xref: /dragonfly/sys/dev/sound/pcm/channel.c (revision 0db87cb7)
1 /*-
2  * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
3  * Portions Copyright (c) Ryan Beasley <ryan.beasley@gmail.com> - GSoC 2006
4  * Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org>
5  * Portions Copyright (c) Luigi Rizzo <luigi@FreeBSD.org> - 1997-99
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #ifdef HAVE_KERNEL_OPTION_HEADERS
31 #include "opt_snd.h"
32 #endif
33 
34 #include <dev/sound/pcm/sound.h>
35 #include <dev/sound/pcm/vchan.h>
36 
37 #include "feeder_if.h"
38 
39 SND_DECLARE_FILE("$FreeBSD: head/sys/dev/sound/pcm/channel.c 267992 2014-06-28 03:56:17Z hselasky $");
40 
41 int report_soft_formats = 1;
42 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW,
43 	&report_soft_formats, 1, "report software-emulated formats");
44 
45 int report_soft_matrix = 1;
46 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW,
47 	&report_soft_matrix, 1, "report software-emulated channel matrixing");
48 
49 int chn_latency = CHN_LATENCY_DEFAULT;
50 TUNABLE_INT("hw.snd.latency", &chn_latency);
51 
52 static int
53 sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS)
54 {
55 	int err, val;
56 
57 	val = chn_latency;
58 	err = sysctl_handle_int(oidp, &val, 0, req);
59 	if (err != 0 || req->newptr == NULL)
60 		return err;
61 	if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX)
62 		err = EINVAL;
63 	else
64 		chn_latency = val;
65 
66 	return err;
67 }
68 SYSCTL_PROC(_hw_snd, OID_AUTO, latency, CTLTYPE_INT | CTLFLAG_RW,
69 	0, sizeof(int), sysctl_hw_snd_latency, "I",
70 	"buffering latency (0=low ... 10=high)");
71 
72 int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT;
73 TUNABLE_INT("hw.snd.latency_profile", &chn_latency_profile);
74 
75 static int
76 sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS)
77 {
78 	int err, val;
79 
80 	val = chn_latency_profile;
81 	err = sysctl_handle_int(oidp, &val, 0, req);
82 	if (err != 0 || req->newptr == NULL)
83 		return err;
84 	if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX)
85 		err = EINVAL;
86 	else
87 		chn_latency_profile = val;
88 
89 	return err;
90 }
91 SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile, CTLTYPE_INT | CTLFLAG_RW,
92 	0, sizeof(int), sysctl_hw_snd_latency_profile, "I",
93 	"buffering latency profile (0=aggressive 1=safe)");
94 
95 static int chn_timeout = CHN_TIMEOUT;
96 TUNABLE_INT("hw.snd.timeout", &chn_timeout);
97 #ifdef SND_DEBUG
98 static int
99 sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS)
100 {
101 	int err, val;
102 
103 	val = chn_timeout;
104 	err = sysctl_handle_int(oidp, &val, 0, req);
105 	if (err != 0 || req->newptr == NULL)
106 		return err;
107 	if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX)
108 		err = EINVAL;
109 	else
110 		chn_timeout = val;
111 
112 	return err;
113 }
114 SYSCTL_PROC(_hw_snd, OID_AUTO, timeout, CTLTYPE_INT | CTLFLAG_RW,
115 	0, sizeof(int), sysctl_hw_snd_timeout, "I",
116 	"interrupt timeout (1 - 10) seconds");
117 #endif
118 
119 static int chn_vpc_autoreset = 1;
120 TUNABLE_INT("hw.snd.vpc_autoreset", &chn_vpc_autoreset);
121 SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RW,
122 	&chn_vpc_autoreset, 0, "automatically reset channels volume to 0db");
123 
124 static int chn_vol_0db_pcm = SND_VOL_0DB_PCM;
125 TUNABLE_INT("hw.snd.vpc_0db", &chn_vol_0db_pcm);
126 
127 static void
128 chn_vpc_proc(int reset, int db)
129 {
130 	struct snddev_info *d;
131 	struct pcm_channel *c;
132 	int i;
133 
134 	for (i = 0; pcm_devclass != NULL &&
135 	    i < devclass_get_maxunit(pcm_devclass); i++) {
136 		d = devclass_get_softc(pcm_devclass, i);
137 		if (!PCM_REGISTERED(d))
138 			continue;
139 		PCM_LOCK(d);
140 		PCM_WAIT(d);
141 		PCM_ACQUIRE(d);
142 		CHN_FOREACH(c, d, channels.pcm) {
143 			CHN_LOCK(c);
144 			CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db);
145 			if (reset != 0)
146 				chn_vpc_reset(c, SND_VOL_C_PCM, 1);
147 			CHN_UNLOCK(c);
148 		}
149 		PCM_RELEASE(d);
150 		PCM_UNLOCK(d);
151 	}
152 }
153 
154 static int
155 sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS)
156 {
157 	int err, val;
158 
159 	val = chn_vol_0db_pcm;
160 	err = sysctl_handle_int(oidp, &val, 0, req);
161 	if (err != 0 || req->newptr == NULL)
162 		return (err);
163 	if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX)
164 		return (EINVAL);
165 
166 	chn_vol_0db_pcm = val;
167 	chn_vpc_proc(0, val);
168 
169 	return (0);
170 }
171 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db, CTLTYPE_INT | CTLFLAG_RW,
172 	0, sizeof(int), sysctl_hw_snd_vpc_0db, "I",
173 	"0db relative level");
174 
175 static int
176 sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS)
177 {
178 	int err, val;
179 
180 	val = 0;
181 	err = sysctl_handle_int(oidp, &val, 0, req);
182 	if (err != 0 || req->newptr == NULL || val == 0)
183 		return (err);
184 
185 	chn_vol_0db_pcm = SND_VOL_0DB_PCM;
186 	chn_vpc_proc(1, SND_VOL_0DB_PCM);
187 
188 	return (0);
189 }
190 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset, CTLTYPE_INT | CTLFLAG_RW,
191 	0, sizeof(int), sysctl_hw_snd_vpc_reset, "I",
192 	"reset volume on all channels");
193 
194 static int chn_usefrags = 0;
195 TUNABLE_INT("hw.snd.usefrags", &chn_usefrags);
196 static int chn_syncdelay = -1;
197 TUNABLE_INT("hw.snd.syncdelay", &chn_syncdelay);
198 #ifdef SND_DEBUG
199 SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RW,
200 	&chn_usefrags, 1, "prefer setfragments() over setblocksize()");
201 SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RW,
202 	&chn_syncdelay, 1,
203 	"append (0-1000) millisecond trailing buffer delay on each sync");
204 #endif
205 
206 /**
207  * @brief Channel sync group lock
208  *
209  * Clients should acquire this lock @b without holding any channel locks
210  * before touching syncgroups or the main syncgroup list.
211  */
212 struct lock snd_pcm_syncgroups_mtx;
213 LOCK_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx,
214 	"PCM channel sync group lock", LK_CANRECURSE);
215 /**
216  * @brief syncgroups' master list
217  *
218  * Each time a channel syncgroup is created, it's added to this list.  This
219  * list should only be accessed with @sa snd_pcm_syncgroups_mtx held.
220  *
221  * See SNDCTL_DSP_SYNCGROUP for more information.
222  */
223 struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups);
224 
225 static void
226 chn_lockinit(struct pcm_channel *c, int dir)
227 {
228 	switch (dir) {
229 	case PCMDIR_PLAY:
230 		c->lock = snd_mtxcreate(c->name, "pcm play channel");
231 		cv_init(&c->intr_cv, "pcmwr");
232 		break;
233 	case PCMDIR_PLAY_VIRTUAL:
234 		c->lock = snd_mtxcreate(c->name, "pcm virtual play channel");
235 		cv_init(&c->intr_cv, "pcmwrv");
236 		break;
237 	case PCMDIR_REC:
238 		c->lock = snd_mtxcreate(c->name, "pcm record channel");
239 		cv_init(&c->intr_cv, "pcmrd");
240 		break;
241 	case PCMDIR_REC_VIRTUAL:
242 		c->lock = snd_mtxcreate(c->name, "pcm virtual record channel");
243 		cv_init(&c->intr_cv, "pcmrdv");
244 		break;
245 	default:
246 		panic("%s(): Invalid direction=%d", __func__, dir);
247 		break;
248 	}
249 
250 	cv_init(&c->cv, "pcmchn");
251 }
252 
253 static void
254 chn_lockdestroy(struct pcm_channel *c)
255 {
256 	CHN_LOCKASSERT(c);
257 
258 	CHN_BROADCAST(&c->cv);
259 	CHN_BROADCAST(&c->intr_cv);
260 
261 	cv_destroy(&c->cv);
262 	cv_destroy(&c->intr_cv);
263 
264 	snd_mtxfree(c->lock);
265 }
266 
267 /**
268  * @brief Determine channel is ready for I/O
269  *
270  * @retval 1 = ready for I/O
271  * @retval 0 = not ready for I/O
272  */
273 static int
274 chn_polltrigger(struct pcm_channel *c)
275 {
276 	struct snd_dbuf *bs = c->bufsoft;
277 	u_int delta;
278 
279 	CHN_LOCKASSERT(c);
280 
281 	if (c->flags & CHN_F_MMAP) {
282 		if (sndbuf_getprevtotal(bs) < c->lw)
283 			delta = c->lw;
284 		else
285 			delta = sndbuf_gettotal(bs) - sndbuf_getprevtotal(bs);
286 	} else {
287 		if (c->direction == PCMDIR_PLAY)
288 			delta = sndbuf_getfree(bs);
289 		else
290 			delta = sndbuf_getready(bs);
291 
292 		/*
293 		 * XXX really bad hack.  Force 50% hysteresis.
294 		 * when audio is playing via audio/alsa-plugins
295 		 * (work/.../oss) from firefox the playback thread
296 		 * for some reason is cpu-bound and continuously
297 		 * poll()s in a situation where there is on the
298 		 * order of ~30000 bytes of buffer space left.
299 		 *
300 		 * The real bug seems to be in the ioplug library,
301 		 * or perhaps some very stringent assumption for the
302 		 * ioctls that we aren't following.
303 		 */
304 		if (c->direction == PCMDIR_PLAY &&
305 		    delta < sndbuf_getsize(bs) / 2) {
306 			delta = 0;
307 		}
308 	}
309 
310 	return ((delta < c->lw) ? 0 : 1);
311 }
312 
313 static void
314 chn_pollreset(struct pcm_channel *c)
315 {
316 
317 	CHN_LOCKASSERT(c);
318 	sndbuf_updateprevtotal(c->bufsoft);
319 }
320 
321 static void
322 chn_wakeup(struct pcm_channel *c)
323 {
324 	struct snd_dbuf *bs;
325 	struct pcm_channel *ch;
326 
327 	CHN_LOCKASSERT(c);
328 
329 	bs = c->bufsoft;
330 
331 	if (CHN_EMPTY(c, children.busy)) {
332 		/*if (SEL_WAITING(sndbuf_getsel(bs)) && chn_polltrigger(c))*/
333 		if (SLIST_FIRST(&sndbuf_getkq(bs)->ki_note) && chn_polltrigger(c)) {
334 			/*
335 			 * XXX
336 			 *
337 			 * We would call KNOTE() here, but as we
338 			 * are in interrupt context, we'd have to
339 			 * acquire the MP lock before.
340 			 * Instead, we'll queue a task in a software
341 			 * interrupt, which will run with the MP lock
342 			 * held.
343 			 *
344 			 * buffer.c:sndbuf_kqtask will then call
345 			 * KNOTE() from safer context.
346 			 */
347 			taskqueue_enqueue(taskqueue_swi, &bs->kqtask);
348 		}
349 		if (c->flags & CHN_F_SLEEPING) {
350 			/*
351 			 * Ok, I can just panic it right here since it is
352 			 * quite obvious that we never allow multiple waiters
353 			 * from userland. I'm too generous...
