xref: /dragonfly/sys/dev/raid/twe/twe_freebsd.c (revision a32bc35d)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2003 Paul Saab
4  * Copyright (c) 2003 Vinod Kashyap
5  * Copyright (c) 2000 BSDi
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/twe/twe_freebsd.c,v 1.48 2009/12/25 17:34:43 mav Exp $
30  */
31 
32 /*
33  * FreeBSD-specific code.
34  */
35 
36 #include <dev/raid/twe/twe_compat.h>
37 #include <dev/raid/twe/twereg.h>
38 #include <dev/raid/twe/tweio.h>
39 #include <dev/raid/twe/twevar.h>
40 #include <dev/raid/twe/twe_tables.h>
41 #include <sys/dtype.h>
42 
43 #include <vm/vm.h>
44 
45 static devclass_t	twe_devclass;
46 
47 #ifdef TWE_DEBUG
48 static u_int32_t	twed_bio_in;
49 #define TWED_BIO_IN	twed_bio_in++
50 static u_int32_t	twed_bio_out;
51 #define TWED_BIO_OUT	twed_bio_out++
52 #else
53 #define TWED_BIO_IN
54 #define TWED_BIO_OUT
55 #endif
56 
57 static void	twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
58 static void	twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
59 
60 /********************************************************************************
61  ********************************************************************************
62                                                          Control device interface
63  ********************************************************************************
64  ********************************************************************************/
65 
66 static	d_open_t		twe_open;
67 static	d_close_t		twe_close;
68 static	d_ioctl_t		twe_ioctl_wrapper;
69 
70 static struct dev_ops twe_ops = {
71 	{ "twe", 0, 0 },
72 	.d_open =	twe_open,
73 	.d_close =	twe_close,
74 	.d_ioctl =	twe_ioctl_wrapper,
75 };
76 
77 /********************************************************************************
78  * Accept an open operation on the control device.
79  */
80 static int
81 twe_open(struct dev_open_args *ap)
82 {
83     cdev_t			dev = ap->a_head.a_dev;
84     struct twe_softc		*sc = (struct twe_softc *)dev->si_drv1;
85 
86     sc->twe_state |= TWE_STATE_OPEN;
87     return(0);
88 }
89 
90 /********************************************************************************
91  * Accept the last close on the control device.
92  */
93 static int
94 twe_close(struct dev_close_args *ap)
95 {
96     cdev_t			dev = ap->a_head.a_dev;
97     struct twe_softc		*sc = (struct twe_softc *)dev->si_drv1;
98 
99     sc->twe_state &= ~TWE_STATE_OPEN;
100     return (0);
101 }
102 
103 /********************************************************************************
104  * Handle controller-specific control operations.
105  */
106 static int
107 twe_ioctl_wrapper(struct dev_ioctl_args *ap)
108 {
109     cdev_t dev = ap->a_head.a_dev;
110     u_long cmd = ap->a_cmd;
111     caddr_t addr = ap->a_data;
112     struct twe_softc *sc = (struct twe_softc *)dev->si_drv1;
113 
114     return(twe_ioctl(sc, cmd, addr));
115 }
116 
117 /********************************************************************************
118  ********************************************************************************
119                                                              PCI device interface
120  ********************************************************************************
121  ********************************************************************************/
122 
123 static int	twe_probe(device_t dev);
124 static int	twe_attach(device_t dev);
125 static void	twe_free(struct twe_softc *sc);
126 static int	twe_detach(device_t dev);
127 static int	twe_shutdown(device_t dev);
128 static int	twe_suspend(device_t dev);
129 static int	twe_resume(device_t dev);
130 static void	twe_pci_intr(void *arg);
131 static void	twe_intrhook(void *arg);
132 
133 static device_method_t twe_methods[] = {
134     /* Device interface */
135     DEVMETHOD(device_probe,	twe_probe),
136     DEVMETHOD(device_attach,	twe_attach),
137     DEVMETHOD(device_detach,	twe_detach),
138     DEVMETHOD(device_shutdown,	twe_shutdown),
139     DEVMETHOD(device_suspend,	twe_suspend),
140     DEVMETHOD(device_resume,	twe_resume),
141 
142     DEVMETHOD(bus_print_child,	bus_generic_print_child),
143     DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
144     { 0, 0 }
145 };
146 
147 static driver_t twe_pci_driver = {
148 	"twe",
149 	twe_methods,
150 	sizeof(struct twe_softc)
151 };
152 
153 DRIVER_MODULE(twe, pci, twe_pci_driver, twe_devclass, NULL, NULL);
154 
155 /********************************************************************************
156  * Match a 3ware Escalade ATA RAID controller.
157  */
158 static int
159 twe_probe(device_t dev)
160 {
161 
162     debug_called(4);
163 
164     if ((pci_get_vendor(dev) == TWE_VENDOR_ID) &&
165 	((pci_get_device(dev) == TWE_DEVICE_ID) ||
166 	 (pci_get_device(dev) == TWE_DEVICE_ID_ASIC))) {
167 	device_set_desc_copy(dev, TWE_DEVICE_NAME ". Driver version " TWE_DRIVER_VERSION_STRING);
168 	return(BUS_PROBE_DEFAULT);
169     }
170     return(ENXIO);
171 }
172 
173 /********************************************************************************
174  * Allocate resources, initialise the controller.
