xref: /dragonfly/sys/dev/raid/mps/mps_user.c (revision e65bc1c3)
1 /*-
2  * Copyright (c) 2008 Yahoo!, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the author nor the names of any co-contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * LSI MPT-Fusion Host Adapter FreeBSD userland interface
31  */
32 /*-
33  * Copyright (c) 2011 LSI Corp.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  * LSI MPT-Fusion Host Adapter FreeBSD
58  *
59  * $FreeBSD: src/sys/dev/mps/mps_user.c,v 1.10 2012/01/26 18:17:21 ken Exp $
60  */
61 
62 #include "opt_compat.h"
63 
64 /* TODO Move headers to mpsvar */
65 #include <sys/types.h>
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/kernel.h>
69 #include <sys/module.h>
70 #include <sys/bus.h>
71 #include <sys/conf.h>
72 #include <sys/eventhandler.h>
73 #include <sys/bio.h>
74 #include <sys/malloc.h>
75 #include <sys/uio.h>
76 #include <sys/sysctl.h>
77 #include <sys/ioccom.h>
78 #include <sys/endian.h>
79 #include <sys/queue.h>
80 #include <sys/kthread.h>
81 #include <sys/taskqueue.h>
82 #include <sys/proc.h>
83 #include <sys/sysent.h>
84 
85 #include <sys/rman.h>
86 #include <sys/device.h>
87 
88 #include <bus/cam/cam.h>
89 #include <bus/cam/scsi/scsi_all.h>
90 
91 #include <dev/raid/mps/mpi/mpi2_type.h>
92 #include <dev/raid/mps/mpi/mpi2.h>
93 #include <dev/raid/mps/mpi/mpi2_ioc.h>
94 #include <dev/raid/mps/mpi/mpi2_cnfg.h>
95 #include <dev/raid/mps/mpi/mpi2_init.h>
96 #include <dev/raid/mps/mpi/mpi2_tool.h>
97 #include <dev/raid/mps/mps_ioctl.h>
98 #include <dev/raid/mps/mpsvar.h>
99 #include <dev/raid/mps/mps_table.h>
100 #include <dev/raid/mps/mps_sas.h>
101 #include <bus/pci/pcivar.h>
102 #include <bus/pci/pcireg.h>
103 
104 static d_open_t		mps_open;
105 static d_close_t	mps_close;
106 static d_ioctl_t	mps_ioctl_devsw;
107 
108 static struct dev_ops mps_ops = {
109 	{ "mps", 0, 0 },
110 	.d_open =	mps_open,
111 	.d_close =	mps_close,
112 	.d_ioctl =	mps_ioctl_devsw,
113 };
114 
115 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *);
116 static mps_user_f	mpi_pre_ioc_facts;
117 static mps_user_f	mpi_pre_port_facts;
118 static mps_user_f	mpi_pre_fw_download;
119 static mps_user_f	mpi_pre_fw_upload;
120 static mps_user_f	mpi_pre_sata_passthrough;
121 static mps_user_f	mpi_pre_smp_passthrough;
122 static mps_user_f	mpi_pre_config;
123 static mps_user_f	mpi_pre_sas_io_unit_control;
124 
125 static int mps_user_read_cfg_header(struct mps_softc *,
126 				    struct mps_cfg_page_req *);
127 static int mps_user_read_cfg_page(struct mps_softc *,
128 				  struct mps_cfg_page_req *, void *);
129 static int mps_user_read_extcfg_header(struct mps_softc *,
130 				     struct mps_ext_cfg_page_req *);
131 static int mps_user_read_extcfg_page(struct mps_softc *,
132 				     struct mps_ext_cfg_page_req *, void *);
133 static int mps_user_write_cfg_page(struct mps_softc *,
134 				   struct mps_cfg_page_req *, void *);
135 static int mps_user_setup_request(struct mps_command *,
136 				  struct mps_usr_command *);
137 static int mps_user_command(struct mps_softc *, struct mps_usr_command *);
138 
139 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data);
140 static void mps_user_get_adapter_data(struct mps_softc *sc,
141     mps_adapter_data_t *data);
142 static void mps_user_read_pci_info(struct mps_softc *sc,
143     mps_pci_info_t *data);
144 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc,
145     uint32_t unique_id);
146 static int mps_post_fw_diag_buffer(struct mps_softc *sc,
147     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
148 static int mps_release_fw_diag_buffer(struct mps_softc *sc,
149     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
150     uint32_t diag_type);
151 static int mps_diag_register(struct mps_softc *sc,
152     mps_fw_diag_register_t *diag_register, uint32_t *return_code);
153 static int mps_diag_unregister(struct mps_softc *sc,
154     mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
155 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query,
156     uint32_t *return_code);
157 static int mps_diag_read_buffer(struct mps_softc *sc,
158     mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
159     uint32_t *return_code);
160 static int mps_diag_release(struct mps_softc *sc,
161     mps_fw_diag_release_t *diag_release, uint32_t *return_code);
162 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action,
163     uint8_t *diag_action, uint32_t length, uint32_t *return_code);
164 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data);
165 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data);
166 static void mps_user_event_enable(struct mps_softc *sc,
167     mps_event_enable_t *data);
168 static int mps_user_event_report(struct mps_softc *sc,
169     mps_event_report_t *data);
170 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data);
171 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data);
172 
173 static MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls");
174 
175 /* Macros from compat/freebsd32/freebsd32.h */
176 #define	PTRIN(v)	(void *)(uintptr_t)(v)
177 #define	PTROUT(v)	(uint32_t)(uintptr_t)(v)
178 
179 #define	CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
180 #define	PTRIN_CP(src,dst,fld)				\
181 	do { (dst).fld = PTRIN((src).fld); } while (0)
182 #define	PTROUT_CP(src,dst,fld) \
183 	do { (dst).fld = PTROUT((src).fld); } while (0)
184 
185 int
186 mps_attach_user(struct mps_softc *sc)
187 {
188 	int unit;
189 
190 	unit = device_get_unit(sc->mps_dev);
191 	sc->mps_cdev = make_dev(&mps_ops, unit, UID_ROOT, GID_OPERATOR, 0640,
192 	    "mps%d", unit);
193 	if (sc->mps_cdev == NULL) {
194 		return (ENOMEM);
195 	}
196 	sc->mps_cdev->si_drv1 = sc;
197 	return (0);
198 }
199 
200 void
201 mps_detach_user(struct mps_softc *sc)
202 {
203 
204 	/* XXX: do a purge of pending requests? */
205 	if (sc->mps_cdev != NULL)
206 		destroy_dev(sc->mps_cdev);
207 }
208 
209 static int
210 mps_open(struct dev_open_args *ap)
211 {
212 
213 	return (0);
214 }
215 
216 static int
217 mps_close(struct dev_close_args *ap)
218 {
219 
220 	return (0);
221 }
222 
223 static int
224 mps_user_read_cfg_header(struct mps_softc *sc,
225     struct mps_cfg_page_req *page_req)
226 {
227 	MPI2_CONFIG_PAGE_HEADER *hdr;
228 	struct mps_config_params params;
229 	int	    error;
230 
231 	hdr = &params.hdr.Struct;
232 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
233 	params.page_address = le32toh(page_req->page_address);
234 	hdr->PageVersion = 0;
235 	hdr->PageLength = 0;
236 	hdr->PageNumber = page_req->header.PageNumber;
237 	hdr->PageType = page_req->header.PageType;
238 	params.buffer = NULL;
239 	params.length = 0;
240 	params.callback = NULL;
241 
242 	if ((error = mps_read_config_page(sc, &params)) != 0) {
243 		/*
244 		 * Leave the request. Without resetting the chip, it's
245 		 * still owned by it and we'll just get into trouble
246 		 * freeing it now. Mark it as abandoned so that if it
247 		 * shows up later it can be freed.
248 		 */
249 		mps_printf(sc, "read_cfg_header timed out\n");
250 		return (ETIMEDOUT);
251 	}
252 
253 	page_req->ioc_status = htole16(params.status);
254 	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
255 	    MPI2_IOCSTATUS_SUCCESS) {
256 		bcopy(hdr, &page_req->header, sizeof(page_req->header));
257 	}
258 
259 	return (0);
260 }
261 
262 static int
263 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req,
264     void *buf)
265 {
266 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
267 	struct mps_config_params params;
268 	int	      error;
269 
270 	reqhdr = buf;
271 	hdr = &params.hdr.Struct;
272 	hdr->PageVersion = reqhdr->PageVersion;
273 	hdr->PageLength = reqhdr->PageLength;
274 	hdr->PageNumber = reqhdr->PageNumber;
275 	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
276 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
277 	params.page_address = le32toh(page_req->page_address);
278 	params.buffer = buf;
279 	params.length = le32toh(page_req->len);
280 	params.callback = NULL;
281 
282 	if ((error = mps_read_config_page(sc, &params)) != 0) {
283 		mps_printf(sc, "mps_user_read_cfg_page timed out\n");
284 		return (ETIMEDOUT);
285 	}
286 
287 	page_req->ioc_status = htole16(params.status);
288 	return (0);
289 }
290 
291 static int
292 mps_user_read_extcfg_header(struct mps_softc *sc,
293     struct mps_ext_cfg_page_req *ext_page_req)
294 {
295 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
296 	struct mps_config_params params;
297 	int	    error;
298 
299 	hdr = &params.hdr.Ext;
300 	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
301 	hdr->PageVersion = ext_page_req->header.PageVersion;
302 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
303 	hdr->ExtPageLength = 0;
304 	hdr->PageNumber = ext_page_req->header.PageNumber;
305 	hdr->ExtPageType = ext_page_req->header.ExtPageType;
306 	params.page_address = le32toh(ext_page_req->page_address);
307 	if ((error = mps_read_config_page(sc, &params)) != 0) {
308 		/*
309 		 * Leave the request. Without resetting the chip, it's
310 		 * still owned by it and we'll just get into trouble
311 		 * freeing it now. Mark it as abandoned so that if it
312 		 * shows up later it can be freed.