354 			 */
355 			CHN_BROADCAST(&c->intr_cv);
356 		}
357 	} else {
358 		CHN_FOREACH(ch, c, children.busy) {
359 			CHN_LOCK(ch);
360 			chn_wakeup(ch);
361 			CHN_UNLOCK(ch);
362 		}
363 	}
364 }
365 
366 static int
367 chn_sleep(struct pcm_channel *c, int timeout)
368 {
369 	int ret;
370 
371 	CHN_LOCKASSERT(c);
372 
373 	if (c->flags & CHN_F_DEAD)
374 		return (EINVAL);
375 
376 	c->flags |= CHN_F_SLEEPING;
377 	ret = cv_timedwait_sig(&c->intr_cv, c->lock, timeout);
378 	c->flags &= ~CHN_F_SLEEPING;
379 
380 	return ((c->flags & CHN_F_DEAD) ? EINVAL : ret);
381 }
382 
383 /*
384  * chn_dmaupdate() tracks the status of a dma transfer,
385  * updating pointers.
386  */
387 
388 static unsigned int
389 chn_dmaupdate(struct pcm_channel *c)
390 {
391 	struct snd_dbuf *b = c->bufhard;
392 	unsigned int delta, old, hwptr, amt;
393 
394 	KASSERT(sndbuf_getsize(b) > 0, ("bufsize == 0"));
395 	CHN_LOCKASSERT(c);
396 
397 	old = sndbuf_gethwptr(b);
398 	hwptr = chn_getptr(c);
399 	delta = (sndbuf_getsize(b) + hwptr - old) % sndbuf_getsize(b);
400 	sndbuf_sethwptr(b, hwptr);
401 
402 	if (c->direction == PCMDIR_PLAY) {
403 		amt = min(delta, sndbuf_getready(b));
404 		amt -= amt % sndbuf_getalign(b);
405 		if (amt > 0)
406 			sndbuf_dispose(b, NULL, amt);
407 	} else {
408 		amt = min(delta, sndbuf_getfree(b));
409 		amt -= amt % sndbuf_getalign(b);
410 		if (amt > 0)
411 		       sndbuf_acquire(b, NULL, amt);
412 	}
413 	if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) {
414 		device_printf(c->dev, "WARNING: %s DMA completion "
415 			"too fast/slow ! hwptr=%u, old=%u "
416 			"delta=%u amt=%u ready=%u free=%u\n",
417 			CHN_DIRSTR(c), hwptr, old, delta, amt,
418 			sndbuf_getready(b), sndbuf_getfree(b));
419 	}
420 
421 	return delta;
422 }
423 
424 static void
425 chn_wrfeed(struct pcm_channel *c)
426 {
427     	struct snd_dbuf *b = c->bufhard;
428     	struct snd_dbuf *bs = c->bufsoft;
429 	unsigned int amt, want, wasfree;
430 
431 	CHN_LOCKASSERT(c);
432 
433 	if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING))
434 		sndbuf_acquire(bs, NULL, sndbuf_getfree(bs));
435 
436 	wasfree = sndbuf_getfree(b);
437 	want = min(sndbuf_getsize(b),
438 	    imax(0, sndbuf_xbytes(sndbuf_getsize(bs), bs, b) -
439 	     sndbuf_getready(b)));
440 	amt = min(wasfree, want);
441 	if (amt > 0)
442 		sndbuf_feed(bs, b, c, c->feeder, amt);
443 
444 	/*
445 	 * Possible xruns. There should be no empty space left in buffer.
446 	 */
447 	if (sndbuf_getready(b) < want)
448 		c->xruns++;
449 
450 	if (sndbuf_getfree(b) < wasfree)
451 		chn_wakeup(c);
452 }
453 
454 #if 0
455 static void
456 chn_wrupdate(struct pcm_channel *c)
457 {
458 
459 	CHN_LOCKASSERT(c);
460 	KASSERT(c->direction == PCMDIR_PLAY, ("%s(): bad channel", __func__));
461 
462 	if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c))
463 		return;
464 	chn_dmaupdate(c);
465 	chn_wrfeed(c);
466 	/* tell the driver we've updated the primary buffer */
467 	chn_trigger(c, PCMTRIG_EMLDMAWR);
468 }
469 #endif
470 
471 static void
472 chn_wrintr(struct pcm_channel *c)
473 {
474 
475 	CHN_LOCKASSERT(c);
476 	/* update pointers in primary buffer */
477 	chn_dmaupdate(c);
478 	/* ...and feed from secondary to primary */
479 	chn_wrfeed(c);
480 	/* tell the driver we've updated the primary buffer */
481 	chn_trigger(c, PCMTRIG_EMLDMAWR);
482 }
483 
484 /*
485  * user write routine - uiomove data into secondary buffer, trigger if necessary
486  * if blocking, sleep, rinse and repeat.
487  *
488  * called externally, so must handle locking
489  */
490 
491 int
492 chn_write(struct pcm_channel *c, struct uio *buf)
493 {
494 	struct snd_dbuf *bs = c->bufsoft;
495 	void *off;
496 	int ret, timeout, sz, t, p;
497 
498 	CHN_LOCKASSERT(c);
499 
500 	ret = 0;
501 	timeout = chn_timeout * hz;
502 
503 	while (ret == 0 && buf->uio_resid > 0) {
504 		sz = min(buf->uio_resid, sndbuf_getfree(bs));
505 		if (sz > 0) {
506 			/*
507 			 * The following assumes that the free space in
508 			 * the buffer can never be less around the
509 			 * unlock-uiomove-lock sequence.
510 			 */
511 			while (ret == 0 && sz > 0) {
512 				p = sndbuf_getfreeptr(bs);
513 				t = min(sz, sndbuf_getsize(bs) - p);
514 				off = sndbuf_getbufofs(bs, p);
515 				CHN_UNLOCK(c);
516 				ret = uiomove(off, t, buf);
517 				CHN_LOCK(c);
518 				sz -= t;
519 				sndbuf_acquire(bs, NULL, t);
520 			}
521 			ret = 0;
522 			if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) {
523 				ret = chn_start(c, 0);
524 				if (ret != 0)
525 					c->flags |= CHN_F_DEAD;
526 			}
527 		} else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) {
528 			/**
529 			 * @todo Evaluate whether EAGAIN is truly desirable.
530 			 * 	 4Front drivers behave like this, but I'm
531 			 * 	 not sure if it at all violates the "write
532 			 * 	 should be allowed to block" model.
533 			 *
534 			 * 	 The idea is that, while set with CHN_F_NOTRIGGER,
535 			 * 	 a channel isn't playing, *but* without this we
536 			 * 	 end up with "interrupt timeout / channel dead".
537 			 */
538 			ret = EAGAIN;
539 		} else {
540    			ret = chn_sleep(c, timeout);
541 			if (ret == EAGAIN) {
542 				ret = EINVAL;
543 				c->flags |= CHN_F_DEAD;
544 				device_printf(c->dev, "%s(): %s: "
545 				    "play interrupt timeout, channel dead\n",
546 				    __func__, c->name);
547 			} else if (ret == ERESTART || ret == EINTR)
548 				c->flags |= CHN_F_ABORTING;
549 		}
550 	}
551 
552 	return (ret);
553 }
554 
555 /*
556  * Feed new data from the read buffer. Can be called in the bottom half.
557  */
558 static void
559 chn_rdfeed(struct pcm_channel *c)
560 {
561     	struct snd_dbuf *b = c->bufhard;
562     	struct snd_dbuf *bs = c->bufsoft;
563 	unsigned int amt;
564 
565 	CHN_LOCKASSERT(c);
566 
567 	if (c->flags & CHN_F_MMAP)
568 		sndbuf_dispose(bs, NULL, sndbuf_getready(bs));
569 
570 	amt = sndbuf_getfree(bs);
571 	if (amt > 0)
572 		sndbuf_feed(b, bs, c, c->feeder, amt);
573 
574 	amt = sndbuf_getready(b);
575 	if (amt > 0) {
576 		c->xruns++;
577 		sndbuf_dispose(b, NULL, amt);
578 	}
579 
580 	if (sndbuf_getready(bs) > 0)
581 		chn_wakeup(c);
582 }
583 
584 #if 0
585 static void
586 chn_rdupdate(struct pcm_channel *c)
587 {
588 
589 	CHN_LOCKASSERT(c);
590 	KASSERT(c->direction == PCMDIR_REC, ("chn_rdupdate on bad channel"));
591 
592 	if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c))
593 		return;
594 	chn_trigger(c, PCMTRIG_EMLDMARD);
595 	chn_dmaupdate(c);
596 	chn_rdfeed(c);
597 }
598 #endif
599 
600 /* read interrupt routine. Must be called with interrupts blocked. */
601 static void
602 chn_rdintr(struct pcm_channel *c)
603 {
604 
605 	CHN_LOCKASSERT(c);
606 	/* tell the driver to update the primary buffer if non-dma */
607 	chn_trigger(c, PCMTRIG_EMLDMARD);
608 	/* update pointers in primary buffer */
609 	chn_dmaupdate(c);
610 	/* ...and feed from primary to secondary */
611 	chn_rdfeed(c);
612 }
613 
614 /*
615  * user read routine - trigger if necessary, uiomove data from secondary buffer
616  * if blocking, sleep, rinse and repeat.
617  *
618  * called externally, so must handle locking
619  */
620 
621 int
622 chn_read(struct pcm_channel *c, struct uio *buf)
623 {
624 	struct snd_dbuf *bs = c->bufsoft;
625 	void *off;
626 	int ret, timeout, sz, t, p;
627 
628 	CHN_LOCKASSERT(c);
629 
630 	if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) {
631 		ret = chn_start(c, 0);
632 		if (ret != 0) {
633 			c->flags |= CHN_F_DEAD;
634 			return (ret);
635 		}
636 	}
637 
638 	ret = 0;
639 	timeout = chn_timeout * hz;
640 
641 	while (ret == 0 && buf->uio_resid > 0) {
642 		sz = min(buf->uio_resid, sndbuf_getready(bs));
643 		if (sz > 0) {
644 			/*
645 			 * The following assumes that the free space in
646 			 * the buffer can never be less around the
647 			 * unlock-uiomove-lock sequence.
