xref: /dragonfly/sys/dev/video/bktr/bktr_tuner.c (revision 3f5e28f4)
1 /*
2  * 1. Redistributions of source code must retain the
3  * Copyright (c) 1997 Amancio Hasty, 1999 Roger Hardiman
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Amancio Hasty and
17  *      Roger Hardiman
18  * 4. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
25  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bktr/bktr_tuner.c,v 1.18 2005/01/23 07:13:09 julian Exp
34  * $DragonFly: src/sys/dev/video/bktr/bktr_tuner.c,v 1.9 2006/12/22 23:26:26 swildner Exp $
35  */
36 
37 
38 /*
39  * This is part of the Driver for Video Capture Cards (Frame grabbers)
40  * and TV Tuner cards using the Brooktree Bt848, Bt848A, Bt849A, Bt878, Bt879
41  * chipset.
42  * Copyright Roger Hardiman and Amancio Hasty.
43  *
44  * bktr_tuner : This deals with controlling the tuner fitted to TV cards.
45  */
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/vnode.h>
51 #include <sys/bus.h>
52 
53 #include <bus/pci/pcivar.h>
54 
55 #include <dev/video/meteor/ioctl_meteor.h>
56 #include <dev/video/bktr/ioctl_bt848.h>	/* extensions to ioctl_meteor.h */
57 #include <dev/video/bktr/bktr_reg.h>
58 #include <dev/video/bktr/bktr_tuner.h>
59 #include <dev/video/bktr/bktr_card.h>
60 #include <dev/video/bktr/bktr_core.h>
61 
62 
63 
64 #if defined( TUNER_AFC )
65 #define AFC_DELAY               10000   /* 10 millisend delay */
66 #define AFC_BITS                0x07
67 #define AFC_FREQ_MINUS_125      0x00
68 #define AFC_FREQ_MINUS_62       0x01
69 #define AFC_FREQ_CENTERED       0x02
70 #define AFC_FREQ_PLUS_62        0x03
71 #define AFC_FREQ_PLUS_125       0x04
72 #define AFC_MAX_STEP            (5 * FREQFACTOR) /* no more than 5 MHz */
73 #endif /* TUNER_AFC */
74 
75 
76 #define TTYPE_XXX               0
77 #define TTYPE_NTSC              1
78 #define TTYPE_NTSC_J            2
79 #define TTYPE_PAL               3
80 #define TTYPE_PAL_M             4
81 #define TTYPE_PAL_N             5
82 #define TTYPE_SECAM             6
83 
84 #define TSA552x_CB_MSB          (0x80)
85 #define TSA552x_CB_CP           (1<<6)	/* set this for fast tuning */
86 #define TSA552x_CB_T2           (1<<5)	/* test mode - Normally set to 0 */
87 #define TSA552x_CB_T1           (1<<4)	/* test mode - Normally set to 0 */
88 #define TSA552x_CB_T0           (1<<3)	/* test mode - Normally set to 1 */
89 #define TSA552x_CB_RSA          (1<<2)	/* 0 for 31.25 khz, 1 for 62.5 kHz */
90 #define TSA552x_CB_RSB          (1<<1)	/* 0 for FM 50kHz steps, 1 = Use RSA*/
91 #define TSA552x_CB_OS           (1<<0)	/* Set to 0 for normal operation */
92 
93 #define TSA552x_RADIO           (TSA552x_CB_MSB |       \
94                                  TSA552x_CB_T0)
95 
96 /* raise the charge pump voltage for fast tuning */
97 #define TSA552x_FCONTROL        (TSA552x_CB_MSB |       \
98                                  TSA552x_CB_CP  |       \
99                                  TSA552x_CB_T0  |       \
100                                  TSA552x_CB_RSA |       \
101                                  TSA552x_CB_RSB)
102 
103 /* lower the charge pump voltage for better residual oscillator FM */
104 #define TSA552x_SCONTROL        (TSA552x_CB_MSB |       \
105                                  TSA552x_CB_T0  |       \
106                                  TSA552x_CB_RSA |       \
107                                  TSA552x_CB_RSB)
108 
109 /* The control value for the ALPS TSCH5 Tuner */
110 #define TSCH5_FCONTROL          0x82
111 #define TSCH5_RADIO             0x86
112 
113 /* The control value for the ALPS TSBH1 Tuner */
114 #define TSBH1_FCONTROL		0xce
115 
116 
117 static void mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq);
118 
119 
120 static const struct TUNER tuners[] = {
121 /* XXX FIXME: fill in the band-switch crosspoints */
122 	/* NO_TUNER */
123 	{ "<no>",				/* the 'name' */
124 	   TTYPE_XXX,				/* input type */
125  	   { 0x00,				/* control byte for Tuner PLL */
126  	     0x00,
127  	     0x00,
128  	     0x00 },
129 	   { 0x00, 0x00 },			/* band-switch crosspoints */
130 	   { 0x00, 0x00, 0x00,0x00} },		/* the band-switch values */
131 
132 	/* TEMIC_NTSC */
133 	{ "Temic NTSC",				/* the 'name' */
134 	   TTYPE_NTSC,				/* input type */
135 	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
136 	     TSA552x_SCONTROL,
137 	     TSA552x_SCONTROL,
138 	     0x00 },
139 	   { 0x00, 0x00},			/* band-switch crosspoints */