175  */
176 static int
177 twe_attach(device_t dev)
178 {
179     struct twe_softc	*sc;
180     int			rid, error;
181     u_int32_t		command;
182 
183     debug_called(4);
184 
185     /*
186      * Initialise the softc structure.
187      */
188     sc = device_get_softc(dev);
189     sc->twe_dev = dev;
190 
191     sysctl_ctx_init(&sc->sysctl_ctx);
192     sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
193 	SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
194 	device_get_nameunit(dev), CTLFLAG_RD, 0, "");
195     if (sc->sysctl_tree == NULL) {
196 	twe_printf(sc, "cannot add sysctl tree node\n");
197 	return (ENXIO);
198     }
199     SYSCTL_ADD_STRING(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
200 	OID_AUTO, "driver_version", CTLFLAG_RD, TWE_DRIVER_VERSION_STRING, 0,
201 	"TWE driver version");
202 
203     /*
204      * Make sure we are going to be able to talk to this board.
205      */
206     command = pci_read_config(dev, PCIR_COMMAND, 2);
207     if ((command & PCIM_CMD_PORTEN) == 0) {
208 	twe_printf(sc, "register window not available\n");
209 	return(ENXIO);
210     }
211     /*
212      * Force the busmaster enable bit on, in case the BIOS forgot.
213      */
214     command |= PCIM_CMD_BUSMASTEREN;
215     pci_write_config(dev, PCIR_COMMAND, command, 2);
216 
217     /*
218      * Allocate the PCI register window.
219      */
220     rid = TWE_IO_CONFIG_REG;
221     if ((sc->twe_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
222         RF_ACTIVE)) == NULL) {
223 	twe_printf(sc, "can't allocate register window\n");
224 	twe_free(sc);
225 	return(ENXIO);
226     }
227     sc->twe_btag = rman_get_bustag(sc->twe_io);
228     sc->twe_bhandle = rman_get_bushandle(sc->twe_io);
229 
230     /*
231      * Allocate the parent bus DMA tag appropriate for PCI.
232      */
233     if (bus_dma_tag_create(NULL, 				/* parent */
234 			   1, 0, 				/* alignment, boundary */
235 			   BUS_SPACE_MAXADDR_32BIT, 		/* lowaddr */
236 			   BUS_SPACE_MAXADDR, 			/* highaddr */
237 			   NULL, NULL, 				/* filter, filterarg */
238 			   MAXBSIZE, TWE_MAX_SGL_LENGTH,	/* maxsize, nsegments */
239 			   BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
240 			   0,					/* flags */
241 			   &sc->twe_parent_dmat)) {
242 	twe_printf(sc, "can't allocate parent DMA tag\n");
243 	twe_free(sc);
244 	return(ENOMEM);
245     }
246 
247     /*
248      * Allocate and connect our interrupt.
249      */
250     rid = 0;
251     if ((sc->twe_irq = bus_alloc_resource_any(sc->twe_dev, SYS_RES_IRQ,
252         &rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
253 	twe_printf(sc, "can't allocate interrupt\n");
254 	twe_free(sc);
255 	return(ENXIO);
256     }
257     if (bus_setup_intr(sc->twe_dev, sc->twe_irq, 0,
258 			twe_pci_intr, sc, &sc->twe_intr, NULL)) {
259 	twe_printf(sc, "can't set up interrupt\n");
260 	twe_free(sc);
261 	return(ENXIO);
262     }
263 
264     /*
265      * Create DMA tag for mapping command's into controller-addressable space.
266      */
267     if (bus_dma_tag_create(sc->twe_parent_dmat, 	/* parent */
268 			   1, 0, 			/* alignment, boundary */
269 			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
270 			   BUS_SPACE_MAXADDR, 		/* highaddr */
271 			   NULL, NULL, 			/* filter, filterarg */
272 			   sizeof(TWE_Command) *
273 			   TWE_Q_LENGTH, 1,		/* maxsize, nsegments */
274 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
275 			   0,				/* flags */
276 			   &sc->twe_cmd_dmat)) {
277 	twe_printf(sc, "can't allocate data buffer DMA tag\n");
278 	twe_free(sc);
279 	return(ENOMEM);
280     }
281     /*
282      * Allocate memory and make it available for DMA.
283      */
284     if (bus_dmamem_alloc(sc->twe_cmd_dmat, (void **)&sc->twe_cmd,
285 			 BUS_DMA_NOWAIT, &sc->twe_cmdmap)) {
286 	twe_printf(sc, "can't allocate command memory\n");
287 	return(ENOMEM);
288     }
289     bus_dmamap_load(sc->twe_cmd_dmat, sc->twe_cmdmap, sc->twe_cmd,
290 		    sizeof(TWE_Command) * TWE_Q_LENGTH,
291 		    twe_setup_request_dmamap, sc, 0);
292     bzero(sc->twe_cmd, sizeof(TWE_Command) * TWE_Q_LENGTH);
293 
294     /*
295      * Create DMA tag for mapping objects into controller-addressable space.