648 			 */
649 			while (ret == 0 && sz > 0) {
650 				p = sndbuf_getreadyptr(bs);
651 				t = min(sz, sndbuf_getsize(bs) - p);
652 				off = sndbuf_getbufofs(bs, p);
653 				CHN_UNLOCK(c);
654 				ret = uiomove(off, t, buf);
655 				CHN_LOCK(c);
656 				sz -= t;
657 				sndbuf_dispose(bs, NULL, t);
658 			}
659 			ret = 0;
660 		} else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER))
661 			ret = EAGAIN;
662 		else {
663    			ret = chn_sleep(c, timeout);
664 			if (ret == EAGAIN) {
665 				ret = EINVAL;
666 				c->flags |= CHN_F_DEAD;
667 				device_printf(c->dev, "%s(): %s: "
668 				    "record interrupt timeout, channel dead\n",
669 				    __func__, c->name);
670 			} else if (ret == ERESTART || ret == EINTR)
671 				c->flags |= CHN_F_ABORTING;
672 		}
673 	}
674 
675 	return (ret);
676 }
677 
678 void
679 chn_intr_locked(struct pcm_channel *c)
680 {
681 
682 	CHN_LOCKASSERT(c);
683 
684 	c->interrupts++;
685 
686 	if (c->direction == PCMDIR_PLAY)
687 		chn_wrintr(c);
688 	else
689 		chn_rdintr(c);
690 }
691 
692 void
693 chn_intr(struct pcm_channel *c)
694 {
695 
696 	if (CHN_LOCKOWNED(c)) {
697 		chn_intr_locked(c);
698 		return;
699 	}
700 
701 	CHN_LOCK(c);
702 	chn_intr_locked(c);
703 	CHN_UNLOCK(c);
704 }
705 
706 u_int32_t
707 chn_start(struct pcm_channel *c, int force)
708 {
709 	u_int32_t i, j;
710 	struct snd_dbuf *b = c->bufhard;
711 	struct snd_dbuf *bs = c->bufsoft;
712 	int err;
713 
714 	CHN_LOCKASSERT(c);
715 	/* if we're running, or if we're prevented from triggering, bail */
716 	if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force))
717 		return (EINVAL);
718 
719 	err = 0;
720 
721 	if (force) {
722 		i = 1;
723 		j = 0;
724 	} else {
725 		if (c->direction == PCMDIR_REC) {
726 			i = sndbuf_getfree(bs);
727 			j = (i > 0) ? 1 : sndbuf_getready(b);
728 		} else {
729 			if (sndbuf_getfree(bs) == 0) {
730 				i = 1;
731 				j = 0;
732 			} else {
733 				struct snd_dbuf *pb;
734 
735 				pb = CHN_BUF_PARENT(c, b);
736 				i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb);
737 				j = sndbuf_getalign(pb);
738 			}
739 		}
740 		if (snd_verbose > 3 && CHN_EMPTY(c, children))
741 			device_printf(c->dev, "%s(): %s (%s) threshold "
742 			    "i=%d j=%d\n", __func__, CHN_DIRSTR(c),
743 			    (c->flags & CHN_F_VIRTUAL) ? "virtual" :
744 			    "hardware", i, j);
745 	}
746 
747 	if (i >= j) {
748 		c->flags |= CHN_F_TRIGGERED;
749 		sndbuf_setrun(b, 1);
750 		if (c->flags & CHN_F_CLOSING)
751 			c->feedcount = 2;
752 		else {
753 			c->feedcount = 0;
754 			c->interrupts = 0;
755 			c->xruns = 0;
756 		}
757 		if (c->parentchannel == NULL) {
758 			if (c->direction == PCMDIR_PLAY)
759 				sndbuf_fillsilence_rl(b,
760 				    sndbuf_xbytes(sndbuf_getsize(bs), bs, b));
761 			if (snd_verbose > 3)
762 				device_printf(c->dev,
763 				    "%s(): %s starting! (%s/%s) "
764 				    "(ready=%d force=%d i=%d j=%d "
765 				    "intrtimeout=%u latency=%dms)\n",
766 				    __func__,
767 				    (c->flags & CHN_F_HAS_VCHAN) ?
768 				    "VCHAN PARENT" : "HW", CHN_DIRSTR(c),
769 				    (c->flags & CHN_F_CLOSING) ? "closing" :
770 				    "running",
771 				    sndbuf_getready(b),
772 				    force, i, j, c->timeout,
773 				    (sndbuf_getsize(b) * 1000) /
774 				    (sndbuf_getalign(b) * sndbuf_getspd(b)));
775 		}
776 		err = chn_trigger(c, PCMTRIG_START);
777 	}
778 
779 	return (err);
780 }
781 
782 void
783 chn_resetbuf(struct pcm_channel *c)
784 {
785 	struct snd_dbuf *b = c->bufhard;
786 	struct snd_dbuf *bs = c->bufsoft;
787 
788 	c->blocks = 0;
789 	sndbuf_reset(b);
790 	sndbuf_reset(bs);
791 }
792 
793 /*
794  * chn_sync waits until the space in the given channel goes above
795  * a threshold. The threshold is checked against fl or rl respectively.
796  * Assume that the condition can become true, do not check here...
797  */
798 int
799 chn_sync(struct pcm_channel *c, int threshold)
800 {
801     	struct snd_dbuf *b, *bs;
802 	int ret, count, hcount, minflush, resid, residp, syncdelay, blksz;
803 	u_int32_t cflag;
804 
805 	CHN_LOCKASSERT(c);
806 
807 	if (c->direction != PCMDIR_PLAY)
808 		return (EINVAL);
809 
810 	bs = c->bufsoft;
811 
812 	if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) ||
813 	    (threshold < 1 && sndbuf_getready(bs) < 1))
814 		return (0);
815 
816 	/* if we haven't yet started and nothing is buffered, else start*/
817 	if (CHN_STOPPED(c)) {
818 		if (threshold > 0 || sndbuf_getready(bs) > 0) {
819 			ret = chn_start(c, 1);
820 			if (ret != 0)
821 				return (ret);
822 		} else
823 			return (0);
824 	}
825 
826 	b = CHN_BUF_PARENT(c, c->bufhard);
827 
828 	minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs);
829 
830 	syncdelay = chn_syncdelay;
831 
832 	if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0))
833 		minflush += sndbuf_xbytes(sndbuf_getsize(b), b, bs);
834 
835 	/*
836 	 * Append (0-1000) millisecond trailing buffer (if needed)
837 	 * for slower / high latency hardwares (notably USB audio)
838 	 * to avoid audible truncation.
839 	 */
840 	if (syncdelay > 0)
841 		minflush += (sndbuf_getalign(bs) * sndbuf_getspd(bs) *
842 		    ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000;
843 
844 	minflush -= minflush % sndbuf_getalign(bs);
845 
846 	if (minflush > 0) {
847 		threshold = min(minflush, sndbuf_getfree(bs));
848 		sndbuf_clear(bs, threshold);
849 		sndbuf_acquire(bs, NULL, threshold);
850 		minflush -= threshold;
851 	}
852 
853 	resid = sndbuf_getready(bs);
854 	residp = resid;
855 	blksz = sndbuf_getblksz(b);
856 	if (blksz < 1) {
857 		device_printf(c->dev,
858 		    "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n",
859 		    __func__, sndbuf_getmaxsize(b), sndbuf_getsize(b),
860 		    sndbuf_getblksz(b), sndbuf_getblkcnt(b));
861 		if (sndbuf_getblkcnt(b) > 0)
862 			blksz = sndbuf_getsize(b) / sndbuf_getblkcnt(b);
863 		if (blksz < 1)
864 			blksz = 1;
865 	}
866 	count = sndbuf_xbytes(minflush + resid, bs, b) / blksz;
867 	hcount = count;
868 	ret = 0;
869 
870 	if (snd_verbose > 3)
871 		device_printf(c->dev, "%s(): [begin] timeout=%d count=%d "
872 		    "minflush=%d resid=%d\n", __func__, c->timeout, count,
873 		    minflush, resid);
874 
875 	cflag = c->flags & CHN_F_CLOSING;
876 	c->flags |= CHN_F_CLOSING;
877 	while (count > 0 && (resid > 0 || minflush > 0)) {
878 		ret = chn_sleep(c, c->timeout);
879     		if (ret == ERESTART || ret == EINTR) {
880 			c->flags |= CHN_F_ABORTING;
881 			break;
882 		} else if (ret == 0 || ret == EAGAIN) {
883 			resid = sndbuf_getready(bs);
884 			if (resid == residp) {
885 				--count;
886 				if (snd_verbose > 3)
887 					device_printf(c->dev,
888 					    "%s(): [stalled] timeout=%d "
889 					    "count=%d hcount=%d "
890 					    "resid=%d minflush=%d\n",
891 					    __func__, c->timeout, count,
892 					    hcount, resid, minflush);
893 			} else if (resid < residp && count < hcount) {
894 				++count;
895 				if (snd_verbose > 3)
896 					device_printf(c->dev,
897 					    "%s((): [resume] timeout=%d "
898 					    "count=%d hcount=%d "
899 					    "resid=%d minflush=%d\n",
900 					    __func__, c->timeout, count,
901 					    hcount, resid, minflush);
902 			}
903 			if (minflush > 0 && sndbuf_getfree(bs) > 0) {
904 				threshold = min(minflush,
905 				    sndbuf_getfree(bs));
906 				sndbuf_clear(bs, threshold);
907 				sndbuf_acquire(bs, NULL, threshold);
908 				resid = sndbuf_getready(bs);
909 				minflush -= threshold;
910 			}
911 			residp = resid;
912 		} else
913 			break;
914 	}
915 	c->flags &= ~CHN_F_CLOSING;
916 	c->flags |= cflag;
917 
918 	if (snd_verbose > 3)
919 		device_printf(c->dev,
920 		    "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d "
921 		    "minflush=%d ret=%d\n",
922 		    __func__, c->timeout, count, hcount, resid, residp,
923 		    minflush, ret);
924 
925     	return (0);
926 }
927 
928 /* called externally, handle locking */
929 int
930 chn_poll(struct pcm_channel *c, int ev, struct thread *td)
931 {
932 	int ret;
933 
934 	CHN_LOCKASSERT(c);
935 
936     	if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) {
937 		ret = chn_start(c, 1);
938 		if (ret != 0)
939 			return (0);
940 	}
941 
942 	ret = 0;
943 	if (chn_polltrigger(c)) {
944 		chn_pollreset(c);
945 		ret = ev;
946 	}
947 
948 	return (ret);
949 }
950 
951 /*
952  * chn_abort terminates a running dma transfer.  it may sleep up to 200ms.
953  * it returns the number of bytes that have not been transferred.
954  *
955  * called from: dsp_close, dsp_ioctl, with channel locked
956  */
957 int
958 chn_abort(struct pcm_channel *c)
959 {
960     	int missing = 0;
961     	struct snd_dbuf *b = c->bufhard;
962     	struct snd_dbuf *bs = c->bufsoft;
963 
964 	CHN_LOCKASSERT(c);
965 	if (CHN_STOPPED(c))
966 		return 0;
967 	c->flags |= CHN_F_ABORTING;
968 
969 	c->flags &= ~CHN_F_TRIGGERED;
970 	/* kill the channel */
971 	chn_trigger(c, PCMTRIG_ABORT);
972 	sndbuf_setrun(b, 0);
973 	if (!(c->flags & CHN_F_VIRTUAL))
974 		chn_dmaupdate(c);
975     	missing = sndbuf_getready(bs);
976 
977 	c->flags &= ~CHN_F_ABORTING;
978 	return missing;
979 }
980 
981 /*
982  * this routine tries to flush the dma transfer. It is called
983  * on a close of a playback channel.
984  * first, if there is data in the buffer, but the dma has not yet
985  * begun, we need to start it.
986  * next, we wait for the play buffer to drain
987  * finally, we stop the dma.
988  *
989  * called from: dsp_close, not valid for record channels.
