xref: /dragonfly/sys/dev/raid/twe/twe_freebsd.c (revision ae071d8d)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2003 Paul Saab
4  * Copyright (c) 2003 Vinod Kashyap
5  * Copyright (c) 2000 BSDi
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/twe/twe_freebsd.c,v 1.54 2012/11/17 01:52:19 svnexp Exp $
30  */
31 
32 /*
33  * FreeBSD-specific code.
34  */
35 
36 #include <dev/raid/twe/twe_compat.h>
37 #include <dev/raid/twe/twereg.h>
38 #include <dev/raid/twe/tweio.h>
39 #include <dev/raid/twe/twevar.h>
40 #include <dev/raid/twe/twe_tables.h>
41 #include <sys/dtype.h>
42 #include <sys/mplock2.h>
43 
44 #include <vm/vm.h>
45 
46 static devclass_t	twe_devclass;
47 
48 #ifdef TWE_DEBUG
49 static u_int32_t	twed_bio_in;
50 #define TWED_BIO_IN	twed_bio_in++
51 static u_int32_t	twed_bio_out;
52 #define TWED_BIO_OUT	twed_bio_out++
53 #else
54 #define TWED_BIO_IN
55 #define TWED_BIO_OUT
56 #endif
57 
58 static void	twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
59 static void	twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
60 
61 /********************************************************************************
62  ********************************************************************************
63                                                          Control device interface
64  ********************************************************************************
65  ********************************************************************************/
66 
67 static	d_open_t		twe_open;
68 static	d_close_t		twe_close;
69 static	d_ioctl_t		twe_ioctl_wrapper;
70 
71 static struct dev_ops twe_ops = {
72 	{ "twe", 0, D_MPSAFE },
73 	.d_open =	twe_open,
74 	.d_close =	twe_close,
75 	.d_ioctl =	twe_ioctl_wrapper,
76 };
77 
78 /********************************************************************************
79  * Accept an open operation on the control device.
80  */
81 static int
82 twe_open(struct dev_open_args *ap)
83 {
84     cdev_t			dev = ap->a_head.a_dev;
85     struct twe_softc		*sc = (struct twe_softc *)dev->si_drv1;
86 
87     TWE_IO_LOCK(sc);
88     if (sc->twe_state & TWE_STATE_DETACHING) {
89 	TWE_IO_UNLOCK(sc);
90 	return (ENXIO);
91     }
92     sc->twe_state |= TWE_STATE_OPEN;
93     TWE_IO_UNLOCK(sc);
94     return(0);
95 }
96 
97 /********************************************************************************
98  * Accept the last close on the control device.
99  */
100 static int
101 twe_close(struct dev_close_args *ap)
102 {
103     cdev_t			dev = ap->a_head.a_dev;
104     struct twe_softc		*sc = (struct twe_softc *)dev->si_drv1;
105 
106     TWE_IO_LOCK(sc);
107     sc->twe_state &= ~TWE_STATE_OPEN;
108     TWE_IO_UNLOCK(sc);
109     return (0);
110 }
111 
112 /********************************************************************************
113  * Handle controller-specific control operations.
114  */
115 static int
116 twe_ioctl_wrapper(struct dev_ioctl_args *ap)
117 {
118     cdev_t dev = ap->a_head.a_dev;
119     u_long cmd = ap->a_cmd;
120     caddr_t addr = ap->a_data;
121     struct twe_softc *sc = (struct twe_softc *)dev->si_drv1;
122 
123     return(twe_ioctl(sc, cmd, addr));
124 }
125 
126 /********************************************************************************
127  ********************************************************************************
128                                                              PCI device interface
129  ********************************************************************************
130  ********************************************************************************/
131 
132 static int	twe_probe(device_t dev);
133 static int	twe_attach(device_t dev);
134 static void	twe_free(struct twe_softc *sc);
135 static int	twe_detach(device_t dev);
136 static int	twe_shutdown(device_t dev);
137 static int	twe_suspend(device_t dev);
138 static int	twe_resume(device_t dev);
139 static void	twe_pci_intr(void *arg);
140 static void	twe_intrhook(void *arg);
141 
142 static device_method_t twe_methods[] = {
143     /* Device interface */
144     DEVMETHOD(device_probe,	twe_probe),
145     DEVMETHOD(device_attach,	twe_attach),
146     DEVMETHOD(device_detach,	twe_detach),
147     DEVMETHOD(device_shutdown,	twe_shutdown),
148     DEVMETHOD(device_suspend,	twe_suspend),
149     DEVMETHOD(device_resume,	twe_resume),
150 
151     DEVMETHOD_END
152 };
153 
154 static driver_t twe_pci_driver = {
155 	"twe",
156 	twe_methods,
157 	sizeof(struct twe_softc)
158 };
159 
160 DRIVER_MODULE(twe, pci, twe_pci_driver, twe_devclass, NULL, NULL);
161 
162 /********************************************************************************
163  * Match a 3ware Escalade ATA RAID controller.
164  */
165 static int
166 twe_probe(device_t dev)
167 {
168 
169     debug_called(4);
170 
171     if ((pci_get_vendor(dev) == TWE_VENDOR_ID) &&
172 	((pci_get_device(dev) == TWE_DEVICE_ID) ||
173 	 (pci_get_device(dev) == TWE_DEVICE_ID_ASIC))) {
174 	device_set_desc_copy(dev, TWE_DEVICE_NAME ". Driver version " TWE_DRIVER_VERSION_STRING);
175 	return(BUS_PROBE_DEFAULT);
176     }
177     return(ENXIO);
178 }
179 
180 /********************************************************************************
181  * Allocate resources, initialise the controller.