296      */
297     if (bus_dma_tag_create(sc->twe_parent_dmat, 	/* parent */
298 			   1, 0, 			/* alignment, boundary */
299 			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
300 			   BUS_SPACE_MAXADDR, 		/* highaddr */
301 			   NULL, NULL, 			/* filter, filterarg */
302 			   MAXBSIZE, TWE_MAX_SGL_LENGTH,/* maxsize, nsegments */
303 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
304 			   BUS_DMA_ALLOCNOW,		/* flags */
305 			   &sc->twe_buffer_dmat)) {
306 	twe_printf(sc, "can't allocate data buffer DMA tag\n");
307 	twe_free(sc);
308 	return(ENOMEM);
309     }
310 
311     /*
312      * Create DMA tag for mapping objects into controller-addressable space.
313      */
314     if (bus_dma_tag_create(sc->twe_parent_dmat, 	/* parent */
315 			   1, 0, 			/* alignment, boundary */
316 			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
317 			   BUS_SPACE_MAXADDR, 		/* highaddr */
318 			   NULL, NULL, 			/* filter, filterarg */
319 			   MAXBSIZE, 1,			/* maxsize, nsegments */
320 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
321 			   0,				/* flags */
322 			   &sc->twe_immediate_dmat)) {
323 	twe_printf(sc, "can't allocate data buffer DMA tag\n");
324 	twe_free(sc);
325 	return(ENOMEM);
326     }
327     /*
328      * Allocate memory for requests which cannot sleep or support continuation.
329      */
330      if (bus_dmamem_alloc(sc->twe_immediate_dmat, (void **)&sc->twe_immediate,
331 			  BUS_DMA_NOWAIT, &sc->twe_immediate_map)) {
332 	twe_printf(sc, "can't allocate memory for immediate requests\n");
333 	return(ENOMEM);
334      }
335 
336     /*
337      * Initialise the controller and driver core.
338      */
339     if ((error = twe_setup(sc))) {
340 	twe_free(sc);
341 	return(error);
342     }
343 
344     /*
345      * Print some information about the controller and configuration.
346      */
347     twe_describe_controller(sc);
348 
349     /*
350      * Create the control device.
351      */
352     sc->twe_dev_t = make_dev(&twe_ops, device_get_unit(sc->twe_dev),
353 			     UID_ROOT, GID_OPERATOR,
354 			     S_IRUSR | S_IWUSR, "twe%d",
355 			     device_get_unit(sc->twe_dev));
356     sc->twe_dev_t->si_drv1 = sc;
357 
358     /*
359      * Schedule ourselves to bring the controller up once interrupts are
360      * available.  This isn't strictly necessary, since we disable
361      * interrupts while probing the controller, but it is more in keeping
362      * with common practice for other disk devices.
363      */
364     sc->twe_ich.ich_func = twe_intrhook;
365     sc->twe_ich.ich_arg = sc;
366     if (config_intrhook_establish(&sc->twe_ich) != 0) {
367 	twe_printf(sc, "can't establish configuration hook\n");
368 	twe_free(sc);
369 	return(ENXIO);
370     }
371 
372     return(0);
373 }
374 
375 /********************************************************************************
376  * Free all of the resources associated with (sc).
377  *
378  * Should not be called if the controller is active.
379  */
380 static void
381 twe_free(struct twe_softc *sc)
382 {
383     struct twe_request	*tr;
384 
385     debug_called(4);
386 
387     /* throw away any command buffers */
388     while ((tr = twe_dequeue_free(sc)) != NULL)
389 	twe_free_request(tr);
390 
391     if (sc->twe_cmd != NULL) {
392 	bus_dmamap_unload(sc->twe_cmd_dmat, sc->twe_cmdmap);
393 	bus_dmamem_free(sc->twe_cmd_dmat, sc->twe_cmd, sc->twe_cmdmap);
394     }
395 
396     if (sc->twe_immediate != NULL) {
397 	bus_dmamap_unload(sc->twe_immediate_dmat, sc->twe_immediate_map);
398 	bus_dmamem_free(sc->twe_immediate_dmat, sc->twe_immediate,
399 			sc->twe_immediate_map);
400     }
401 
402     if (sc->twe_immediate_dmat)
403 	bus_dma_tag_destroy(sc->twe_immediate_dmat);
404 
405     /* destroy the data-transfer DMA tag */
406     if (sc->twe_buffer_dmat)
407 	bus_dma_tag_destroy(sc->twe_buffer_dmat);
408 
409     /* disconnect the interrupt handler */
410     if (sc->twe_intr)
411 	bus_teardown_intr(sc->twe_dev, sc->twe_irq, sc->twe_intr);
412     if (sc->twe_irq != NULL)
413 	bus_release_resource(sc->twe_dev, SYS_RES_IRQ, 0, sc->twe_irq);
414 
415     /* destroy the parent DMA tag */
416     if (sc->twe_parent_dmat)
417 	bus_dma_tag_destroy(sc->twe_parent_dmat);
418 
419     /* release the register window mapping */
420     if (sc->twe_io != NULL)
421 	bus_release_resource(sc->twe_dev, SYS_RES_IOPORT, TWE_IO_CONFIG_REG, sc->twe_io);
422 
423     dev_ops_remove_minor(&twe_ops, device_get_unit(sc->twe_dev));
424 
425     /* destroy control device */
426     if (sc->twe_dev_t != NULL)
427 	destroy_dev(sc->twe_dev_t);
428 
429     sysctl_ctx_free(&sc->sysctl_ctx);
430 }
431 
432 /********************************************************************************
433  * Disconnect from the controller completely, in preparation for unload.