313 		 */
314 		mps_printf(sc, "mps_user_read_extcfg_header timed out\n");
315 		return (ETIMEDOUT);
316 	}
317 
318 	ext_page_req->ioc_status = htole16(params.status);
319 	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
320 	    MPI2_IOCSTATUS_SUCCESS) {
321 		ext_page_req->header.PageVersion = hdr->PageVersion;
322 		ext_page_req->header.PageNumber = hdr->PageNumber;
323 		ext_page_req->header.PageType = hdr->PageType;
324 		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
325 		ext_page_req->header.ExtPageType = hdr->ExtPageType;
326 	}
327 
328 	return (0);
329 }
330 
331 static int
332 mps_user_read_extcfg_page(struct mps_softc *sc,
333     struct mps_ext_cfg_page_req *ext_page_req, void *buf)
334 {
335 	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
336 	struct mps_config_params params;
337 	int error;
338 
339 	reqhdr = buf;
340 	hdr = &params.hdr.Ext;
341 	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
342 	params.page_address = le32toh(ext_page_req->page_address);
343 	hdr->PageVersion = reqhdr->PageVersion;
344 	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
345 	hdr->PageNumber = reqhdr->PageNumber;
346 	hdr->ExtPageType = reqhdr->ExtPageType;
347 	hdr->ExtPageLength = reqhdr->ExtPageLength;
348 	params.buffer = buf;
349 	params.length = le32toh(ext_page_req->len);
350 	params.callback = NULL;
351 
352 	if ((error = mps_read_config_page(sc, &params)) != 0) {
353 		mps_printf(sc, "mps_user_read_extcfg_page timed out\n");
354 		return (ETIMEDOUT);
355 	}
356 
357 	ext_page_req->ioc_status = htole16(params.status);
358 	return (0);
359 }
360 
361 static int
362 mps_user_write_cfg_page(struct mps_softc *sc,
363     struct mps_cfg_page_req *page_req, void *buf)
364 {
365 	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
366 	struct mps_config_params params;
367 	u_int	      hdr_attr;
368 	int	      error;
369 
370 	reqhdr = buf;
371 	hdr = &params.hdr.Struct;
372 	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
373 	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
374 	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
375 		mps_printf(sc, "page type 0x%x not changeable\n",
376 			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
377 		return (EINVAL);
378 	}
379 
380 	/*
381 	 * There isn't any point in restoring stripped out attributes
382 	 * if you then mask them going down to issue the request.
383 	 */
384 
385 	hdr->PageVersion = reqhdr->PageVersion;
386 	hdr->PageLength = reqhdr->PageLength;
387 	hdr->PageNumber = reqhdr->PageNumber;
388 	hdr->PageType = reqhdr->PageType;
389 	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
390 	params.page_address = le32toh(page_req->page_address);
391 	params.buffer = buf;
392 	params.length = le32toh(page_req->len);
393 	params.callback = NULL;
394 
395 	if ((error = mps_write_config_page(sc, &params)) != 0) {
396 		mps_printf(sc, "mps_write_cfg_page timed out\n");
397 		return (ETIMEDOUT);
398 	}
399 
400 	page_req->ioc_status = htole16(params.status);
401 	return (0);
402 }
403 
404 void
405 mpi_init_sge(struct mps_command *cm, void *req, void *sge)
406 {
407 	int off, space;
408 
409 	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
410 	off = (uintptr_t)sge - (uintptr_t)req;
411 
412 	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
413             req, sge, off, space));
414 
415 	cm->cm_sge = sge;
416 	cm->cm_sglsize = space - off;
417 }
418 
419 /*
420  * Prepare the mps_command for an IOC_FACTS request.
421  */
422 static int
423 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd)
424 {
425 	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
426 	MPI2_IOC_FACTS_REPLY *rpl;
427 
428 	if (cmd->req_len != sizeof *req)
429 		return (EINVAL);
430 	if (cmd->rpl_len != sizeof *rpl)
431 		return (EINVAL);
432 
433 	cm->cm_sge = NULL;
434 	cm->cm_sglsize = 0;
435 	return (0);
436 }
437 
438 /*
439  * Prepare the mps_command for a PORT_FACTS request.
440  */
441 static int
442 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd)
443 {
444 	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
445 	MPI2_PORT_FACTS_REPLY *rpl;
446 
447 	if (cmd->req_len != sizeof *req)
448 		return (EINVAL);
449 	if (cmd->rpl_len != sizeof *rpl)
450 		return (EINVAL);
451 
452 	cm->cm_sge = NULL;
453 	cm->cm_sglsize = 0;
454 	return (0);
455 }
456 
457 /*
458  * Prepare the mps_command for a FW_DOWNLOAD request.
459  */
460 static int
461 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd)
462 {
463 	MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
464 	MPI2_FW_DOWNLOAD_REPLY *rpl;
465 	MPI2_FW_DOWNLOAD_TCSGE tc;
466 	int error;
467 
468 	/*
469 	 * This code assumes there is room in the request's SGL for
470 	 * the TransactionContext plus at least a SGL chain element.
471 	 */
472 	CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE);
473 
474 	if (cmd->req_len != sizeof *req)
475 		return (EINVAL);
476 	if (cmd->rpl_len != sizeof *rpl)
477 		return (EINVAL);
478 
479 	if (cmd->len == 0)
480 		return (EINVAL);
481 
482 	error = copyin(cmd->buf, cm->cm_data, cmd->len);
483 	if (error != 0)
484 		return (error);
485 
486 	mpi_init_sge(cm, req, &req->SGL);
487 	bzero(&tc, sizeof tc);
488 
489 	/*
490 	 * For now, the F/W image must be provided in a single request.
491 	 */
492 	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
493 		return (EINVAL);
494 	if (req->TotalImageSize != cmd->len)
495 		return (EINVAL);
496 
497 	/*
498 	 * The value of the first two elements is specified in the
499 	 * Fusion-MPT Message Passing Interface document.
500 	 */
501 	tc.ContextSize = 0;
502 	tc.DetailsLength = 12;
503 	tc.ImageOffset = 0;
504 	tc.ImageSize = cmd->len;
505 
506 	cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
507 
508 	return (mps_push_sge(cm, &tc, sizeof tc, 0));
509 }
510 
511 /*
512  * Prepare the mps_command for a FW_UPLOAD request.
513  */
514 static int
515 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd)
516 {
517 	MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
518 	MPI2_FW_UPLOAD_REPLY *rpl;
519 	MPI2_FW_UPLOAD_TCSGE tc;
520 
521 	/*
522 	 * This code assumes there is room in the request's SGL for
523 	 * the TransactionContext plus at least a SGL chain element.
524 	 */
525 	CTASSERT(sizeof req->SGL >= sizeof tc + MPS_SGC_SIZE);
526 
527 	if (cmd->req_len != sizeof *req)
528 		return (EINVAL);
529 	if (cmd->rpl_len != sizeof *rpl)
530 		return (EINVAL);
531 
532 	mpi_init_sge(cm, req, &req->SGL);
533 	bzero(&tc, sizeof tc);
534 
535 	/*
536 	 * The value of the first two elements is specified in the
537 	 * Fusion-MPT Message Passing Interface document.
538 	 */
539 	tc.ContextSize = 0;
540 	tc.DetailsLength = 12;
541 	/*
542 	 * XXX Is there any reason to fetch a partial image?  I.e. to
543 	 * set ImageOffset to something other than 0?
544 	 */
545 	tc.ImageOffset = 0;
546 	tc.ImageSize = cmd->len;
547 
548 	cm->cm_flags |= MPS_CM_FLAGS_DATAIN;
549 
550 	return (mps_push_sge(cm, &tc, sizeof tc, 0));
551 }
552 
553 /*
554  * Prepare the mps_command for a SATA_PASSTHROUGH request.
555  */
556 static int
557 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd)
558 {
559 	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
560 	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
561 
562 	if (cmd->req_len != sizeof *req)
563 		return (EINVAL);
564 	if (cmd->rpl_len != sizeof *rpl)
565 		return (EINVAL);
566 
567 	mpi_init_sge(cm, req, &req->SGL);
568 	return (0);
569 }
570 
571 /*
572  * Prepare the mps_command for a SMP_PASSTHROUGH request.
573  */
574 static int
575 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd)
576 {
577 	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
578 	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
579 
580 	if (cmd->req_len != sizeof *req)
581 		return (EINVAL);
582 	if (cmd->rpl_len != sizeof *rpl)
583 		return (EINVAL);
584 
585 	mpi_init_sge(cm, req, &req->SGL);
586 	return (0);
587 }
588 
589 /*
590  * Prepare the mps_command for a CONFIG request.
591  */
592 static int
593 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd)
594 {
595 	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
596 	MPI2_CONFIG_REPLY *rpl;
597 
598 	if (cmd->req_len != sizeof *req)
599 		return (EINVAL);
600 	if (cmd->rpl_len != sizeof *rpl)
601 		return (EINVAL);
602 
603 	mpi_init_sge(cm, req, &req->PageBufferSGE);
604 	return (0);
605 }
606 
607 /*
608  * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request.
609  */
610 static int
611 mpi_pre_sas_io_unit_control(struct mps_command *cm,
612 			     struct mps_usr_command *cmd)
613 {
614 
615 	cm->cm_sge = NULL;
616 	cm->cm_sglsize = 0;
617 	return (0);
618 }
619 
620 /*
621  * A set of functions to prepare an mps_command for the various
622  * supported requests.