140 	   { 0x02, 0x04, 0x01, 0x00 } },	/* the band-switch values */
141 
142 	/* TEMIC_PAL */
143 	{ "Temic PAL",				/* the 'name' */
144 	   TTYPE_PAL,				/* input type */
145 	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
146 	     TSA552x_SCONTROL,
147 	     TSA552x_SCONTROL,
148 	     0x00 },
149 	   { 0x00, 0x00 },			/* band-switch crosspoints */
150 	   { 0x02, 0x04, 0x01, 0x00 } },	/* the band-switch values */
151 
152 	/* TEMIC_SECAM */
153 	{ "Temic SECAM",			/* the 'name' */
154 	   TTYPE_SECAM,				/* input type */
155 	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
156 	     TSA552x_SCONTROL,
157 	     TSA552x_SCONTROL,
158 	     0x00 },
159 	   { 0x00, 0x00 },			/* band-switch crosspoints */
160 	   { 0x02, 0x04, 0x01,0x00 } },		/* the band-switch values */
161 
162 	/* PHILIPS_NTSC */
163 	{ "Philips NTSC",			/* the 'name' */
164 	   TTYPE_NTSC,				/* input type */
165 	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
166 	     TSA552x_SCONTROL,
167 	     TSA552x_SCONTROL,
168 	     0x00 },
169 	   { 0x00, 0x00 },			/* band-switch crosspoints */
170 	   { 0xa0, 0x90, 0x30, 0x00 } },	/* the band-switch values */
171 
172 	/* PHILIPS_PAL */
173 	{ "Philips PAL",			/* the 'name' */
174 	   TTYPE_PAL,				/* input type */
175 	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
176 	     TSA552x_SCONTROL,
177 	     TSA552x_SCONTROL,
178 	     0x00 },
179 	   { 0x00, 0x00 },			/* band-switch crosspoints */
180 	   { 0xa0, 0x90, 0x30, 0x00 } },	/* the band-switch values */
181 
182 	/* PHILIPS_SECAM */
183 	{ "Philips SECAM",			/* the 'name' */
184 	   TTYPE_SECAM,				/* input type */
185 	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
186 	     TSA552x_SCONTROL,
187 	     TSA552x_SCONTROL,
188 	     0x00 },
189 	   { 0x00, 0x00 },			/* band-switch crosspoints */
190 	   { 0xa7, 0x97, 0x37, 0x00 } },	/* the band-switch values */
191 
192 	/* TEMIC_PAL I */
193 	{ "Temic PAL I",			/* the 'name' */
194 	   TTYPE_PAL,				/* input type */
195 	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
196 	     TSA552x_SCONTROL,
197 	     TSA552x_SCONTROL,
198 	     0x00 },
199 	   { 0x00, 0x00 },			/* band-switch crosspoints */
200 	   { 0x02, 0x04, 0x01,0x00 } },		/* the band-switch values */
201 
202 	/* PHILIPS_PALI */
203 	{ "Philips PAL I",			/* the 'name' */
204 	   TTYPE_PAL,				/* input type */
205 	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
206 	     TSA552x_SCONTROL,
207 	     TSA552x_SCONTROL,
208 	     0x00 },
209           { 0x00, 0x00 },                      /* band-switch crosspoints */
210           { 0xa0, 0x90, 0x30,0x00 } },         /* the band-switch values */
211 
212        /* PHILIPS_FR1236_NTSC */
213        { "Philips FR1236 NTSC FM",             /* the 'name' */
214           TTYPE_NTSC,                          /* input type */
215 	  { TSA552x_FCONTROL,			/* control byte for Tuner PLL */
216 	    TSA552x_FCONTROL,
217 	    TSA552x_FCONTROL,
218 	    TSA552x_RADIO  },
219           { 0x00, 0x00 },			/* band-switch crosspoints */
220 	  { 0xa0, 0x90, 0x30,0xa4 } },		/* the band-switch values */
221 
222 	/* PHILIPS_FR1216_PAL */
223 	{ "Philips FR1216 PAL FM" ,		/* the 'name' */
224 	   TTYPE_PAL,				/* input type */
225 	   { TSA552x_FCONTROL,			/* control byte for Tuner PLL */
226 	     TSA552x_FCONTROL,
227 	     TSA552x_FCONTROL,
228 	     TSA552x_RADIO },
229 	   { 0x00, 0x00 },			/* band-switch crosspoints */
230 	   { 0xa0, 0x90, 0x30, 0xa4 } },	/* the band-switch values */
231 
232 	/* PHILIPS_FR1236_SECAM */
233 	{ "Philips FR1236 SECAM FM",		/* the 'name' */
234 	   TTYPE_SECAM,				/* input type */
235 	   { TSA552x_FCONTROL,			/* control byte for Tuner PLL */
236 	     TSA552x_FCONTROL,
237 	     TSA552x_FCONTROL,
238 	     TSA552x_RADIO },
239 	   { 0x00, 0x00 },			/* band-switch crosspoints */
240 	   { 0xa7, 0x97, 0x37, 0xa4 } },	/* the band-switch values */
241 
242         /* ALPS TSCH5 NTSC */
243         { "ALPS TSCH5 NTSC FM",                 /* the 'name' */
244            TTYPE_NTSC,                          /* input type */
245            { TSCH5_FCONTROL,                    /* control byte for Tuner PLL */
246              TSCH5_FCONTROL,
247              TSCH5_FCONTROL,
248              TSCH5_RADIO },
249            { 0x00, 0x00 },                      /* band-switch crosspoints */
250            { 0x14, 0x12, 0x11, 0x04 } },        /* the band-switch values */
251 