182  */
183 static int
184 twe_attach(device_t dev)
185 {
186     struct twe_softc	*sc;
187     int			rid, error;
188 
189     debug_called(4);
190 
191     /*
192      * Initialise the softc structure.
193      */
194     sc = device_get_softc(dev);
195     sc->twe_dev = dev;
196     lockinit(&sc->twe_io_lock, "twe I/O", 0, LK_CANRECURSE);
197     lockinit(&sc->twe_config_lock, "twe config", 0, LK_CANRECURSE);
198 
199     sysctl_ctx_init(&sc->sysctl_ctx);
200     sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
201 	SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
202 	device_get_nameunit(dev), CTLFLAG_RD, 0, "");
203     if (sc->sysctl_tree == NULL) {
204 	twe_printf(sc, "cannot add sysctl tree node\n");
205 	return (ENXIO);
206     }
207     SYSCTL_ADD_STRING(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
208 	OID_AUTO, "driver_version", CTLFLAG_RD, TWE_DRIVER_VERSION_STRING, 0,
209 	"TWE driver version");
210 
211     /*
212      * Force the busmaster enable bit on, in case the BIOS forgot.
213      */
214     pci_enable_busmaster(dev);
215 
216     /*
217      * Allocate the PCI register window.
218      */
219     rid = TWE_IO_CONFIG_REG;
220     if ((sc->twe_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
221         RF_ACTIVE)) == NULL) {
222 	twe_printf(sc, "can't allocate register window\n");
223 	twe_free(sc);
224 	return(ENXIO);
225     }
226 
227     /*
228      * Allocate the parent bus DMA tag appropriate for PCI.
229      */
230     if (bus_dma_tag_create(NULL, 				/* parent */
231 			   1, 0, 				/* alignment, boundary */
232 			   BUS_SPACE_MAXADDR_32BIT, 		/* lowaddr */
233 			   BUS_SPACE_MAXADDR, 			/* highaddr */
234 			   NULL, NULL, 				/* filter, filterarg */
235 			   MAXBSIZE, TWE_MAX_SGL_LENGTH,	/* maxsize, nsegments */
236 			   BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
237 			   0,					/* flags */
238 			   &sc->twe_parent_dmat)) {
239 	twe_printf(sc, "can't allocate parent DMA tag\n");
240 	twe_free(sc);
241 	return(ENOMEM);
242     }
243 
244     /*
245      * Allocate and connect our interrupt.
246      */
247     rid = 0;
248     if ((sc->twe_irq = bus_alloc_resource_any(sc->twe_dev, SYS_RES_IRQ,
249         &rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
250 	twe_printf(sc, "can't allocate interrupt\n");
251 	twe_free(sc);
252 	return(ENXIO);
253     }
254     if (bus_setup_intr(sc->twe_dev, sc->twe_irq, INTR_MPSAFE,
255 			twe_pci_intr, sc, &sc->twe_intr, NULL)) {
256 	twe_printf(sc, "can't set up interrupt\n");
257 	twe_free(sc);
258 	return(ENXIO);
259     }
260 
261     /*
262      * Create DMA tag for mapping command's into controller-addressable space.
263      */
264     if (bus_dma_tag_create(sc->twe_parent_dmat, 	/* parent */
265 			   1, 0, 			/* alignment, boundary */
266 			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
267 			   BUS_SPACE_MAXADDR, 		/* highaddr */
268 			   NULL, NULL, 			/* filter, filterarg */
269 			   sizeof(TWE_Command) *
270 			   TWE_Q_LENGTH, 1,		/* maxsize, nsegments */
271 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
272 			   0,				/* flags */
273 			   &sc->twe_cmd_dmat)) {
274 	twe_printf(sc, "can't allocate data buffer DMA tag\n");
275 	twe_free(sc);
276 	return(ENOMEM);
277     }
278     /*
279      * Allocate memory and make it available for DMA.
280      */
281     if (bus_dmamem_alloc(sc->twe_cmd_dmat, (void **)&sc->twe_cmd,
282 			 BUS_DMA_NOWAIT, &sc->twe_cmdmap)) {
283 	twe_printf(sc, "can't allocate command memory\n");
284 	return(ENOMEM);
285     }
286     bus_dmamap_load(sc->twe_cmd_dmat, sc->twe_cmdmap, sc->twe_cmd,
287 		    sizeof(TWE_Command) * TWE_Q_LENGTH,
288 		    twe_setup_request_dmamap, sc, 0);
289     bzero(sc->twe_cmd, sizeof(TWE_Command) * TWE_Q_LENGTH);
290 
291     /*
292      * Create DMA tag for mapping objects into controller-addressable space.
293      */
294     if (bus_dma_tag_create(sc->twe_parent_dmat, 	/* parent */
295 			   1, 0, 			/* alignment, boundary */
296 			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
297 			   BUS_SPACE_MAXADDR, 		/* highaddr */
298 			   NULL, NULL, 			/* filter, filterarg */
299 			   MAXBSIZE, TWE_MAX_SGL_LENGTH,/* maxsize, nsegments */
300 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
301 			   BUS_DMA_ALLOCNOW,		/* flags */
302 			   &sc->twe_buffer_dmat)) {
303 	twe_printf(sc, "can't allocate data buffer DMA tag\n");
304 	twe_free(sc);
305 	return(ENOMEM);
306     }
307 
308     /*
309      * Create DMA tag for mapping objects into controller-addressable space.
