 	hdr->PageNumber = reqhdr->PageNumber;
273 	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
274 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
275 	params.page_address = le32toh(page_req->page_address);
276 	params.buffer = buf;
277 	params.length = le32toh(page_req->len);
278 	params.callback = NULL;
279 
280 	if ((error = mps_read_config_page(sc, &params)) != 0) {
281 		mps_printf(sc, "mps_user_read_cfg_page timed out\n");
282 		return (ETIMEDOUT);
283 	}
284 
285 	page_req->ioc_status = htole16(params.status);
286 	return (0);
287 }
288 
289 static int
290 mps_user_read_extcfg_header(struct mps_softc *sc,
291     struct mps_ext_cfg_page_req *ext_page_req)
292 {
293 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
294 	struct mps_config_params params;
295 	int	    error;
296 
297 	hdr = &params.hdr.Ext;
298 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
299 	hdr->PageVersion = ext_page_req->header.PageVersion;
300 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
301 	hdr->ExtPageLength = 0;
302 	hdr->PageNumber = ext_page_req->header.PageNumber;
303 	hdr->ExtPageType = ext_page_req->header.ExtPageType;
304 	params.page_address = le32toh(ext_page_req->page_address);
305 	if ((error = mps_read_config_page(sc, &params)) != 0) {
306 		/*
307 		 * Leave the request. Without resetting the chip, it's
308 		 * still owned by it and we'll just get into trouble
309 		 * freeing it now. Mark it as abandoned so that if it
310 		 * shows up later it can be freed.
311 		 */
312 		mps_printf(sc, "mps_user_read_extcfg_header timed out\n");
313 		return (ETIMEDOUT);
314 	}
315 
316 	ext_page_req->ioc_status = htole16(params.status);
317 	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
318 	    MPI2_IOCSTATUS_SUCCESS) {
319 		ext_page_req->header.PageVersion = hdr->PageVersion;
320 		ext_page_req->header.PageNumber = hdr->PageNumber;
321 		ext_page_req->header.PageType = hdr->PageType;
322 		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
323 		ext_page_req->header.ExtPageType = hdr->ExtPageType;
324 	}
325 
326 	return (0);
327 }
328 
329 static int
330 mps_user_read_extcfg_page(struct mps_softc *sc,
331     struct mps_ext_cfg_page_req *ext_page_req, void *buf)
332 {
333 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
334 	struct mps_config_params params;
335 	int error;
336 
337 	reqhdr = buf;
338 	hdr = &params.hdr.Ext;
339 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
340 	params.page_address = le32toh(ext_page_req->page_address);
341 	hdr->PageVersion = reqhdr->PageVersion;
342 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
343 	hdr->PageNumber = reqhdr->PageNumber;
344 	hdr->ExtPageType = reqhdr->ExtPageType;
345 	hdr->ExtPageLength = reqhdr->ExtPageLength;
346 	params.buffer = buf;
347 	params.length = le32toh(ext_page_req->len);
348 	params.callback = NULL;
349 
350 	if ((error = mps_read_config_page(sc, &params)) != 0) {
351 		mps_printf(sc, "mps_user_read_extcfg_page timed out\n");
352 		return (ETIMEDOUT);
353 	}
354 
355 	ext_page_req->ioc_status = htole16(params.status);
356 	return (0);
357 }
358 
359 static int
360 mps_user_write_cfg_page(struct mps_softc *sc,
361     struct mps_cfg_page_req *page_req, void *buf)
362 {
363 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
364 	struct mps_config_params params;
365 	u_int	      hdr_attr;
366 	int	      error;
367 
368 	reqhdr = buf;
369 	hdr = &params.hdr.Struct;
370 	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
371 	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
372 	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
373 		mps_printf(sc, "page type 0x%x not changeable\n",
374 			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
375 		return (EINVAL);
376 	}
377 
378 	/*
379 	 * There isn't any point in restoring stripped out attributes
380 	 * if you then mask them going down to issue the request.
381 	 */
382 
383 	hdr->PageVersion = reqhdr->PageVersion;
384 	hdr->PageLength = reqhdr->PageLength;
385 	hdr->PageNumber = reqhdr->PageNumber;
386 	hdr->PageType = reqhdr->PageType;
387 	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
388 	params.page_address = le32toh(page_req->page_address);
389 	params.buffer = buf;
390 	params.length = le32toh(page_req->len);
391 	params.callback = NULL;
392 
393 	if ((error = mps_write_config_page(sc, &params)) != 0) {
394 		mps_printf(sc, "mps_write_cfg_page timed out\n");
395 		return (ETIMEDOUT);
396 	}
397 
398 	page_req->ioc_status = htole16(params.status);
399 	return (0);
400 }
401 
402 void
403 mpi_init_sge(struct mps_command *cm, void *req, void *sge)
404 {
405 	int off, space;
406 
407 	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
408 	off = (uintptr_t)sge - (uintptr_t)req;
409 
410 	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
411             req, sge, off, space));
412 
413 	cm->cm_sge = sge;
414 	cm->cm_sglsize = space - off;
415 }
416 
417 /*
418  * Prepare the mps_command for an IOC_FACTS request.
419  */
420 static int
421 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd)
422 {
423 	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
424 	MPI2_IOC_FACTS_REPLY *rpl;
425 
426 	if (cmd->req_len != sizeof *req)
427 		return (EINVAL);
428 	if (cmd->rpl_len != sizeof *rpl)
429 		return (EINVAL);
430 
431 	cm->cm_sge = NULL;
432 	cm->cm_sglsize = 0;
433 	return (0);
434 }
435 
436 /*
437  * Prepare the mps_command for a PORT_FACTS request.
438  */
439 static int
440 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd)
441 {
442 	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
443 	MPI2_PORT_FACTS_REPLY *rpl;
444 
445 	if (cmd->req_len != sizeof *req)
446 		return (EINVAL);
447 	if (cmd->rpl_len != sizeof *rpl)
448 		return (EINVAL);
449 
450 	cm->cm_sge = NULL;
451 	cm->cm_sglsize = 0;
452 	return (0);
453 }
454 
455 /*
456  * Prepare the mps_command for a FW_DOWNLOAD request.
457  */
458 static int
459 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd)
460 {
461 	MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
462 	MPI2_FW_DOWNLOAD_REPLY *rpl;
463 	MPI2_FW_DOWNLOAD_TCSGE tc;
464 	int error;
465 
466 	/*
467 	 * This code assumes there is room in the request's SGL for
468 	 * the TransactionContext plus at least a SGL chain element.
469 	 */
470 	CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE);
471 
472 	if (cmd->req_len != sizeof *req)
473 		return (EINVAL);
474 	if (cmd->rpl_len != sizeof *rpl)
475 		return (EINVAL);
476 
477 	if (cmd->len == 0)
478 		return (EINVAL);
479 
480 	error = copyin(cmd->buf, cm->cm_data, cmd->len);
481 	if (error != 0)
482 		return (error);
483 
484 	mpi_init_sge(cm, req, &req->SGL);
485 	bzero(&tc, sizeof tc);
486 
487 	/*
488 	 * For now, the F/W image must be provided in a single request.
489 	 */
490 	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
491 		return (EINVAL);
492 	if (req->TotalImageSize != cmd->len)
493 		return (EINVAL);
494 
495 	/*
496 	 * The value of the first two elements is specified in the
497 	 * Fusion-MPT Message Passing Interface document.
498 	 */
499 	tc.ContextSize = 0;
500 	tc.DetailsLength = 12;
501 	tc.ImageOffset = 0;
502 	tc.ImageSize = cmd->len;
503 
504 	cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
505 
506 	return (mps_push_sge(cm, &tc, sizeof tc, 0));
507 }
508 
509 /*
510  * Prepare the mps_command for a FW_UPLOAD request.
511  */
512 static int
513 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd)
514 {
515 	MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
516 	MPI2_FW_UPLOAD_REPLY *rpl;
517 	MPI2_FW_UPLOAD_TCSGE tc;
518 
519 	/*
520 	 * This code assumes there is room in the request's SGL for
521 	 * the TransactionContext plus at least a SGL chain element.
522 	 */
523 	CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE);
524 
525 	if (cmd->req_len != sizeof *req)
526 		return (EINVAL);
527 	if (cmd->rpl_len != sizeof *rpl)
528 		return (EINVAL);
529 
530 	mpi_init_sge(cm, req, &req->SGL);
531 	bzero(&tc, sizeof tc);
532 
533 	/*
534 	 * The value of the first two elements is specified in the
535 	 * Fusion-MPT Message Passing Interface document.
536 	 */
537 	tc.ContextSize = 0;
538 	tc.DetailsLength = 12;
539 	/*
540 	 * XXX Is there any reason to fetch a partial image?  I.e. to
541 	 * set ImageOffset to something other than 0?
542 	 */
543 	tc.ImageOffset = 0;
544 	tc.ImageSize = cmd->len;
545 
546 	cm->cm_flags |= MPS_CM_FLAGS_DATAIN;
547 
548 	return (mps_push_sge(cm, &tc, sizeof tc, 0));
549 }
550 
551 /*
552  * Prepare the mps_command for a SATA_PASSTHROUGH request.