252         /* ALPS TSBH1 NTSC */
253         { "ALPS TSBH1 NTSC",                    /* the 'name' */
254            TTYPE_NTSC,                          /* input type */
255            { TSBH1_FCONTROL,                    /* control byte for Tuner PLL */
256              TSBH1_FCONTROL,
257              TSBH1_FCONTROL,
258              0x00 },
259            { 0x00, 0x00 },                      /* band-switch crosspoints */
260            { 0x01, 0x02, 0x08, 0x00 } },         /* the band-switch values */
261 
262 	/* MT2032 Microtune */
263 	{ "MT2032",				/* the 'name' */
264 	   TTYPE_PAL,			/* input type */
265 	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
266 	     TSA552x_SCONTROL,
267 	     TSA552x_SCONTROL,
268 	     0x00 },
269 	   { 0x00, 0x00 },			/* band-switch crosspoints */
270 	   { 0xa0, 0x90, 0x30, 0x00 } },	/* the band-switch values */
271 };
272 
273 
274 /* scaling factor for frequencies expressed as ints */
275 #define FREQFACTOR		16
276 
277 /*
278  * Format:
279  *	entry 0:         MAX legal channel
280  *	entry 1:         IF frequency
281  *			 expressed as fi{mHz} * 16,
282  *			 eg 45.75mHz == 45.75 * 16 = 732
283  *	entry 2:         [place holder/future]
284  *	entry 3:         base of channel record 0
285  *	entry 3 + (x*3): base of channel record 'x'
286  *	entry LAST:      NULL channel entry marking end of records
287  *
288  * Record:
289  *	int 0:		base channel
290  *	int 1:		frequency of base channel,
291  *			 expressed as fb{mHz} * 16,
292  *	int 2:		offset frequency between channels,
293  *			 expressed as fo{mHz} * 16,
294  */
295 
296 /*
297  * North American Broadcast Channels:
298  *
299  *  2:  55.25 mHz -  4:  67.25 mHz
300  *  5:  77.25 mHz -  6:	 83.25 mHz
301  *  7: 175.25 mHz - 13:	211.25 mHz
302  * 14: 471.25 mHz - 83:	885.25 mHz
303  *
304  * IF freq: 45.75 mHz
305  */
306 #define OFFSET	6.00
307 static int nabcst[] = {
308 	83,	(int)( 45.75 * FREQFACTOR),	0,
309 	14,	(int)(471.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
310 	 7,	(int)(175.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
311 	 5,	(int)( 77.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
312 	 2,	(int)( 55.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
313 	 0
314 };
315 #undef OFFSET
316 
317 /*
318  * North American Cable Channels, IRC:
319  *
320  *  2:  55.25 mHz -  4:  67.25 mHz
321  *  5:  77.25 mHz -  6:  83.25 mHz
322  *  7: 175.25 mHz - 13: 211.25 mHz
323  * 14: 121.25 mHz - 22: 169.25 mHz
324  * 23: 217.25 mHz - 94: 643.25 mHz
325  * 95:  91.25 mHz - 99: 115.25 mHz
326  *
327  * IF freq: 45.75 mHz
328  */
329 #define OFFSET	6.00
330 static int irccable[] = {
331 	116,    (int)( 45.75 * FREQFACTOR),     0,
332 	100,    (int)(649.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
333 	95,	(int)( 91.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
334 	23,	(int)(217.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
335 	14,	(int)(121.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
336 	 7,	(int)(175.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
337 	 5,	(int)( 77.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
338 	 2,	(int)( 55.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
339 	 0
340 };
341 #undef OFFSET
342 
343 /*
344  * North American Cable Channels, HRC:
345  *
346  * 2:   54 mHz  - 4:    66 mHz
347  * 5:   78 mHz  - 6:    84 mHz
348  * 7:  174 mHz  - 13:  210 mHz
349  * 14: 120 mHz  - 22:  168 mHz
350  * 23: 216 mHz  - 94:  642 mHz
351  * 95:  90 mHz  - 99:  114 mHz
352  *
353  * IF freq: 45.75 mHz
354  */
355 #define OFFSET  6.00
356 static int hrccable[] = {
357 	116,    (int)( 45.75 * FREQFACTOR),     0,
358 	100,    (int)(648.00 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
359 	95,	(int)( 90.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
360 	23,	(int)(216.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
361 	14,	(int)(120.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
362 	7,	(int)(174.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
363 	5,	(int)( 78.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
364 	2,	(int)( 54.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
365 	0
366 };
367 #undef OFFSET
368 
369 /*
370  * Western European broadcast channels:
371  *
372  * (there are others that appear to vary between countries - rmt)
373  *
374  * here's the table Philips provides:
375  * caution, some of the offsets don't compute...