434  */
435 static int
436 twe_detach(device_t dev)
437 {
438     struct twe_softc	*sc = device_get_softc(dev);
439     int			error;
440 
441     debug_called(4);
442 
443     error = EBUSY;
444     crit_enter();
445     if (sc->twe_state & TWE_STATE_OPEN)
446 	goto out;
447 
448     /*
449      * Shut the controller down.
450      */
451     if (twe_shutdown(dev))
452 	goto out;
453 
454     twe_free(sc);
455 
456     error = 0;
457  out:
458     crit_exit();
459     return(error);
460 }
461 
462 /********************************************************************************
463  * Bring the controller down to a dormant state and detach all child devices.
464  *
465  * Note that we can assume that the bioq on the controller is empty, as we won't
466  * allow shutdown if any device is open.
467  */
468 static int
469 twe_shutdown(device_t dev)
470 {
471     struct twe_softc	*sc = device_get_softc(dev);
472     int			i, error = 0;
473 
474     debug_called(4);
475 
476     crit_enter();
477 
478     /*
479      * Delete all our child devices.
480      */
481     for (i = 0; i < TWE_MAX_UNITS; i++) {
482 	if (sc->twe_drive[i].td_disk != 0) {
483 	    if ((error = twe_detach_drive(sc, i)) != 0)
484 		goto out;
485 	}
486     }
487 
488     /*
489      * Bring the controller down.
490      */
491     twe_deinit(sc);
492 
493 out:
494     crit_exit();
495     return(error);
496 }
497 
498 /********************************************************************************
499  * Bring the controller to a quiescent state, ready for system suspend.
500  */
501 static int
502 twe_suspend(device_t dev)
503 {
504     struct twe_softc	*sc = device_get_softc(dev);
505 
506     debug_called(4);
507 
508     crit_enter();
509     sc->twe_state |= TWE_STATE_SUSPEND;
510 
511     twe_disable_interrupts(sc);
512     crit_exit();
513 
514     return(0);
515 }
516 
517 /********************************************************************************
518  * Bring the controller back to a state ready for operation.
519  */
520 static int
521 twe_resume(device_t dev)
522 {
523     struct twe_softc	*sc = device_get_softc(dev);
524 
525     debug_called(4);
526 
527     sc->twe_state &= ~TWE_STATE_SUSPEND;
528     twe_enable_interrupts(sc);
529 
530     return(0);
531 }
532 
533 /*******************************************************************************
534  * Take an interrupt, or be poked by other code to look for interrupt-worthy
535  * status.
536  */
537 static void
538 twe_pci_intr(void *arg)
539 {
540     twe_intr((struct twe_softc *)arg);
541 }
542 
543 /********************************************************************************
544  * Delayed-startup hook
545  */
546 static void
547 twe_intrhook(void *arg)
548 {
549     struct twe_softc		*sc = (struct twe_softc *)arg;
550 
551     /* pull ourselves off the intrhook chain */
552     config_intrhook_disestablish(&sc->twe_ich);
553 
554     /* call core startup routine */
555     twe_init(sc);
556 }
557 
558 /********************************************************************************
559  * Given a detected drive, attach it to the bio interface.
560  *
561  * This is called from twe_add_unit.
562  */
563 int
564 twe_attach_drive(struct twe_softc *sc, struct twe_drive *dr)
565 {
566     char	buf[80];
567     int		error;
568 
569     dr->td_disk =  device_add_child(sc->twe_dev, NULL, -1);
570     if (dr->td_disk == NULL) {
571 	twe_printf(sc, "Cannot add unit\n");
572 	return (EIO);
573     }
574     device_set_ivars(dr->td_disk, dr);
575 
576     /*
577      * XXX It would make sense to test the online/initialising bits, but they seem to be
578      * always set...
579      */
580     ksprintf(buf, "Unit %d, %s, %s",
581 	    dr->td_twe_unit,
582 	    twe_describe_code(twe_table_unittype, dr->td_type),
583 	    twe_describe_code(twe_table_unitstate, dr->td_state & TWE_PARAM_UNITSTATUS_MASK));
584     device_set_desc_copy(dr->td_disk, buf);
585 
586     if ((error = bus_generic_attach(sc->twe_dev)) != 0) {
587 	twe_printf(sc, "Cannot attach unit to controller. error = %d\n", error);
588 	return (EIO);
589     }
590     return (0);
591 }
592 
593 /********************************************************************************
594  * Detach the specified unit if it exsists
595  *
596  * This is called from twe_del_unit.
597  */
598 int
599 twe_detach_drive(struct twe_softc *sc, int unit)
600 {
601     int error = 0;
602 
603     if ((error = device_delete_child(sc->twe_dev, sc->twe_drive[unit].td_disk)) != 0) {
604 	twe_printf(sc, "failed to delete unit %d\n", unit);
605 	return(error);
606     }
607     bzero(&sc->twe_drive[unit], sizeof(sc->twe_drive[unit]));
608     return(error);
609 }
610 
611 /********************************************************************************
612  * Clear a PCI parity error.