310      */
311     if (bus_dma_tag_create(sc->twe_parent_dmat, 	/* parent */
312 			   1, 0, 			/* alignment, boundary */
313 			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
314 			   BUS_SPACE_MAXADDR, 		/* highaddr */
315 			   NULL, NULL, 			/* filter, filterarg */
316 			   MAXBSIZE, 1,			/* maxsize, nsegments */
317 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
318 			   0,				/* flags */
319 			   &sc->twe_immediate_dmat)) {
320 	twe_printf(sc, "can't allocate data buffer DMA tag\n");
321 	twe_free(sc);
322 	return(ENOMEM);
323     }
324     /*
325      * Allocate memory for requests which cannot sleep or support continuation.
326      */
327      if (bus_dmamem_alloc(sc->twe_immediate_dmat, (void **)&sc->twe_immediate,
328 			  BUS_DMA_NOWAIT, &sc->twe_immediate_map)) {
329 	twe_printf(sc, "can't allocate memory for immediate requests\n");
330 	return(ENOMEM);
331      }
332 
333     /*
334      * Initialise the controller and driver core.
335      */
336     if ((error = twe_setup(sc))) {
337 	twe_free(sc);
338 	return(error);
339     }
340 
341     /*
342      * Print some information about the controller and configuration.
343      */
344     twe_describe_controller(sc);
345 
346     /*
347      * Create the control device.
348      */
349     sc->twe_dev_t = make_dev(&twe_ops, device_get_unit(sc->twe_dev),
350 			     UID_ROOT, GID_OPERATOR,
351 			     S_IRUSR | S_IWUSR, "twe%d",
352 			     device_get_unit(sc->twe_dev));
353     sc->twe_dev_t->si_drv1 = sc;
354 
355     /*
356      * Schedule ourselves to bring the controller up once interrupts are
357      * available.  This isn't strictly necessary, since we disable
358      * interrupts while probing the controller, but it is more in keeping
359      * with common practice for other disk devices.
360      */
361     sc->twe_ich.ich_func = twe_intrhook;
362     sc->twe_ich.ich_arg = sc;
363     sc->twe_ich.ich_desc = "twe";
364     if (config_intrhook_establish(&sc->twe_ich) != 0) {
365 	twe_printf(sc, "can't establish configuration hook\n");
366 	twe_free(sc);
367 	return(ENXIO);
368     }
369 
370     return(0);
371 }
372 
373 /********************************************************************************
374  * Free all of the resources associated with (sc).
375  *
376  * Should not be called if the controller is active.
377  */
378 static void
379 twe_free(struct twe_softc *sc)
380 {
381     struct twe_request	*tr;
382 
383     debug_called(4);
384 
385     /* throw away any command buffers */
386     while ((tr = twe_dequeue_free(sc)) != NULL)
387 	twe_free_request(tr);
388 
389     if (sc->twe_cmd != NULL) {
390 	bus_dmamap_unload(sc->twe_cmd_dmat, sc->twe_cmdmap);
391 	bus_dmamem_free(sc->twe_cmd_dmat, sc->twe_cmd, sc->twe_cmdmap);
392     }
393 
394     if (sc->twe_immediate != NULL) {
395 	bus_dmamap_unload(sc->twe_immediate_dmat, sc->twe_immediate_map);
396 	bus_dmamem_free(sc->twe_immediate_dmat, sc->twe_immediate,
397 			sc->twe_immediate_map);
398     }
399 
400     if (sc->twe_immediate_dmat)
401 	bus_dma_tag_destroy(sc->twe_immediate_dmat);
402 
403     /* destroy the data-transfer DMA tag */
404     if (sc->twe_buffer_dmat)
405 	bus_dma_tag_destroy(sc->twe_buffer_dmat);
406 
407     /* disconnect the interrupt handler */
408     if (sc->twe_intr)
409 	bus_teardown_intr(sc->twe_dev, sc->twe_irq, sc->twe_intr);
410     if (sc->twe_irq != NULL)
411 	bus_release_resource(sc->twe_dev, SYS_RES_IRQ, 0, sc->twe_irq);
412 
413     /* destroy the parent DMA tag */
414     if (sc->twe_parent_dmat)
415 	bus_dma_tag_destroy(sc->twe_parent_dmat);
416 
417     /* release the register window mapping */
418     if (sc->twe_io != NULL)
419 	bus_release_resource(sc->twe_dev, SYS_RES_IOPORT, TWE_IO_CONFIG_REG, sc->twe_io);
420 
421     /* destroy control device */
422     if (sc->twe_dev_t != NULL)
423 	destroy_dev(sc->twe_dev_t);
424     dev_ops_remove_minor(&twe_ops, device_get_unit(sc->twe_dev));
425 
426     sysctl_ctx_free(&sc->sysctl_ctx);
427     lockuninit(&sc->twe_config_lock);
428     lockuninit(&sc->twe_io_lock);
429 }
430 
431 /********************************************************************************
432  * Disconnect from the controller completely, in preparation for unload.