376  *
377  *  1	 4525	700	N21
378  *
379  *  2	 4825	700	E2
380  *  3	 5525	700	E3
381  *  4	 6225	700	E4
382  *
383  *  5	17525	700	E5
384  *  6	18225	700	E6
385  *  7	18925	700	E7
386  *  8	19625	700	E8
387  *  9	20325	700	E9
388  * 10	21025	700	E10
389  * 11	21725	700	E11
390  * 12	22425	700	E12
391  *
392  * 13	 5375	700	ITA
393  * 14	 6225	700	ITB
394  *
395  * 15	 8225	700	ITC
396  *
397  * 16	17525	700	ITD
398  * 17	18325	700	ITE
399  *
400  * 18	19225	700	ITF
401  * 19	20125	700	ITG
402  * 20	21025	700	ITH
403  *
404  * 21	47125	800	E21
405  * 22	47925	800	E22
406  * 23	48725	800	E23
407  * 24	49525	800	E24
408  * 25	50325	800	E25
409  * 26	51125	800	E26
410  * 27	51925	800	E27
411  * 28	52725	800	E28
412  * 29	53525	800	E29
413  * 30	54325	800	E30
414  * 31	55125	800	E31
415  * 32	55925	800	E32
416  * 33	56725	800	E33
417  * 34	57525	800	E34
418  * 35	58325	800	E35
419  * 36	59125	800	E36
420  * 37	59925	800	E37
421  * 38	60725	800	E38
422  * 39	61525	800	E39
423  * 40	62325	800	E40
424  * 41	63125	800	E41
425  * 42	63925	800	E42
426  * 43	64725	800	E43
427  * 44	65525	800	E44
428  * 45	66325	800	E45
429  * 46	67125	800	E46
430  * 47	67925	800	E47
431  * 48	68725	800	E48
432  * 49	69525	800	E49
433  * 50	70325	800	E50
434  * 51	71125	800	E51
435  * 52	71925	800	E52
436  * 53	72725	800	E53
437  * 54	73525	800	E54
438  * 55	74325	800	E55
439  * 56	75125	800	E56
440  * 57	75925	800	E57
441  * 58	76725	800	E58
442  * 59	77525	800	E59
443  * 60	78325	800	E60
444  * 61	79125	800	E61
445  * 62	79925	800	E62
446  * 63	80725	800	E63
447  * 64	81525	800	E64
448  * 65	82325	800	E65
449  * 66	83125	800	E66
450  * 67	83925	800	E67
451  * 68	84725	800	E68
452  * 69	85525	800	E69
453  *
454  * 70	 4575	800	IA
455  * 71	 5375	800	IB
456  * 72	 6175	800	IC
457  *
458  * 74	 6925	700	S01
459  * 75	 7625	700	S02
460  * 76	 8325	700	S03
461  *
462  * 80	10525	700	S1
463  * 81	11225	700	S2
464  * 82	11925	700	S3
465  * 83	12625	700	S4
466  * 84	13325	700	S5
467  * 85	14025	700	S6
468  * 86	14725	700	S7
469  * 87	15425	700	S8
470  * 88	16125	700	S9
471  * 89	16825	700	S10
472  * 90	23125	700	S11
473  * 91	23825	700	S12
474  * 92	24525	700	S13
475  * 93	25225	700	S14
476  * 94	25925	700	S15
477  * 95	26625	700	S16
478  * 96	27325	700	S17
479  * 97	28025	700	S18
480  * 98	28725	700	S19
481  * 99	29425	700	S20
482  *
483  *
484  * Channels S21 - S41 are taken from
485  * http://gemma.apple.com:80/dev/technotes/tn/tn1012.html
486  *
487  * 100	30325	800	S21
488  * 101	31125	800	S22
489  * 102	31925	800	S23
490  * 103	32725	800	S24
491  * 104	33525	800	S25
492  * 105	34325	800	S26
493  * 106	35125	800	S27
494  * 107	35925	800	S28
495  * 108	36725	800	S29
496  * 109	37525	800	S30
497  * 110	38325	800	S31
498  * 111	39125	800	S32
499  * 112	39925	800	S33
500  * 113	40725	800	S34
501  * 114	41525	800	S35
502  * 115	42325	800	S36
503  * 116	43125	800	S37
504  * 117	43925	800	S38
505  * 118	44725	800	S39
506  * 119	45525	800	S40
507  * 120	46325	800	S41
508  *
509  * 121	 3890	000	IFFREQ
510  *
511  */
512 static int weurope[] = {
513        121,     (int)( 38.90 * FREQFACTOR),     0,
514        100,     (int)(303.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
515         90,     (int)(231.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
516         80,     (int)(105.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
517         74,     (int)( 69.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
518         21,     (int)(471.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
519         17,     (int)(183.25 * FREQFACTOR),     (int)(9.00 * FREQFACTOR),
520         16,     (int)(175.25 * FREQFACTOR),     (int)(9.00 * FREQFACTOR),