553  */
554 static int
555 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd)
556 {
557 	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
558 	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
559 
560 	if (cmd->req_len != sizeof *req)
561 		return (EINVAL);
562 	if (cmd->rpl_len != sizeof *rpl)
563 		return (EINVAL);
564 
565 	mpi_init_sge(cm, req, &req->SGL);
566 	return (0);
567 }
568 
569 /*
570  * Prepare the mps_command for a SMP_PASSTHROUGH request.
571  */
572 static int
573 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd)
574 {
575 	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
576 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
577 
578 	if (cmd->req_len != sizeof *req)
579 		return (EINVAL);
580 	if (cmd->rpl_len != sizeof *rpl)
581 		return (EINVAL);
582 
583 	mpi_init_sge(cm, req, &req->SGL);
584 	return (0);
585 }
586 
587 /*
588  * Prepare the mps_command for a CONFIG request.
589  */
590 static int
591 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd)
592 {
593 	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
594 	MPI2_CONFIG_REPLY *rpl;
595 
596 	if (cmd->req_len != sizeof *req)
597 		return (EINVAL);
598 	if (cmd->rpl_len != sizeof *rpl)
599 		return (EINVAL);
600 
601 	mpi_init_sge(cm, req, &req->PageBufferSGE);
602 	return (0);
603 }
604 
605 /*
606  * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request.
607  */
608 static int
609 mpi_pre_sas_io_unit_control(struct mps_command *cm,
610 			     struct mps_usr_command *cmd)
611 {
612 
613 	cm->cm_sge = NULL;
614 	cm->cm_sglsize = 0;
615 	return (0);
616 }
617 
618 /*
619  * A set of functions to prepare an mps_command for the various
620  * supported requests.
621  */
622 struct mps_user_func {
623 	U8		Function;
624 	mps_user_f	*f_pre;
625 } mps_user_func_list[] = {
626 	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
627 	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
628 	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
629 	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
630 	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
631 	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
632 	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
633 	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
634 	{ 0xFF,					NULL } /* list end */
635 };
636 
637 static int
638 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd)
639 {
640 	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
641 	struct mps_user_func *f;
642 
643 	for (f = mps_user_func_list; f->f_pre != NULL; f++) {
644 		if (hdr->Function == f->Function)
645 			return (f->f_pre(cm, cmd));
646 	}
647 	return (EINVAL);
648 }
649 
650 static int
651 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd)
652 {
653 	MPI2_REQUEST_HEADER *hdr;
654 	MPI2_DEFAULT_REPLY *rpl;
655 	void *buf = NULL;
656 	struct mps_command *cm = NULL;
657 	int err = 0;
658 	int sz;
659 
660 	mps_lock(sc);
661 	cm = mps_alloc_command(sc);
662 
663 	if (cm == NULL) {
664 		mps_printf(sc, "mps_user_command: no mps requests\n");
665 		err = ENOMEM;
666 		goto Ret;
667 	}
668 	mps_unlock(sc);
669 
670 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
671 
672 	mps_dprint(sc, MPS_INFO, "mps_user_command: req %p %d  rpl %p %d\n",
673 		    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len );
674 
675 	if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) {
676 		err = EINVAL;
677 		goto RetFreeUnlocked;
678 	}
679 	err = copyin(cmd->req, hdr, cmd->req_len);
680 	if (err != 0)
681 		goto RetFreeUnlocked;
682 
683 	mps_dprint(sc, MPS_INFO, "mps_user_command: Function %02X  "
684 	    "MsgFlags %02X\n", hdr->Function, hdr->MsgFlags );
685 
686 	if (cmd->len > 0) {
687 		buf = kmalloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO);
688 		cm->cm_data = buf;
689 		cm->cm_length = cmd->len;
690 	} else {
691 		cm->cm_data = NULL;
692 		cm->cm_length = 0;
693 	}
694 
695 	cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE;
696 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
697 
698 	err = mps_user_setup_request(cm, cmd);
699 	if (err != 0) {
700 		mps_printf(sc, "mps_user_command: unsupported function 0x%X\n",
701 			   hdr->Function );
702 		goto RetFreeUnlocked;
703 	}
704 
705 	mps_lock(sc);
706 	err = mps_wait_command(sc, cm, 60);
707 
708 	if (err) {
709 		mps_printf(sc, "%s: invalid request: error %d\n",
710 		    __func__, err);
711 		goto Ret;
712 	}
713 
714 	rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
715 	if (rpl != NULL)
716 		sz = rpl->MsgLength * 4;
717 	else
718 		sz = 0;
719 
720 	if (sz > cmd->rpl_len) {
721 		mps_printf(sc,
722 		    "mps_user_command: reply buffer too small %d required %d\n",
723 		    cmd->rpl_len, sz );
724 		err = EINVAL;
725 		sz = cmd->rpl_len;
726 	}
727 
728 	mps_unlock(sc);
729 	copyout(rpl, cmd->rpl, sz);
730 	if (buf != NULL)
731 		copyout(buf, cmd->buf, cmd->len);
732 	mps_dprint(sc, MPS_INFO, "mps_user_command: reply size %d\n", sz );
733 
734 RetFreeUnlocked:
735 	mps_lock(sc);
736 	if (cm != NULL)
737 		mps_free_command(sc, cm);
738 Ret:
739 	mps_unlock(sc);
740 	if (buf != NULL)
741 		kfree(buf, M_MPSUSER);
742 	return (err);
743 }
744 
745 static int
746 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data)
747 {
748 	MPI2_REQUEST_HEADER	*hdr, tmphdr;
749 	MPI2_DEFAULT_REPLY	*rpl;
750 	struct mps_command	*cm = NULL;
751 	int			err = 0, dir = 0, sz;
752 	uint8_t			function = 0;
753 	u_int			sense_len;
754 
755 	/*
756 	 * Only allow one passthru command at a time.  Use the MPS_FLAGS_BUSY
757 	 * bit to denote that a passthru is being processed.
758 	 */
759 	mps_lock(sc);
760 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
761 		mps_dprint(sc, MPS_INFO, "%s: Only one passthru command "
762 		    "allowed at a single time.", __func__);
763 		mps_unlock(sc);
764 		return (EBUSY);
765 	}
766 	sc->mps_flags |= MPS_FLAGS_BUSY;
767 	mps_unlock(sc);
768 
769 	/*
770 	 * Do some validation on data direction.  Valid cases are:
771 	 *    1) DataSize is 0 and direction is NONE
772 	 *    2) DataSize is non-zero and one of:
773 	 *        a) direction is READ or
774 	 *        b) direction is WRITE or
775 	 *        c) direction is BOTH and DataOutSize is non-zero
776 	 * If valid and the direction is BOTH, change the direction to READ.
777 	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
778 	 */
779 	if (((data->DataSize == 0) &&
780 	    (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) ||
781 	    ((data->DataSize != 0) &&
782 	    ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) ||
783 	    (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) ||
784 	    ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) &&
785 	    (data->DataOutSize != 0))))) {
786 		if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH)
787 			data->DataDirection = MPS_PASS_THRU_DIRECTION_READ;
788 		else
789 			data->DataOutSize = 0;
790 	} else
791 		return (EINVAL);
792 
793 	mps_dprint(sc, MPS_INFO, "%s: req 0x%jx %d  rpl 0x%jx %d "
794 	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
795 	    data->PtrRequest, data->RequestSize, data->PtrReply,
796 	    data->ReplySize, data->PtrData, data->DataSize,
797 	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
798 
799 	/*
800 	 * copy in the header so we know what we're dealing with before we
801 	 * commit to allocating a command for it.
802 	 */
803 	err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
804 	if (err != 0)
805 		goto RetFreeUnlocked;
806 
807 	if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) {
808 		err = EINVAL;
809 		goto RetFreeUnlocked;
810 	}
811 
812 	function = tmphdr.Function;
813 	mps_dprint(sc, MPS_INFO, "%s: Function %02X MsgFlags %02X\n", __func__,
814 	    function, tmphdr.MsgFlags);
815 
816 	/*
817 	 * Handle a passthru TM request.
818 	 */
819 	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
820 		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
821 
822 		mps_lock(sc);
823 		cm = mpssas_alloc_tm(sc);
824 		if (cm == NULL) {
825 			err = EINVAL;
826 			goto Ret;
827 		}
828 
829 		/* Copy the header in.  Only a small fixup is needed. */
830 		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
831 		bcopy(&tmphdr, task, data->RequestSize);
832 		task->TaskMID = cm->cm_desc.Default.SMID;
833 
834 		cm->cm_data = NULL;
835 		cm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
836 		cm->cm_complete = NULL;
837 		cm->cm_complete_data = NULL;
838 
839 		err = mps_wait_command(sc, cm, 30);
840 
841 		if (err != 0) {
842 			err = EIO;
843 			mps_dprint(sc, MPS_FAULT, "%s: task management failed",
844 			    __func__);
845 		}
846 		/*
847 		 * Copy the reply data and sense data to user space.