433  */
434 static int
435 twe_detach(device_t dev)
436 {
437     struct twe_softc	*sc = device_get_softc(dev);
438 
439     debug_called(4);
440 
441     TWE_IO_LOCK(sc);
442     if (sc->twe_state & TWE_STATE_OPEN) {
443 	TWE_IO_UNLOCK(sc);
444 	return (EBUSY);
445     }
446     sc->twe_state |= TWE_STATE_DETACHING;
447     TWE_IO_UNLOCK(sc);
448 
449     /*
450      * Shut the controller down.
451      */
452     if (twe_shutdown(dev)) {
453 	TWE_IO_LOCK(sc);
454 	sc->twe_state &= ~TWE_STATE_DETACHING;
455 	TWE_IO_UNLOCK(sc);
456 	return (EBUSY);
457     }
458 
459     twe_free(sc);
460 
461     return(0);
462 }
463 
464 /********************************************************************************
465  * Bring the controller down to a dormant state and detach all child devices.
466  *
467  * Note that we can assume that the bioq on the controller is empty, as we won't
468  * allow shutdown if any device is open.
469  */
470 static int
471 twe_shutdown(device_t dev)
472 {
473     struct twe_softc	*sc = device_get_softc(dev);
474     int			i, error = 0;
475 
476     debug_called(4);
477 
478     /*
479      * Delete all our child devices.
480      */
481     TWE_CONFIG_LOCK(sc);
482     for (i = 0; i < TWE_MAX_UNITS; i++) {
483 	if (sc->twe_drive[i].td_disk != 0) {
484 	    if ((error = twe_detach_drive(sc, i)) != 0) {
485 		TWE_CONFIG_UNLOCK(sc);
486 		return (error);
487 	    }
488 	}
489     }
490     TWE_CONFIG_UNLOCK(sc);
491 
492     /*
493      * Bring the controller down.
494      */
495     TWE_IO_LOCK(sc);
496     twe_deinit(sc);
497     TWE_IO_UNLOCK(sc);
498 
499     return(0);
500 }
501 
502 /********************************************************************************
503  * Bring the controller to a quiescent state, ready for system suspend.
504  */
505 static int
506 twe_suspend(device_t dev)
507 {
508     struct twe_softc	*sc = device_get_softc(dev);
509 
510     debug_called(4);
511 
512     TWE_IO_LOCK(sc);
513     sc->twe_state |= TWE_STATE_SUSPEND;
514     TWE_IO_UNLOCK(sc);
515 
516     twe_disable_interrupts(sc);
517     crit_exit();
518 
519     return(0);
520 }
521 
522 /********************************************************************************
523  * Bring the controller back to a state ready for operation.
524  */
525 static int
526 twe_resume(device_t dev)
527 {
528     struct twe_softc	*sc = device_get_softc(dev);
529 
530     debug_called(4);
531 
532     TWE_IO_LOCK(sc);
533     sc->twe_state &= ~TWE_STATE_SUSPEND;
534     twe_enable_interrupts(sc);
535     TWE_IO_UNLOCK(sc);
536 
537     return(0);
538 }
539 
540 /*******************************************************************************
541  * Take an interrupt, or be poked by other code to look for interrupt-worthy
542  * status.
543  */
544 static void
545 twe_pci_intr(void *arg)
546 {
547     struct twe_softc *sc = arg;
548 
549     TWE_IO_LOCK(sc);
550     twe_intr(sc);
551     TWE_IO_UNLOCK(sc);
552 }
553 
554 /********************************************************************************
555  * Delayed-startup hook
556  */
557 static void
558 twe_intrhook(void *arg)
559 {
560     struct twe_softc		*sc = (struct twe_softc *)arg;
561 
562     /* pull ourselves off the intrhook chain */
563     config_intrhook_disestablish(&sc->twe_ich);
564 
565     /* call core startup routine */
566     twe_init(sc);
567 }
568 
569 /********************************************************************************
570  * Given a detected drive, attach it to the bio interface.
571  *
572  * This is called from twe_add_unit.
573  */
574 int
575 twe_attach_drive(struct twe_softc *sc, struct twe_drive *dr)
576 {
577     char	buf[80];
578     int		error;
579 
580     get_mplock();
581     dr->td_disk =  device_add_child(sc->twe_dev, NULL, -1);
582     if (dr->td_disk == NULL) {
583 	rel_mplock();
584 	twe_printf(sc, "Cannot add unit\n");
585 	return (EIO);
586     }
587     device_set_ivars(dr->td_disk, dr);
588 
589     /*
590      * XXX It would make sense to test the online/initialising bits, but they seem to be
591      * always set...
592      */
593     ksprintf(buf, "Unit %d, %s, %s",
594 	    dr->td_twe_unit,
595 	    twe_describe_code(twe_table_unittype, dr->td_type),
596 	    twe_describe_code(twe_table_unitstate, dr->td_state & TWE_PARAM_UNITSTATUS_MASK));
597     device_set_desc_copy(dr->td_disk, buf);
598 
599     error = device_probe_and_attach(dr->td_disk);
600     rel_mplock();
601     if (error != 0) {
602 	twe_printf(sc, "Cannot attach unit to controller. error = %d\n", error);
603 	return (EIO);
604     }
605     return (0);
606 }
607 
608 /********************************************************************************
609  * Detach the specified unit if it exsists
610  *
611  * This is called from twe_del_unit.