521         15,     (int)(82.25 * FREQFACTOR),      (int)(8.50 * FREQFACTOR),
522         13,     (int)(53.75 * FREQFACTOR),      (int)(8.50 * FREQFACTOR),
523          5,     (int)(175.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
524          2,     (int)(48.25 * FREQFACTOR),      (int)(7.00 * FREQFACTOR),
525 	 0
526 };
527 
528 /*
529  * Japanese Broadcast Channels:
530  *
531  *  1:  91.25MHz -  3: 103.25MHz
532  *  4: 171.25MHz -  7: 189.25MHz
533  *  8: 193.25MHz - 12: 217.25MHz  (VHF)
534  * 13: 471.25MHz - 62: 765.25MHz  (UHF)
535  *
536  * IF freq: 45.75 mHz
537  *  OR
538  * IF freq: 58.75 mHz
539  */
540 #define OFFSET  6.00
541 #define IF_FREQ 45.75
542 static int jpnbcst[] = {
543 	62,     (int)(IF_FREQ * FREQFACTOR),    0,
544 	13,     (int)(471.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
545 	 8,     (int)(193.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
546 	 4,     (int)(171.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
547 	 1,     (int)( 91.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
548 	 0
549 };
550 #undef IF_FREQ
551 #undef OFFSET
552 
553 /*
554  * Japanese Cable Channels:
555  *
556  *  1:  91.25MHz -  3: 103.25MHz
557  *  4: 171.25MHz -  7: 189.25MHz
558  *  8: 193.25MHz - 12: 217.25MHz
559  * 13: 109.25MHz - 21: 157.25MHz
560  * 22: 165.25MHz
561  * 23: 223.25MHz - 63: 463.25MHz
562  *
563  * IF freq: 45.75 mHz
564  */
565 #define OFFSET  6.00
566 #define IF_FREQ 45.75
567 static int jpncable[] = {
568 	63,     (int)(IF_FREQ * FREQFACTOR),    0,
569 	23,     (int)(223.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
570 	22,     (int)(165.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
571 	13,     (int)(109.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
572 	 8,     (int)(193.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
573 	 4,     (int)(171.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
574 	 1,     (int)( 91.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
575 	 0
576 };
577 #undef IF_FREQ
578 #undef OFFSET
579 
580 /*
581  * xUSSR Broadcast Channels:
582  *
583  *  1:  49.75MHz -  2:  59.25MHz
584  *  3:  77.25MHz -  5:  93.25MHz
585  *  6: 175.25MHz - 12: 223.25MHz
586  * 13-20 - not exist
587  * 21: 471.25MHz - 34: 575.25MHz
588  * 35: 583.25MHz - 69: 855.25MHz
589  *
590  * Cable channels
591  *
592  * 70: 111.25MHz - 77: 167.25MHz
593  * 78: 231.25MHz -107: 463.25MHz
594  *
595  * IF freq: 38.90 MHz
596  */
597 #define IF_FREQ 38.90
598 static int xussr[] = {
599       107,     (int)(IF_FREQ * FREQFACTOR),    0,
600        78,     (int)(231.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
601        70,     (int)(111.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
602        35,     (int)(583.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
603        21,     (int)(471.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
604         6,     (int)(175.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
605         3,     (int)( 77.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
606         1,     (int)( 49.75 * FREQFACTOR),     (int)(9.50 * FREQFACTOR),
607         0
608 };
609 #undef IF_FREQ
610 
611 /*
612  * Australian broadcast channels
613  */
614 #define OFFSET	7.00
615 #define IF_FREQ 38.90
616 static int australia[] = {
617        83,     (int)(IF_FREQ * FREQFACTOR),    0,
618        28,     (int)(527.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
619        10,     (int)(209.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
620         6,     (int)(175.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
621         4,     (int)( 95.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