623  */
624 struct mps_user_func {
625 	U8		Function;
626 	mps_user_f	*f_pre;
627 } mps_user_func_list[] = {
628 	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
629 	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
630 	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
631 	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
632 	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
633 	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
634 	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
635 	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
636 	{ 0xFF,					NULL } /* list end */
637 };
638 
639 static int
640 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd)
641 {
642 	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
643 	struct mps_user_func *f;
644 
645 	for (f = mps_user_func_list; f->f_pre != NULL; f++) {
646 		if (hdr->Function == f->Function)
647 			return (f->f_pre(cm, cmd));
648 	}
649 	return (EINVAL);
650 }
651 
652 static int
653 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd)
654 {
655 	MPI2_REQUEST_HEADER *hdr;
656 	MPI2_DEFAULT_REPLY *rpl;
657 	void *buf = NULL;
658 	struct mps_command *cm = NULL;
659 	int err = 0;
660 	int sz;
661 
662 	mps_lock(sc);
663 	cm = mps_alloc_command(sc);
664 
665 	if (cm == NULL) {
666 		mps_printf(sc, "mps_user_command: no mps requests\n");
667 		err = ENOMEM;
668 		goto Ret;
669 	}
670 	mps_unlock(sc);
671 
672 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
673 
674 	mps_dprint(sc, MPS_INFO, "mps_user_command: req %p %d  rpl %p %d\n",
675 		    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len );
676 
677 	if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) {
678 		err = EINVAL;
679 		goto RetFreeUnlocked;
680 	}
681 	err = copyin(cmd->req, hdr, cmd->req_len);
682 	if (err != 0)
683 		goto RetFreeUnlocked;
684 
685 	mps_dprint(sc, MPS_INFO, "mps_user_command: Function %02X  "
686 	    "MsgFlags %02X\n", hdr->Function, hdr->MsgFlags );
687 
688 	if (cmd->len > 0) {
689 		buf = kmalloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO);
690 		cm->cm_data = buf;
691 		cm->cm_length = cmd->len;
692 	} else {
693 		cm->cm_data = NULL;
694 		cm->cm_length = 0;
695 	}
696 
697 	cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE;
698 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
699 
700 	err = mps_user_setup_request(cm, cmd);
701 	if (err != 0) {
702 		mps_printf(sc, "mps_user_command: unsupported function 0x%X\n",
703 			   hdr->Function );
704 		goto RetFreeUnlocked;
705 	}
706 
707 	mps_lock(sc);
708 	err = mps_wait_command(sc, cm, 60);
709 
710 	if (err) {
711 		mps_printf(sc, "%s: invalid request: error %d\n",
712 		    __func__, err);
713 		goto Ret;
714 	}
715 
716 	rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
717 	if (rpl != NULL)
718 		sz = rpl->MsgLength * 4;
719 	else
720 		sz = 0;
721 
722 	if (sz > cmd->rpl_len) {
723 		mps_printf(sc,
724 		    "mps_user_command: reply buffer too small %d required %d\n",
725 		    cmd->rpl_len, sz );
726 		err = EINVAL;
727 		sz = cmd->rpl_len;
728 	}
729 
730 	mps_unlock(sc);
731 	copyout(rpl, cmd->rpl, sz);
732 	if (buf != NULL)
733 		copyout(buf, cmd->buf, cmd->len);
734 	mps_dprint(sc, MPS_INFO, "mps_user_command: reply size %d\n", sz );
735 
736 RetFreeUnlocked:
737 	mps_lock(sc);
738 	if (cm != NULL)
739 		mps_free_command(sc, cm);
740 Ret:
741 	mps_unlock(sc);
742 	if (buf != NULL)
743 		kfree(buf, M_MPSUSER);
744 	return (err);
745 }
746 
747 static int
748 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data)
749 {
750 	MPI2_REQUEST_HEADER	*hdr, tmphdr;
751 	MPI2_DEFAULT_REPLY	*rpl;
752 	struct mps_command	*cm = NULL;
753 	int			err = 0, dir = 0, sz;
754 	uint8_t			function = 0;
755 	u_int			sense_len;
756 
757 	/*
758 	 * Only allow one passthru command at a time.  Use the MPS_FLAGS_BUSY
759 	 * bit to denote that a passthru is being processed.
760 	 */
761 	mps_lock(sc);
762 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
763 		mps_dprint(sc, MPS_INFO, "%s: Only one passthru command "
764 		    "allowed at a single time.", __func__);
765 		mps_unlock(sc);
766 		return (EBUSY);
767 	}
768 	sc->mps_flags |= MPS_FLAGS_BUSY;
769 	mps_unlock(sc);
770 
771 	/*
772 	 * Do some validation on data direction.  Valid cases are:
773 	 *    1) DataSize is 0 and direction is NONE
774 	 *    2) DataSize is non-zero and one of:
775 	 *        a) direction is READ or
776 	 *        b) direction is WRITE or
777 	 *        c) direction is BOTH and DataOutSize is non-zero
778 	 * If valid and the direction is BOTH, change the direction to READ.
779 	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
780 	 */
781 	if (((data->DataSize == 0) &&
782 	    (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) ||
783 	    ((data->DataSize != 0) &&
784 	    ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) ||
785 	    (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) ||
786 	    ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) &&
787 	    (data->DataOutSize != 0))))) {
788 		if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH)
789 			data->DataDirection = MPS_PASS_THRU_DIRECTION_READ;
790 		else
791 			data->DataOutSize = 0;
792 	} else
793 		return (EINVAL);
794 
795 	mps_dprint(sc, MPS_INFO, "%s: req 0x%jx %d  rpl 0x%jx %d "
796 	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
797 	    data->PtrRequest, data->RequestSize, data->PtrReply,
798 	    data->ReplySize, data->PtrData, data->DataSize,
799 	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
800 
801 	/*
802 	 * copy in the header so we know what we're dealing with before we
803 	 * commit to allocating a command for it.
804 	 */
805 	err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
806 	if (err != 0)
807 		goto RetFreeUnlocked;
808 
809 	if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) {
810 		err = EINVAL;
811 		goto RetFreeUnlocked;
812 	}
813 
814 	function = tmphdr.Function;
815 	mps_dprint(sc, MPS_INFO, "%s: Function %02X MsgFlags %02X\n", __func__,
816 	    function, tmphdr.MsgFlags);
817 
818 	/*
819 	 * Handle a passthru TM request.
820 	 */
821 	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
822 		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
823 
824 		mps_lock(sc);
825 		cm = mpssas_alloc_tm(sc);
826 		if (cm == NULL) {
827 			err = EINVAL;
828 			goto Ret;
829 		}
830 
831 		/* Copy the header in.  Only a small fixup is needed. */
832 		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
833 		bcopy(&tmphdr, task, data->RequestSize);
834 		task->TaskMID = cm->cm_desc.Default.SMID;
835 
836 		cm->cm_data = NULL;
837 		cm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
838 		cm->cm_complete = NULL;
839 		cm->cm_complete_data = NULL;
840 
841 		err = mps_wait_command(sc, cm, 30);
842 
843 		if (err != 0) {
844 			err = EIO;
845 			mps_dprint(sc, MPS_FAULT, "%s: task management failed",
846 			    __func__);
847 		}
848 		/*
849 		 * Copy the reply data and sense data to user space.
850 		 */
851 		if (cm->cm_reply != NULL) {
852 			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
853 			sz = rpl->MsgLength * 4;
854 
855 			if (sz > data->ReplySize) {
856 				mps_printf(sc, "%s: reply buffer too small: %d, "
857 				    "required: %d\n", __func__, data->ReplySize, sz);
858 				err = EINVAL;
859 			} else {
860 				mps_unlock(sc);
861 				copyout(cm->cm_reply, PTRIN(data->PtrReply),
862 				    data->ReplySize);
863 				mps_lock(sc);
864 			}
865 		}
866 		mpssas_free_tm(sc, cm);
867 		goto Ret;
868 	}
869 
870 	mps_lock(sc);
871 	cm = mps_alloc_command(sc);
872 
873 	if (cm == NULL) {
874 		mps_printf(sc, "%s: no mps requests\n", __func__);
875 		err = ENOMEM;
876 		goto Ret;
877 	}
878 	mps_unlock(sc);
879 
880 	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
881 	bcopy(&tmphdr, hdr, data->RequestSize);
882 
883 	/*
884 	 * Do some checking to make sure the IOCTL request contains a valid
885 	 * request.  Then set the SGL info.
886 	 */
887 	mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
888 
889 	/*
890 	 * Set up for read, write or both.  From check above, DataOutSize will
891 	 * be 0 if direction is READ or WRITE, but it will have some non-zero
892 	 * value if the direction is BOTH.  So, just use the biggest size to get
893 	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
894 	 * up; the first is for the request and the second will contain the
895 	 * response data. cm_out_len needs to be set here and this will be used
896 	 * when the SGLs are set up.
897 	 */
898 	cm->cm_data = NULL;
899 	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
900 	cm->cm_out_len = data->DataOutSize;
901 	cm->cm_flags = 0;
902 	if (cm->cm_length != 0) {
903 		cm->cm_data = kmalloc(cm->cm_length, M_MPSUSER, M_WAITOK |
904 		    M_ZERO);
905 		if (cm->cm_data == NULL) {
906 			mps_dprint(sc, MPS_FAULT, "%s: alloc failed for IOCTL "
907 			    "passthru length %d\n", __func__, cm->cm_length);
908 		} else {
909 			cm->cm_flags = MPS_CM_FLAGS_DATAIN;
910 			if (data->DataOutSize) {
911 				cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
912 				err = copyin(PTRIN(data->PtrDataOut),
913 				    cm->cm_data, data->DataOutSize);
914 			} else if (data->DataDirection ==
915 			    MPS_PASS_THRU_DIRECTION_WRITE) {
916 				cm->cm_flags = MPS_CM_FLAGS_DATAOUT;
917 				err = copyin(PTRIN(data->PtrData),
918 				    cm->cm_data, data->DataSize);
919 			}
920 			if (err != 0)
921 				mps_dprint(sc, MPS_FAULT, "%s: failed to copy "
922 				    "IOCTL data from user space\n", __func__);
923 		}
924 	}
925 	cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE;
926 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
927 
928 	/*
929 	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
930 	 * uses SCSI IO descriptor.
931 	 */
932 	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
933 	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
934 		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
935 
936 		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
937 		/*
938 		 * Put SGE for data and data_out buffer at the end of
939 		 * scsi_io_request message header (64 bytes in total).
940 		 * Following above SGEs, the residual space will be used by
941 		 * sense data.
942 		 */
943 		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
944 		    64);
945 		scsi_io_req->SenseBufferLowAddress = cm->cm_sense_busaddr;
946 
947 		/*
948 		 * Set SGLOffset0 value.  This is the number of dwords that SGL
949 		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
950 		 */
951 		scsi_io_req->SGLOffset0 = 24;
952 
953 		/*
954 		 * Setup descriptor info.  RAID passthrough must use the
955 		 * default request descriptor which is already set, so if this
956 		 * is a SCSI IO request, change the descriptor to SCSI IO.