848 		 */
849 		if (cm->cm_reply != NULL) {
850 			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
851 			sz = rpl->MsgLength * 4;
852 
853 			if (sz > data->ReplySize) {
854 				mps_printf(sc, "%s: reply buffer too small: %d, "
855 				    "required: %d\n", __func__, data->ReplySize, sz);
856 				err = EINVAL;
857 			} else {
858 				mps_unlock(sc);
859 				copyout(cm->cm_reply, PTRIN(data->PtrReply),
860 				    data->ReplySize);
861 				mps_lock(sc);
862 			}
863 		}
864 		mpssas_free_tm(sc, cm);
865 		goto Ret;
866 	}
867 
868 	mps_lock(sc);
869 	cm = mps_alloc_command(sc);
870 
871 	if (cm == NULL) {
872 		mps_printf(sc, "%s: no mps requests\n", __func__);
873 		err = ENOMEM;
874 		goto Ret;
875 	}
876 	mps_unlock(sc);
877 
878 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
879 	bcopy(&tmphdr, hdr, data->RequestSize);
880 
881 	/*
882 	 * Do some checking to make sure the IOCTL request contains a valid
883 	 * request.  Then set the SGL info.
884 	 */
885 	mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
886 
887 	/*
888 	 * Set up for read, write or both.  From check above, DataOutSize will
889 	 * be 0 if direction is READ or WRITE, but it will have some non-zero
890 	 * value if the direction is BOTH.  So, just use the biggest size to get
891 	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
892 	 * up; the first is for the request and the second will contain the
893 	 * response data. cm_out_len needs to be set here and this will be used
894 	 * when the SGLs are set up.
895 	 */
896 	cm->cm_data = NULL;
897 	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
898 	cm->cm_out_len = data->DataOutSize;
899 	cm->cm_flags = 0;
900 	if (cm->cm_length != 0) {
901 		cm->cm_data = kmalloc(cm->cm_length, M_MPSUSER, M_WAITOK |
902 		    M_ZERO);
903 		if (cm->cm_data == NULL) {
904 			mps_dprint(sc, MPS_FAULT, "%s: alloc failed for IOCTL "
905 			    "passthru length %d\n", __func__, cm->cm_length);
906 		} else {
907 			cm->cm_flags = MPS_CM_FLAGS_DATAIN;
908 			if (data->DataOutSize) {
909 				cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
910 				err = copyin(PTRIN(data->PtrDataOut),
911 				    cm->cm_data, data->DataOutSize);
912 			} else if (data->DataDirection ==
913 			    MPS_PASS_THRU_DIRECTION_WRITE) {
914 				cm->cm_flags = MPS_CM_FLAGS_DATAOUT;
915 				err = copyin(PTRIN(data->PtrData),
916 				    cm->cm_data, data->DataSize);
917 			}
918 			if (err != 0)
919 				mps_dprint(sc, MPS_FAULT, "%s: failed to copy "
920 				    "IOCTL data from user space\n", __func__);
921 		}
922 	}
923 	cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE;
924 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
925 
926 	/*
927 	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
928 	 * uses SCSI IO descriptor.
929 	 */
930 	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
931 	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
932 		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
933 
934 		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
935 		/*
936 		 * Put SGE for data and data_out buffer at the end of
937 		 * scsi_io_request message header (64 bytes in total).
938 		 * Following above SGEs, the residual space will be used by
939 		 * sense data.
940 		 */
941 		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
942 		    64);
943 		scsi_io_req->SenseBufferLowAddress = cm->cm_sense_busaddr;
944 
945 		/*
946 		 * Set SGLOffset0 value.  This is the number of dwords that SGL
947 		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
948 		 */
949 		scsi_io_req->SGLOffset0 = 24;
950 
951 		/*
952 		 * Setup descriptor info.  RAID passthrough must use the
953 		 * default request descriptor which is already set, so if this
954 		 * is a SCSI IO request, change the descriptor to SCSI IO.
955 		 * Also, if this is a SCSI IO request, handle the reply in the
956 		 * mpssas_scsio_complete function.
957 		 */
958 		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
959 			cm->cm_desc.SCSIIO.RequestFlags =
960 			    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
961 			cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle;
962 
963 			/*
964 			 * Make sure the DevHandle is not 0 because this is a
965 			 * likely error.
966 			 */
967 			if (scsi_io_req->DevHandle == 0) {
968 				err = EINVAL;
969 				goto RetFreeUnlocked;
970 			}
971 		}
972 	}
973 
974 	mps_lock(sc);
975 
976 	err = mps_wait_command(sc, cm, 30);
977 
978 	if (err) {
979 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
980 		    err);
981 		mps_unlock(sc);
982 		goto RetFreeUnlocked;
983 	}
984 
985 	/*
986 	 * Sync the DMA data, if any.  Then copy the data to user space.
987 	 */
988 	if (cm->cm_data != NULL) {
989 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN)
990 			dir = BUS_DMASYNC_POSTREAD;
991 		else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT)
992 			dir = BUS_DMASYNC_POSTWRITE;
993 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
994 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
995 
996 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
997 			mps_unlock(sc);
998 			err = copyout(cm->cm_data,
999 			    PTRIN(data->PtrData), data->DataSize);
1000 			mps_lock(sc);
1001 			if (err != 0)
1002 				mps_dprint(sc, MPS_FAULT, "%s: failed to copy "
1003 				    "IOCTL data to user space\n", __func__);
1004 		}
1005 	}
1006 
1007 	/*
1008 	 * Copy the reply data and sense data to user space.
1009 	 */
1010 	if (cm->cm_reply != NULL) {
1011 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1012 		sz = rpl->MsgLength * 4;
1013 
1014 		if (sz > data->ReplySize) {
1015 			mps_printf(sc, "%s: reply buffer too small: %d, "
1016 			    "required: %d\n", __func__, data->ReplySize, sz);
1017 			err = EINVAL;
1018 		} else {
1019 			mps_unlock(sc);
1020 			copyout(cm->cm_reply, PTRIN(data->PtrReply),
1021 			    data->ReplySize);
1022 			mps_lock(sc);
1023 		}
1024 
1025 		if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1026 		    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1027 			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1028 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1029 				sense_len =
1030 				    MIN(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount,
1031 				    sizeof(struct scsi_sense_data));
1032 				mps_unlock(sc);
1033 				copyout(cm->cm_sense, cm->cm_req + 64, sense_len);
1034 				mps_lock(sc);
1035 			}
1036 		}
1037 	}
1038 	mps_unlock(sc);
1039 
1040 RetFreeUnlocked:
1041 	mps_lock(sc);
1042 
1043 	if (cm != NULL) {
1044 		if (cm->cm_data)
1045 			kfree(cm->cm_data, M_MPSUSER);
1046 		mps_free_command(sc, cm);
1047 	}
1048 Ret:
1049 	sc->mps_flags &= ~MPS_FLAGS_BUSY;
1050 	mps_unlock(sc);
1051 
1052 	return (err);
1053 }
1054 
1055 static void
1056 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data)
1057 {
1058 	Mpi2ConfigReply_t	mpi_reply;
1059 	Mpi2BiosPage3_t		config_page;
1060 
1061 	/*
1062 	 * Use the PCI interface functions to get the Bus, Device, and Function
1063 	 * information.
1064 	 */
1065 	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev);
1066 	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev);
1067 	data->PciInformation.u.bits.FunctionNumber =
1068 	    pci_get_function(sc->mps_dev);
1069 
1070 	/*
1071 	 * Get the FW version that should already be saved in IOC Facts.
1072 	 */
1073 	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1074 
1075 	/*
1076 	 * General device info.
1077 	 */
1078 	data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2;
1079 	if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE)
1080 		data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200;
1081 	data->PCIDeviceHwId = pci_get_device(sc->mps_dev);
1082 	data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1);
1083 	data->SubSystemId = pci_get_subdevice(sc->mps_dev);
1084 	data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev);
1085 
1086 	/*
1087 	 * Get the driver version.
1088 	 */
1089 	strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION);
1090 
1091 	/*
1092 	 * Need to get BIOS Config Page 3 for the BIOS Version.
1093 	 */
1094 	data->BiosVersion = 0;
1095 	mps_lock(sc);
1096 	if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1097 		kprintf("%s: Error while retrieving BIOS Version\n", __func__);
1098 	else
1099 		data->BiosVersion = config_page.BiosVersion;
1100 	mps_unlock(sc);
1101 }
1102 
1103 static void
1104 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data)
1105 {
1106 	int	i;
1107 
1108 	/*
1109 	 * Use the PCI interface functions to get the Bus, Device, and Function
1110 	 * information.