622         3,     (int)( 86.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
623         1,     (int)( 57.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
624         0
625 };
626 #undef OFFSET
627 #undef IF_FREQ
628 
629 /*
630  * France broadcast channels
631  */
632 #define OFFSET 8.00
633 #define IF_FREQ 38.90
634 static int france[] = {
635         69,     (int)(IF_FREQ * FREQFACTOR),     0,
636         21,     (int)(471.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 21 -> 69 */
637          5,     (int)(176.00 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 5 -> 10 */
638          4,     (int)( 63.75 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 4    */
639          3,     (int)( 60.50 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 3    */
640          1,     (int)( 47.75 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 1  2 */
641          0
642 };
643 #undef OFFSET
644 #undef IF_FREQ
645 
646 static struct {
647         int     *ptr;
648         char    name[BT848_MAX_CHNLSET_NAME_LEN];
649 } freqTable[] = {
650         {NULL,          ""},
651         {nabcst,        "nabcst"},
652         {irccable,      "cableirc"},
653         {hrccable,      "cablehrc"},
654         {weurope,       "weurope"},
655         {jpnbcst,       "jpnbcst"},
656         {jpncable,      "jpncable"},
657         {xussr,         "xussr"},
658         {australia,     "australia"},
659         {france,        "france"},
660 
661 };
662 
663 #define TBL_CHNL	freqTable[ bktr->tuner.chnlset ].ptr[ x ]
664 #define TBL_BASE_FREQ	freqTable[ bktr->tuner.chnlset ].ptr[ x + 1 ]
665 #define TBL_OFFSET	freqTable[ bktr->tuner.chnlset ].ptr[ x + 2 ]
666 static int
667 frequency_lookup( bktr_ptr_t bktr, int channel )
668 {
669 	int	x;
670 
671 	/* check for "> MAX channel" */
672 	x = 0;
673 	if ( channel > TBL_CHNL )
674 		return( -1 );
675 
676 	/* search the table for data */
677 	for ( x = 3; TBL_CHNL; x += 3 ) {
678 		if ( channel >= TBL_CHNL ) {
679 			return( TBL_BASE_FREQ +
680 				 ((channel - TBL_CHNL) * TBL_OFFSET) );
681 		}
682 	}
683 
684 	/* not found, must be below the MIN channel */
685 	return( -1 );
686 }
687 #undef TBL_OFFSET
688 #undef TBL_BASE_FREQ
689 #undef TBL_CHNL
690 
691 
692 #define TBL_IF	freqTable[ bktr->tuner.chnlset ].ptr[ 1 ]
693 
694 
695 /* Initialise the tuner structures in the bktr_softc */
696 /* This is needed as the tuner details are no longer globally declared */
697 
698 void    select_tuner( bktr_ptr_t bktr, int tuner_type ) {
699 	if (tuner_type < Bt848_MAX_TUNER) {
700 		bktr->card.tuner = &tuners[ tuner_type ];
701 	} else {
702 		bktr->card.tuner = NULL;
703 	}
704 }
705 
706 /*
707  * Tuner Notes:
708  * Programming the tuner properly is quite complicated.
709  * Here are some notes, based on a FM1246 data sheet for a PAL-I tuner.
710  * The tuner (front end) covers 45.75 Mhz - 855.25 Mhz and an FM band of
711  * 87.5 Mhz to 108.0 Mhz.
712  *
713  * RF and IF.  RF = radio frequencies, it is the transmitted signal.
714  *             IF is the Intermediate Frequency (the offset from the base
715  *             signal where the video, color,  audio and NICAM signals are.
716  *
717  * Eg, Picture at 38.9 Mhz, Colour at 34.47 MHz, sound at 32.9 MHz
718  * NICAM at 32.348 Mhz.
719  * Strangely enough, there is an IF (intermediate frequency) for
720  * FM Radio which is 10.7 Mhz.
721  *
722  * The tuner also works in Bands. Philips bands are
723  * FM radio band 87.50 to 108.00 MHz
724  * Low band 45.75 to 170.00 MHz
725  * Mid band 170.00 to 450.00 MHz
726  * High band 450.00 to 855.25 MHz
727  *
728  *
729  * Now we need to set the PLL on the tuner to the required freuqncy.