957 		 * Also, if this is a SCSI IO request, handle the reply in the
958 		 * mpssas_scsio_complete function.
959 		 */
960 		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
961 			cm->cm_desc.SCSIIO.RequestFlags =
962 			    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
963 			cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle;
964 
965 			/*
966 			 * Make sure the DevHandle is not 0 because this is a
967 			 * likely error.
968 			 */
969 			if (scsi_io_req->DevHandle == 0) {
970 				err = EINVAL;
971 				goto RetFreeUnlocked;
972 			}
973 		}
974 	}
975 
976 	mps_lock(sc);
977 
978 	err = mps_wait_command(sc, cm, 30);
979 
980 	if (err) {
981 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
982 		    err);
983 		mps_unlock(sc);
984 		goto RetFreeUnlocked;
985 	}
986 
987 	/*
988 	 * Sync the DMA data, if any.  Then copy the data to user space.
989 	 */
990 	if (cm->cm_data != NULL) {
991 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN)
992 			dir = BUS_DMASYNC_POSTREAD;
993 		else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT)
994 			dir = BUS_DMASYNC_POSTWRITE;
995 		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
996 		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
997 
998 		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
999 			mps_unlock(sc);
1000 			err = copyout(cm->cm_data,
1001 			    PTRIN(data->PtrData), data->DataSize);
1002 			mps_lock(sc);
1003 			if (err != 0)
1004 				mps_dprint(sc, MPS_FAULT, "%s: failed to copy "
1005 				    "IOCTL data to user space\n", __func__);
1006 		}
1007 	}
1008 
1009 	/*
1010 	 * Copy the reply data and sense data to user space.
1011 	 */
1012 	if (cm->cm_reply != NULL) {
1013 		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1014 		sz = rpl->MsgLength * 4;
1015 
1016 		if (sz > data->ReplySize) {
1017 			mps_printf(sc, "%s: reply buffer too small: %d, "
1018 			    "required: %d\n", __func__, data->ReplySize, sz);
1019 			err = EINVAL;
1020 		} else {
1021 			mps_unlock(sc);
1022 			copyout(cm->cm_reply, PTRIN(data->PtrReply),
1023 			    data->ReplySize);
1024 			mps_lock(sc);
1025 		}
1026 
1027 		if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1028 		    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1029 			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1030 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1031 				sense_len =
1032 				    MIN(((MPI2_SCSI_IO_REPLY *)rpl)->SenseCount,
1033 				    sizeof(struct scsi_sense_data));
1034 				mps_unlock(sc);
1035 				copyout(cm->cm_sense, cm->cm_req + 64, sense_len);
1036 				mps_lock(sc);
1037 			}
1038 		}
1039 	}
1040 	mps_unlock(sc);
1041 
1042 RetFreeUnlocked:
1043 	mps_lock(sc);
1044 
1045 	if (cm != NULL) {
1046 		if (cm->cm_data)
1047 			kfree(cm->cm_data, M_MPSUSER);
1048 		mps_free_command(sc, cm);
1049 	}
1050 Ret:
1051 	sc->mps_flags &= ~MPS_FLAGS_BUSY;
1052 	mps_unlock(sc);
1053 
1054 	return (err);
1055 }
1056 
1057 static void
1058 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data)
1059 {
1060 	Mpi2ConfigReply_t	mpi_reply;
1061 	Mpi2BiosPage3_t		config_page;
1062 
1063 	/*
1064 	 * Use the PCI interface functions to get the Bus, Device, and Function
1065 	 * information.
1066 	 */
1067 	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev);
1068 	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev);
1069 	data->PciInformation.u.bits.FunctionNumber =
1070 	    pci_get_function(sc->mps_dev);
1071 
1072 	/*
1073 	 * Get the FW version that should already be saved in IOC Facts.
1074 	 */
1075 	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1076 
1077 	/*
1078 	 * General device info.
1079 	 */
1080 	data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2;
1081 	if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE)
1082 		data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200;
1083 	data->PCIDeviceHwId = pci_get_device(sc->mps_dev);
1084 	data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1);
1085 	data->SubSystemId = pci_get_subdevice(sc->mps_dev);
1086 	data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev);
1087 
1088 	/*
1089 	 * Get the driver version.
1090 	 */
1091 	strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION);
1092 
1093 	/*
1094 	 * Need to get BIOS Config Page 3 for the BIOS Version.
1095 	 */
1096 	data->BiosVersion = 0;
1097 	mps_lock(sc);
1098 	if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1099 		kprintf("%s: Error while retrieving BIOS Version\n", __func__);
1100 	else
1101 		data->BiosVersion = config_page.BiosVersion;
1102 	mps_unlock(sc);
1103 }
1104 
1105 static void
1106 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data)
1107 {
1108 	int	i;
1109 
1110 	/*
1111 	 * Use the PCI interface functions to get the Bus, Device, and Function
1112 	 * information.
1113 	 */
1114 	data->BusNumber = pci_get_bus(sc->mps_dev);
1115 	data->DeviceNumber = pci_get_slot(sc->mps_dev);
1116 	data->FunctionNumber = pci_get_function(sc->mps_dev);
1117 
1118 	/*
1119 	 * Now get the interrupt vector and the pci header.  The vector can
1120 	 * only be 0 right now.  The header is the first 256 bytes of config
1121 	 * space.
1122 	 */
1123 	data->InterruptVector = 0;
1124 	for (i = 0; i < sizeof (data->PciHeader); i++) {
1125 		data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1);
1126 	}
1127 }
1128 
1129 static uint8_t
1130 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id)
1131 {
1132 	uint8_t	index;
1133 
1134 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1135 		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1136 			return (index);
1137 		}
1138 	}
1139 
1140 	return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND);
1141 }
1142 
1143 static int
1144 mps_post_fw_diag_buffer(struct mps_softc *sc,
1145     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1146 {
1147 	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1148 	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1149 	struct mps_command		*cm = NULL;
1150 	int				i, status;
1151 
1152 	/*
1153 	 * If buffer is not enabled, just leave.
1154 	 */
1155 	*return_code = MPS_FW_DIAG_ERROR_POST_FAILED;
1156 	if (!pBuffer->enabled) {
1157 		return (MPS_DIAG_FAILURE);
1158 	}
1159 
1160 	/*
1161 	 * Clear some flags initially.
1162 	 */
1163 	pBuffer->force_release = FALSE;
1164 	pBuffer->valid_data = FALSE;
1165 	pBuffer->owned_by_firmware = FALSE;
1166 
1167 	/*
1168 	 * Get a command.
1169 	 */
1170 	cm = mps_alloc_command(sc);
1171 	if (cm == NULL) {
1172 		mps_printf(sc, "%s: no mps requests\n", __func__);
1173 		return (MPS_DIAG_FAILURE);
1174 	}
1175 
1176 	/*
1177 	 * Build the request for releasing the FW Diag Buffer and send it.
1178 	 */
1179 	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1180 	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1181 	req->BufferType = pBuffer->buffer_type;
1182 	req->ExtendedType = pBuffer->extended_type;
1183 	req->BufferLength = pBuffer->size;
1184 	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1185 		req->ProductSpecific[i] = pBuffer->product_specific[i];
1186 	mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1187 	cm->cm_data = NULL;
1188 	cm->cm_length = 0;
1189 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1190 	cm->cm_complete_data = NULL;
1191 
1192 	/*
1193 	 * Send command synchronously.
1194 	 */
1195 	status = mps_wait_command(sc, cm, 30);
1196 	if (status) {
1197 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
1198 		    status);
1199 		status = MPS_DIAG_FAILURE;
1200 		goto done;
1201 	}
1202 
1203 	/*
1204 	 * Process POST reply.
1205 	 */
1206 	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1207 	if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) {
1208 		status = MPS_DIAG_FAILURE;
1209 		mps_dprint(sc, MPS_FAULT, "%s: post of FW  Diag Buffer failed "
1210 		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1211 		    "TransferLength = 0x%x\n", __func__, reply->IOCStatus,
1212 		    reply->IOCLogInfo, reply->TransferLength);
1213 		goto done;
1214 	}
1215 
1216 	/*
1217 	 * Post was successful.
1218 	 */
1219 	pBuffer->valid_data = TRUE;
1220 	pBuffer->owned_by_firmware = TRUE;
1221 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1222 	status = MPS_DIAG_SUCCESS;
1223 
1224 done:
1225 	mps_free_command(sc, cm);
1226 	return (status);
1227 }
1228 
1229 static int
1230 mps_release_fw_diag_buffer(struct mps_softc *sc,
1231     mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1232     uint32_t diag_type)
1233 {
1234 	MPI2_DIAG_RELEASE_REQUEST	*req;
1235 	MPI2_DIAG_RELEASE_REPLY		*reply;
1236 	struct mps_command		*cm = NULL;
1237 	int				status;
1238 
1239 	/*
1240 	 * If buffer is not enabled, just leave.
1241 	 */
1242 	*return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED;
1243 	if (!pBuffer->enabled) {
1244 		mps_dprint(sc, MPS_INFO, "%s: This buffer type is not supported "
1245 		    "by the IOC", __func__);
1246 		return (MPS_DIAG_FAILURE);
1247 	}
1248 
1249 	/*
1250 	 * Clear some flags initially.
1251 	 */
1252 	pBuffer->force_release = FALSE;
1253 	pBuffer->valid_data = FALSE;
1254 	pBuffer->owned_by_firmware = FALSE;
1255 
1256 	/*
1257 	 * Get a command.
1258 	 */
1259 	cm = mps_alloc_command(sc);
1260 	if (cm == NULL) {
1261 		mps_printf(sc, "%s: no mps requests\n", __func__);
1262 		return (MPS_DIAG_FAILURE);
1263 	}
1264 
1265 	/*
1266 	 * Build the request for releasing the FW Diag Buffer and send it.