1111 	 */
1112 	data->BusNumber = pci_get_bus(sc->mps_dev);
1113 	data->DeviceNumber = pci_get_slot(sc->mps_dev);
1114 	data->FunctionNumber = pci_get_function(sc->mps_dev);
1115 
1116 	/*
1117 	 * Now get the interrupt vector and the pci header.  The vector can
1118 	 * only be 0 right now.  The header is the first 256 bytes of config
1119 	 * space.
1120 	 */
1121 	data->InterruptVector = 0;
1122 	for (i = 0; i < sizeof (data->PciHeader); i++) {
1123 		data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1);
1124 	}
1125 }
1126 
1127 static uint8_t
1128 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id)
1129 {
1130 	uint8_t	index;
1131 
1132 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1133 		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1134 			return (index);
1135 		}
1136 	}
1137 
1138 	return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND);
1139 }
1140 
1141 static int
1142 mps_post_fw_diag_buffer(struct mps_softc *sc,
1143     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1144 {
1145 	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1146 	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1147 	struct mps_command		*cm = NULL;
1148 	int				i, status;
1149 
1150 	/*
1151 	 * If buffer is not enabled, just leave.
1152 	 */
1153 	*return_code = MPS_FW_DIAG_ERROR_POST_FAILED;
1154 	if (!pBuffer->enabled) {
1155 		return (MPS_DIAG_FAILURE);
1156 	}
1157 
1158 	/*
1159 	 * Clear some flags initially.
1160 	 */
1161 	pBuffer->force_release = FALSE;
1162 	pBuffer->valid_data = FALSE;
1163 	pBuffer->owned_by_firmware = FALSE;
1164 
1165 	/*
1166 	 * Get a command.
1167 	 */
1168 	cm = mps_alloc_command(sc);
1169 	if (cm == NULL) {
1170 		mps_printf(sc, "%s: no mps requests\n", __func__);
1171 		return (MPS_DIAG_FAILURE);
1172 	}
1173 
1174 	/*
1175 	 * Build the request for releasing the FW Diag Buffer and send it.
1176 	 */
1177 	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1178 	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1179 	req->BufferType = pBuffer->buffer_type;
1180 	req->ExtendedType = pBuffer->extended_type;
1181 	req->BufferLength = pBuffer->size;
1182 	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1183 		req->ProductSpecific[i] = pBuffer->product_specific[i];
1184 	mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1185 	cm->cm_data = NULL;
1186 	cm->cm_length = 0;
1187 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1188 	cm->cm_complete_data = NULL;
1189 
1190 	/*
1191 	 * Send command synchronously.
1192 	 */
1193 	status = mps_wait_command(sc, cm, 30);
1194 	if (status) {
1195 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
1196 		    status);
1197 		status = MPS_DIAG_FAILURE;
1198 		goto done;
1199 	}
1200 
1201 	/*
1202 	 * Process POST reply.
1203 	 */
1204 	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1205 	if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) {
1206 		status = MPS_DIAG_FAILURE;
1207 		mps_dprint(sc, MPS_FAULT, "%s: post of FW  Diag Buffer failed "
1208 		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1209 		    "TransferLength = 0x%x\n", __func__, reply->IOCStatus,
1210 		    reply->IOCLogInfo, reply->TransferLength);
1211 		goto done;
1212 	}
1213 
1214 	/*
1215 	 * Post was successful.
1216 	 */
1217 	pBuffer->valid_data = TRUE;
1218 	pBuffer->owned_by_firmware = TRUE;
1219 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1220 	status = MPS_DIAG_SUCCESS;
1221 
1222 done:
1223 	mps_free_command(sc, cm);
1224 	return (status);
1225 }
1226 
1227 static int
1228 mps_release_fw_diag_buffer(struct mps_softc *sc,
1229     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1230     uint32_t diag_type)
1231 {
1232 	MPI2_DIAG_RELEASE_REQUEST	*req;
1233 	MPI2_DIAG_RELEASE_REPLY		*reply;
1234 	struct mps_command		*cm = NULL;
1235 	int				status;
1236 
1237 	/*
1238 	 * If buffer is not enabled, just leave.
1239 	 */
1240 	*return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED;
1241 	if (!pBuffer->enabled) {
1242 		mps_dprint(sc, MPS_INFO, "%s: This buffer type is not supported "
1243 		    "by the IOC", __func__);
1244 		return (MPS_DIAG_FAILURE);
1245 	}
1246 
1247 	/*
1248 	 * Clear some flags initially.
1249 	 */
1250 	pBuffer->force_release = FALSE;
1251 	pBuffer->valid_data = FALSE;
1252 	pBuffer->owned_by_firmware = FALSE;
1253 
1254 	/*
1255 	 * Get a command.
1256 	 */
1257 	cm = mps_alloc_command(sc);
1258 	if (cm == NULL) {
1259 		mps_printf(sc, "%s: no mps requests\n", __func__);
1260 		return (MPS_DIAG_FAILURE);
1261 	}
1262 
1263 	/*
1264 	 * Build the request for releasing the FW Diag Buffer and send it.
1265 	 */
1266 	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1267 	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1268 	req->BufferType = pBuffer->buffer_type;
1269 	cm->cm_data = NULL;
1270 	cm->cm_length = 0;
1271 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1272 	cm->cm_complete_data = NULL;
1273 
1274 	/*
1275 	 * Send command synchronously.
1276 	 */
1277 	status = mps_wait_command(sc, cm, 30);
1278 	if (status) {
1279 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
1280 		    status);
1281 		status = MPS_DIAG_FAILURE;
1282 		goto done;
1283 	}
1284 
1285 	/*
1286 	 * Process RELEASE reply.
1287 	 */
1288 	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1289 	if ((reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) ||
1290 	    pBuffer->owned_by_firmware) {
1291 		status = MPS_DIAG_FAILURE;
1292 		mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer "
1293 		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1294 		    __func__, reply->IOCStatus, reply->IOCLogInfo);
1295 		goto done;
1296 	}
1297 
1298 	/*
1299 	 * Release was successful.
1300 	 */
1301 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1302 	status = MPS_DIAG_SUCCESS;
1303 
1304 	/*
1305 	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1306 	 */
1307 	if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) {
1308 		pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID;
1309 	}
1310 
1311 done:
1312 	return (status);
1313 }
1314 
1315 static int
1316 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register,
1317     uint32_t *return_code)
1318 {
1319 	mps_fw_diagnostic_buffer_t	*pBuffer;
1320 	uint8_t				extended_type, buffer_type, i;
1321 	uint32_t			buffer_size;
1322 	uint32_t			unique_id;
1323 	int				status;
1324 
1325 	extended_type = diag_register->ExtendedType;
1326 	buffer_type = diag_register->BufferType;
1327 	buffer_size = diag_register->RequestedBufferSize;
1328 	unique_id = diag_register->UniqueId;
1329 
1330 	/*
1331 	 * Check for valid buffer type
1332 	 */
1333 	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1334 		*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1335 		return (MPS_DIAG_FAILURE);
1336 	}
1337 
1338 	/*
1339 	 * Get the current buffer and look up the unique ID.  The unique ID
1340 	 * should not be found.  If it is, the ID is already in use.
1341 	 */
1342 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1343 	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1344 	if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1345 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1346 		return (MPS_DIAG_FAILURE);
1347 	}
1348 
1349 	/*
1350 	 * The buffer's unique ID should not be registered yet, and the given
1351 	 * unique ID cannot be 0.
1352 	 */
1353 	if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) ||
1354 	    (unique_id == MPS_FW_DIAG_INVALID_UID)) {
1355 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1356 		return (MPS_DIAG_FAILURE);
1357 	}
1358 
1359 	/*
1360 	 * If this buffer is already posted as immediate, just change owner.
1361 	 */
1362 	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1363 	    (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) {
1364 		pBuffer->immediate = FALSE;
1365 		pBuffer->unique_id = unique_id;
1366 		return (MPS_DIAG_SUCCESS);
1367 	}
1368 
1369 	/*
1370 	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1371 	 * that is allocated will be contiguous (nsegments = 1).
1372 	 */
1373 	if (!pBuffer->enabled) {
1374 		*return_code = MPS_FW_DIAG_ERROR_NO_BUFFER;
1375 		return (MPS_DIAG_FAILURE);
1376 	}
1377         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1378 				1, 0,			/* algnmnt, boundary */
1379 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1380 				BUS_SPACE_MAXADDR,	/* highaddr */
1381 				NULL, NULL,		/* filter, filterarg */
1382                                 buffer_size,		/* maxsize */
1383                                 1,			/* nsegments */
1384                                 buffer_size,		/* maxsegsize */
1385                                 0,			/* flags */
1386                                 &sc->fw_diag_dmat)) {
1387 		device_printf(sc->mps_dev, "Cannot allocate FW diag buffer DMA "
1388 		    "tag\n");
1389 		return (ENOMEM);
1390         }
1391         if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1392 	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1393 		device_printf(sc->mps_dev, "Cannot allocate FW diag buffer "
1394 		    "memory\n");
1395 		return (ENOMEM);
1396         }
1397         bzero(sc->fw_diag_buffer, buffer_size);
1398         bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer,
1399 	    buffer_size, mps_memaddr_cb, &sc->fw_diag_busaddr, 0);
1400 	pBuffer->size = buffer_size;
1401 
1402 	/*
1403 	 * Copy the given info to the diag buffer and post the buffer.