730  * It has a programmable divisor.
731  * For TV we want
732  *  N = 16 (freq RF(pc) + freq IF(pc))  pc is picture carrier and RF and IF
733  *  are in MHz.
734 
735  * For RADIO we want a different equation.
736  *  freq IF is 10.70 MHz (so the data sheet tells me)
737  * N = (freq RF + freq IF) / step size
738  * The step size must be set to 50 khz (so the data sheet tells me)
739  * (note this is 50 kHz, the other things are in MHz)
740  * so we end up with N = 20x(freq RF + 10.7)
741  *
742  */
743 
744 #define LOW_BAND 0
745 #define MID_BAND 1
746 #define HIGH_BAND 2
747 #define FM_RADIO_BAND 3
748 
749 
750 /* Check if these are correct for other than Philips PAL */
751 #define STATUSBIT_COLD   0x80
752 #define STATUSBIT_LOCK   0x40
753 #define STATUSBIT_TV     0x20
754 #define STATUSBIT_STEREO 0x10 /* valid if FM (aka not TV) */
755 #define STATUSBIT_ADC    0x07
756 
757 /*
758  * set the frequency of the tuner
759  * If 'type' is TV_FREQUENCY, the frequency is freq MHz*16
760  * If 'type' is FM_RADIO_FREQUENCY, the frequency is freq MHz * 100
761  * (note *16 gives is 4 bits of fraction, eg steps of nnn.0625)
762  *
763  */
764 int
765 tv_freq( bktr_ptr_t bktr, int frequency, int type )
766 {
767 	const struct TUNER*	tuner;
768 	u_char			addr;
769 	u_char			control;
770 	u_char			band;
771 	int			N;
772 	int			band_select = 0;
773 #if defined( TEST_TUNER_AFC )
774 	int			oldFrequency, afcDelta;
775 #endif
776 
777 	tuner = bktr->card.tuner;
778 	if ( tuner == NULL )
779 		return( -1 );
780 
781 	if (tuner == &tuners[TUNER_MT2032]) {
782 		mt2032_set_tv_freq(bktr, frequency);
783 		return 0;
784 	}
785 	if (type == TV_FREQUENCY) {
786 		/*
787 		 * select the band based on frequency
788 		 * XXX FIXME: get the cross-over points from the tuner struct
789 		 */
790 		if ( frequency < (160 * FREQFACTOR  ) )
791 		    band_select = LOW_BAND;
792 		else if ( frequency < (454 * FREQFACTOR ) )
793 		    band_select = MID_BAND;
794 		else
795 		    band_select = HIGH_BAND;
796 
797 #if defined( TEST_TUNER_AFC )
798 		if ( bktr->tuner.afc )
799 			frequency -= 4;
800 #endif
801 		/*
802 		 * N = 16 * { fRF(pc) + fIF(pc) }
803 		 * or N = 16* fRF(pc) + 16*fIF(pc) }
804 		 * where:
805 		 *  pc is picture carrier, fRF & fIF are in MHz
806 		 *
807 		 * fortunatly, frequency is passed in as MHz * 16
808 		 * and the TBL_IF frequency is also stored in MHz * 16
809 		 */
810 		N = frequency + TBL_IF;
811 
812 		/* set the address of the PLL */
813 		addr    = bktr->card.tuner_pllAddr;
814 		control = tuner->pllControl[ band_select ];
815 		band    = tuner->bandAddrs[ band_select ];
816 
817 		if(!(band && control))		/* Don't try to set un-	*/
818 		  return(-1);			/* supported modes.	*/
819 
820 		if ( frequency > bktr->tuner.frequency ) {
821 			i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
822 			i2cWrite( bktr, addr, control, band );
823 	        }
824 	        else {
825 			i2cWrite( bktr, addr, control, band );
826 			i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
827        		}
828 
829 #if defined( TUNER_AFC )
830 		if ( bktr->tuner.afc == TRUE ) {
831 #if defined( TEST_TUNER_AFC )
832 			oldFrequency = frequency;
833 #endif
834 			if ( (N = do_afc( bktr, addr, N )) < 0 ) {
835 			    /* AFC failed, restore requested frequency */
836 			    N = frequency + TBL_IF;
837 #if defined( TEST_TUNER_AFC )
838 			    kprintf("%s: do_afc: failed to lock\n",
839 				   bktr_name(bktr));
840 #endif
841 			    i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
842 			}
843 			else
844 			    frequency = N - TBL_IF;
845 #if defined( TEST_TUNER_AFC )
846  kprintf("%s: do_afc: returned freq %d (%d %% %d)\n", bktr_name(bktr), frequency, frequency / 16, frequency % 16);
847 			    afcDelta = frequency - oldFrequency;
848  kprintf("%s: changed by: %d clicks (%d mod %d)\n", bktr_name(bktr), afcDelta, afcDelta / 16, afcDelta % 16);
849 #endif
850 			}
851 #endif /* TUNER_AFC */
852 
853 		bktr->tuner.frequency = frequency;
854 	}
855 
856 	if ( type == FM_RADIO_FREQUENCY ) {
857 		band_select = FM_RADIO_BAND;
858 
859 		/*
860 		 * N = { fRF(pc) + fIF(pc) }/step_size
861                  * The step size is 50kHz for FM radio.