613  */
614 void
615 twe_clear_pci_parity_error(struct twe_softc *sc)
616 {
617     TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PARITY_ERROR);
618     pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
619 }
620 
621 /********************************************************************************
622  * Clear a PCI abort.
623  */
624 void
625 twe_clear_pci_abort(struct twe_softc *sc)
626 {
627     TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PCI_ABORT);
628     pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
629 }
630 
631 /********************************************************************************
632  ********************************************************************************
633                                                                       Disk device
634  ********************************************************************************
635  ********************************************************************************/
636 
637 /*
638  * Disk device bus interface
639  */
640 static int twed_probe(device_t dev);
641 static int twed_attach(device_t dev);
642 static int twed_detach(device_t dev);
643 
644 static device_method_t twed_methods[] = {
645     DEVMETHOD(device_probe,	twed_probe),
646     DEVMETHOD(device_attach,	twed_attach),
647     DEVMETHOD(device_detach,	twed_detach),
648     { 0, 0 }
649 };
650 
651 static driver_t twed_driver = {
652     "twed",
653     twed_methods,
654     sizeof(struct twed_softc)
655 };
656 
657 static devclass_t	twed_devclass;
658 DRIVER_MODULE(twed, twe, twed_driver, twed_devclass, NULL, NULL);
659 
660 /*
661  * Disk device control interface.
662  */
663 static	d_open_t	twed_open;
664 static	d_close_t	twed_close;
665 static	d_strategy_t	twed_strategy;
666 static	d_dump_t	twed_dump;
667 
668 static struct dev_ops twed_ops = {
669 	{ "twed", 0, D_DISK },
670 	.d_open =	twed_open,
671 	.d_close =	twed_close,
672 	.d_read =	physread,
673 	.d_write =	physwrite,
674 	.d_strategy =	twed_strategy,
675 	.d_dump =	twed_dump,
676 };
677 
678 /********************************************************************************
679  * Handle open from generic layer.
680  *
681  * Note that this is typically only called by the diskslice code, and not
682  * for opens on subdevices (eg. slices, partitions).
683  */
684 static int
685 twed_open(struct dev_open_args *ap)
686 {
687     cdev_t dev = ap->a_head.a_dev;
688     struct twed_softc	*sc = (struct twed_softc *)dev->si_drv1;
689 
690     debug_called(4);
691 
692     if (sc == NULL)
693 	return (ENXIO);
694 
695     /* check that the controller is up and running */
696     if (sc->twed_controller->twe_state & TWE_STATE_SHUTDOWN)
697 	return(ENXIO);
698 
699     sc->twed_flags |= TWED_OPEN;
700     return (0);
701 }
702 
703 /********************************************************************************
704  * Handle last close of the disk device.
705  */
706 static int
707 twed_close(struct dev_close_args *ap)
708 {
709     cdev_t dev = ap->a_head.a_dev;
710     struct twed_softc	*sc = (struct twed_softc *)dev->si_drv1;
711 
712     debug_called(4);
713 
714     if (sc == NULL)
715 	return (ENXIO);
716 
717     sc->twed_flags &= ~TWED_OPEN;
718     return (0);
719 }
720 
721 /********************************************************************************
722  * Handle an I/O request.
723  */
724 static int
725 twed_strategy(struct dev_strategy_args *ap)
726 {
727     cdev_t dev = ap->a_head.a_dev;
728     struct bio *bio = ap->a_bio;
729     struct twed_softc *sc = dev->si_drv1;
730     struct buf *bp = bio->bio_buf;
731 
732     bio->bio_driver_info = sc;
733 
734     debug_called(4);
735 
736     TWED_BIO_IN;
737 
738     /* bogus disk? */
739     if (sc == NULL || sc->twed_drive->td_disk == NULL) {
740 	bp->b_error = EINVAL;
741 	bp->b_flags |= B_ERROR;
742 	kprintf("twe: bio for invalid disk!\n");
743 	biodone(bio);
744 	TWED_BIO_OUT;
745 	return(0);
746     }
747 
748     /* perform accounting */
749     devstat_start_transaction(&sc->twed_stats);
750 
751     /* queue the bio on the controller */
752     twe_enqueue_bio(sc->twed_controller, bio);
753 
754     /* poke the controller to start I/O */
755     twe_startio(sc->twed_controller);
756     return(0);
757 }
758 
759 /********************************************************************************
760  * System crashdump support
761  */
762 static int
763 twed_dump(struct dev_dump_args *ap)
764 {
765     cdev_t dev = ap->a_head.a_dev;
766     size_t length = ap->a_length;
767     off_t offset = ap->a_offset;
768     void *virtual = ap->a_virtual;
769     struct twed_softc	*twed_sc;
770     struct twe_softc	*twe_sc;
771     int			error;
772 
773     twed_sc = dev->si_drv1;
774     if (twed_sc == NULL)
775 	return(ENXIO);
776     twe_sc  = (struct twe_softc *)twed_sc->twed_controller;
777 
778     if (length > 0) {
779 	if ((error = twe_dump_blocks(twe_sc, twed_sc->twed_drive->td_twe_unit, offset / TWE_BLOCK_SIZE, virtual, length / TWE_BLOCK_SIZE)) != 0)
780 	    return(error);
781     }
782     return(0);
783 }
784 
785 /********************************************************************************
786  * Handle completion of an I/O request.