990  */
991 
992 int
993 chn_flush(struct pcm_channel *c)
994 {
995     	struct snd_dbuf *b = c->bufhard;
996 
997 	CHN_LOCKASSERT(c);
998 	KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel"));
999     	DEB(kprintf("chn_flush: c->flags 0x%08x\n", c->flags));
1000 
1001 	c->flags |= CHN_F_CLOSING;
1002 	chn_sync(c, 0);
1003 	c->flags &= ~CHN_F_TRIGGERED;
1004 	/* kill the channel */
1005 	chn_trigger(c, PCMTRIG_ABORT);
1006 	sndbuf_setrun(b, 0);
1007 
1008     	c->flags &= ~CHN_F_CLOSING;
1009     	return 0;
1010 }
1011 
1012 int
1013 snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist)
1014 {
1015 	int i;
1016 
1017 	for (i = 0; fmtlist[i] != 0; i++) {
1018 		if (fmt == fmtlist[i] ||
1019 		    ((fmt & AFMT_PASSTHROUGH) &&
1020 		    (AFMT_ENCODING(fmt) & fmtlist[i])))
1021 			return (1);
1022 	}
1023 
1024 	return (0);
1025 }
1026 
1027 static const struct {
1028 	char *name, *alias1, *alias2;
1029 	uint32_t afmt;
1030 } afmt_tab[] = {
1031 	{  "alaw",  NULL, NULL, AFMT_A_LAW  },
1032 	{ "mulaw",  NULL, NULL, AFMT_MU_LAW },
1033 	{    "u8",   "8", NULL, AFMT_U8     },
1034 	{    "s8",  NULL, NULL, AFMT_S8     },
1035 #if BYTE_ORDER == LITTLE_ENDIAN
1036 	{ "s16le", "s16", "16", AFMT_S16_LE },
1037 	{ "s16be",  NULL, NULL, AFMT_S16_BE },
1038 #else
1039 	{ "s16le",  NULL, NULL, AFMT_S16_LE },
1040 	{ "s16be", "s16", "16", AFMT_S16_BE },
1041 #endif
1042 	{ "u16le",  NULL, NULL, AFMT_U16_LE },
1043 	{ "u16be",  NULL, NULL, AFMT_U16_BE },
1044 	{ "s24le",  NULL, NULL, AFMT_S24_LE },
1045 	{ "s24be",  NULL, NULL, AFMT_S24_BE },
1046 	{ "u24le",  NULL, NULL, AFMT_U24_LE },
1047 	{ "u24be",  NULL, NULL, AFMT_U24_BE },
1048 #if BYTE_ORDER == LITTLE_ENDIAN
1049 	{ "s32le", "s32", "32", AFMT_S32_LE },
1050 	{ "s32be",  NULL, NULL, AFMT_S32_BE },
1051 #else
1052 	{ "s32le",  NULL, NULL, AFMT_S32_LE },
1053 	{ "s32be", "s32", "32", AFMT_S32_BE },
1054 #endif
1055 	{ "u32le",  NULL, NULL, AFMT_U32_LE },
1056 	{ "u32be",  NULL, NULL, AFMT_U32_BE },
1057 	{   "ac3",  NULL, NULL, AFMT_AC3    },
1058 	{    NULL,  NULL, NULL, 0           }
1059 };
1060 
1061 static const struct {
1062 	char *name, *alias1, *alias2;
1063 	int matrix_id;
1064 } matrix_id_tab[] = {
1065 	{ "1.0",  "1",   "mono", SND_CHN_MATRIX_1_0     },
1066 	{ "2.0",  "2", "stereo", SND_CHN_MATRIX_2_0     },
1067 	{ "2.1", NULL,     NULL, SND_CHN_MATRIX_2_1     },
1068 	{ "3.0",  "3",     NULL, SND_CHN_MATRIX_3_0     },
1069 	{ "3.1", NULL,     NULL, SND_CHN_MATRIX_3_1     },
1070 	{ "4.0",  "4",   "quad", SND_CHN_MATRIX_4_0     },
1071 	{ "4.1", NULL,     NULL, SND_CHN_MATRIX_4_1     },
1072 	{ "5.0",  "5",     NULL, SND_CHN_MATRIX_5_0     },
1073 	{ "5.1",  "6",     NULL, SND_CHN_MATRIX_5_1     },
1074 	{ "6.0", NULL,     NULL, SND_CHN_MATRIX_6_0     },
1075 	{ "6.1",  "7",     NULL, SND_CHN_MATRIX_6_1     },
1076 	{ "7.0", NULL,     NULL, SND_CHN_MATRIX_7_0     },
1077 	{ "7.1",  "8",     NULL, SND_CHN_MATRIX_7_1     },
1078 	{  NULL, NULL,     NULL, SND_CHN_MATRIX_UNKNOWN }
1079 };
1080 
1081 uint32_t
1082 snd_str2afmt(const char *req)
1083 {
1084 	uint32_t i, afmt;
1085 	int matrix_id;
1086 	char b1[8], b2[8];
1087 
1088 	i = ksscanf(req, "%5[^:]:%6s", b1, b2);
1089 
1090 	if (i == 1) {
1091 		if (strlen(req) != strlen(b1))
1092 			return (0);
1093 		strlcpy(b2, "2.0", sizeof(b2));
1094 	} else if (i == 2) {
1095 		if (strlen(req) != (strlen(b1) + 1 + strlen(b2)))
1096 			return (0);
1097 	} else
1098 		return (0);
1099 
1100 	afmt = 0;
1101 	matrix_id = SND_CHN_MATRIX_UNKNOWN;
1102 
1103 	for (i = 0; afmt == 0 && afmt_tab[i].name != NULL; i++) {
1104 		if (strcasecmp(afmt_tab[i].name, b1) == 0 ||
1105 		    (afmt_tab[i].alias1 != NULL &&
1106 		    strcasecmp(afmt_tab[i].alias1, b1) == 0) ||
1107 		    (afmt_tab[i].alias2 != NULL &&
1108 		    strcasecmp(afmt_tab[i].alias2, b1) == 0)) {
1109 			afmt = afmt_tab[i].afmt;
1110 			strlcpy(b1, afmt_tab[i].name, sizeof(b1));
1111 		}
1112 	}
1113 
1114 	if (afmt == 0)
1115 		return (0);
1116 
1117 	for (i = 0; matrix_id == SND_CHN_MATRIX_UNKNOWN &&
1118 	    matrix_id_tab[i].name != NULL; i++) {
1119 		if (strcmp(matrix_id_tab[i].name, b2) == 0 ||
1120 		    (matrix_id_tab[i].alias1 != NULL &&
1121 		    strcmp(matrix_id_tab[i].alias1, b2) == 0) ||
1122 		    (matrix_id_tab[i].alias2 != NULL &&
1123 		    strcasecmp(matrix_id_tab[i].alias2, b2) == 0)) {
1124 			matrix_id = matrix_id_tab[i].matrix_id;
1125 			strlcpy(b2, matrix_id_tab[i].name, sizeof(b2));
1126 		}
1127 	}
1128 
1129 	if (matrix_id == SND_CHN_MATRIX_UNKNOWN)
1130 		return (0);
1131 
1132 #ifndef _KERNEL
1133 	printf("Parse OK: '%s' -> '%s:%s' %d\n", req, b1, b2,
1134 	    (int)(b2[0]) - '0' + (int)(b2[2]) - '0');
1135 #endif
1136 
1137 	return (SND_FORMAT(afmt, b2[0] - '0' + b2[2] - '0', b2[2] - '0'));
1138 }
1139 
1140 uint32_t
1141 snd_afmt2str(uint32_t afmt, char *buf, size_t len)
1142 {
1143 	uint32_t i, enc, ch, ext;
1144 	char tmp[AFMTSTR_LEN];
1145 
1146 	if (buf == NULL || len < AFMTSTR_LEN)
1147 		return (0);
1148 
1149 
1150 	bzero(tmp, sizeof(tmp));
1151 
1152 	enc = AFMT_ENCODING(afmt);
1153 	ch = AFMT_CHANNEL(afmt);
1154 	ext = AFMT_EXTCHANNEL(afmt);
1155 
1156 	for (i = 0; afmt_tab[i].name != NULL; i++) {
1157 		if (enc == afmt_tab[i].afmt) {
1158 			strlcpy(tmp, afmt_tab[i].name, sizeof(tmp));
1159 			strlcat(tmp, ":", sizeof(tmp));
1160 			break;
1161 		}
1162 	}
1163 
1164 	if (strlen(tmp) == 0)
1165 		return (0);
1166 
1167 	for (i = 0; matrix_id_tab[i].name != NULL; i++) {
1168 		if (ch == (matrix_id_tab[i].name[0] - '0' +
1169 		    matrix_id_tab[i].name[2] - '0') &&
1170 		    ext == (matrix_id_tab[i].name[2] - '0')) {
1171 			strlcat(tmp, matrix_id_tab[i].name, sizeof(tmp));
1172 			break;
1173 		}
1174 	}
1175 
1176 	if (strlen(tmp) == 0)
1177 		return (0);
1178 
1179 	strlcpy(buf, tmp, len);
1180 
1181 	return (snd_str2afmt(buf));
1182 }
1183 
1184 int
1185 chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd)
1186 {
1187 	int r;
1188 
1189 	CHN_LOCKASSERT(c);
1190 	c->feedcount = 0;
1191 	c->flags &= CHN_F_RESET;
1192 	c->interrupts = 0;
1193 	c->timeout = 1;
1194 	c->xruns = 0;
1195 
1196 	c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ?
1197 	    CHN_F_BITPERFECT : 0;
1198 
1199 	r = CHANNEL_RESET(c->methods, c->devinfo);
1200 	if (r == 0 && fmt != 0 && spd != 0) {
1201 		r = chn_setparam(c, fmt, spd);
1202 		fmt = 0;
1203 		spd = 0;
1204 	}
1205 	if (r == 0 && fmt != 0)
1206 		r = chn_setformat(c, fmt);
1207 	if (r == 0 && spd != 0)
1208 		r = chn_setspeed(c, spd);
1209 	if (r == 0)
1210 		r = chn_setlatency(c, chn_latency);
1211 	if (r == 0) {
1212 		chn_resetbuf(c);
1213 		r = CHANNEL_RESETDONE(c->methods, c->devinfo);
1214 	}
1215 	return r;
1216 }
1217 
1218 int
1219 chn_init(struct pcm_channel *c, void *devinfo, int dir, int direction)
1220 {
1221 	struct feeder_class *fc;
1222 	struct snd_dbuf *b, *bs;
1223 	int i, ret;
1224 
1225 	if (chn_timeout < CHN_TIMEOUT_MIN || chn_timeout > CHN_TIMEOUT_MAX)
1226 		chn_timeout = CHN_TIMEOUT;
1227 
1228 	chn_lockinit(c, dir);
1229 
1230 	b = NULL;
1231 	bs = NULL;
1232 	CHN_INIT(c, children);
1233 	CHN_INIT(c, children.busy);
1234 	c->devinfo = NULL;
1235 	c->feeder = NULL;
1236 	c->latency = -1;
1237 	c->timeout = 1;
1238 
1239 	ret = ENOMEM;
1240 	b = sndbuf_create(c->dev, c->name, "primary", c);
1241 	if (b == NULL)
1242 		goto out;
1243 	bs = sndbuf_create(c->dev, c->name, "secondary", c);
1244 	if (bs == NULL)
1245 		goto out;
1246 
1247 	CHN_LOCK(c);
1248 
1249 	ret = EINVAL;
1250 	fc = feeder_getclass(NULL);
1251 	if (fc == NULL)
1252 		goto out;
1253 	if (chn_addfeeder(c, fc, NULL))
1254 		goto out;
1255 
1256 	/*
1257 	 * XXX - sndbuf_setup() & sndbuf_resize() expect to be called
1258 	 *	 with the channel unlocked because they are also called
1259 	 *	 from driver methods that don't know about locking
1260 	 */
1261 	CHN_UNLOCK(c);
1262 	sndbuf_setup(bs, NULL, 0);
1263 	CHN_LOCK(c);
1264 	c->bufhard = b;
1265 	c->bufsoft = bs;
1266 	c->flags = 0;
1267 	c->feederflags = 0;
1268 	c->sm = NULL;
1269 	c->format = SND_FORMAT(AFMT_U8, 1, 0);
1270 	c->speed = DSP_DEFAULT_SPEED;
1271 
1272 	c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0);
1273 	c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL;
1274 
1275 	for (i = 0; i < SND_CHN_T_MAX; i++) {
1276 		c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER;
1277 	}
1278 
1279 	c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER;
1280 	c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm;
1281 
1282 	chn_vpc_reset(c, SND_VOL_C_PCM, 1);
1283 
1284 	ret = ENODEV;
1285 	CHN_UNLOCK(c); /* XXX - Unlock for CHANNEL_INIT() malloc() call */
1286 	c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction);
1287 	CHN_LOCK(c);
1288 	if (c->devinfo == NULL)
1289 		goto out;
1290 
1291 	ret = ENOMEM;
1292 	if ((sndbuf_getsize(b) == 0) && ((c->flags & CHN_F_VIRTUAL) == 0))
1293 		goto out;
1294 
1295 	ret = 0;
1296 	c->direction = direction;
1297 
1298 	sndbuf_setfmt(b, c->format);
1299 	sndbuf_setspd(b, c->speed);
1300 	sndbuf_setfmt(bs, c->format);
1301 	sndbuf_setspd(bs, c->speed);
1302 
1303 	/**
1304 	 * @todo Should this be moved somewhere else?  The primary buffer
1305 	 * 	 is allocated by the driver or via DMA map setup, and tmpbuf
1306 	 * 	 seems to only come into existence in sndbuf_resize().