1267 	 */
1268 	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1269 	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1270 	req->BufferType = pBuffer->buffer_type;
1271 	cm->cm_data = NULL;
1272 	cm->cm_length = 0;
1273 	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1274 	cm->cm_complete_data = NULL;
1275 
1276 	/*
1277 	 * Send command synchronously.
1278 	 */
1279 	status = mps_wait_command(sc, cm, 30);
1280 	if (status) {
1281 		mps_printf(sc, "%s: invalid request: error %d\n", __func__,
1282 		    status);
1283 		status = MPS_DIAG_FAILURE;
1284 		goto done;
1285 	}
1286 
1287 	/*
1288 	 * Process RELEASE reply.
1289 	 */
1290 	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1291 	if ((reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) ||
1292 	    pBuffer->owned_by_firmware) {
1293 		status = MPS_DIAG_FAILURE;
1294 		mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer "
1295 		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1296 		    __func__, reply->IOCStatus, reply->IOCLogInfo);
1297 		goto done;
1298 	}
1299 
1300 	/*
1301 	 * Release was successful.
1302 	 */
1303 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1304 	status = MPS_DIAG_SUCCESS;
1305 
1306 	/*
1307 	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1308 	 */
1309 	if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) {
1310 		pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID;
1311 	}
1312 
1313 done:
1314 	return (status);
1315 }
1316 
1317 static int
1318 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register,
1319     uint32_t *return_code)
1320 {
1321 	mps_fw_diagnostic_buffer_t	*pBuffer;
1322 	uint8_t				extended_type, buffer_type, i;
1323 	uint32_t			buffer_size;
1324 	uint32_t			unique_id;
1325 	int				status;
1326 
1327 	extended_type = diag_register->ExtendedType;
1328 	buffer_type = diag_register->BufferType;
1329 	buffer_size = diag_register->RequestedBufferSize;
1330 	unique_id = diag_register->UniqueId;
1331 
1332 	/*
1333 	 * Check for valid buffer type
1334 	 */
1335 	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1336 		*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1337 		return (MPS_DIAG_FAILURE);
1338 	}
1339 
1340 	/*
1341 	 * Get the current buffer and look up the unique ID.  The unique ID
1342 	 * should not be found.  If it is, the ID is already in use.
1343 	 */
1344 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1345 	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1346 	if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1347 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1348 		return (MPS_DIAG_FAILURE);
1349 	}
1350 
1351 	/*
1352 	 * The buffer's unique ID should not be registered yet, and the given
1353 	 * unique ID cannot be 0.
1354 	 */
1355 	if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) ||
1356 	    (unique_id == MPS_FW_DIAG_INVALID_UID)) {
1357 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1358 		return (MPS_DIAG_FAILURE);
1359 	}
1360 
1361 	/*
1362 	 * If this buffer is already posted as immediate, just change owner.
1363 	 */
1364 	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1365 	    (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) {
1366 		pBuffer->immediate = FALSE;
1367 		pBuffer->unique_id = unique_id;
1368 		return (MPS_DIAG_SUCCESS);
1369 	}
1370 
1371 	/*
1372 	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1373 	 * that is allocated will be contiguous (nsegments = 1).
1374 	 */
1375 	if (!pBuffer->enabled) {
1376 		*return_code = MPS_FW_DIAG_ERROR_NO_BUFFER;
1377 		return (MPS_DIAG_FAILURE);
1378 	}
1379         if (bus_dma_tag_create( sc->mps_parent_dmat,    /* parent */
1380 				1, 0,			/* algnmnt, boundary */
1381 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1382 				BUS_SPACE_MAXADDR,	/* highaddr */
1383 				NULL, NULL,		/* filter, filterarg */
1384                                 buffer_size,		/* maxsize */
1385                                 1,			/* nsegments */
1386                                 buffer_size,		/* maxsegsize */
1387                                 0,			/* flags */
1388                                 &sc->fw_diag_dmat)) {
1389 		device_printf(sc->mps_dev, "Cannot allocate FW diag buffer DMA "
1390 		    "tag\n");
1391 		return (ENOMEM);
1392         }
1393         if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1394 	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1395 		device_printf(sc->mps_dev, "Cannot allocate FW diag buffer "
1396 		    "memory\n");
1397 		return (ENOMEM);
1398         }
1399         bzero(sc->fw_diag_buffer, buffer_size);
1400         bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer,
1401 	    buffer_size, mps_memaddr_cb, &sc->fw_diag_busaddr, 0);
1402 	pBuffer->size = buffer_size;
1403 
1404 	/*
1405 	 * Copy the given info to the diag buffer and post the buffer.
1406 	 */
1407 	pBuffer->buffer_type = buffer_type;
1408 	pBuffer->immediate = FALSE;
1409 	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1410 		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1411 		    i++) {
1412 			pBuffer->product_specific[i] =
1413 			    diag_register->ProductSpecific[i];
1414 		}
1415 	}
1416 	pBuffer->extended_type = extended_type;
1417 	pBuffer->unique_id = unique_id;
1418 	status = mps_post_fw_diag_buffer(sc, pBuffer, return_code);
1419 
1420 	/*
1421 	 * In case there was a failure, free the DMA buffer.
1422 	 */
1423 	if (status == MPS_DIAG_FAILURE) {
1424 		if (sc->fw_diag_busaddr != 0)
1425 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1426 		if (sc->fw_diag_buffer != NULL)
1427 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1428 			    sc->fw_diag_map);
1429 		if (sc->fw_diag_dmat != NULL)
1430 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1431 	}
1432 
1433 	return (status);
1434 }
1435 
1436 static int
1437 mps_diag_unregister(struct mps_softc *sc,
1438     mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1439 {
1440 	mps_fw_diagnostic_buffer_t	*pBuffer;
1441 	uint8_t				i;
1442 	uint32_t			unique_id;
1443 	int				status;
1444 
1445 	unique_id = diag_unregister->UniqueId;
1446 
1447 	/*
1448 	 * Get the current buffer and look up the unique ID.  The unique ID
1449 	 * should be there.
1450 	 */
1451 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1452 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1453 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1454 		return (MPS_DIAG_FAILURE);
1455 	}
1456 
1457 	pBuffer = &sc->fw_diag_buffer_list[i];
1458 
1459 	/*
1460 	 * Try to release the buffer from FW before freeing it.  If release
1461 	 * fails, don't free the DMA buffer in case FW tries to access it
1462 	 * later.  If buffer is not owned by firmware, can't release it.
1463 	 */
1464 	if (!pBuffer->owned_by_firmware) {
1465 		status = MPS_DIAG_SUCCESS;
1466 	} else {
1467 		status = mps_release_fw_diag_buffer(sc, pBuffer, return_code,
1468 		    MPS_FW_DIAG_TYPE_UNREGISTER);
1469 	}
1470 
1471 	/*
1472 	 * At this point, return the current status no matter what happens with
1473 	 * the DMA buffer.
1474 	 */
1475 	pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID;
1476 	if (status == MPS_DIAG_SUCCESS) {
1477 		if (sc->fw_diag_busaddr != 0)
1478 			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1479 		if (sc->fw_diag_buffer != NULL)
1480 			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1481 			    sc->fw_diag_map);
1482 		if (sc->fw_diag_dmat != NULL)
1483 			bus_dma_tag_destroy(sc->fw_diag_dmat);
1484 	}
1485 
1486 	return (status);
1487 }
1488 
1489 static int
1490 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query,
1491     uint32_t *return_code)
1492 {
1493 	mps_fw_diagnostic_buffer_t	*pBuffer;
1494 	uint8_t				i;
1495 	uint32_t			unique_id;
1496 
1497 	unique_id = diag_query->UniqueId;
1498 
1499 	/*
1500 	 * If ID is valid, query on ID.
1501 	 * If ID is invalid, query on buffer type.
1502 	 */
1503 	if (unique_id == MPS_FW_DIAG_INVALID_UID) {
1504 		i = diag_query->BufferType;
1505 		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1506 			*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1507 			return (MPS_DIAG_FAILURE);
1508 		}
1509 	} else {
1510 		i = mps_get_fw_diag_buffer_number(sc, unique_id);
1511 		if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1512 			*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1513 			return (MPS_DIAG_FAILURE);
1514 		}
1515 	}
1516 
1517 	/*
1518 	 * Fill query structure with the diag buffer info.
1519 	 */
1520 	pBuffer = &sc->fw_diag_buffer_list[i];
1521 	diag_query->BufferType = pBuffer->buffer_type;
1522 	diag_query->ExtendedType = pBuffer->extended_type;
1523 	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1524 		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1525 		    i++) {
1526 			diag_query->ProductSpecific[i] =
1527 			    pBuffer->product_specific[i];
1528 		}
1529 	}
1530 	diag_query->TotalBufferSize = pBuffer->size;
1531 	diag_query->DriverAddedBufferSize = 0;
1532 	diag_query->UniqueId = pBuffer->unique_id;
1533 	diag_query->ApplicationFlags = 0;
1534 	diag_query->DiagnosticFlags = 0;
1535 
1536 	/*
1537 	 * Set/Clear application flags
1538 	 */
1539 	if (pBuffer->immediate) {
1540 		diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED;
1541 	} else {
1542 		diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED;
1543 	}
1544 	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1545 		diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID;
1546 	} else {
1547 		diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID;
1548 	}
1549 	if (pBuffer->owned_by_firmware) {
1550 		diag_query->ApplicationFlags |=
1551 		    MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1552 	} else {
1553 		diag_query->ApplicationFlags &=
1554 		    ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1555 	}
1556 
1557 	return (MPS_DIAG_SUCCESS);
1558 }
1559 
1560 static int
1561 mps_diag_read_buffer(struct mps_softc *sc,
1562     mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1563     uint32_t *return_code)
1564 {
1565 	mps_fw_diagnostic_buffer_t	*pBuffer;
1566 	uint8_t				i, *pData;
1567 	uint32_t			unique_id;
1568 	int				status;
1569 
1570 	unique_id = diag_read_buffer->UniqueId;
1571 
1572 	/*
1573 	 * Get the current buffer and look up the unique ID.  The unique ID
1574 	 * should be there.