787  */
788 void
789 twed_intr(struct bio *bio)
790 {
791     struct buf *bp = bio->bio_buf;
792     struct twed_softc *sc = bio->bio_driver_info;
793 
794     debug_called(4);
795 
796     /* if no error, transfer completed */
797     if ((bp->b_flags & B_ERROR) == 0)
798 	bp->b_resid = 0;
799     devstat_end_transaction_buf(&sc->twed_stats, bp);
800     biodone(bio);
801     TWED_BIO_OUT;
802 }
803 
804 /********************************************************************************
805  * Default probe stub.
806  */
807 static int
808 twed_probe(device_t dev)
809 {
810     return (0);
811 }
812 
813 /********************************************************************************
814  * Attach a unit to the controller.
815  */
816 static int
817 twed_attach(device_t dev)
818 {
819     struct twed_softc	*sc;
820     struct disk_info	info;
821     device_t		parent;
822     cdev_t		dsk;
823 
824     debug_called(4);
825 
826     /* initialise our softc */
827     sc = device_get_softc(dev);
828     parent = device_get_parent(dev);
829     sc->twed_controller = (struct twe_softc *)device_get_softc(parent);
830     sc->twed_drive = device_get_ivars(dev);
831     sc->twed_dev = dev;
832 
833     /* report the drive */
834     twed_printf(sc, "%uMB (%u sectors)\n",
835 		sc->twed_drive->td_size / ((1024 * 1024) / TWE_BLOCK_SIZE),
836 		sc->twed_drive->td_size);
837 
838     /* attach a generic disk device to ourselves */
839 
840     sc->twed_drive->td_sys_unit = device_get_unit(dev);
841 
842     devstat_add_entry(&sc->twed_stats, "twed", sc->twed_drive->td_sys_unit,
843 			TWE_BLOCK_SIZE,
844 			DEVSTAT_NO_ORDERED_TAGS,
845 			DEVSTAT_TYPE_STORARRAY | DEVSTAT_TYPE_IF_OTHER,
846 			DEVSTAT_PRIORITY_ARRAY);
847 
848     dsk = disk_create(sc->twed_drive->td_sys_unit, &sc->twed_disk, &twed_ops);
849     dsk->si_drv1 = sc;
850     sc->twed_dev_t = dsk;
851 
852     /* set the maximum I/O size to the theoretical maximum allowed by the S/G list size */
853     dsk->si_iosize_max = (TWE_MAX_SGL_LENGTH - 1) * PAGE_SIZE;
854 
855     /*
856      * Set disk info, as it appears that all needed data is available already.
857      * Setting the disk info will also cause the probing to start.
858      */
859     bzero(&info, sizeof(info));
860     info.d_media_blksize    = TWE_BLOCK_SIZE;	/* mandatory */
861     info.d_media_blocks	    = sc->twed_drive->td_size;
862 
863     info.d_type		= DTYPE_ESDI;		/* optional */
864     info.d_secpertrack	= sc->twed_drive->td_sectors;
865     info.d_nheads	= sc->twed_drive->td_heads;
866     info.d_ncylinders	= sc->twed_drive->td_cylinders;
867     info.d_secpercyl	= sc->twed_drive->td_sectors * sc->twed_drive->td_heads;
868 
869     disk_setdiskinfo(&sc->twed_disk, &info);
870 
871     return (0);
872 }
873 
874 /********************************************************************************
875  * Disconnect ourselves from the system.
876  */
877 static int
878 twed_detach(device_t dev)
879 {
880     struct twed_softc *sc = (struct twed_softc *)device_get_softc(dev);
881 
882     debug_called(4);
883 
884     if (sc->twed_flags & TWED_OPEN)
885 	return(EBUSY);
886 
887     devstat_remove_entry(&sc->twed_stats);
888     disk_destroy(&sc->twed_disk);
889 
890     return(0);
891 }
892 
893 /********************************************************************************
894  ********************************************************************************
895                                                                              Misc
896  ********************************************************************************
897  ********************************************************************************/
898 
899 /********************************************************************************
900  * Allocate a command buffer
901  */
902 MALLOC_DEFINE(TWE_MALLOC_CLASS, "twe_commands", "twe commands");
903 
904 struct twe_request *
905 twe_allocate_request(struct twe_softc *sc, int tag)
906 {
907     struct twe_request	*tr;
908 	int aligned_size;
909 
910     /*
911      * TWE requires requests to be 512-byte aligned.  Depend on malloc()
912      * guarenteeing alignment for power-of-2 requests.  Note that the old
913      * (FreeBSD-4.x) malloc code aligned all requests, but the new slab
914      * allocator only guarentees same-size alignment for power-of-2 requests.
915      */
916     aligned_size = (sizeof(struct twe_request) + TWE_ALIGNMASK) &
917            ~TWE_ALIGNMASK;
918     tr = kmalloc(aligned_size, TWE_MALLOC_CLASS, M_INTWAIT|M_ZERO);
919     tr->tr_sc = sc;
920     tr->tr_tag = tag;
921     if (bus_dmamap_create(sc->twe_buffer_dmat, 0, &tr->tr_dmamap)) {
922 	twe_free_request(tr);
923 	twe_printf(sc, "unable to allocate dmamap for tag %d\n", tag);
924 	return(NULL);
925     }
926     return(tr);
927 }
928 
929 /********************************************************************************
930  * Permanently discard a command buffer.