1307 	 */
1308 	if (c->direction == PCMDIR_PLAY) {
1309 		bs->sl = sndbuf_getmaxsize(bs);
1310 		bs->shadbuf = kmalloc(bs->sl, M_DEVBUF, M_WAITOK | M_ZERO);
1311 		if (bs->shadbuf == NULL) {
1312 			ret = ENOMEM;
1313 			goto out;
1314 		}
1315 	}
1316 
1317 out:
1318 	CHN_UNLOCK(c);
1319 	if (ret) {
1320 		if (c->devinfo) {
1321 			if (CHANNEL_FREE(c->methods, c->devinfo))
1322 				sndbuf_free(b);
1323 		}
1324 		if (bs)
1325 			sndbuf_destroy(bs);
1326 		if (b)
1327 			sndbuf_destroy(b);
1328 		CHN_LOCK(c);
1329 		c->flags |= CHN_F_DEAD;
1330 		chn_lockdestroy(c);
1331 
1332 		return ret;
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 int
1339 chn_kill(struct pcm_channel *c)
1340 {
1341     	struct snd_dbuf *b = c->bufhard;
1342     	struct snd_dbuf *bs = c->bufsoft;
1343 
1344 	if (CHN_STARTED(c)) {
1345 		CHN_LOCK(c);
1346 		chn_trigger(c, PCMTRIG_ABORT);
1347 		CHN_UNLOCK(c);
1348 	}
1349 	while (chn_removefeeder(c) == 0)
1350 		;
1351 	if (CHANNEL_FREE(c->methods, c->devinfo))
1352 		sndbuf_free(b);
1353 	sndbuf_destroy(bs);
1354 	sndbuf_destroy(b);
1355 	CHN_LOCK(c);
1356 	c->flags |= CHN_F_DEAD;
1357 	chn_lockdestroy(c);
1358 
1359 	return (0);
1360 }
1361 
1362 /* XXX Obsolete. Use *_matrix() variant instead. */
1363 int
1364 chn_setvolume(struct pcm_channel *c, int left, int right)
1365 {
1366 	int ret;
1367 
1368 	ret = chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FL, left);
1369 	ret |= chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FR,
1370 	    right) << 8;
1371 
1372 	return (ret);
1373 }
1374 
1375 int
1376 chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right,
1377     int center)
1378 {
1379 	int i, ret;
1380 
1381 	ret = 0;
1382 
1383 	for (i = 0; i < SND_CHN_T_MAX; i++) {
1384 		if ((1 << i) & SND_CHN_LEFT_MASK)
1385 			ret |= chn_setvolume_matrix(c, vc, i, left);
1386 		else if ((1 << i) & SND_CHN_RIGHT_MASK)
1387 			ret |= chn_setvolume_matrix(c, vc, i, right) << 8;
1388 		else
1389 			ret |= chn_setvolume_matrix(c, vc, i, center) << 16;
1390 	}
1391 
1392 	return (ret);
1393 }
1394 
1395 int
1396 chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val)
1397 {
1398 	int i;
1399 
1400 	KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1401 	    (vc == SND_VOL_C_MASTER || (vc & 1)) &&
1402 	    (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN &&
1403 	    vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB ||
1404 	    (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)),
1405 	    ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d",
1406 	    __func__, c, vc, vt, val));
1407 	CHN_LOCKASSERT(c);
1408 
1409 	if (val < 0)
1410 		val = 0;
1411 	if (val > 100)
1412 		val = 100;
1413 
1414 	c->volume[vc][vt] = val;
1415 
1416 	/*
1417 	 * Do relative calculation here and store it into class + 1
1418 	 * to ease the job of feeder_volume.
1419 	 */
1420 	if (vc == SND_VOL_C_MASTER) {
1421 		for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END;
1422 		    vc += SND_VOL_C_STEP)
1423 			c->volume[SND_VOL_C_VAL(vc)][vt] =
1424 			    SND_VOL_CALC_VAL(c->volume, vc, vt);
1425 	} else if (vc & 1) {
1426 		if (vt == SND_CHN_T_VOL_0DB)
1427 			for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END;
1428 			    i += SND_CHN_T_STEP) {
1429 				c->volume[SND_VOL_C_VAL(vc)][i] =
1430 				    SND_VOL_CALC_VAL(c->volume, vc, i);
1431 			}
1432 		else
1433 			c->volume[SND_VOL_C_VAL(vc)][vt] =
1434 			    SND_VOL_CALC_VAL(c->volume, vc, vt);
1435 	}
1436 
1437 	return (val);
1438 }
1439 
1440 int
1441 chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt)
1442 {
1443 	KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1444 	    (vt == SND_CHN_T_VOL_0DB ||
1445 	    (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)),
1446 	    ("%s(): invalid volume matrix c=%p vc=%d vt=%d",
1447 	    __func__, c, vc, vt));
1448 	CHN_LOCKASSERT(c);
1449 
1450 	return (c->volume[vc][vt]);
1451 }
1452 
1453 struct pcmchan_matrix *
1454 chn_getmatrix(struct pcm_channel *c)
1455 {
1456 
1457 	KASSERT(c != NULL, ("%s(): NULL channel", __func__));
1458 	CHN_LOCKASSERT(c);
1459 
1460 	if (!(c->format & AFMT_CONVERTIBLE))
1461 		return (NULL);
1462 
1463 	return (&c->matrix);
1464 }
1465 
1466 int
1467 chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m)
1468 {
1469 
1470 	KASSERT(c != NULL && m != NULL,
1471 	    ("%s(): NULL channel or matrix", __func__));
1472 	CHN_LOCKASSERT(c);
1473 
1474 	if (!(c->format & AFMT_CONVERTIBLE))
1475 		return (EINVAL);
1476 
1477 	c->matrix = *m;
1478 	c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL;
1479 
1480 	return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext)));
1481 }
1482 
1483 /*
1484  * XXX chn_oss_* exists for the sake of compatibility.
1485  */
1486 int
1487 chn_oss_getorder(struct pcm_channel *c, unsigned long long *map)
1488 {
1489 
1490 	KASSERT(c != NULL && map != NULL,
1491 	    ("%s(): NULL channel or map", __func__));
1492 	CHN_LOCKASSERT(c);
1493 
1494 	if (!(c->format & AFMT_CONVERTIBLE))
1495 		return (EINVAL);
1496 
1497 	return (feeder_matrix_oss_get_channel_order(&c->matrix, map));
1498 }
1499 
1500 int
1501 chn_oss_setorder(struct pcm_channel *c, unsigned long long *map)
1502 {
1503 	struct pcmchan_matrix m;
1504 	int ret;
1505 
1506 	KASSERT(c != NULL && map != NULL,
1507 	    ("%s(): NULL channel or map", __func__));
1508 	CHN_LOCKASSERT(c);
1509 
1510 	if (!(c->format & AFMT_CONVERTIBLE))
1511 		return (EINVAL);
1512 
1513 	m = c->matrix;
1514 	ret = feeder_matrix_oss_set_channel_order(&m, map);
1515 	if (ret != 0)
1516 		return (ret);
1517 
1518 	return (chn_setmatrix(c, &m));
1519 }
1520 
1521 #define SND_CHN_OSS_FRONT	(SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR)
1522 #define SND_CHN_OSS_SURR	(SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR)
1523 #define SND_CHN_OSS_CENTER_LFE	(SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF)
1524 #define SND_CHN_OSS_REAR	(SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR)
1525 
1526 int
1527 chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask)
1528 {
1529 	struct pcmchan_matrix *m;
1530 	struct pcmchan_caps *caps;
1531 	uint32_t i, format;
1532 
1533 	KASSERT(c != NULL && retmask != NULL,
1534 	    ("%s(): NULL channel or retmask", __func__));
1535 	CHN_LOCKASSERT(c);
1536 
1537 	caps = chn_getcaps(c);
1538 	if (caps == NULL || caps->fmtlist == NULL)
1539 		return (ENODEV);
1540 
1541 	for (i = 0; caps->fmtlist[i] != 0; i++) {
1542 		format = caps->fmtlist[i];
1543 		if (!(format & AFMT_CONVERTIBLE)) {
1544 			*retmask |= DSP_BIND_SPDIF;
1545 			continue;
1546 		}
1547 		m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format);
1548 		if (m == NULL)
1549 			continue;
1550 		if (m->mask & SND_CHN_OSS_FRONT)
1551 			*retmask |= DSP_BIND_FRONT;
1552 		if (m->mask & SND_CHN_OSS_SURR)
1553 			*retmask |= DSP_BIND_SURR;
1554 		if (m->mask & SND_CHN_OSS_CENTER_LFE)
1555 			*retmask |= DSP_BIND_CENTER_LFE;
1556 		if (m->mask & SND_CHN_OSS_REAR)
1557 			*retmask |= DSP_BIND_REAR;
1558 	}
1559 
1560 	/* report software-supported binding mask */
1561 	if (!CHN_BITPERFECT(c) && report_soft_matrix)
1562 		*retmask |= DSP_BIND_FRONT | DSP_BIND_SURR |
1563 		    DSP_BIND_CENTER_LFE | DSP_BIND_REAR;
1564 
1565 	return (0);
1566 }
1567 
1568 void
1569 chn_vpc_reset(struct pcm_channel *c, int vc, int force)
1570 {
1571 	int i;
1572 
1573 	KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END,
1574 	    ("%s(): invalid reset c=%p vc=%d", __func__, c, vc));
1575 	CHN_LOCKASSERT(c);
1576 
1577 	if (force == 0 && chn_vpc_autoreset == 0)
1578 		return;
1579 
1580 	for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP)
1581 		CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]);
1582 }
1583 
1584 static u_int32_t
1585 round_pow2(u_int32_t v)
1586 {
1587 	u_int32_t ret;
1588 
1589 	if (v < 2)
1590 		v = 2;
1591 	ret = 0;
1592 	while (v >> ret)
1593 		ret++;
1594 	ret = 1 << (ret - 1);
1595 	while (ret < v)
1596 		ret <<= 1;
1597 	return ret;
1598 }
1599 
1600 static u_int32_t
1601 round_blksz(u_int32_t v, int round)
1602 {
1603 	u_int32_t ret, tmp;
1604 
1605 	if (round < 1)
1606 		round = 1;
1607 
1608 	ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1);
1609 
1610 	if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2))
1611 		ret >>= 1;
1612 
1613 	tmp = ret - (ret % round);
1614 	while (tmp < 16 || tmp < round) {
1615 		ret <<= 1;
1616 		tmp = ret - (ret % round);
1617 	}
1618 
1619 	return ret;
1620 }
1621 
1622 /*
1623  * 4Front call it DSP Policy, while we call it "Latency Profile". The idea
1624  * is to keep 2nd buffer short so that it doesn't cause long queue during
1625  * buffer transfer.
1626  *
1627  *    Latency reference table for 48khz stereo 16bit: (PLAY)
1628  *
1629  *      +---------+------------+-----------+------------+
1630  *      | Latency | Blockcount | Blocksize | Buffersize |
1631  *      +---------+------------+-----------+------------+
1632  *      |     0   |       2    |   64      |    128     |
1633  *      +---------+------------+-----------+------------+
1634  *      |     1   |       4    |   128     |    512     |
1635  *      +---------+------------+-----------+------------+
1636  *      |     2   |       8    |   512     |    4096    |
1637  *      +---------+------------+-----------+------------+
1638  *      |     3   |      16    |   512     |    8192    |
1639  *      +---------+------------+-----------+------------+
1640  *      |     4   |      32    |   512     |    16384   |
1641  *      +---------+------------+-----------+------------+
1642  *      |     5   |      32    |   1024    |    32768   |
1643  *      +---------+------------+-----------+------------+
1644  *      |     6   |      16    |   2048    |    32768   |
1645  *      +---------+------------+-----------+------------+
1646  *      |     7   |       8    |   4096    |    32768   |
1647  *      +---------+------------+-----------+------------+
1648  *      |     8   |       4    |   8192    |    32768   |
1649  *      +---------+------------+-----------+------------+
1650  *      |     9   |       2    |   16384   |    32768   |
1651  *      +---------+------------+-----------+------------+
1652  *      |    10   |       2    |   32768   |    65536   |
1653  *      +---------+------------+-----------+------------+
1654  *
1655  * Recording need a different reference table. All we care is
1656  * gobbling up everything within reasonable buffering threshold.