612  */
613 int
614 twe_detach_drive(struct twe_softc *sc, int unit)
615 {
616     int error = 0;
617 
618     TWE_CONFIG_ASSERT_LOCKED(sc);
619     get_mplock();
620     error = device_delete_child(sc->twe_dev, sc->twe_drive[unit].td_disk);
621     rel_mplock();
622     if (error != 0) {
623 	twe_printf(sc, "failed to delete unit %d\n", unit);
624 	return(error);
625     }
626     bzero(&sc->twe_drive[unit], sizeof(sc->twe_drive[unit]));
627     return(error);
628 }
629 
630 /********************************************************************************
631  * Clear a PCI parity error.
632  */
633 void
634 twe_clear_pci_parity_error(struct twe_softc *sc)
635 {
636     TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PARITY_ERROR);
637     pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
638 }
639 
640 /********************************************************************************
641  * Clear a PCI abort.
642  */
643 void
644 twe_clear_pci_abort(struct twe_softc *sc)
645 {
646     TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PCI_ABORT);
647     pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
648 }
649 
650 /********************************************************************************
651  ********************************************************************************
652                                                                       Disk device
653  ********************************************************************************
654  ********************************************************************************/
655 
656 /*
657  * Disk device bus interface
658  */
659 static int twed_probe(device_t dev);
660 static int twed_attach(device_t dev);
661 static int twed_detach(device_t dev);
662 
663 static device_method_t twed_methods[] = {
664     DEVMETHOD(device_probe,	twed_probe),
665     DEVMETHOD(device_attach,	twed_attach),
666     DEVMETHOD(device_detach,	twed_detach),
667     DEVMETHOD_END
668 };
669 
670 static driver_t twed_driver = {
671     "twed",
672     twed_methods,
673     sizeof(struct twed_softc)
674 };
675 
676 static devclass_t	twed_devclass;
677 DRIVER_MODULE(twed, twe, twed_driver, twed_devclass, NULL, NULL);
678 
679 /*
680  * Disk device control interface.
681  */
682 static	d_open_t	twed_open;
683 static	d_close_t	twed_close;
684 static	d_strategy_t	twed_strategy;
685 static	d_dump_t	twed_dump;
686 
687 static struct dev_ops twed_ops = {
688 	{ "twed", 0, D_DISK | D_MPSAFE},
689 	.d_open =	twed_open,
690 	.d_close =	twed_close,
691 	.d_read =	physread,
692 	.d_write =	physwrite,
693 	.d_strategy =	twed_strategy,
694 	.d_dump =	twed_dump,
695 };
696 
697 /********************************************************************************
698  * Handle open from generic layer.
699  *
700  * Note that this is typically only called by the diskslice code, and not
701  * for opens on subdevices (eg. slices, partitions).
702  */
703 static int
704 twed_open(struct dev_open_args *ap)
705 {
706     cdev_t dev = ap->a_head.a_dev;
707     struct twed_softc	*sc = (struct twed_softc *)dev->si_drv1;
708 
709     debug_called(4);
710 
711     if (sc == NULL)
712 	return (ENXIO);
713 
714     /* check that the controller is up and running */
715     if (sc->twed_controller->twe_state & TWE_STATE_SHUTDOWN)
716 	return(ENXIO);
717 
718     sc->twed_flags |= TWED_OPEN;
719     return (0);
720 }
721 
722 /********************************************************************************
723  * Handle last close of the disk device.
724  */
725 static int
726 twed_close(struct dev_close_args *ap)
727 {
728     cdev_t dev = ap->a_head.a_dev;
729     struct twed_softc	*sc = (struct twed_softc *)dev->si_drv1;
730 
731     debug_called(4);
732 
733     if (sc == NULL)
734 	return (ENXIO);
735 
736     sc->twed_flags &= ~TWED_OPEN;
737     return (0);
738 }
739 
740 /********************************************************************************
741  * Handle an I/O request.
742  */
743 static int
744 twed_strategy(struct dev_strategy_args *ap)
745 {
746     cdev_t dev = ap->a_head.a_dev;
747     struct bio *bio = ap->a_bio;
748     struct twed_softc *sc = dev->si_drv1;
749     struct buf *bp = bio->bio_buf;
750 
751     bio->bio_driver_info = sc;
752 
753     debug_called(4);
754 
755     TWED_BIO_IN;
756 
757     /* bogus disk? */
758     if (sc == NULL || sc->twed_drive->td_disk == NULL) {
759 	bp->b_error = EINVAL;
760 	bp->b_flags |= B_ERROR;
761 	kprintf("twe: bio for invalid disk!\n");
762 	biodone(bio);
763 	TWED_BIO_OUT;
764 	return(0);
765     }
766 
767     /* perform accounting */
768     devstat_start_transaction(&sc->twed_stats);
769 
770     /* queue the bio on the controller */
771     TWE_IO_LOCK(sc->twed_controller);
772     twe_enqueue_bio(sc->twed_controller, bio);
773 
774     /* poke the controller to start I/O */
775     twe_startio(sc->twed_controller);
776     TWE_IO_UNLOCK(sc->twed_controller);
777     return(0);
778 }
779 
780 /********************************************************************************
781  * System crashdump support
782  */
783 static int
784 twed_dump(struct dev_dump_args *ap)
785 {
786     cdev_t dev = ap->a_head.a_dev;
787     size_t length = ap->a_length;
788     off_t offset = ap->a_offset;
789     void *virtual = ap->a_virtual;
790     struct twed_softc	*twed_sc;
791     struct twe_softc	*twe_sc;
792     int			error;
793 
794     twed_sc = dev->si_drv1;
795     if (twed_sc == NULL)
796 	return(ENXIO);
797     twe_sc  = (struct twe_softc *)twed_sc->twed_controller;
798 
799     if (length > 0) {
800 	if ((error = twe_dump_blocks(twe_sc, twed_sc->twed_drive->td_twe_unit, offset / TWE_BLOCK_SIZE, virtual, length / TWE_BLOCK_SIZE)) != 0)
801 	    return(error);
802     }
803     return(0);
804 }
805 
806 /********************************************************************************
807  * Handle completion of an I/O request.