1404 	 */
1405 	pBuffer->buffer_type = buffer_type;
1406 	pBuffer->immediate = FALSE;
1407 	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1408 		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1409 		    i++) {
1410 			pBuffer->product_specific[i] =
1411 			    diag_register->ProductSpecific[i];
1412 		}
1413 	}
1414 	pBuffer->extended_type = extended_type;
1415 	pBuffer->unique_id = unique_id;
1416 	status = mps_post_fw_diag_buffer(sc, pBuffer, return_code);
1417 
1418 	/*
1419 	 * In case there was a failure, free the DMA buffer.
1420 	 */
1421 	if (status == MPS_DIAG_FAILURE) {
1422 		if (sc->fw_diag_busaddr != 0)
1423 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1424 		if (sc->fw_diag_buffer != NULL)
1425 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1426 			    sc->fw_diag_map);
1427 		if (sc->fw_diag_dmat != NULL)
1428 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1429 	}
1430 
1431 	return (status);
1432 }
1433 
1434 static int
1435 mps_diag_unregister(struct mps_softc *sc,
1436     mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1437 {
1438 	mps_fw_diagnostic_buffer_t	*pBuffer;
1439 	uint8_t				i;
1440 	uint32_t			unique_id;
1441 	int				status;
1442 
1443 	unique_id = diag_unregister->UniqueId;
1444 
1445 	/*
1446 	 * Get the current buffer and look up the unique ID.  The unique ID
1447 	 * should be there.
1448 	 */
1449 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1450 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1451 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1452 		return (MPS_DIAG_FAILURE);
1453 	}
1454 
1455 	pBuffer = &sc->fw_diag_buffer_list[i];
1456 
1457 	/*
1458 	 * Try to release the buffer from FW before freeing it.  If release
1459 	 * fails, don't free the DMA buffer in case FW tries to access it
1460 	 * later.  If buffer is not owned by firmware, can't release it.
1461 	 */
1462 	if (!pBuffer->owned_by_firmware) {
1463 		status = MPS_DIAG_SUCCESS;
1464 	} else {
1465 		status = mps_release_fw_diag_buffer(sc, pBuffer, return_code,
1466 		    MPS_FW_DIAG_TYPE_UNREGISTER);
1467 	}
1468 
1469 	/*
1470 	 * At this point, return the current status no matter what happens with
1471 	 * the DMA buffer.
1472 	 */
1473 	pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID;
1474 	if (status == MPS_DIAG_SUCCESS) {
1475 		if (sc->fw_diag_busaddr != 0)
1476 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1477 		if (sc->fw_diag_buffer != NULL)
1478 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1479 			    sc->fw_diag_map);
1480 		if (sc->fw_diag_dmat != NULL)
1481 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1482 	}
1483 
1484 	return (status);
1485 }
1486 
1487 static int
1488 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query,
1489     uint32_t *return_code)
1490 {
1491 	mps_fw_diagnostic_buffer_t	*pBuffer;
1492 	uint8_t				i;
1493 	uint32_t			unique_id;
1494 
1495 	unique_id = diag_query->UniqueId;
1496 
1497 	/*
1498 	 * If ID is valid, query on ID.
1499 	 * If ID is invalid, query on buffer type.
1500 	 */
1501 	if (unique_id == MPS_FW_DIAG_INVALID_UID) {
1502 		i = diag_query->BufferType;
1503 		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1504 			*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1505 			return (MPS_DIAG_FAILURE);
1506 		}
1507 	} else {
1508 		i = mps_get_fw_diag_buffer_number(sc, unique_id);
1509 		if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1510 			*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1511 			return (MPS_DIAG_FAILURE);
1512 		}
1513 	}
1514 
1515 	/*
1516 	 * Fill query structure with the diag buffer info.
1517 	 */
1518 	pBuffer = &sc->fw_diag_buffer_list[i];
1519 	diag_query->BufferType = pBuffer->buffer_type;
1520 	diag_query->ExtendedType = pBuffer->extended_type;
1521 	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1522 		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1523 		    i++) {
1524 			diag_query->ProductSpecific[i] =
1525 			    pBuffer->product_specific[i];
1526 		}
1527 	}
1528 	diag_query->TotalBufferSize = pBuffer->size;
1529 	diag_query->DriverAddedBufferSize = 0;
1530 	diag_query->UniqueId = pBuffer->unique_id;
1531 	diag_query->ApplicationFlags = 0;
1532 	diag_query->DiagnosticFlags = 0;
1533 
1534 	/*
1535 	 * Set/Clear application flags
1536 	 */
1537 	if (pBuffer->immediate) {
1538 		diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED;
1539 	} else {
1540 		diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED;
1541 	}
1542 	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1543 		diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID;
1544 	} else {
1545 		diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID;
1546 	}
1547 	if (pBuffer->owned_by_firmware) {
1548 		diag_query->ApplicationFlags |=
1549 		    MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1550 	} else {
1551 		diag_query->ApplicationFlags &=
1552 		    ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1553 	}
1554 
1555 	return (MPS_DIAG_SUCCESS);
1556 }
1557 
1558 static int
1559 mps_diag_read_buffer(struct mps_softc *sc,
1560     mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1561     uint32_t *return_code)
1562 {
1563 	mps_fw_diagnostic_buffer_t	*pBuffer;
1564 	uint8_t				i, *pData;
1565 	uint32_t			unique_id;
1566 	int				status;
1567 
1568 	unique_id = diag_read_buffer->UniqueId;
1569 
1570 	/*
1571 	 * Get the current buffer and look up the unique ID.  The unique ID
1572 	 * should be there.
1573 	 */
1574 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1575 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1576 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1577 		return (MPS_DIAG_FAILURE);
1578 	}
1579 
1580 	pBuffer = &sc->fw_diag_buffer_list[i];
1581 
1582 	/*
1583 	 * Make sure requested read is within limits
1584 	 */
1585 	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1586 	    pBuffer->size) {
1587 		*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1588 		return (MPS_DIAG_FAILURE);
1589 	}
1590 
1591 	/*
1592 	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1593 	 * buffer that was allocated is one contiguous buffer.
1594 	 */
1595 	pData = (uint8_t *)(sc->fw_diag_buffer +
1596 	    diag_read_buffer->StartingOffset);
1597 	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1598 		return (MPS_DIAG_FAILURE);
1599 	diag_read_buffer->Status = 0;
1600 
1601 	/*
1602 	 * Set or clear the Force Release flag.
1603 	 */
1604 	if (pBuffer->force_release) {
1605 		diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE;
1606 	} else {
1607 		diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE;
1608 	}
1609 
1610 	/*
1611 	 * If buffer is to be reregistered, make sure it's not already owned by
1612 	 * firmware first.
1613 	 */
1614 	status = MPS_DIAG_SUCCESS;
1615 	if (!pBuffer->owned_by_firmware) {
1616 		if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) {
1617 			status = mps_post_fw_diag_buffer(sc, pBuffer,
1618 			    return_code);
1619 		}
1620 	}
1621 
1622 	return (status);
1623 }
1624 
1625 static int
1626 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release,
1627     uint32_t *return_code)
1628 {
1629 	mps_fw_diagnostic_buffer_t	*pBuffer;
1630 	uint8_t				i;
1631 	uint32_t			unique_id;
1632 	int				status;
1633 
1634 	unique_id = diag_release->UniqueId;
1635 
1636 	/*
1637 	 * Get the current buffer and look up the unique ID.  The unique ID
1638 	 * should be there.
1639 	 */
1640 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1641 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1642 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1643 		return (MPS_DIAG_FAILURE);
1644 	}
1645 
1646 	pBuffer = &sc->fw_diag_buffer_list[i];
1647 
1648 	/*
1649 	 * If buffer is not owned by firmware, it's already been released.
1650 	 */
1651 	if (!pBuffer->owned_by_firmware) {
1652 		*return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED;
1653 		return (MPS_DIAG_FAILURE);
1654 	}
1655 
1656 	/*
1657 	 * Release the buffer.