931  */
932 void
933 twe_free_request(struct twe_request *tr)
934 {
935     struct twe_softc	*sc = tr->tr_sc;
936 
937     debug_called(4);
938 
939     bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_dmamap);
940     kfree(tr, TWE_MALLOC_CLASS);
941 }
942 
943 /********************************************************************************
944  * Map/unmap (tr)'s command and data in the controller's addressable space.
945  *
946  * These routines ensure that the data which the controller is going to try to
947  * access is actually visible to the controller, in a machine-independant
948  * fashion.  Due to a hardware limitation, I/O buffers must be 512-byte aligned
949  * and we take care of that here as well.
950  */
951 static void
952 twe_fillin_sgl(TWE_SG_Entry *sgl, bus_dma_segment_t *segs, int nsegments, int max_sgl)
953 {
954     int i;
955 
956     for (i = 0; i < nsegments; i++) {
957 	sgl[i].address = segs[i].ds_addr;
958 	sgl[i].length = segs[i].ds_len;
959     }
960     for (; i < max_sgl; i++) {				/* XXX necessary? */
961 	sgl[i].address = 0;
962 	sgl[i].length = 0;
963     }
964 }
965 
966 static void
967 twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
968 {
969     struct twe_request	*tr = (struct twe_request *)arg;
970     struct twe_softc	*sc = tr->tr_sc;
971     TWE_Command		*cmd = TWE_FIND_COMMAND(tr);
972 
973     debug_called(4);
974 
975     if (tr->tr_flags & TWE_CMD_MAPPED)
976 	panic("already mapped command");
977 
978     tr->tr_flags |= TWE_CMD_MAPPED;
979 
980     if (tr->tr_flags & TWE_CMD_IN_PROGRESS)
981 	sc->twe_state &= ~TWE_STATE_FRZN;
982     /* save base of first segment in command (applicable if there only one segment) */
983     tr->tr_dataphys = segs[0].ds_addr;
984 
985     /* correct command size for s/g list size */
986     cmd->generic.size += 2 * nsegments;
987 
988     /*
989      * Due to the fact that parameter and I/O commands have the scatter/gather list in
990      * different places, we need to determine which sort of command this actually is
991      * before we can populate it correctly.
992      */
993     switch(cmd->generic.opcode) {
994     case TWE_OP_GET_PARAM:
995     case TWE_OP_SET_PARAM:
996 	cmd->generic.sgl_offset = 2;
997 	twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
998 	break;
999     case TWE_OP_READ:
1000     case TWE_OP_WRITE:
1001 	cmd->generic.sgl_offset = 3;
1002 	twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
1003 	break;
1004     case TWE_OP_ATA_PASSTHROUGH:
1005 	cmd->generic.sgl_offset = 5;
1006 	twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
1007 	break;
1008     default:
1009 	/*
1010 	 * Fall back to what the linux driver does.
1011 	 * Do this because the API may send an opcode
1012 	 * the driver knows nothing about and this will
1013 	 * at least stop PCIABRT's from hosing us.
1014 	 */
1015 	switch (cmd->generic.sgl_offset) {
1016 	case 2:
1017 	    twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
1018 	    break;
1019 	case 3:
1020 	    twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
1021 	    break;
1022 	case 5:
1023 	    twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
1024 	    break;
1025 	}
1026     }
1027 
1028     if (tr->tr_flags & TWE_CMD_DATAIN) {
1029 	if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1030 	    bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1031 			    BUS_DMASYNC_PREREAD);
1032 	} else {
1033 	    bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1034 			    BUS_DMASYNC_PREREAD);
1035 	}
1036     }
1037 
1038     if (tr->tr_flags & TWE_CMD_DATAOUT) {
1039 	/*
1040 	 * if we're using an alignment buffer, and we're writing data
1041 	 * copy the real data out
1042 	 */
1043 	if (tr->tr_flags & TWE_CMD_ALIGNBUF)
1044 	    bcopy(tr->tr_realdata, tr->tr_data, tr->tr_length);
1045 
1046 	if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1047 	    bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1048 			    BUS_DMASYNC_PREWRITE);
1049 	} else {
1050 	    bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1051 			    BUS_DMASYNC_PREWRITE);
1052 	}
1053     }
1054 
1055     if (twe_start(tr) == EBUSY) {
1056 	tr->tr_sc->twe_state |= TWE_STATE_CTLR_BUSY;
1057 	twe_requeue_ready(tr);
1058     }
1059 }
1060 
1061 static void
1062 twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
1063 {
1064     struct twe_softc	*sc = (struct twe_softc *)arg;
1065 
1066     debug_called(4);
1067 
1068     /* command can't cross a page boundary */
1069     sc->twe_cmdphys = segs[0].ds_addr;
1070 }
1071 
1072 int
1073 twe_map_request(struct twe_request *tr)
1074 {
1075     struct twe_softc	*sc = tr->tr_sc;
1076     int			error = 0;
1077 
1078     debug_called(4);
1079 
1080     if (sc->twe_state & (TWE_STATE_CTLR_BUSY | TWE_STATE_FRZN)) {
1081 	twe_requeue_ready(tr);
1082 	return (EBUSY);
1083     }
1084 
1085     bus_dmamap_sync(sc->twe_cmd_dmat, sc->twe_cmdmap, BUS_DMASYNC_PREWRITE);
1086 
1087     /*
1088      * If the command involves data, map that too.