1657  *
1658  *    Latency reference table for 48khz stereo 16bit: (REC)
1659  *
1660  *      +---------+------------+-----------+------------+
1661  *      | Latency | Blockcount | Blocksize | Buffersize |
1662  *      +---------+------------+-----------+------------+
1663  *      |     0   |     512    |   32      |    16384   |
1664  *      +---------+------------+-----------+------------+
1665  *      |     1   |     256    |   64      |    16384   |
1666  *      +---------+------------+-----------+------------+
1667  *      |     2   |     128    |   128     |    16384   |
1668  *      +---------+------------+-----------+------------+
1669  *      |     3   |      64    |   256     |    16384   |
1670  *      +---------+------------+-----------+------------+
1671  *      |     4   |      32    |   512     |    16384   |
1672  *      +---------+------------+-----------+------------+
1673  *      |     5   |      32    |   1024    |    32768   |
1674  *      +---------+------------+-----------+------------+
1675  *      |     6   |      16    |   2048    |    32768   |
1676  *      +---------+------------+-----------+------------+
1677  *      |     7   |       8    |   4096    |    32768   |
1678  *      +---------+------------+-----------+------------+
1679  *      |     8   |       4    |   8192    |    32768   |
1680  *      +---------+------------+-----------+------------+
1681  *      |     9   |       2    |   16384   |    32768   |
1682  *      +---------+------------+-----------+------------+
1683  *      |    10   |       2    |   32768   |    65536   |
1684  *      +---------+------------+-----------+------------+
1685  *
1686  * Calculations for other data rate are entirely based on these reference
1687  * tables. For normal operation, Latency 5 seems give the best, well
1688  * balanced performance for typical workload. Anything below 5 will
1689  * eat up CPU to keep up with increasing context switches because of
1690  * shorter buffer space and usually require the application to handle it
1691  * aggresively through possibly real time programming technique.
1692  *
1693  */
1694 #define CHN_LATENCY_PBLKCNT_REF				\
1695 	{{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1},		\
1696 	{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}}
1697 #define CHN_LATENCY_PBUFSZ_REF				\
1698 	{{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16},	\
1699 	{11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}}
1700 
1701 #define CHN_LATENCY_RBLKCNT_REF				\
1702 	{{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1},		\
1703 	{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}}
1704 #define CHN_LATENCY_RBUFSZ_REF				\
1705 	{{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16},	\
1706 	{15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}}
1707 
1708 #define CHN_LATENCY_DATA_REF	192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */
1709 
1710 static int
1711 chn_calclatency(int dir, int latency, int bps, u_int32_t datarate,
1712 				u_int32_t max, int *rblksz, int *rblkcnt)
1713 {
1714 	static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1715 	    CHN_LATENCY_PBLKCNT_REF;
1716 	static int  pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1717 	    CHN_LATENCY_PBUFSZ_REF;
1718 	static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1719 	    CHN_LATENCY_RBLKCNT_REF;
1720 	static int  rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1721 	    CHN_LATENCY_RBUFSZ_REF;
1722 	u_int32_t bufsz;
1723 	int lprofile, blksz, blkcnt;
1724 
1725 	if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX ||
1726 	    bps < 1 || datarate < 1 ||
1727 	    !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) {
1728 		if (rblksz != NULL)
1729 			*rblksz = CHN_2NDBUFMAXSIZE >> 1;
1730 		if (rblkcnt != NULL)
1731 			*rblkcnt = 2;
1732 		kprintf("%s(): FAILED dir=%d latency=%d bps=%d "
1733 		    "datarate=%u max=%u\n",
1734 		    __func__, dir, latency, bps, datarate, max);
1735 		return CHN_2NDBUFMAXSIZE;
1736 	}
1737 
1738 	lprofile = chn_latency_profile;
1739 
1740 	if (dir == PCMDIR_PLAY) {
1741 		blkcnt = pblkcnts[lprofile][latency];
1742 		bufsz = pbufszs[lprofile][latency];
1743 	} else {
1744 		blkcnt = rblkcnts[lprofile][latency];
1745 		bufsz = rbufszs[lprofile][latency];
1746 	}
1747 
1748 	bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF,
1749 	    datarate));
1750 	if (bufsz > max)
1751 		bufsz = max;
1752 	blksz = round_blksz(bufsz >> blkcnt, bps);
1753 
1754 	if (rblksz != NULL)
1755 		*rblksz = blksz;
1756 	if (rblkcnt != NULL)
1757 		*rblkcnt = 1 << blkcnt;
1758 
1759 	return blksz << blkcnt;
1760 }
1761 
1762 static int
1763 chn_resizebuf(struct pcm_channel *c, int latency,
1764 					int blkcnt, int blksz)
1765 {
1766 	struct snd_dbuf *b, *bs, *pb;
1767 	int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt;
1768 	int ret;
1769 
1770 	CHN_LOCKASSERT(c);
1771 
1772 	if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) ||
1773 	    !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC))
1774 		return EINVAL;
1775 
1776 	if (latency == -1) {
1777 		c->latency = -1;
1778 		latency = chn_latency;
1779 	} else if (latency == -2) {
1780 		latency = c->latency;
1781 		if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX)
1782 			latency = chn_latency;
1783 	} else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX)
1784 		return EINVAL;
1785 	else {
1786 		c->latency = latency;
1787 	}
1788 
1789 	bs = c->bufsoft;
1790 	b = c->bufhard;
1791 
1792 	if (!(blksz == 0 || blkcnt == -1) &&
1793 	    (blksz < 16 || blksz < sndbuf_getalign(bs) || blkcnt < 2 ||
1794 	    (blksz * blkcnt) > CHN_2NDBUFMAXSIZE))
1795 		return EINVAL;
1796 
1797 	chn_calclatency(c->direction, latency, sndbuf_getalign(bs),
1798 	    sndbuf_getalign(bs) * sndbuf_getspd(bs), CHN_2NDBUFMAXSIZE,
1799 	    &sblksz, &sblkcnt);
1800 
1801 	if (blksz == 0 || blkcnt == -1) {
1802 		if (blkcnt == -1)
1803 			c->flags &= ~CHN_F_HAS_SIZE;
1804 		if (c->flags & CHN_F_HAS_SIZE) {
1805 			blksz = sndbuf_getblksz(bs);
1806 			blkcnt = sndbuf_getblkcnt(bs);
1807 		}
1808 	} else
1809 		c->flags |= CHN_F_HAS_SIZE;
1810 
1811 	if (c->flags & CHN_F_HAS_SIZE) {
1812 		/*
1813 		 * The application has requested their own blksz/blkcnt.
1814 		 * Just obey with it, and let them toast alone. We can
1815 		 * clamp it to the nearest latency profile, but that would
1816 		 * defeat the purpose of having custom control. The least
1817 		 * we can do is round it to the nearest ^2 and align it.
1818 		 */
1819 		sblksz = round_blksz(blksz, sndbuf_getalign(bs));
1820 		sblkcnt = round_pow2(blkcnt);
1821 	}
1822 
1823 	if (c->parentchannel != NULL) {
1824 		pb = c->parentchannel->bufsoft;
1825 		CHN_UNLOCK(c);
1826 		CHN_LOCK(c->parentchannel);
1827 		chn_notify(c->parentchannel, CHN_N_BLOCKSIZE);
1828 		CHN_UNLOCK(c->parentchannel);
1829 		CHN_LOCK(c);
1830 		if (c->direction == PCMDIR_PLAY) {
1831 			limit = (pb != NULL) ?
1832 			    sndbuf_xbytes(sndbuf_getsize(pb), pb, bs) : 0;
1833 		} else {
1834 			limit = (pb != NULL) ?
1835 			    sndbuf_xbytes(sndbuf_getblksz(pb), pb, bs) * 2 : 0;
1836 		}
1837 	} else {
1838 		hblkcnt = 2;
1839 		if (c->flags & CHN_F_HAS_SIZE) {
1840 			hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b),
1841 			    sndbuf_getalign(b));
1842 			hblkcnt = round_pow2(sndbuf_getblkcnt(bs));
1843 		} else
1844 			chn_calclatency(c->direction, latency,
1845 			    sndbuf_getalign(b),
1846 			    sndbuf_getalign(b) * sndbuf_getspd(b),
1847 			    CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt);
1848 
1849 		if ((hblksz << 1) > sndbuf_getmaxsize(b))
1850 			hblksz = round_blksz(sndbuf_getmaxsize(b) >> 1,
1851 			    sndbuf_getalign(b));
1852 
1853 		while ((hblksz * hblkcnt) > sndbuf_getmaxsize(b)) {
1854 			if (hblkcnt < 4)
1855 				hblksz >>= 1;
1856 			else
1857 				hblkcnt >>= 1;
1858 		}
1859 
1860 		hblksz -= hblksz % sndbuf_getalign(b);
1861 
1862 #if 0
1863 		hblksz = sndbuf_getmaxsize(b) >> 1;
1864 		hblksz -= hblksz % sndbuf_getalign(b);
1865 		hblkcnt = 2;
1866 #endif
1867 
1868 		CHN_UNLOCK(c);
1869 		if (chn_usefrags == 0 ||
1870 		    CHANNEL_SETFRAGMENTS(c->methods, c->devinfo,
1871 		    hblksz, hblkcnt) != 0)
1872 			sndbuf_setblksz(b, CHANNEL_SETBLOCKSIZE(c->methods,
1873 			    c->devinfo, hblksz));
1874 		CHN_LOCK(c);
1875 
1876 		if (!CHN_EMPTY(c, children)) {
1877 			nsblksz = round_blksz(
1878 			    sndbuf_xbytes(sndbuf_getblksz(b), b, bs),
1879 			    sndbuf_getalign(bs));
1880 			nsblkcnt = sndbuf_getblkcnt(b);
1881 			if (c->direction == PCMDIR_PLAY) {
1882 				do {
1883 					nsblkcnt--;
1884 				} while (nsblkcnt >= 2 &&
1885 				    nsblksz * nsblkcnt >= sblksz * sblkcnt);
1886 				nsblkcnt++;
1887 			}
1888 			sblksz = nsblksz;
1889 			sblkcnt = nsblkcnt;
1890 			limit = 0;
1891 		} else
1892 			limit = sndbuf_xbytes(sndbuf_getblksz(b), b, bs) * 2;
1893 	}
1894 
1895 	if (limit > CHN_2NDBUFMAXSIZE)
1896 		limit = CHN_2NDBUFMAXSIZE;
1897 
1898 #if 0
1899 	while (limit > 0 && (sblksz * sblkcnt) > limit) {
1900 		if (sblkcnt < 4)
1901 			break;
1902 		sblkcnt >>= 1;
1903 	}
1904 #endif
1905 
1906 	while ((sblksz * sblkcnt) < limit)
1907 		sblkcnt <<= 1;
1908 
1909 	while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) {
1910 		if (sblkcnt < 4)
1911 			sblksz >>= 1;
1912 		else
1913 			sblkcnt >>= 1;
1914 	}
1915 
1916 	sblksz -= sblksz % sndbuf_getalign(bs);
1917 
1918 	if (sndbuf_getblkcnt(bs) != sblkcnt || sndbuf_getblksz(bs) != sblksz ||
1919 	    sndbuf_getsize(bs) != (sblkcnt * sblksz)) {
1920 		ret = sndbuf_remalloc(bs, sblkcnt, sblksz);
1921 		if (ret != 0) {
1922 			device_printf(c->dev, "%s(): Failed: %d %d\n",
1923 			    __func__, sblkcnt, sblksz);
1924 			return ret;
1925 		}
1926 	}
1927 
1928 	/*
1929 	 * Interrupt timeout
1930 	 */
1931 	c->timeout = ((u_int64_t)hz * sndbuf_getsize(bs)) /
1932 	    ((u_int64_t)sndbuf_getspd(bs) * sndbuf_getalign(bs));
1933 	if (c->parentchannel != NULL)
1934 		c->timeout = min(c->timeout, c->parentchannel->timeout);
1935 	if (c->timeout < 1)
1936 		c->timeout = 1;
1937 
1938 	/*
1939 	 * OSSv4 docs: "By default OSS will set the low water level equal
1940 	 * to the fragment size which is optimal in most cases."