808  */
809 void
810 twed_intr(struct bio *bio)
811 {
812     struct buf *bp = bio->bio_buf;
813     struct twed_softc *sc = bio->bio_driver_info;
814 
815     debug_called(4);
816 
817     /* if no error, transfer completed */
818     if (!(bp->b_flags & B_ERROR))
819 	bp->b_resid = 0;
820     devstat_end_transaction_buf(&sc->twed_stats, bp);
821     biodone(bio);
822     TWED_BIO_OUT;
823 }
824 
825 /********************************************************************************
826  * Default probe stub.
827  */
828 static int
829 twed_probe(device_t dev)
830 {
831     return (0);
832 }
833 
834 /********************************************************************************
835  * Attach a unit to the controller.
836  */
837 static int
838 twed_attach(device_t dev)
839 {
840     struct twed_softc	*sc;
841     struct disk_info	info;
842     device_t		parent;
843     cdev_t		dsk;
844 
845     debug_called(4);
846 
847     /* initialise our softc */
848     sc = device_get_softc(dev);
849     parent = device_get_parent(dev);
850     sc->twed_controller = (struct twe_softc *)device_get_softc(parent);
851     sc->twed_drive = device_get_ivars(dev);
852     sc->twed_dev = dev;
853 
854     /* report the drive */
855     twed_printf(sc, "%uMB (%u sectors)\n",
856 		sc->twed_drive->td_size / ((1024 * 1024) / TWE_BLOCK_SIZE),
857 		sc->twed_drive->td_size);
858 
859     /* attach a generic disk device to ourselves */
860 
861     sc->twed_drive->td_sys_unit = device_get_unit(dev);
862 
863     devstat_add_entry(&sc->twed_stats, "twed", sc->twed_drive->td_sys_unit,
864 			TWE_BLOCK_SIZE,
865 			DEVSTAT_NO_ORDERED_TAGS,
866 			DEVSTAT_TYPE_STORARRAY | DEVSTAT_TYPE_IF_OTHER,
867 			DEVSTAT_PRIORITY_ARRAY);
868 
869     dsk = disk_create(sc->twed_drive->td_sys_unit, &sc->twed_disk, &twed_ops);
870     dsk->si_drv1 = sc;
871     sc->twed_dev_t = dsk;
872 
873     /* set the maximum I/O size to the theoretical maximum allowed by the S/G list size */
874     dsk->si_iosize_max = (TWE_MAX_SGL_LENGTH - 1) * PAGE_SIZE;
875 
876     /*
877      * Set disk info, as it appears that all needed data is available already.
878      * Setting the disk info will also cause the probing to start.
879      */
880     bzero(&info, sizeof(info));
881     info.d_media_blksize    = TWE_BLOCK_SIZE;	/* mandatory */
882     info.d_media_blocks	    = sc->twed_drive->td_size;
883 
884     info.d_type		= DTYPE_ESDI;		/* optional */
885     info.d_secpertrack	= sc->twed_drive->td_sectors;
886     info.d_nheads	= sc->twed_drive->td_heads;
887     info.d_ncylinders	= sc->twed_drive->td_cylinders;
888     info.d_secpercyl	= sc->twed_drive->td_sectors * sc->twed_drive->td_heads;
889 
890     disk_setdiskinfo(&sc->twed_disk, &info);
891 
892     return (0);
893 }
894 
895 /********************************************************************************
896  * Disconnect ourselves from the system.
897  */
898 static int
899 twed_detach(device_t dev)
900 {
901     struct twed_softc *sc = (struct twed_softc *)device_get_softc(dev);
902 
903     debug_called(4);
904 
905     if (sc->twed_flags & TWED_OPEN)
906 	return(EBUSY);
907 
908     devstat_remove_entry(&sc->twed_stats);
909     disk_destroy(&sc->twed_disk);
910 
911     return(0);
912 }
913 
914 /********************************************************************************
915  ********************************************************************************
916                                                                              Misc
917  ********************************************************************************
918  ********************************************************************************/
919 
920 /********************************************************************************
921  * Allocate a command buffer
922  */
923 static MALLOC_DEFINE(TWE_MALLOC_CLASS, "twe_commands", "twe commands");
924 
925 struct twe_request *
926 twe_allocate_request(struct twe_softc *sc, int tag)
927 {
928     struct twe_request	*tr;
929     int aligned_size;
930 
931     /*
932      * TWE requires requests to be 512-byte aligned.  Depend on malloc()
933      * guarenteeing alignment for power-of-2 requests.  Note that the old
934      * (FreeBSD-4.x) malloc code aligned all requests, but the new slab
935      * allocator only guarentees same-size alignment for power-of-2 requests.