1658 	 */
1659 	status = mps_release_fw_diag_buffer(sc, pBuffer, return_code,
1660 	    MPS_FW_DIAG_TYPE_RELEASE);
1661 	return (status);
1662 }
1663 
1664 static int
1665 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action,
1666     uint32_t length, uint32_t *return_code)
1667 {
1668 	mps_fw_diag_register_t		diag_register;
1669 	mps_fw_diag_unregister_t	diag_unregister;
1670 	mps_fw_diag_query_t		diag_query;
1671 	mps_diag_read_buffer_t		diag_read_buffer;
1672 	mps_fw_diag_release_t		diag_release;
1673 	int				status = MPS_DIAG_SUCCESS;
1674 	uint32_t			original_return_code;
1675 
1676 	original_return_code = *return_code;
1677 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1678 
1679 	switch (action) {
1680 		case MPS_FW_DIAG_TYPE_REGISTER:
1681 			if (!length) {
1682 				*return_code =
1683 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1684 				status = MPS_DIAG_FAILURE;
1685 				break;
1686 			}
1687 			if (copyin(diag_action, &diag_register,
1688 			    sizeof(diag_register)) != 0)
1689 				return (MPS_DIAG_FAILURE);
1690 			status = mps_diag_register(sc, &diag_register,
1691 			    return_code);
1692 			break;
1693 
1694 		case MPS_FW_DIAG_TYPE_UNREGISTER:
1695 			if (length < sizeof(diag_unregister)) {
1696 				*return_code =
1697 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1698 				status = MPS_DIAG_FAILURE;
1699 				break;
1700 			}
1701 			if (copyin(diag_action, &diag_unregister,
1702 			    sizeof(diag_unregister)) != 0)
1703 				return (MPS_DIAG_FAILURE);
1704 			status = mps_diag_unregister(sc, &diag_unregister,
1705 			    return_code);
1706 			break;
1707 
1708 		case MPS_FW_DIAG_TYPE_QUERY:
1709 			if (length < sizeof (diag_query)) {
1710 				*return_code =
1711 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1712 				status = MPS_DIAG_FAILURE;
1713 				break;
1714 			}
1715 			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1716 			    != 0)
1717 				return (MPS_DIAG_FAILURE);
1718 			status = mps_diag_query(sc, &diag_query, return_code);
1719 			if (status == MPS_DIAG_SUCCESS)
1720 				if (copyout(&diag_query, diag_action,
1721 				    sizeof (diag_query)) != 0)
1722 					return (MPS_DIAG_FAILURE);
1723 			break;
1724 
1725 		case MPS_FW_DIAG_TYPE_READ_BUFFER:
1726 			if (copyin(diag_action, &diag_read_buffer,
1727 			    sizeof(diag_read_buffer)) != 0)
1728 				return (MPS_DIAG_FAILURE);
1729 			if (length < diag_read_buffer.BytesToRead) {
1730 				*return_code =
1731 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1732 				status = MPS_DIAG_FAILURE;
1733 				break;
1734 			}
1735 			status = mps_diag_read_buffer(sc, &diag_read_buffer,
1736 			    PTRIN(diag_read_buffer.PtrDataBuffer),
1737 			    return_code);
1738 			if (status == MPS_DIAG_SUCCESS) {
1739 				if (copyout(&diag_read_buffer, diag_action,
1740 				    sizeof(diag_read_buffer) -
1741 				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1742 				    0)
1743 					return (MPS_DIAG_FAILURE);
1744 			}
1745 			break;
1746 
1747 		case MPS_FW_DIAG_TYPE_RELEASE:
1748 			if (length < sizeof(diag_release)) {
1749 				*return_code =
1750 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1751 				status = MPS_DIAG_FAILURE;
1752 				break;
1753 			}
1754 			if (copyin(diag_action, &diag_release,
1755 			    sizeof(diag_release)) != 0)
1756 				return (MPS_DIAG_FAILURE);
1757 			status = mps_diag_release(sc, &diag_release,
1758 			    return_code);
1759 			break;
1760 
1761 		default:
1762 			*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1763 			status = MPS_DIAG_FAILURE;
1764 			break;
1765 	}
1766 
1767 	if ((status == MPS_DIAG_FAILURE) &&
1768 	    (original_return_code == MPS_FW_DIAG_NEW) &&
1769 	    (*return_code != MPS_FW_DIAG_ERROR_SUCCESS))
1770 		status = MPS_DIAG_SUCCESS;
1771 
1772 	return (status);
1773 }
1774 
1775 static int
1776 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data)
1777 {
1778 	int			status;
1779 
1780 	/*
1781 	 * Only allow one diag action at one time.
1782 	 */
1783 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
1784 		mps_dprint(sc, MPS_INFO, "%s: Only one FW diag command "
1785 		    "allowed at a single time.", __func__);
1786 		return (EBUSY);
1787 	}
1788 	sc->mps_flags |= MPS_FLAGS_BUSY;
1789 
1790 	/*
1791 	 * Send diag action request
1792 	 */
1793 	if (data->Action == MPS_FW_DIAG_TYPE_REGISTER ||
1794 	    data->Action == MPS_FW_DIAG_TYPE_UNREGISTER ||
1795 	    data->Action == MPS_FW_DIAG_TYPE_QUERY ||
1796 	    data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER ||
1797 	    data->Action == MPS_FW_DIAG_TYPE_RELEASE) {
1798 		status = mps_do_diag_action(sc, data->Action,
1799 		    PTRIN(data->PtrDiagAction), data->Length,
1800 		    &data->ReturnCode);
1801 	} else
1802 		status = EINVAL;
1803 
1804 	sc->mps_flags &= ~MPS_FLAGS_BUSY;
1805 	return (status);
1806 }
1807 
1808 /*
1809  * Copy the event recording mask and the event queue size out.  For
1810  * clarification, the event recording mask (events_to_record) is not the same
1811  * thing as the event mask (event_mask).  events_to_record has a bit set for
1812  * every event type that is to be recorded by the driver, and event_mask has a
1813  * bit cleared for every event that is allowed into the driver from the IOC.
1814  * They really have nothing to do with each other.
1815  */
1816 static void
1817 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data)
1818 {
1819 	uint8_t	i;
1820 
1821 	mps_lock(sc);
1822 	data->Entries = MPS_EVENT_QUEUE_SIZE;
1823 
1824 	for (i = 0; i < 4; i++) {
1825 		data->Types[i] = sc->events_to_record[i];
1826 	}
1827 	mps_unlock(sc);
1828 }
1829 
1830 /*
1831  * Set the driver's event mask according to what's been given.  See
1832  * mps_user_event_query for explanation of the event recording mask and the IOC
1833  * event mask.  It's the app's responsibility to enable event logging by setting
1834  * the bits in events_to_record.  Initially, no events will be logged.
1835  */
1836 static void
1837 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data)
1838 {
1839 	uint8_t	i;
1840 
1841 	mps_lock(sc);
1842 	for (i = 0; i < 4; i++) {
1843 		sc->events_to_record[i] = data->Types[i];
1844 	}
1845 	mps_unlock(sc);
1846 }
1847 
1848 /*
1849  * Copy out the events that have been recorded, up to the max events allowed.
1850  */
1851 static int
1852 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data)
1853 {
1854 	int		status = 0;
1855 	uint32_t	size;
1856 
1857 	mps_lock(sc);
1858 	size = data->Size;
1859 	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
1860 		mps_unlock(sc);
1861 		if (copyout((void *)sc->recorded_events,
1862 		    PTRIN(data->PtrEvents), size) != 0)
1863 			status = EFAULT;
1864 		mps_lock(sc);
1865 	} else {
1866 		/*
1867 		 * data->Size value is not large enough to copy event data.
1868 		 */
1869 		status = EFAULT;
1870 	}
1871 
1872 	/*
1873 	 * Change size value to match the number of bytes that were copied.
1874 	 */
1875 	if (status == 0)
1876 		data->Size = sizeof(sc->recorded_events);
1877 	mps_unlock(sc);
1878 
1879 	return (status);
1880 }
1881 
1882 /*
1883  * Record events into the driver from the IOC if they are not masked.
1884  */
1885 void
1886 mpssas_record_event(struct mps_softc *sc,
1887     MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
1888 {
1889 	uint32_t	event;
1890 	int		i, j;
1891 	uint16_t	event_data_len;
1892 	boolean_t	sendAEN = FALSE;
1893 
1894 	event = event_reply->Event;
1895 
1896 	/*
1897 	 * Generate a system event to let anyone who cares know that a
1898 	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
1899 	 * event mask is set to.
1900 	 */
1901 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
1902 		sendAEN = TRUE;
1903 	}
1904 
1905 	/*
1906 	 * Record the event only if its corresponding bit is set in
1907 	 * events_to_record.  event_index is the index into recorded_events and
1908 	 * event_number is the overall number of an event being recorded since
1909 	 * start-of-day.  event_index will roll over; event_number will never
1910 	 * roll over.
1911 	 */
1912 	i = (uint8_t)(event / 32);
1913 	j = (uint8_t)(event % 32);
1914 	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
1915 		i = sc->event_index;
1916 		sc->recorded_events[i].Type = event;
1917 		sc->recorded_events[i].Number = ++sc->event_number;
1918 		bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH *
1919 		    4);
1920 		event_data_len = event_reply->EventDataLength;
1921 
1922 		if (event_data_len > 0) {
1923 			/*
1924 			 * Limit data to size in m_event entry
1925 			 */
1926 			if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) {
1927 				event_data_len = MPS_MAX_EVENT_DATA_LENGTH;
1928 			}
1929 			for (j = 0; j < event_data_len; j++) {
1930 				sc->recorded_events[i].Data[j] =
1931 				    event_reply->EventData[j];
1932 			}
1933 
1934 			/*
1935 			 * check for index wrap-around
1936 			 */
1937 			if (++i == MPS_EVENT_QUEUE_SIZE) {
1938 				i = 0;
1939 			}
1940 			sc->event_index = (uint8_t)i;
1941 
1942 			/*
1943 			 * Set flag to send the event.