1941 	 */
1942 	c->lw = sndbuf_getblksz(bs);
1943 	chn_resetbuf(c);
1944 
1945 	if (snd_verbose > 3)
1946 		device_printf(c->dev, "%s(): %s (%s) timeout=%u "
1947 		    "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n",
1948 		    __func__, CHN_DIRSTR(c),
1949 		    (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware",
1950 		    c->timeout,
1951 		    sndbuf_getsize(b), sndbuf_getblksz(b),
1952 		    sndbuf_getblkcnt(b),
1953 		    sndbuf_getsize(bs), sndbuf_getblksz(bs),
1954 		    sndbuf_getblkcnt(bs), limit);
1955 
1956 	return 0;
1957 }
1958 
1959 int
1960 chn_setlatency(struct pcm_channel *c, int latency)
1961 {
1962 	CHN_LOCKASSERT(c);
1963 	/* Destroy blksz/blkcnt, enforce latency profile. */
1964 	return chn_resizebuf(c, latency, -1, 0);
1965 }
1966 
1967 int
1968 chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz)
1969 {
1970 	CHN_LOCKASSERT(c);
1971 	/* Destroy latency profile, enforce blksz/blkcnt */
1972 	return chn_resizebuf(c, -1, blkcnt, blksz);
1973 }
1974 
1975 int
1976 chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed)
1977 {
1978 	struct pcmchan_caps *caps;
1979 	uint32_t hwspeed, delta;
1980 	int ret;
1981 
1982 	CHN_LOCKASSERT(c);
1983 
1984 	if (speed < 1 || format == 0 || CHN_STARTED(c))
1985 		return (EINVAL);
1986 
1987 	c->format = format;
1988 	c->speed = speed;
1989 
1990 	caps = chn_getcaps(c);
1991 
1992 	hwspeed = speed;
1993 	RANGE(hwspeed, caps->minspeed, caps->maxspeed);
1994 
1995 	sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo,
1996 	    hwspeed));
1997 	hwspeed = sndbuf_getspd(c->bufhard);
1998 
1999 	delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed);
2000 
2001 	if (delta <= feeder_rate_round)
2002 		c->speed = hwspeed;
2003 
2004 	ret = feeder_chain(c);
2005 
2006 	if (ret == 0)
2007 		ret = CHANNEL_SETFORMAT(c->methods, c->devinfo,
2008 		    sndbuf_getfmt(c->bufhard));
2009 
2010 	if (ret == 0)
2011 		ret = chn_resizebuf(c, -2, 0, 0);
2012 
2013 	return (ret);
2014 }
2015 
2016 int
2017 chn_setspeed(struct pcm_channel *c, uint32_t speed)
2018 {
2019 	uint32_t oldformat, oldspeed, format;
2020 	int ret;
2021 
2022 #if 0
2023 	/* XXX force 48k */
2024 	if (c->format & AFMT_PASSTHROUGH)
2025 		speed = AFMT_PASSTHROUGH_RATE;
2026 #endif
2027 
2028 	oldformat = c->format;
2029 	oldspeed = c->speed;
2030 	format = oldformat;
2031 
2032 	ret = chn_setparam(c, format, speed);
2033 	if (ret != 0) {
2034 		if (snd_verbose > 3)
2035 			device_printf(c->dev,
2036 			    "%s(): Setting speed %d failed, "
2037 			    "falling back to %d\n",
2038 			    __func__, speed, oldspeed);
2039 		chn_setparam(c, c->format, oldspeed);
2040 	}
2041 
2042 	return (ret);
2043 }
2044 
2045 int
2046 chn_setformat(struct pcm_channel *c, uint32_t format)
2047 {
2048 	uint32_t oldformat, oldspeed, speed;
2049 	int ret;
2050 
2051 	/* XXX force stereo */
2052 	if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) {
2053 		format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL,
2054 		    AFMT_PASSTHROUGH_EXTCHANNEL);
2055 	}
2056 
2057 	oldformat = c->format;
2058 	oldspeed = c->speed;
2059 	speed = oldspeed;
2060 
2061 	ret = chn_setparam(c, format, speed);
2062 	if (ret != 0) {
2063 		if (snd_verbose > 3)
2064 			device_printf(c->dev,
2065 			    "%s(): Format change 0x%08x failed, "
2066 			    "falling back to 0x%08x\n",
2067 			    __func__, format, oldformat);
2068 		chn_setparam(c, oldformat, oldspeed);
2069 	}
2070 
2071 	return (ret);
2072 }
2073 
2074 void
2075 chn_syncstate(struct pcm_channel *c)
2076 {
2077 	struct snddev_info *d;
2078 	struct snd_mixer *m;
2079 
2080 	d = (c != NULL) ? c->parentsnddev : NULL;
2081 	m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 :
2082 	    NULL;
2083 
2084 	if (d == NULL || m == NULL)
2085 		return;
2086 
2087 	CHN_LOCKASSERT(c);
2088 
2089 	if (c->feederflags & (1 << FEEDER_VOLUME)) {
2090 		uint32_t parent;
2091 		int vol, pvol, left, right, center;
2092 
2093 		if (c->direction == PCMDIR_PLAY &&
2094 		    (d->flags & SD_F_SOFTPCMVOL)) {
2095 			/* CHN_UNLOCK(c); */
2096 			vol = mix_get(m, SOUND_MIXER_PCM);
2097 			parent = mix_getparent(m, SOUND_MIXER_PCM);
2098 			if (parent != SOUND_MIXER_NONE)
2099 				pvol = mix_get(m, parent);
2100 			else
2101 				pvol = 100 | (100 << 8);
2102 			/* CHN_LOCK(c); */
2103 		} else {
2104 			vol = 100 | (100 << 8);
2105 			pvol = vol;
2106 		}
2107 
2108 		if (vol == -1) {
2109 			device_printf(c->dev,
2110 			    "Soft PCM Volume: Failed to read pcm "
2111 			    "default value\n");
2112 			vol = 100 | (100 << 8);
2113 		}
2114 
2115 		if (pvol == -1) {
2116 			device_printf(c->dev,
2117 			    "Soft PCM Volume: Failed to read parent "
2118 			    "default value\n");
2119 			pvol = 100 | (100 << 8);
2120 		}
2121 
2122 		left = ((vol & 0x7f) * (pvol & 0x7f)) / 100;
2123 		right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100;
2124 		center = (left + right) >> 1;
2125 
2126 		chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center);
2127 	}
2128 
2129 	if (c->feederflags & (1 << FEEDER_EQ)) {
2130 		struct pcm_feeder *f;
2131 		int treble, bass, state;
2132 
2133 		/* CHN_UNLOCK(c); */
2134 		treble = mix_get(m, SOUND_MIXER_TREBLE);
2135 		bass = mix_get(m, SOUND_MIXER_BASS);
2136 		/* CHN_LOCK(c); */
2137 
2138 		if (treble == -1)
2139 			treble = 50;
2140 		else
2141 			treble = ((treble & 0x7f) +
2142 			    ((treble >> 8) & 0x7f)) >> 1;
2143 
2144 		if (bass == -1)
2145 			bass = 50;
2146 		else
2147 			bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1;
2148 
2149 		f = chn_findfeeder(c, FEEDER_EQ);
2150 		if (f != NULL) {
2151 			if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0)
2152 				device_printf(c->dev,
2153 				    "EQ: Failed to set treble -- %d\n",
2154 				    treble);
2155 			if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0)
2156 				device_printf(c->dev,
2157 				    "EQ: Failed to set bass -- %d\n",
2158 				    bass);
2159 			if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0)
2160 				device_printf(c->dev,
2161 				    "EQ: Failed to set preamp -- %d\n",
2162 				    d->eqpreamp);
2163 			if (d->flags & SD_F_EQ_BYPASSED)
2164 				state = FEEDEQ_BYPASS;
2165 			else if (d->flags & SD_F_EQ_ENABLED)
2166 				state = FEEDEQ_ENABLE;
2167 			else
2168 				state = FEEDEQ_DISABLE;
2169 			if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0)
2170 				device_printf(c->dev,
2171 				    "EQ: Failed to set state -- %d\n", state);
2172 		}
2173 	}
2174 }
2175 
2176 int
2177 chn_trigger(struct pcm_channel *c, int go)
2178 {
2179 #ifdef DEV_ISA
2180     	struct snd_dbuf *b = c->bufhard;
2181 #endif
2182 	struct snddev_info *d = c->parentsnddev;
2183 	int ret;
2184 
2185 	CHN_LOCKASSERT(c);
2186 #ifdef DEV_ISA
2187 	if (SND_DMA(b) && (go == PCMTRIG_EMLDMAWR || go == PCMTRIG_EMLDMARD))
2188 		sndbuf_dmabounce(b);
2189 #endif
2190 	if (!PCMTRIG_COMMON(go))
2191 		return (CHANNEL_TRIGGER(c->methods, c->devinfo, go));
2192 
2193 	if (go == c->trigger)
2194 		return (0);
2195 
2196 	ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go);
2197 	if (ret != 0)
2198 		return (ret);
2199 
2200 	switch (go) {
2201 	case PCMTRIG_START:
2202 		if (snd_verbose > 3)
2203 			device_printf(c->dev,
2204 			    "%s() %s: calling go=0x%08x , "
2205 			    "prev=0x%08x\n", __func__, c->name, go,
2206 			    c->trigger);
2207 		if (c->trigger != PCMTRIG_START) {
2208 			c->trigger = go;
2209 			CHN_UNLOCK(c);
2210 			PCM_LOCK(d);
2211 			CHN_INSERT_HEAD(d, c, channels.pcm.busy);
2212 			PCM_UNLOCK(d);
2213 			CHN_LOCK(c);
2214 			chn_syncstate(c);
2215 		}
2216 		break;
2217 	case PCMTRIG_STOP:
2218 	case PCMTRIG_ABORT:
2219 		if (snd_verbose > 3)
2220 			device_printf(c->dev,
2221 			    "%s() %s: calling go=0x%08x , "
2222 			    "prev=0x%08x\n", __func__, c->name, go,
2223 			    c->trigger);
2224 		if (c->trigger == PCMTRIG_START) {
2225 			c->trigger = go;
2226 			CHN_UNLOCK(c);
2227 			PCM_LOCK(d);
2228 			CHN_REMOVE(d, c, channels.pcm.busy);
2229 			PCM_UNLOCK(d);
2230 			CHN_LOCK(c);
2231 		}
2232 		break;
2233 	default:
2234 		break;
2235 	}
2236 
2237 	return (0);
2238 }
2239 
2240 /**
2241  * @brief Queries sound driver for sample-aligned hardware buffer pointer index
2242  *
2243  * This function obtains the hardware pointer location, then aligns it to
2244  * the current bytes-per-sample value before returning.  (E.g., a channel
2245  * running in 16 bit stereo mode would require 4 bytes per sample, so a
2246  * hwptr value ranging from 32-35 would be returned as 32.)