1575 	 */
1576 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1577 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1578 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1579 		return (MPS_DIAG_FAILURE);
1580 	}
1581 
1582 	pBuffer = &sc->fw_diag_buffer_list[i];
1583 
1584 	/*
1585 	 * Make sure requested read is within limits
1586 	 */
1587 	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1588 	    pBuffer->size) {
1589 		*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1590 		return (MPS_DIAG_FAILURE);
1591 	}
1592 
1593 	/*
1594 	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1595 	 * buffer that was allocated is one contiguous buffer.
1596 	 */
1597 	pData = (uint8_t *)(sc->fw_diag_buffer +
1598 	    diag_read_buffer->StartingOffset);
1599 	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1600 		return (MPS_DIAG_FAILURE);
1601 	diag_read_buffer->Status = 0;
1602 
1603 	/*
1604 	 * Set or clear the Force Release flag.
1605 	 */
1606 	if (pBuffer->force_release) {
1607 		diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE;
1608 	} else {
1609 		diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE;
1610 	}
1611 
1612 	/*
1613 	 * If buffer is to be reregistered, make sure it's not already owned by
1614 	 * firmware first.
1615 	 */
1616 	status = MPS_DIAG_SUCCESS;
1617 	if (!pBuffer->owned_by_firmware) {
1618 		if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) {
1619 			status = mps_post_fw_diag_buffer(sc, pBuffer,
1620 			    return_code);
1621 		}
1622 	}
1623 
1624 	return (status);
1625 }
1626 
1627 static int
1628 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release,
1629     uint32_t *return_code)
1630 {
1631 	mps_fw_diagnostic_buffer_t	*pBuffer;
1632 	uint8_t				i;
1633 	uint32_t			unique_id;
1634 	int				status;
1635 
1636 	unique_id = diag_release->UniqueId;
1637 
1638 	/*
1639 	 * Get the current buffer and look up the unique ID.  The unique ID
1640 	 * should be there.
1641 	 */
1642 	i = mps_get_fw_diag_buffer_number(sc, unique_id);
1643 	if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1644 		*return_code = MPS_FW_DIAG_ERROR_INVALID_UID;
1645 		return (MPS_DIAG_FAILURE);
1646 	}
1647 
1648 	pBuffer = &sc->fw_diag_buffer_list[i];
1649 
1650 	/*
1651 	 * If buffer is not owned by firmware, it's already been released.
1652 	 */
1653 	if (!pBuffer->owned_by_firmware) {
1654 		*return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED;
1655 		return (MPS_DIAG_FAILURE);
1656 	}
1657 
1658 	/*
1659 	 * Release the buffer.
1660 	 */
1661 	status = mps_release_fw_diag_buffer(sc, pBuffer, return_code,
1662 	    MPS_FW_DIAG_TYPE_RELEASE);
1663 	return (status);
1664 }
1665 
1666 static int
1667 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action,
1668     uint32_t length, uint32_t *return_code)
1669 {
1670 	mps_fw_diag_register_t		diag_register;
1671 	mps_fw_diag_unregister_t	diag_unregister;
1672 	mps_fw_diag_query_t		diag_query;
1673 	mps_diag_read_buffer_t		diag_read_buffer;
1674 	mps_fw_diag_release_t		diag_release;
1675 	int				status = MPS_DIAG_SUCCESS;
1676 	uint32_t			original_return_code;
1677 
1678 	original_return_code = *return_code;
1679 	*return_code = MPS_FW_DIAG_ERROR_SUCCESS;
1680 
1681 	switch (action) {
1682 		case MPS_FW_DIAG_TYPE_REGISTER:
1683 			if (!length) {
1684 				*return_code =
1685 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1686 				status = MPS_DIAG_FAILURE;
1687 				break;
1688 			}
1689 			if (copyin(diag_action, &diag_register,
1690 			    sizeof(diag_register)) != 0)
1691 				return (MPS_DIAG_FAILURE);
1692 			status = mps_diag_register(sc, &diag_register,
1693 			    return_code);
1694 			break;
1695 
1696 		case MPS_FW_DIAG_TYPE_UNREGISTER:
1697 			if (length < sizeof(diag_unregister)) {
1698 				*return_code =
1699 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1700 				status = MPS_DIAG_FAILURE;
1701 				break;
1702 			}
1703 			if (copyin(diag_action, &diag_unregister,
1704 			    sizeof(diag_unregister)) != 0)
1705 				return (MPS_DIAG_FAILURE);
1706 			status = mps_diag_unregister(sc, &diag_unregister,
1707 			    return_code);
1708 			break;
1709 
1710 		case MPS_FW_DIAG_TYPE_QUERY:
1711 			if (length < sizeof (diag_query)) {
1712 				*return_code =
1713 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1714 				status = MPS_DIAG_FAILURE;
1715 				break;
1716 			}
1717 			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1718 			    != 0)
1719 				return (MPS_DIAG_FAILURE);
1720 			status = mps_diag_query(sc, &diag_query, return_code);
1721 			if (status == MPS_DIAG_SUCCESS)
1722 				if (copyout(&diag_query, diag_action,
1723 				    sizeof (diag_query)) != 0)
1724 					return (MPS_DIAG_FAILURE);
1725 			break;
1726 
1727 		case MPS_FW_DIAG_TYPE_READ_BUFFER:
1728 			if (copyin(diag_action, &diag_read_buffer,
1729 			    sizeof(diag_read_buffer)) != 0)
1730 				return (MPS_DIAG_FAILURE);
1731 			if (length < diag_read_buffer.BytesToRead) {
1732 				*return_code =
1733 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1734 				status = MPS_DIAG_FAILURE;
1735 				break;
1736 			}
1737 			status = mps_diag_read_buffer(sc, &diag_read_buffer,
1738 			    PTRIN(diag_read_buffer.PtrDataBuffer),
1739 			    return_code);
1740 			if (status == MPS_DIAG_SUCCESS) {
1741 				if (copyout(&diag_read_buffer, diag_action,
1742 				    sizeof(diag_read_buffer) -
1743 				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1744 				    0)
1745 					return (MPS_DIAG_FAILURE);
1746 			}
1747 			break;
1748 
1749 		case MPS_FW_DIAG_TYPE_RELEASE:
1750 			if (length < sizeof(diag_release)) {
1751 				*return_code =
1752 				    MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1753 				status = MPS_DIAG_FAILURE;
1754 				break;
1755 			}
1756 			if (copyin(diag_action, &diag_release,
1757 			    sizeof(diag_release)) != 0)
1758 				return (MPS_DIAG_FAILURE);
1759 			status = mps_diag_release(sc, &diag_release,
1760 			    return_code);
1761 			break;
1762 
1763 		default:
1764 			*return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER;
1765 			status = MPS_DIAG_FAILURE;
1766 			break;
1767 	}
1768 
1769 	if ((status == MPS_DIAG_FAILURE) &&
1770 	    (original_return_code == MPS_FW_DIAG_NEW) &&
1771 	    (*return_code != MPS_FW_DIAG_ERROR_SUCCESS))
1772 		status = MPS_DIAG_SUCCESS;
1773 
1774 	return (status);
1775 }
1776 
1777 static int
1778 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data)
1779 {
1780 	int			status;
1781 
1782 	/*
1783 	 * Only allow one diag action at one time.
1784 	 */
1785 	if (sc->mps_flags & MPS_FLAGS_BUSY) {
1786 		mps_dprint(sc, MPS_INFO, "%s: Only one FW diag command "
1787 		    "allowed at a single time.", __func__);
1788 		return (EBUSY);
1789 	}
1790 	sc->mps_flags |= MPS_FLAGS_BUSY;
1791 
1792 	/*
1793 	 * Send diag action request
1794 	 */
1795 	if (data->Action == MPS_FW_DIAG_TYPE_REGISTER ||
1796 	    data->Action == MPS_FW_DIAG_TYPE_UNREGISTER ||
1797 	    data->Action == MPS_FW_DIAG_TYPE_QUERY ||
1798 	    data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER ||
1799 	    data->Action == MPS_FW_DIAG_TYPE_RELEASE) {
1800 		status = mps_do_diag_action(sc, data->Action,
1801 		    PTRIN(data->PtrDiagAction), data->Length,
1802 		    &data->ReturnCode);
1803 	} else
1804 		status = EINVAL;
1805 
1806 	sc->mps_flags &= ~MPS_FLAGS_BUSY;
1807 	return (status);
1808 }
1809 
1810 /*
1811  * Copy the event recording mask and the event queue size out.  For
1812  * clarification, the event recording mask (events_to_record) is not the same
1813  * thing as the event mask (event_mask).  events_to_record has a bit set for
1814  * every event type that is to be recorded by the driver, and event_mask has a
1815  * bit cleared for every event that is allowed into the driver from the IOC.
1816  * They really have nothing to do with each other.
1817  */
1818 static void
1819 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data)
1820 {
1821 	uint8_t	i;
1822 
1823 	mps_lock(sc);
1824 	data->Entries = MPS_EVENT_QUEUE_SIZE;
1825 
1826 	for (i = 0; i < 4; i++) {
1827 		data->Types[i] = sc->events_to_record[i];
1828 	}
1829 	mps_unlock(sc);
1830 }
1831 
1832 /*
1833  * Set the driver's event mask according to what's been given.  See
1834  * mps_user_event_query for explanation of the event recording mask and the IOC
1835  * event mask.  It's the app's responsibility to enable event logging by setting
1836  * the bits in events_to_record.  Initially, no events will be logged.
1837  */
1838 static void
1839 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data)
1840 {
1841 	uint8_t	i;
1842 
1843 	mps_lock(sc);
1844 	for (i = 0; i < 4; i++) {
1845 		sc->events_to_record[i] = data->Types[i];
1846 	}
1847 	mps_unlock(sc);
1848 }
1849 
1850 /*
1851  * Copy out the events that have been recorded, up to the max events allowed.