1944 			 */
1945 			sendAEN = TRUE;
1946 		}
1947 	}
1948 
1949 	/*
1950 	 * Generate a system event if flag is set to let anyone who cares know
1951 	 * that an event has occurred.
1952 	 */
1953 	if (sendAEN) {
1954 //SLM-how to send a system event (see kqueue, kevent)
1955 //		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
1956 //		    "SAS", NULL, NULL, DDI_NOSLEEP);
1957 	}
1958 }
1959 
1960 static int
1961 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data)
1962 {
1963 	int	status = 0;
1964 
1965 	switch (data->Command) {
1966 		/*
1967 		 * IO access is not supported.
1968 		 */
1969 		case REG_IO_READ:
1970 		case REG_IO_WRITE:
1971 			mps_dprint(sc, MPS_INFO, "IO access is not supported. "
1972 			    "Use memory access.");
1973 			status = EINVAL;
1974 			break;
1975 
1976 		case REG_MEM_READ:
1977 			data->RegData = mps_regread(sc, data->RegOffset);
1978 			break;
1979 
1980 		case REG_MEM_WRITE:
1981 			mps_regwrite(sc, data->RegOffset, data->RegData);
1982 			break;
1983 
1984 		default:
1985 			status = EINVAL;
1986 			break;
1987 	}
1988 
1989 	return (status);
1990 }
1991 
1992 static int
1993 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data)
1994 {
1995 	uint8_t		bt2dh = FALSE;
1996 	uint8_t		dh2bt = FALSE;
1997 	uint16_t	dev_handle, bus, target;
1998 
1999 	bus = data->Bus;
2000 	target = data->TargetID;
2001 	dev_handle = data->DevHandle;
2002 
2003 	/*
2004 	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2005 	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2006 	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2007 	 * invalid.
2008 	 */
2009 	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2010 		dh2bt = TRUE;
2011 	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2012 		bt2dh = TRUE;
2013 	if (!dh2bt && !bt2dh)
2014 		return (EINVAL);
2015 
2016 	/*
2017 	 * Only handle bus of 0.  Make sure target is within range.
2018 	 */
2019 	if (bt2dh) {
2020 		if (bus != 0)
2021 			return (EINVAL);
2022 
2023 		if (target > sc->max_devices) {
2024 			mps_dprint(sc, MPS_FAULT, "Target ID is out of range "
2025 			   "for Bus/Target to DevHandle mapping.");
2026 			return (EINVAL);
2027 		}
2028 		dev_handle = sc->mapping_table[target].dev_handle;
2029 		if (dev_handle)
2030 			data->DevHandle = dev_handle;
2031 	} else {
2032 		bus = 0;
2033 		target = mps_mapping_get_sas_id_from_handle(sc, dev_handle);
2034 		data->Bus = bus;
2035 		data->TargetID = target;
2036 	}
2037 
2038 	return (0);
2039 }
2040 
2041 static int
2042 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag)
2043 {
2044 	struct mps_softc *sc;
2045 	struct mps_cfg_page_req *page_req;
2046 	struct mps_ext_cfg_page_req *ext_page_req;
2047 	void *mps_page;
2048 	int error, reset_loop;
2049 
2050 	mps_page = NULL;
2051 	sc = dev->si_drv1;
2052 	page_req = arg;
2053 	ext_page_req = arg;
2054 
2055 	switch (cmd) {
2056 	case MPSIO_READ_CFG_HEADER:
2057 		mps_lock(sc);
2058 		error = mps_user_read_cfg_header(sc, page_req);
2059 		mps_unlock(sc);
2060 		break;
2061 	case MPSIO_READ_CFG_PAGE:
2062 		mps_page = kmalloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO);
2063 		error = copyin(page_req->buf, mps_page,
2064 		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2065 		if (error)
2066 			break;
2067 		mps_lock(sc);
2068 		error = mps_user_read_cfg_page(sc, page_req, mps_page);
2069 		mps_unlock(sc);
2070 		if (error)
2071 			break;
2072 		error = copyout(mps_page, page_req->buf, page_req->len);
2073 		break;
2074 	case MPSIO_READ_EXT_CFG_HEADER:
2075 		mps_lock(sc);
2076 		error = mps_user_read_extcfg_header(sc, ext_page_req);
2077 		mps_unlock(sc);
2078 		break;
2079 	case MPSIO_READ_EXT_CFG_PAGE:
2080 		mps_page = kmalloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO);
2081 		error = copyin(ext_page_req->buf, mps_page,
2082 		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2083 		if (error)
2084 			break;
2085 		mps_lock(sc);
2086 		error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page);
2087 		mps_unlock(sc);
2088 		if (error)
2089 			break;
2090 		error = copyout(mps_page, ext_page_req->buf, ext_page_req->len);
2091 		break;
2092 	case MPSIO_WRITE_CFG_PAGE:
2093 		mps_page = kmalloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO);
2094 		error = copyin(page_req->buf, mps_page, page_req->len);
2095 		if (error)
2096 			break;
2097 		mps_lock(sc);
2098 		error = mps_user_write_cfg_page(sc, page_req, mps_page);
2099 		mps_unlock(sc);
2100 		break;
2101 	case MPSIO_MPS_COMMAND:
2102 		error = mps_user_command(sc, (struct mps_usr_command *)arg);
2103 		break;
2104 	case MPTIOCTL_PASS_THRU:
2105 		/*
2106 		 * The user has requested to pass through a command to be
2107 		 * executed by the MPT firmware.  Call our routine which does
2108 		 * this.  Only allow one passthru IOCTL at one time.
2109 		 */
2110 		error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg);
2111 		break;
2112 	case MPTIOCTL_GET_ADAPTER_DATA:
2113 		/*
2114 		 * The user has requested to read adapter data.  Call our
2115 		 * routine which does this.
2116 		 */
2117 		error = 0;
2118 		mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg);
2119 		break;
2120 	case MPTIOCTL_GET_PCI_INFO:
2121 		/*
2122 		 * The user has requested to read pci info.  Call
2123 		 * our routine which does this.
2124 		 */
2125 		mps_lock(sc);
2126 		error = 0;
2127 		mps_user_read_pci_info(sc, (mps_pci_info_t *)arg);
2128 		mps_unlock(sc);
2129 		break;
2130 	case MPTIOCTL_RESET_ADAPTER:
2131 		mps_lock(sc);
2132 		sc->port_enable_complete = 0;
2133 		error = mps_reinit(sc);
2134 		mps_unlock(sc);
2135 		/*
2136 		 * Wait no more than 5 minutes for Port Enable to complete
2137 		 */
2138 		for (reset_loop = 0; (reset_loop < MPS_DIAG_RESET_TIMEOUT) &&
2139 		    (!sc->port_enable_complete); reset_loop++) {
2140 			DELAY(1000);
2141 		}
2142 		if (reset_loop == MPS_DIAG_RESET_TIMEOUT) {
2143 			kprintf("Port Enable did not complete after Diag "
2144 			    "Reset.\n");
2145 		}
2146 		break;
2147 	case MPTIOCTL_DIAG_ACTION:
2148 		/*
2149 		 * The user has done a diag buffer action.  Call our routine
2150 		 * which does this.  Only allow one diag action at one time.
2151 		 */
2152 		mps_lock(sc);
2153 		error = mps_user_diag_action(sc, (mps_diag_action_t *)arg);
2154 		mps_unlock(sc);
2155 		break;
2156 	case MPTIOCTL_EVENT_QUERY:
2157 		/*
2158 		 * The user has done an event query. Call our routine which does
2159 		 * this.
2160 		 */
2161 		error = 0;
2162 		mps_user_event_query(sc, (mps_event_query_t *)arg);
2163 		break;
2164 	case MPTIOCTL_EVENT_ENABLE:
2165 		/*
2166 		 * The user has done an event enable. Call our routine which
2167 		 * does this.
2168 		 */
2169 		error = 0;
2170 		mps_user_event_enable(sc, (mps_event_enable_t *)arg);
2171 		break;
2172 	case MPTIOCTL_EVENT_REPORT:
2173 		/*
2174 		 * The user has done an event report. Call our routine which
2175 		 * does this.
2176 		 */
2177 		error = mps_user_event_report(sc, (mps_event_report_t *)arg);
2178 		break;
2179 	case MPTIOCTL_REG_ACCESS:
2180 		/*
2181 		 * The user has requested register access.  Call our routine
2182 		 * which does this.
2183 		 */
2184 		mps_lock(sc);
2185 		error = mps_user_reg_access(sc, (mps_reg_access_t *)arg);
2186 		mps_unlock(sc);
2187 		break;
2188 	case MPTIOCTL_BTDH_MAPPING:
2189 		/*
2190 		 * The user has requested to translate a bus/target to a
2191 		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2192 		 * which does this.