2247  *
2248  * @param c	PCM channel context
2249  * @returns 	sample-aligned hardware buffer pointer index
2250  */
2251 int
2252 chn_getptr(struct pcm_channel *c)
2253 {
2254 	int hwptr;
2255 
2256 	CHN_LOCKASSERT(c);
2257 	hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0;
2258 	return (hwptr - (hwptr % sndbuf_getalign(c->bufhard)));
2259 }
2260 
2261 struct pcmchan_caps *
2262 chn_getcaps(struct pcm_channel *c)
2263 {
2264 	CHN_LOCKASSERT(c);
2265 	return CHANNEL_GETCAPS(c->methods, c->devinfo);
2266 }
2267 
2268 u_int32_t
2269 chn_getformats(struct pcm_channel *c)
2270 {
2271 	u_int32_t *fmtlist, fmts;
2272 	int i;
2273 
2274 	fmtlist = chn_getcaps(c)->fmtlist;
2275 	fmts = 0;
2276 	for (i = 0; fmtlist[i]; i++)
2277 		fmts |= fmtlist[i];
2278 
2279 	/* report software-supported formats */
2280 	if (!CHN_BITPERFECT(c) && report_soft_formats)
2281 		fmts |= AFMT_CONVERTIBLE;
2282 
2283 	return (AFMT_ENCODING(fmts));
2284 }
2285 
2286 int
2287 chn_notify(struct pcm_channel *c, u_int32_t flags)
2288 {
2289 	struct pcm_channel *ch;
2290 	struct pcmchan_caps *caps;
2291 	uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate;
2292 	uint32_t vpflags;
2293 	int dirty, err, run, nrun;
2294 
2295 	CHN_LOCKASSERT(c);
2296 
2297 	if (CHN_EMPTY(c, children))
2298 		return (ENODEV);
2299 
2300 	err = 0;
2301 
2302 	/*
2303 	 * If the hwchan is running, we can't change its rate, format or
2304 	 * blocksize
2305 	 */
2306 	run = (CHN_STARTED(c)) ? 1 : 0;
2307 	if (run)
2308 		flags &= CHN_N_VOLUME | CHN_N_TRIGGER;
2309 
2310 	if (flags & CHN_N_RATE) {
2311 		/*
2312 		 * XXX I'll make good use of this someday.
2313 		 *     However this is currently being superseded by
2314 		 *     the availability of CHN_F_VCHAN_DYNAMIC.
2315 		 */
2316 	}
2317 
2318 	if (flags & CHN_N_FORMAT) {
2319 		/*
2320 		 * XXX I'll make good use of this someday.
2321 		 *     However this is currently being superseded by
2322 		 *     the availability of CHN_F_VCHAN_DYNAMIC.
2323 		 */
2324 	}
2325 
2326 	if (flags & CHN_N_VOLUME) {
2327 		/*
2328 		 * XXX I'll make good use of this someday, though
2329 		 *     soft volume control is currently pretty much
2330 		 *     integrated.
2331 		 */
2332 	}
2333 
2334 	if (flags & CHN_N_BLOCKSIZE) {
2335 		/*
2336 		 * Set to default latency profile
2337 		 */
2338 		chn_setlatency(c, chn_latency);
2339 	}
2340 
2341 	if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) {
2342 		nrun = CHN_EMPTY(c, children.busy) ? 0 : 1;
2343 		if (nrun && !run)
2344 			err = chn_start(c, 1);
2345 		if (!nrun && run)
2346 			chn_abort(c);
2347 		flags &= ~CHN_N_TRIGGER;
2348 	}
2349 
2350 	if (flags & CHN_N_TRIGGER) {
2351 		if (c->direction == PCMDIR_PLAY) {
2352 			vchanformat = &c->parentsnddev->pvchanformat;
2353 			vchanrate = &c->parentsnddev->pvchanrate;
2354 		} else {
2355 			vchanformat = &c->parentsnddev->rvchanformat;
2356 			vchanrate = &c->parentsnddev->rvchanrate;
2357 		}
2358 
2359 		/* Dynamic Virtual Channel */
2360 		if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) {
2361 			bestformat = *vchanformat;
2362 			bestspeed = *vchanrate;
2363 		} else {
2364 			bestformat = 0;
2365 			bestspeed = 0;
2366 		}
2367 
2368 		besthwformat = 0;
2369 		nrun = 0;
2370 		caps = chn_getcaps(c);
2371 		dirty = 0;
2372 		vpflags = 0;
2373 
2374 		CHN_FOREACH(ch, c, children.busy) {
2375 			CHN_LOCK(ch);
2376 			if ((ch->format & AFMT_PASSTHROUGH) &&
2377 			    snd_fmtvalid(ch->format, caps->fmtlist)) {
2378 				bestformat = ch->format;
2379 				bestspeed = ch->speed;
2380 				CHN_UNLOCK(ch);
2381 				vpflags = CHN_F_PASSTHROUGH;
2382 				nrun++;
2383 				break;
2384 			}
2385 			if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) {
2386 				if (c->flags & CHN_F_VCHAN_ADAPTIVE) {
2387 					bestspeed = ch->speed;
2388 					RANGE(bestspeed, caps->minspeed,
2389 					    caps->maxspeed);
2390 					besthwformat = snd_fmtbest(ch->format,
2391 					    caps->fmtlist);
2392 					if (besthwformat != 0)
2393 						bestformat = besthwformat;
2394 				}
2395 				CHN_UNLOCK(ch);
2396 				vpflags = CHN_F_EXCLUSIVE;
2397 				nrun++;
2398 				continue;
2399 			}
2400 			if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) ||
2401 			    vpflags != 0) {
2402 				CHN_UNLOCK(ch);
2403 				nrun++;
2404 				continue;
2405 			}
2406 			if (ch->speed > bestspeed) {
2407 				bestspeed = ch->speed;
2408 				RANGE(bestspeed, caps->minspeed,
2409 				    caps->maxspeed);
2410 			}
2411 			besthwformat = snd_fmtbest(ch->format, caps->fmtlist);
2412 			if (!(besthwformat & AFMT_VCHAN)) {
2413 				CHN_UNLOCK(ch);
2414 				nrun++;
2415 				continue;
2416 			}
2417 			if (AFMT_CHANNEL(besthwformat) >
2418 			    AFMT_CHANNEL(bestformat))
2419 				bestformat = besthwformat;
2420 			else if (AFMT_CHANNEL(besthwformat) ==
2421 			    AFMT_CHANNEL(bestformat) &&
2422 			    AFMT_BIT(besthwformat) > AFMT_BIT(bestformat))
2423 				bestformat = besthwformat;
2424 			CHN_UNLOCK(ch);
2425 			nrun++;
2426 		}
2427 
2428 		if (bestformat == 0)
2429 			bestformat = c->format;
2430 		if (bestspeed == 0)
2431 			bestspeed = c->speed;
2432 
2433 		if (bestformat != c->format || bestspeed != c->speed)
2434 			dirty = 1;
2435 
2436 		c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE);
2437 		c->flags |= vpflags;
2438 
2439 		if (nrun && !run) {
2440 			if (dirty) {
2441 				bestspeed = CHANNEL_SETSPEED(c->methods,
2442 				    c->devinfo, bestspeed);
2443 				err = chn_reset(c, bestformat, bestspeed);
2444 			}
2445 			if (err == 0 && dirty) {
2446 				CHN_FOREACH(ch, c, children.busy) {
2447 					CHN_LOCK(ch);
2448 					if (VCHAN_SYNC_REQUIRED(ch))
2449 						vchan_sync(ch);
2450 					CHN_UNLOCK(ch);
2451 				}
2452 			}
2453 			if (err == 0) {
2454 				if (dirty)
2455 					c->flags |= CHN_F_DIRTY;
2456 				err = chn_start(c, 1);
2457 			}
2458 		}
2459 
2460 		if (nrun && run && dirty) {
2461 			chn_abort(c);
2462 			bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo,
2463 			    bestspeed);
2464 			err = chn_reset(c, bestformat, bestspeed);
2465 			if (err == 0) {
2466 				CHN_FOREACH(ch, c, children.busy) {
2467 					CHN_LOCK(ch);
2468 					if (VCHAN_SYNC_REQUIRED(ch))
2469 						vchan_sync(ch);
2470 					CHN_UNLOCK(ch);
2471 				}
2472 			}
2473 			if (err == 0) {
2474 				c->flags |= CHN_F_DIRTY;
2475 				err = chn_start(c, 1);
2476 			}
2477 		}
2478 
2479 		if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) &&
2480 		    (bestformat & AFMT_VCHAN)) {
2481 			*vchanformat = bestformat;
2482 			*vchanrate = bestspeed;
2483 		}
2484 
2485 		if (!nrun && run) {
2486 			c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE);
2487 			bestformat = *vchanformat;
2488 			bestspeed = *vchanrate;
2489 			chn_abort(c);
2490 			if (c->format != bestformat || c->speed != bestspeed)
2491 				chn_reset(c, bestformat, bestspeed);
2492 		}
2493 	}
2494 
2495 	return (err);
2496 }
2497 
2498 /**
2499  * @brief Fetch array of supported discrete sample rates
2500  *
2501  * Wrapper for CHANNEL_GETRATES.  Please see channel_if.m:getrates() for
2502  * detailed information.
2503  *
2504  * @note If the operation isn't supported, this function will just return 0
2505  *       (no rates in the array), and *rates will be set to NULL.  Callers
2506  *       should examine rates @b only if this function returns non-zero.
2507  *
2508  * @param c	pcm channel to examine
2509  * @param rates	pointer to array of integers; rate table will be recorded here
2510  *
2511  * @return number of rates in the array pointed to be @c rates
2512  */
2513 int
2514 chn_getrates(struct pcm_channel *c, int **rates)
2515 {
2516 	KASSERT(rates != NULL, ("rates is null"));
2517 	CHN_LOCKASSERT(c);
2518 	return CHANNEL_GETRATES(c->methods, c->devinfo, rates);
2519 }
2520 
2521 /**
2522  * @brief Remove channel from a sync group, if there is one.
2523  *
2524  * This function is initially intended for the following conditions:
2525  *   - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl)
2526  *   - Closing a device.  (A channel can't be destroyed if it's still in use.)
2527  *
2528  * @note Before calling this function, the syncgroup list mutex must be
2529  * held.  (Consider pcm_channel::sm protected by the SG list mutex
2530  * whether @c c is locked or not.)
2531  *
2532  * @param c	channel device to be started or closed
2533  * @returns	If this channel was the only member of a group, the group ID
2534  * 		is returned to the caller so that the caller can release it
2535  * 		via free_unr() after giving up the syncgroup lock.  Else it
2536  * 		returns 0.
2537  */
2538 int
2539 chn_syncdestroy(struct pcm_channel *c)
2540 {
2541 	struct pcmchan_syncmember *sm;
2542 	struct pcmchan_syncgroup *sg;
2543 	int sg_id;
2544 
2545 	sg_id = 0;
2546 
2547 	PCM_SG_ASSERTOWNED;
2548 
2549 	if (c->sm != NULL) {
2550 		sm = c->sm;
2551 		sg = sm->parent;
2552 		c->sm = NULL;
2553 
2554 		KASSERT(sg != NULL, ("syncmember has null parent"));
2555 
2556 		SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link);
2557 		kfree(sm, M_DEVBUF);
2558 
2559 		if (SLIST_EMPTY(&sg->members)) {
2560 			SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link);
2561 			sg_id = sg->id;
2562 			kfree(sg, M_DEVBUF);
2563 		}
2564 	}
2565 
2566 	return sg_id;
2567 }
2568 
2569 #ifdef OSSV4_EXPERIMENT
2570 int
2571 chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak)
2572 {
2573 	CHN_LOCKASSERT(c);
2574 	return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak);
2575 }
2576 #endif
2577