1852  */
1853 static int
1854 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data)
1855 {
1856 	int		status = 0;
1857 	uint32_t	size;
1858 
1859 	mps_lock(sc);
1860 	size = data->Size;
1861 	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
1862 		mps_unlock(sc);
1863 		if (copyout((void *)sc->recorded_events,
1864 		    PTRIN(data->PtrEvents), size) != 0)
1865 			status = EFAULT;
1866 		mps_lock(sc);
1867 	} else {
1868 		/*
1869 		 * data->Size value is not large enough to copy event data.
1870 		 */
1871 		status = EFAULT;
1872 	}
1873 
1874 	/*
1875 	 * Change size value to match the number of bytes that were copied.
1876 	 */
1877 	if (status == 0)
1878 		data->Size = sizeof(sc->recorded_events);
1879 	mps_unlock(sc);
1880 
1881 	return (status);
1882 }
1883 
1884 /*
1885  * Record events into the driver from the IOC if they are not masked.
1886  */
1887 void
1888 mpssas_record_event(struct mps_softc *sc,
1889     MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
1890 {
1891 	uint32_t	event;
1892 	int		i, j;
1893 	uint16_t	event_data_len;
1894 	boolean_t	sendAEN = FALSE;
1895 
1896 	event = event_reply->Event;
1897 
1898 	/*
1899 	 * Generate a system event to let anyone who cares know that a
1900 	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
1901 	 * event mask is set to.
1902 	 */
1903 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
1904 		sendAEN = TRUE;
1905 	}
1906 
1907 	/*
1908 	 * Record the event only if its corresponding bit is set in
1909 	 * events_to_record.  event_index is the index into recorded_events and
1910 	 * event_number is the overall number of an event being recorded since
1911 	 * start-of-day.  event_index will roll over; event_number will never
1912 	 * roll over.
1913 	 */
1914 	i = (uint8_t)(event / 32);
1915 	j = (uint8_t)(event % 32);
1916 	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
1917 		i = sc->event_index;
1918 		sc->recorded_events[i].Type = event;
1919 		sc->recorded_events[i].Number = ++sc->event_number;
1920 		bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH *
1921 		    4);
1922 		event_data_len = event_reply->EventDataLength;
1923 
1924 		if (event_data_len > 0) {
1925 			/*
1926 			 * Limit data to size in m_event entry
1927 			 */
1928 			if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) {
1929 				event_data_len = MPS_MAX_EVENT_DATA_LENGTH;
1930 			}
1931 			for (j = 0; j < event_data_len; j++) {
1932 				sc->recorded_events[i].Data[j] =
1933 				    event_reply->EventData[j];
1934 			}
1935 
1936 			/*
1937 			 * check for index wrap-around
1938 			 */
1939 			if (++i == MPS_EVENT_QUEUE_SIZE) {
1940 				i = 0;
1941 			}
1942 			sc->event_index = (uint8_t)i;
1943 
1944 			/*
1945 			 * Set flag to send the event.
1946 			 */
1947 			sendAEN = TRUE;
1948 		}
1949 	}
1950 
1951 	/*
1952 	 * Generate a system event if flag is set to let anyone who cares know
1953 	 * that an event has occurred.
1954 	 */
1955 	if (sendAEN) {
1956 //SLM-how to send a system event (see kqueue, kevent)
1957 //		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
1958 //		    "SAS", NULL, NULL, DDI_NOSLEEP);
1959 	}
1960 }
1961 
1962 static int
1963 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data)
1964 {
1965 	int	status = 0;
1966 
1967 	switch (data->Command) {
1968 		/*
1969 		 * IO access is not supported.
1970 		 */
1971 		case REG_IO_READ:
1972 		case REG_IO_WRITE:
1973 			mps_dprint(sc, MPS_INFO, "IO access is not supported. "
1974 			    "Use memory access.");
1975 			status = EINVAL;
1976 			break;
1977 
1978 		case REG_MEM_READ:
1979 			data->RegData = mps_regread(sc, data->RegOffset);
1980 			break;
1981 
1982 		case REG_MEM_WRITE:
1983 			mps_regwrite(sc, data->RegOffset, data->RegData);
1984 			break;
1985 
1986 		default:
1987 			status = EINVAL;
1988 			break;
1989 	}
1990 
1991 	return (status);
1992 }
1993 
1994 static int
1995 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data)
1996 {
1997 	uint8_t		bt2dh = FALSE;
1998 	uint8_t		dh2bt = FALSE;
1999 	uint16_t	dev_handle, bus, target;
2000 
2001 	bus = data->Bus;
2002 	target = data->TargetID;
2003 	dev_handle = data->DevHandle;
2004 
2005 	/*
2006 	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2007 	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2008 	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2009 	 * invalid.
2010 	 */
2011 	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2012 		dh2bt = TRUE;
2013 	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2014 		bt2dh = TRUE;
2015 	if (!dh2bt && !bt2dh)
2016 		return (EINVAL);
2017 
2018 	/*
2019 	 * Only handle bus of 0.  Make sure target is within range.
2020 	 */
2021 	if (bt2dh) {
2022 		if (bus != 0)
2023 			return (EINVAL);
2024 
2025 		if (target > sc->max_devices) {
2026 			mps_dprint(sc, MPS_FAULT, "Target ID is out of range "
2027 			   "for Bus/Target to DevHandle mapping.");
2028 			return (EINVAL);
2029 		}
2030 		dev_handle = sc->mapping_table[target].dev_handle;
2031 		if (dev_handle)
2032 			data->DevHandle = dev_handle;
2033 	} else {
2034 		bus = 0;
2035 		target = mps_mapping_get_sas_id_from_handle(sc, dev_handle);
2036 		data->Bus = bus;
2037 		data->TargetID = target;
2038 	}
2039 
2040 	return (0);
2041 }
2042 
2043 static int
2044 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag)
2045 {
2046 	struct mps_softc *sc;
2047 	struct mps_cfg_page_req *page_req;
2048 	struct mps_ext_cfg_page_req *ext_page_req;
2049 	void *mps_page;
2050 	int error, reset_loop;
2051 
2052 	mps_page = NULL;
2053 	sc = dev->si_drv1;
2054 	page_req = arg;
2055 	ext_page_req = arg;
2056 
2057 	switch (cmd) {
2058 	case MPSIO_READ_CFG_HEADER:
2059 		mps_lock(sc);
2060 		error = mps_user_read_cfg_header(sc, page_req);
2061 		mps_unlock(sc);
2062 		break;
2063 	case MPSIO_READ_CFG_PAGE:
2064 		mps_page = kmalloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO);
2065 		error = copyin(page_req->buf, mps_page,
2066 		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2067 		if (error)
2068 			break;
2069 		mps_lock(sc);
2070 		error = mps_user_read_cfg_page(sc, page_req, mps_page);
2071 		mps_unlock(sc);
2072 		if (error)
2073 			break;
2074 		error = copyout(mps_page, page_req->buf, page_req->len);
2075 		break;
2076 	case MPSIO_READ_EXT_CFG_HEADER:
2077 		mps_lock(sc);
2078 		error = mps_user_read_extcfg_header(sc, ext_page_req);
2079 		mps_unlock(sc);
2080 		break;
2081 	case MPSIO_READ_EXT_CFG_PAGE:
2082 		mps_page = kmalloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO);
2083 		error = copyin(ext_page_req->buf, mps_page,
2084 		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2085 		if (error)
2086 			break;
2087 		mps_lock(sc);
2088 		error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page);
2089 		mps_unlock(sc);
2090 		if (error)
2091 			break;
2092 		error = copyout(mps_page, ext_page_req->buf, ext_page_req->len);
2093 		break;
2094 	case MPSIO_WRITE_CFG_PAGE:
2095 		mps_page = kmalloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO);
2096 		error = copyin(page_req->buf, mps_page, page_req->len);
2097 		if (error)
2098 			break;
2099 		mps_lock(sc);
2100 		error = mps_user_write_cfg_page(sc, page_req, mps_page);
2101 		mps_unlock(sc);
2102 		break;
2103 	case MPSIO_MPS_COMMAND:
2104 		error = mps_user_command(sc, (struct mps_usr_command *)arg);
2105 		break;
2106 	case MPTIOCTL_PASS_THRU:
2107 		/*
2108 		 * The user has requested to pass through a command to be
2109 		 * executed by the MPT firmware.  Call our routine which does
2110 		 * this.  Only allow one passthru IOCTL at one time.
2111 		 */
2112 		error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg);
2113 		break;
2114 	case MPTIOCTL_GET_ADAPTER_DATA:
2115 		/*
2116 		 * The user has requested to read adapter data.  Call our
2117 		 * routine which does this.
2118 		 */
2119 		error = 0;
2120 		mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg);
2121 		break;
2122 	case MPTIOCTL_GET_PCI_INFO:
2123 		/*
2124 		 * The user has requested to read pci info.  Call
2125 		 * our routine which does this.
2126 		 */
2127 		mps_lock(sc);
2128 		error = 0;
2129 		mps_user_read_pci_info(sc, (mps_pci_info_t *)arg);
2130 		mps_unlock(sc);
2131 		break;
2132 	case MPTIOCTL_RESET_ADAPTER:
2133 		mps_lock(sc);
2134 		sc->port_enable_complete = 0;
2135 		error = mps_reinit(sc);
2136 		mps_unlock(sc);
2137 		/*
2138 		 * Wait no more than 5 minutes for Port Enable to complete
2139 		 */
2140 		for (reset_loop = 0; (reset_loop < MPS_DIAG_RESET_TIMEOUT) &&
2141 		    (!sc->port_enable_complete); reset_loop++) {
2142 			DELAY(1000);
2143 		}
2144 		if (reset_loop == MPS_DIAG_RESET_TIMEOUT) {
2145 			kprintf("Port Enable did not complete after Diag "
2146 			    "Reset.\n");
2147 		}
2148 		break;
2149 	case MPTIOCTL_DIAG_ACTION:
2150 		/*
2151 		 * The user has done a diag buffer action.  Call our routine
2152 		 * which does this.  Only allow one diag action at one time.
2153 		 */
2154 		mps_lock(sc);
2155 		error = mps_user_diag_action(sc, (mps_diag_action_t *)arg);
2156 		mps_unlock(sc);
2157 		break;
2158 	case MPTIOCTL_EVENT_QUERY:
2159 		/*
2160 		 * The user has done an event query. Call our routine which does
2161 		 * this.