936      */
937     aligned_size = (sizeof(struct twe_request) + TWE_ALIGNMASK) &
938 	~TWE_ALIGNMASK;
939     tr = kmalloc(aligned_size, TWE_MALLOC_CLASS, M_INTWAIT | M_ZERO);
940     tr->tr_sc = sc;
941     tr->tr_tag = tag;
942     if (bus_dmamap_create(sc->twe_buffer_dmat, 0, &tr->tr_dmamap)) {
943 	twe_free_request(tr);
944 	twe_printf(sc, "unable to allocate dmamap for tag %d\n", tag);
945 	return(NULL);
946     }
947     return(tr);
948 }
949 
950 /********************************************************************************
951  * Permanently discard a command buffer.
952  */
953 void
954 twe_free_request(struct twe_request *tr)
955 {
956     struct twe_softc	*sc = tr->tr_sc;
957 
958     debug_called(4);
959 
960     bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_dmamap);
961     kfree(tr, TWE_MALLOC_CLASS);
962 }
963 
964 /********************************************************************************
965  * Map/unmap (tr)'s command and data in the controller's addressable space.
966  *
967  * These routines ensure that the data which the controller is going to try to
968  * access is actually visible to the controller, in a machine-independant
969  * fashion.  Due to a hardware limitation, I/O buffers must be 512-byte aligned
970  * and we take care of that here as well.
971  */
972 static void
973 twe_fillin_sgl(TWE_SG_Entry *sgl, bus_dma_segment_t *segs, int nsegments, int max_sgl)
974 {
975     int i;
976 
977     for (i = 0; i < nsegments; i++) {
978 	sgl[i].address = segs[i].ds_addr;
979 	sgl[i].length = segs[i].ds_len;
980     }
981     for (; i < max_sgl; i++) {				/* XXX necessary? */
982 	sgl[i].address = 0;
983 	sgl[i].length = 0;
984     }
985 }
986 
987 static void
988 twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
989 {
990     struct twe_request	*tr = (struct twe_request *)arg;
991     struct twe_softc	*sc = tr->tr_sc;
992     TWE_Command		*cmd = TWE_FIND_COMMAND(tr);
993 
994     debug_called(4);
995 
996     if (tr->tr_flags & TWE_CMD_MAPPED)
997 	panic("already mapped command");
998 
999     tr->tr_flags |= TWE_CMD_MAPPED;
1000 
1001     if (tr->tr_flags & TWE_CMD_IN_PROGRESS)
1002 	sc->twe_state &= ~TWE_STATE_FRZN;
1003     /* save base of first segment in command (applicable if there only one segment) */
1004     tr->tr_dataphys = segs[0].ds_addr;
1005 
1006     /* correct command size for s/g list size */
1007     cmd->generic.size += 2 * nsegments;
1008 
1009     /*
1010      * Due to the fact that parameter and I/O commands have the scatter/gather list in
1011      * different places, we need to determine which sort of command this actually is
1012      * before we can populate it correctly.
1013      */
1014     switch(cmd->generic.opcode) {
1015     case TWE_OP_GET_PARAM:
1016     case TWE_OP_SET_PARAM:
1017 	cmd->generic.sgl_offset = 2;
1018 	twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
1019 	break;
1020     case TWE_OP_READ:
1021     case TWE_OP_WRITE:
1022 	cmd->generic.sgl_offset = 3;
1023 	twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
1024 	break;
1025     case TWE_OP_ATA_PASSTHROUGH:
1026 	cmd->generic.sgl_offset = 5;
1027 	twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
1028 	break;
1029     default:
1030 	/*
1031 	 * Fall back to what the linux driver does.
1032 	 * Do this because the API may send an opcode
1033 	 * the driver knows nothing about and this will
1034 	 * at least stop PCIABRT's from hosing us.
1035 	 */
1036 	switch (cmd->generic.sgl_offset) {
1037 	case 2:
1038 	    twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
1039 	    break;
1040 	case 3:
1041 	    twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
1042 	    break;
1043 	case 5:
1044 	    twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
1045 	    break;
1046 	}
1047     }
1048 
1049     if (tr->tr_flags & TWE_CMD_DATAIN) {
1050 	if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1051 	    bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1052 			    BUS_DMASYNC_PREREAD);
1053 	} else {
1054 	    bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1055 			    BUS_DMASYNC_PREREAD);
1056 	}
1057     }
1058 
1059     if (tr->tr_flags & TWE_CMD_DATAOUT) {
1060 	/*
1061 	 * if we're using an alignment buffer, and we're writing data
1062 	 * copy the real data out
1063 	 */
1064 	if (tr->tr_flags & TWE_CMD_ALIGNBUF)
1065 	    bcopy(tr->tr_realdata, tr->tr_data, tr->tr_length);
1066 
1067 	if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1068 	    bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1069 			    BUS_DMASYNC_PREWRITE);
1070 	} else {
1071 	    bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1072 			    BUS_DMASYNC_PREWRITE);
1073 	}
1074     }
1075 
1076     if (twe_start(tr) == EBUSY) {
1077 	tr->tr_sc->twe_state |= TWE_STATE_CTLR_BUSY;
1078 	twe_requeue_ready(tr);
1079     }
1080 }
1081 
1082 static void
1083 twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
1084 {
1085     struct twe_softc	*sc = (struct twe_softc *)arg;
1086 
1087     debug_called(4);
1088 
1089     /* command can't cross a page boundary */
1090     sc->twe_cmdphys = segs[0].ds_addr;
1091 }
1092 
1093 int
1094 twe_map_request(struct twe_request *tr)
1095 {
1096     struct twe_softc	*sc = tr->tr_sc;
1097     int			error = 0;
1098 
1099     debug_called(4);
1100 
1101     twe_lockassert(&sc->twe_io_lock);
1102     if (sc->twe_state & (TWE_STATE_CTLR_BUSY | TWE_STATE_FRZN)) {
1103 	twe_requeue_ready(tr);
1104 	return (EBUSY);
1105     }
1106 
1107     bus_dmamap_sync(sc->twe_cmd_dmat, sc->twe_cmdmap, BUS_DMASYNC_PREWRITE);
1108 
1109     /*
1110      * If the command involves data, map that too.