2193 		 */
2194 		error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg);
2195 		break;
2196 	default:
2197 		error = ENOIOCTL;
2198 		break;
2199 	}
2200 
2201 	if (mps_page != NULL)
2202 		kfree(mps_page, M_MPSUSER);
2203 
2204 	return (error);
2205 }
2206 
2207 #ifdef COMPAT_FREEBSD32
2208 
2209 struct mps_cfg_page_req32 {
2210 	MPI2_CONFIG_PAGE_HEADER header;
2211 	uint32_t page_address;
2212 	uint32_t buf;
2213 	int	len;
2214 	uint16_t ioc_status;
2215 };
2216 
2217 struct mps_ext_cfg_page_req32 {
2218 	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2219 	uint32_t page_address;
2220 	uint32_t buf;
2221 	int	len;
2222 	uint16_t ioc_status;
2223 };
2224 
2225 struct mps_raid_action32 {
2226 	uint8_t action;
2227 	uint8_t volume_bus;
2228 	uint8_t volume_id;
2229 	uint8_t phys_disk_num;
2230 	uint32_t action_data_word;
2231 	uint32_t buf;
2232 	int len;
2233 	uint32_t volume_status;
2234 	uint32_t action_data[4];
2235 	uint16_t action_status;
2236 	uint16_t ioc_status;
2237 	uint8_t write;
2238 };
2239 
2240 struct mps_usr_command32 {
2241 	uint32_t req;
2242 	uint32_t req_len;
2243 	uint32_t rpl;
2244 	uint32_t rpl_len;
2245 	uint32_t buf;
2246 	int len;
2247 	uint32_t flags;
2248 };
2249 
2250 #define	MPSIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mps_cfg_page_req32)
2251 #define	MPSIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mps_cfg_page_req32)
2252 #define	MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32)
2253 #define	MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32)
2254 #define	MPSIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mps_cfg_page_req32)
2255 #define	MPSIO_RAID_ACTION32	_IOWR('M', 205, struct mps_raid_action32)
2256 #define	MPSIO_MPS_COMMAND32	_IOWR('M', 210, struct mps_usr_command32)
2257 
2258 static int
2259 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2260     struct thread *td)
2261 {
2262 	struct mps_cfg_page_req32 *page32 = _arg;
2263 	struct mps_ext_cfg_page_req32 *ext32 = _arg;
2264 	struct mps_raid_action32 *raid32 = _arg;
2265 	struct mps_usr_command32 *user32 = _arg;
2266 	union {
2267 		struct mps_cfg_page_req page;
2268 		struct mps_ext_cfg_page_req ext;
2269 		struct mps_raid_action raid;
2270 		struct mps_usr_command user;
2271 	} arg;
2272 	u_long cmd;
2273 	int error;
2274 
2275 	switch (cmd32) {
2276 	case MPSIO_READ_CFG_HEADER32:
2277 	case MPSIO_READ_CFG_PAGE32:
2278 	case MPSIO_WRITE_CFG_PAGE32:
2279 		if (cmd32 == MPSIO_READ_CFG_HEADER32)
2280 			cmd = MPSIO_READ_CFG_HEADER;
2281 		else if (cmd32 == MPSIO_READ_CFG_PAGE32)
2282 			cmd = MPSIO_READ_CFG_PAGE;
2283 		else
2284 			cmd = MPSIO_WRITE_CFG_PAGE;
2285 		CP(*page32, arg.page, header);
2286 		CP(*page32, arg.page, page_address);
2287 		PTRIN_CP(*page32, arg.page, buf);
2288 		CP(*page32, arg.page, len);
2289 		CP(*page32, arg.page, ioc_status);
2290 		break;
2291 
2292 	case MPSIO_READ_EXT_CFG_HEADER32:
2293 	case MPSIO_READ_EXT_CFG_PAGE32:
2294 		if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32)
2295 			cmd = MPSIO_READ_EXT_CFG_HEADER;
2296 		else
2297 			cmd = MPSIO_READ_EXT_CFG_PAGE;
2298 		CP(*ext32, arg.ext, header);
2299 		CP(*ext32, arg.ext, page_address);
2300 		PTRIN_CP(*ext32, arg.ext, buf);
2301 		CP(*ext32, arg.ext, len);
2302 		CP(*ext32, arg.ext, ioc_status);
2303 		break;
2304 
2305 	case MPSIO_RAID_ACTION32:
2306 		cmd = MPSIO_RAID_ACTION;
2307 		CP(*raid32, arg.raid, action);
2308 		CP(*raid32, arg.raid, volume_bus);
2309 		CP(*raid32, arg.raid, volume_id);
2310 		CP(*raid32, arg.raid, phys_disk_num);
2311 		CP(*raid32, arg.raid, action_data_word);
2312 		PTRIN_CP(*raid32, arg.raid, buf);
2313 		CP(*raid32, arg.raid, len);
2314 		CP(*raid32, arg.raid, volume_status);
2315 		bcopy(raid32->action_data, arg.raid.action_data,
2316 		    sizeof arg.raid.action_data);
2317 		CP(*raid32, arg.raid, ioc_status);
2318 		CP(*raid32, arg.raid, write);
2319 		break;
2320 
2321 	case MPSIO_MPS_COMMAND32:
2322 		cmd = MPSIO_MPS_COMMAND;
2323 		PTRIN_CP(*user32, arg.user, req);
2324 		CP(*user32, arg.user, req_len);
2325 		PTRIN_CP(*user32, arg.user, rpl);
2326 		CP(*user32, arg.user, rpl_len);
2327 		PTRIN_CP(*user32, arg.user, buf);
2328 		CP(*user32, arg.user, len);
2329 		CP(*user32, arg.user, flags);
2330 		break;
2331 	default:
2332 		return (ENOIOCTL);
2333 	}
2334 
2335 	error = mps_ioctl(dev, cmd, &arg, flag, td);
2336 	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2337 		switch (cmd32) {
2338 		case MPSIO_READ_CFG_HEADER32:
2339 		case MPSIO_READ_CFG_PAGE32:
2340 		case MPSIO_WRITE_CFG_PAGE32:
2341 			CP(arg.page, *page32, header);
2342 			CP(arg.page, *page32, page_address);
2343 			PTROUT_CP(arg.page, *page32, buf);
2344 			CP(arg.page, *page32, len);
2345 			CP(arg.page, *page32, ioc_status);
2346 			break;
2347 
2348 		case MPSIO_READ_EXT_CFG_HEADER32:
2349 		case MPSIO_READ_EXT_CFG_PAGE32:
2350 			CP(arg.ext, *ext32, header);
2351 			CP(arg.ext, *ext32, page_address);
2352 			PTROUT_CP(arg.ext, *ext32, buf);
2353 			CP(arg.ext, *ext32, len);
2354 			CP(arg.ext, *ext32, ioc_status);
2355 			break;
2356 
2357 		case MPSIO_RAID_ACTION32:
2358 			CP(arg.raid, *raid32, action);
2359 			CP(arg.raid, *raid32, volume_bus);
2360 			CP(arg.raid, *raid32, volume_id);
2361 			CP(arg.raid, *raid32, phys_disk_num);
2362 			CP(arg.raid, *raid32, action_data_word);
2363 			PTROUT_CP(arg.raid, *raid32, buf);
2364 			CP(arg.raid, *raid32, len);
2365 			CP(arg.raid, *raid32, volume_status);
2366 			bcopy(arg.raid.action_data, raid32->action_data,
2367 			    sizeof arg.raid.action_data);
2368 			CP(arg.raid, *raid32, ioc_status);
2369 			CP(arg.raid, *raid32, write);
2370 			break;
2371 
2372 		case MPSIO_MPS_COMMAND32:
2373 			PTROUT_CP(arg.user, *user32, req);
2374 			CP(arg.user, *user32, req_len);
2375 			PTROUT_CP(arg.user, *user32, rpl);
2376 			CP(arg.user, *user32, rpl_len);
2377 			PTROUT_CP(arg.user, *user32, buf);
2378 			CP(arg.user, *user32, len);
2379 			CP(arg.user, *user32, flags);
2380 			break;
2381 		}
2382 	}
2383 
2384 	return (error);
2385 }
2386 #endif /* COMPAT_FREEBSD32 */
2387 
2388 static int
2389 mps_ioctl_devsw(struct dev_ioctl_args *ap)
2390 {
2391 	cdev_t dev = ap->a_head.a_dev;
2392 	u_long com = ap->a_cmd;
2393 	caddr_t arg = ap->a_data;
2394 	int flag = ap->a_fflag;
2395 
2396 #ifdef COMPAT_FREEBSD32
2397 	if (SV_CURPROC_FLAG(SV_ILP32))
2398 		return (mps_ioctl32(dev, com, arg, flag, td));
2399 #endif
2400 	return (mps_ioctl(dev, com, arg, flag));
2401 }
2402