2162 		 */
2163 		error = 0;
2164 		mps_user_event_query(sc, (mps_event_query_t *)arg);
2165 		break;
2166 	case MPTIOCTL_EVENT_ENABLE:
2167 		/*
2168 		 * The user has done an event enable. Call our routine which
2169 		 * does this.
2170 		 */
2171 		error = 0;
2172 		mps_user_event_enable(sc, (mps_event_enable_t *)arg);
2173 		break;
2174 	case MPTIOCTL_EVENT_REPORT:
2175 		/*
2176 		 * The user has done an event report. Call our routine which
2177 		 * does this.
2178 		 */
2179 		error = mps_user_event_report(sc, (mps_event_report_t *)arg);
2180 		break;
2181 	case MPTIOCTL_REG_ACCESS:
2182 		/*
2183 		 * The user has requested register access.  Call our routine
2184 		 * which does this.
2185 		 */
2186 		mps_lock(sc);
2187 		error = mps_user_reg_access(sc, (mps_reg_access_t *)arg);
2188 		mps_unlock(sc);
2189 		break;
2190 	case MPTIOCTL_BTDH_MAPPING:
2191 		/*
2192 		 * The user has requested to translate a bus/target to a
2193 		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2194 		 * which does this.
2195 		 */
2196 		error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg);
2197 		break;
2198 	default:
2199 		error = ENOIOCTL;
2200 		break;
2201 	}
2202 
2203 	if (mps_page != NULL)
2204 		kfree(mps_page, M_MPSUSER);
2205 
2206 	return (error);
2207 }
2208 
2209 #ifdef COMPAT_FREEBSD32
2210 
2211 struct mps_cfg_page_req32 {
2212 	MPI2_CONFIG_PAGE_HEADER header;
2213 	uint32_t page_address;
2214 	uint32_t buf;
2215 	int	len;
2216 	uint16_t ioc_status;
2217 };
2218 
2219 struct mps_ext_cfg_page_req32 {
2220 	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2221 	uint32_t page_address;
2222 	uint32_t buf;
2223 	int	len;
2224 	uint16_t ioc_status;
2225 };
2226 
2227 struct mps_raid_action32 {
2228 	uint8_t action;
2229 	uint8_t volume_bus;
2230 	uint8_t volume_id;
2231 	uint8_t phys_disk_num;
2232 	uint32_t action_data_word;
2233 	uint32_t buf;
2234 	int len;
2235 	uint32_t volume_status;
2236 	uint32_t action_data[4];
2237 	uint16_t action_status;
2238 	uint16_t ioc_status;
2239 	uint8_t write;
2240 };
2241 
2242 struct mps_usr_command32 {
2243 	uint32_t req;
2244 	uint32_t req_len;
2245 	uint32_t rpl;
2246 	uint32_t rpl_len;
2247 	uint32_t buf;
2248 	int len;
2249 	uint32_t flags;
2250 };
2251 
2252 #define	MPSIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mps_cfg_page_req32)
2253 #define	MPSIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mps_cfg_page_req32)
2254 #define	MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32)
2255 #define	MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32)
2256 #define	MPSIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mps_cfg_page_req32)
2257 #define	MPSIO_RAID_ACTION32	_IOWR('M', 205, struct mps_raid_action32)
2258 #define	MPSIO_MPS_COMMAND32	_IOWR('M', 210, struct mps_usr_command32)
2259 
2260 static int
2261 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2262     struct thread *td)
2263 {
2264 	struct mps_cfg_page_req32 *page32 = _arg;
2265 	struct mps_ext_cfg_page_req32 *ext32 = _arg;
2266 	struct mps_raid_action32 *raid32 = _arg;
2267 	struct mps_usr_command32 *user32 = _arg;
2268 	union {
2269 		struct mps_cfg_page_req page;
2270 		struct mps_ext_cfg_page_req ext;
2271 		struct mps_raid_action raid;
2272 		struct mps_usr_command user;
2273 	} arg;
2274 	u_long cmd;
2275 	int error;
2276 
2277 	switch (cmd32) {
2278 	case MPSIO_READ_CFG_HEADER32:
2279 	case MPSIO_READ_CFG_PAGE32:
2280 	case MPSIO_WRITE_CFG_PAGE32:
2281 		if (cmd32 == MPSIO_READ_CFG_HEADER32)
2282 			cmd = MPSIO_READ_CFG_HEADER;
2283 		else if (cmd32 == MPSIO_READ_CFG_PAGE32)
2284 			cmd = MPSIO_READ_CFG_PAGE;
2285 		else
2286 			cmd = MPSIO_WRITE_CFG_PAGE;
2287 		CP(*page32, arg.page, header);
2288 		CP(*page32, arg.page, page_address);
2289 		PTRIN_CP(*page32, arg.page, buf);
2290 		CP(*page32, arg.page, len);
2291 		CP(*page32, arg.page, ioc_status);
2292 		break;
2293 
2294 	case MPSIO_READ_EXT_CFG_HEADER32:
2295 	case MPSIO_READ_EXT_CFG_PAGE32:
2296 		if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32)
2297 			cmd = MPSIO_READ_EXT_CFG_HEADER;
2298 		else
2299 			cmd = MPSIO_READ_EXT_CFG_PAGE;
2300 		CP(*ext32, arg.ext, header);
2301 		CP(*ext32, arg.ext, page_address);
2302 		PTRIN_CP(*ext32, arg.ext, buf);
2303 		CP(*ext32, arg.ext, len);
2304 		CP(*ext32, arg.ext, ioc_status);
2305 		break;
2306 
2307 	case MPSIO_RAID_ACTION32:
2308 		cmd = MPSIO_RAID_ACTION;
2309 		CP(*raid32, arg.raid, action);
2310 		CP(*raid32, arg.raid, volume_bus);
2311 		CP(*raid32, arg.raid, volume_id);
2312 		CP(*raid32, arg.raid, phys_disk_num);
2313 		CP(*raid32, arg.raid, action_data_word);
2314 		PTRIN_CP(*raid32, arg.raid, buf);
2315 		CP(*raid32, arg.raid, len);
2316 		CP(*raid32, arg.raid, volume_status);
2317 		bcopy(raid32->action_data, arg.raid.action_data,
2318 		    sizeof arg.raid.action_data);
2319 		CP(*raid32, arg.raid, ioc_status);
2320 		CP(*raid32, arg.raid, write);
2321 		break;
2322 
2323 	case MPSIO_MPS_COMMAND32:
2324 		cmd = MPSIO_MPS_COMMAND;
2325 		PTRIN_CP(*user32, arg.user, req);
2326 		CP(*user32, arg.user, req_len);
2327 		PTRIN_CP(*user32, arg.user, rpl);
2328 		CP(*user32, arg.user, rpl_len);
2329 		PTRIN_CP(*user32, arg.user, buf);
2330 		CP(*user32, arg.user, len);
2331 		CP(*user32, arg.user, flags);
2332 		break;
2333 	default:
2334 		return (ENOIOCTL);
2335 	}
2336 
2337 	error = mps_ioctl(dev, cmd, &arg, flag, td);
2338 	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2339 		switch (cmd32) {
2340 		case MPSIO_READ_CFG_HEADER32:
2341 		case MPSIO_READ_CFG_PAGE32:
2342 		case MPSIO_WRITE_CFG_PAGE32:
2343 			CP(arg.page, *page32, header);
2344 			CP(arg.page, *page32, page_address);
2345 			PTROUT_CP(arg.page, *page32, buf);
2346 			CP(arg.page, *page32, len);
2347 			CP(arg.page, *page32, ioc_status);
2348 			break;
2349 
2350 		case MPSIO_READ_EXT_CFG_HEADER32:
2351 		case MPSIO_READ_EXT_CFG_PAGE32:
2352 			CP(arg.ext, *ext32, header);
2353 			CP(arg.ext, *ext32, page_address);
2354 			PTROUT_CP(arg.ext, *ext32, buf);
2355 			CP(arg.ext, *ext32, len);
2356 			CP(arg.ext, *ext32, ioc_status);
2357 			break;
2358 
2359 		case MPSIO_RAID_ACTION32:
2360 			CP(arg.raid, *raid32, action);
2361 			CP(arg.raid, *raid32, volume_bus);
2362 			CP(arg.raid, *raid32, volume_id);
2363 			CP(arg.raid, *raid32, phys_disk_num);
2364 			CP(arg.raid, *raid32, action_data_word);
2365 			PTROUT_CP(arg.raid, *raid32, buf);
2366 			CP(arg.raid, *raid32, len);
2367 			CP(arg.raid, *raid32, volume_status);
2368 			bcopy(arg.raid.action_data, raid32->action_data,
2369 			    sizeof arg.raid.action_data);
2370 			CP(arg.raid, *raid32, ioc_status);
2371 			CP(arg.raid, *raid32, write);
2372 			break;
2373 
2374 		case MPSIO_MPS_COMMAND32:
2375 			PTROUT_CP(arg.user, *user32, req);
2376 			CP(arg.user, *user32, req_len);
2377 			PTROUT_CP(arg.user, *user32, rpl);
2378 			CP(arg.user, *user32, rpl_len);
2379 			PTROUT_CP(arg.user, *user32, buf);
2380 			CP(arg.user, *user32, len);
2381 			CP(arg.user, *user32, flags);
2382 			break;
2383 		}
2384 	}
2385 
2386 	return (error);
2387 }
2388 #endif /* COMPAT_FREEBSD32 */
2389 
2390 static int
2391 mps_ioctl_devsw(struct dev_ioctl_args *ap)
2392 {
2393 	cdev_t dev = ap->a_head.a_dev;
2394 	u_long com = ap->a_cmd;
2395 	caddr_t arg = ap->a_data;
2396 	int flag = ap->a_fflag;
2397 
2398 #ifdef COMPAT_FREEBSD32
2399 	if (SV_CURPROC_FLAG(SV_ILP32))
2400 		return (mps_ioctl32(dev, com, arg, flag, td));
2401 #endif
2402 	return (mps_ioctl(dev, com, arg, flag));
2403 }
2404