1111      */
1112     if (tr->tr_data != NULL && ((tr->tr_flags & TWE_CMD_MAPPED) == 0)) {
1113 
1114 	/*
1115 	 * Data must be 512-byte aligned; allocate a fixup buffer if it's not.
1116 	 *
1117 	 * DragonFly's malloc only guarentees alignment for requests which
1118 	 * are power-of-2 sized.
1119 	 */
1120 	if (((vm_offset_t)tr->tr_data % TWE_ALIGNMENT) != 0) {
1121 	    int aligned_size;
1122 
1123 	    tr->tr_realdata = tr->tr_data;	/* save pointer to 'real' data */
1124 	    aligned_size = TWE_ALIGNMENT;
1125 	    while (aligned_size < tr->tr_length)
1126 		aligned_size <<= 1;
1127 	    tr->tr_flags |= TWE_CMD_ALIGNBUF;
1128 	    tr->tr_data = kmalloc(aligned_size, TWE_MALLOC_CLASS, M_INTWAIT);
1129 	    if (tr->tr_data == NULL) {
1130 		twe_printf(sc, "%s: malloc failed\n", __func__);
1131 		tr->tr_data = tr->tr_realdata; /* restore original data pointer */
1132 		return(ENOMEM);
1133 	    }
1134 	}
1135 
1136 	/*
1137 	 * Map the data buffer into bus space and build the s/g list.
1138 	 */
1139 	if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1140 	    error = bus_dmamap_load(sc->twe_immediate_dmat, sc->twe_immediate_map, sc->twe_immediate,
1141 			    tr->tr_length, twe_setup_data_dmamap, tr, BUS_DMA_NOWAIT);
1142 	} else {
1143 	    error = bus_dmamap_load(sc->twe_buffer_dmat, tr->tr_dmamap, tr->tr_data, tr->tr_length,
1144 				    twe_setup_data_dmamap, tr, 0);
1145 	}
1146 	if (error == EINPROGRESS) {
1147 	    tr->tr_flags |= TWE_CMD_IN_PROGRESS;
1148 	    sc->twe_state |= TWE_STATE_FRZN;
1149 	    error = 0;
1150 	}
1151     } else
1152 	if ((error = twe_start(tr)) == EBUSY) {
1153 	    sc->twe_state |= TWE_STATE_CTLR_BUSY;
1154 	    twe_requeue_ready(tr);
1155 	}
1156 
1157     return(error);
1158 }
1159 
1160 void
1161 twe_unmap_request(struct twe_request *tr)
1162 {
1163     struct twe_softc	*sc = tr->tr_sc;
1164 
1165     debug_called(4);
1166 
1167     bus_dmamap_sync(sc->twe_cmd_dmat, sc->twe_cmdmap, BUS_DMASYNC_POSTWRITE);
1168 
1169     /*
1170      * If the command involved data, unmap that too.
1171      */
1172     if (tr->tr_data != NULL) {
1173 	if (tr->tr_flags & TWE_CMD_DATAIN) {
1174 	    if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1175 		bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1176 				BUS_DMASYNC_POSTREAD);
1177 	    } else {
1178 		bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1179 				BUS_DMASYNC_POSTREAD);
1180 	    }
1181 
1182 	    /* if we're using an alignment buffer, and we're reading data, copy the real data in */
1183 	    if (tr->tr_flags & TWE_CMD_ALIGNBUF)
1184 		bcopy(tr->tr_data, tr->tr_realdata, tr->tr_length);
1185 	}
1186 	if (tr->tr_flags & TWE_CMD_DATAOUT) {
1187 	    if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1188 		bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
1189 				BUS_DMASYNC_POSTWRITE);
1190 	    } else {
1191 		bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
1192 				BUS_DMASYNC_POSTWRITE);
1193 	    }
1194 	}
1195 
1196 	if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
1197 	    bus_dmamap_unload(sc->twe_immediate_dmat, sc->twe_immediate_map);
1198 	} else {
1199 	    bus_dmamap_unload(sc->twe_buffer_dmat, tr->tr_dmamap);
1200 	}
1201     }
1202 
1203     /* free alignment buffer if it was used */
1204     if (tr->tr_flags & TWE_CMD_ALIGNBUF) {
1205 	kfree(tr->tr_data, TWE_MALLOC_CLASS);
1206 	tr->tr_data = tr->tr_realdata;		/* restore 'real' data pointer */
1207     }
1208 }
1209 
1210 #ifdef TWE_DEBUG
1211 void twe_report(void);
1212 /********************************************************************************
1213  * Print current controller status, call from DDB.
1214  */
1215 void
1216 twe_report(void)
1217 {
1218     struct twe_softc	*sc;
1219     int			i;
1220 
1221     for (i = 0; (sc = devclass_get_softc(twe_devclass, i)) != NULL; i++)
1222 	twe_print_controller(sc);
1223     kprintf("twed: total bio count in %u  out %u\n", twed_bio_in, twed_bio_out);
1224 }
1225 #endif
1226