1089      */
1090     if (tr->tr_data != NULL && ((tr->tr_flags & TWE_CMD_MAPPED) == 0)) {
1091 
1092 	/*
1093 	 * Data must be 512-byte aligned; allocate a fixup buffer if it's not.
1094 	 *
1095 	 * DragonFly's malloc only guarentees alignment for requests which
1096 	 * are power-of-2 sized.
1097 	 */
1098 	if (((vm_offset_t)tr->tr_data % TWE_ALIGNMENT) != 0) {
1099 	    int aligned_size;
1100 
1101 	    tr->tr_realdata = tr->tr_data;	/* save pointer to 'real' data */
1102 	    aligned_size = TWE_ALIGNMENT;
1103 	    while (aligned_size < tr->tr_length)
1104 		aligned_size <<= 1;
1105 	    tr->tr_flags |= TWE_CMD_ALIGNBUF;
1106 	    tr->tr_data = kmalloc(aligned_size, TWE_MALLOC_CLASS, M_INTWAIT);
1107 	    if (tr->tr_data == NULL) {
1108 		twe_printf(sc, "%s: malloc failed\n", __func__);
1109 		tr->tr_data = tr->tr_realdata; /* restore original data pointer */
1110 		return(ENOMEM);
1111 	    }
1112 	}
1113 
1114 	/*
1115 	 * Map the data buffer into bus space and build the s/g list.
1116 	 */
1117 	if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1118 	    error = bus_dmamap_load(sc->twe_immediate_dmat, sc->twe_immediate_map, sc->twe_immediate,
1119 			    tr->tr_length, twe_setup_data_dmamap, tr, BUS_DMA_NOWAIT);
1120 	} else {
1121 	    error = bus_dmamap_load(sc->twe_buffer_dmat, tr->tr_dmamap, tr->tr_data, tr->tr_length,
1122 				    twe_setup_data_dmamap, tr, 0);
1123 	}
1124 	if (error == EINPROGRESS) {
1125 	    tr->tr_flags |= TWE_CMD_IN_PROGRESS;
1126 	    sc->twe_state |= TWE_STATE_FRZN;
1127 	    error = 0;
1128 	}
1129     } else
1130 	if ((error = twe_start(tr)) == EBUSY) {
1131 	    sc->twe_state |= TWE_STATE_CTLR_BUSY;
1132 	    twe_requeue_ready(tr);
1133 	}
1134 
1135     return(error);
1136 }
1137 
1138 void
1139 twe_unmap_request(struct twe_request *tr)
1140 {
1141     struct twe_softc	*sc = tr->tr_sc;
1142 
1143     debug_called(4);
1144 
1145     bus_dmamap_sync(sc->twe_cmd_dmat, sc->twe_cmdmap, BUS_DMASYNC_POSTWRITE);
1146 
1147     /*
1148      * If the command involved data, unmap that too.
1149      */
1150     if (tr->tr_data != NULL) {
1151 	if (tr->tr_flags & TWE_CMD_DATAIN) {
1152 	    if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1153 		bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1154 				BUS_DMASYNC_POSTREAD);
1155 	    } else {
1156 		bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1157 				BUS_DMASYNC_POSTREAD);
1158 	    }
1159 
1160 	    /* if we're using an alignment buffer, and we're reading data, copy the real data in */
1161 	    if (tr->tr_flags & TWE_CMD_ALIGNBUF)
1162 		bcopy(tr->tr_data, tr->tr_realdata, tr->tr_length);
1163 	}
1164 	if (tr->tr_flags & TWE_CMD_DATAOUT) {
1165 	    if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1166 		bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1167 				BUS_DMASYNC_POSTWRITE);
1168 	    } else {
1169 		bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1170 				BUS_DMASYNC_POSTWRITE);
1171 	    }
1172 	}
1173 
1174 	if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1175 	    bus_dmamap_unload(sc->twe_immediate_dmat, sc->twe_immediate_map);
1176 	} else {
1177 	    bus_dmamap_unload(sc->twe_buffer_dmat, tr->tr_dmamap);
1178 	}
1179     }
1180 
1181     /* free alignment buffer if it was used */
1182     if (tr->tr_flags & TWE_CMD_ALIGNBUF) {
1183 	kfree(tr->tr_data, TWE_MALLOC_CLASS);
1184 	tr->tr_data = tr->tr_realdata;		/* restore 'real' data pointer */
1185     }
1186 }
1187 
1188 #ifdef TWE_DEBUG
1189 void twe_report(void);
1190 /********************************************************************************
1191  * Print current controller status, call from DDB.
1192  */
1193 void
1194 twe_report(void)
1195 {
1196     struct twe_softc	*sc;
1197     int			i;
1198 
1199     crit_enter();
1200     for (i = 0; (sc = devclass_get_softc(twe_devclass, i)) != NULL; i++)
1201 	twe_print_controller(sc);
1202     kprintf("twed: total bio count in %u  out %u\n", twed_bio_in, twed_bio_out);
1203     crit_exit();
1204 }
1205 #endif
1206