862 		 * (eg after 102.35MHz comes 102.40 MHz)
863 		 * fIF is 10.7 MHz (as detailed in the specs)
864 		 *
865 		 * frequency is passed in as MHz * 100
866 		 *
867 		 * So, we have N = (frequency/100 + 10.70)  /(50/1000)
868 		 */
869 		N = (frequency + 1070)/5;
870 
871 		/* set the address of the PLL */
872 		addr    = bktr->card.tuner_pllAddr;
873 		control = tuner->pllControl[ band_select ];
874 		band    = tuner->bandAddrs[ band_select ];
875 
876 		if(!(band && control))		/* Don't try to set un-	*/
877 		  return(-1);			/* supported modes.	*/
878 
879 		band |= bktr->tuner.radio_mode; /* tuner.radio_mode is set in
880 						 * the ioctls RADIO_SETMODE
881 						 * and RADIO_GETMODE */
882 
883 		i2cWrite( bktr, addr, control, band );
884 		i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
885 
886 		bktr->tuner.frequency = (N * 5) - 1070;
887 
888 
889 	}
890 
891 
892 	return( 0 );
893 }
894 
895 
896 
897 #if defined( TUNER_AFC )
898 /*
899  *
900  */
901 int
902 do_afc( bktr_ptr_t bktr, int addr, int frequency )
903 {
904 	int step;
905 	int status;
906 	int origFrequency;
907 
908 	origFrequency = frequency;
909 
910 	/* wait for first setting to take effect */
911 	tsleep( BKTR_SLEEP, 0, "tuning", hz/8 );
912 
913 	if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
914 		return( -1 );
915 
916 #if defined( TEST_TUNER_AFC )
917  kprintf( "%s: Original freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
918 #endif
919 	for ( step = 0; step < AFC_MAX_STEP; ++step ) {
920 		if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
921 			goto fubar;
922 		if ( !(status & 0x40) ) {
923 #if defined( TEST_TUNER_AFC )
924  kprintf( "%s: no lock!\n", bktr_name(bktr) );
925 #endif
926 			goto fubar;
927 		}
928 
929 		switch( status & AFC_BITS ) {
930 		case AFC_FREQ_CENTERED:
931 #if defined( TEST_TUNER_AFC )
932  kprintf( "%s: Centered, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
933 #endif
934 			return( frequency );
935 
936 		case AFC_FREQ_MINUS_125:
937 		case AFC_FREQ_MINUS_62:
938 #if defined( TEST_TUNER_AFC )
939  kprintf( "%s: Low, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
940 #endif
941 			--frequency;
942 			break;
943 
944 		case AFC_FREQ_PLUS_62:
945 		case AFC_FREQ_PLUS_125:
946 #if defined( TEST_TUNER_AFC )
947  kprintf( "%s: Hi, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
948 #endif
949 			++frequency;
950 			break;
951 		}
952 
953 		i2cWrite( bktr, addr,
954 			  (frequency>>8) & 0x7f, frequency & 0xff );
955 		DELAY( AFC_DELAY );
956 	}
957 
958  fubar:
959 	i2cWrite( bktr, addr,
960 		  (origFrequency>>8) & 0x7f, origFrequency & 0xff );
961 
962 	return( -1 );
963 }
964 #endif /* TUNER_AFC */
965 #undef TBL_IF
966 
967 
968 /*
969  * Get the Tuner status and signal strength
970  */
971 int     get_tuner_status( bktr_ptr_t bktr ) {
972 	if (bktr->card.tuner == &tuners[TUNER_MT2032])
973 		return 0;
974 	return i2cRead( bktr, bktr->card.tuner_pllAddr + 1 );
975 }
976 
977 /*
978  * set the channel of the tuner
979  */
980 int
981 tv_channel( bktr_ptr_t bktr, int channel )
982 {
983 	int frequency;
984 
985 	/* calculate the frequency according to tuner type */
986 	if ( (frequency = frequency_lookup( bktr, channel )) < 0 )
987 		return( -1 );
988 
989 	/* set the new frequency */
990 	if ( tv_freq( bktr, frequency, TV_FREQUENCY ) < 0 )
991 		return( -1 );
992 
993 	/* OK to update records */
994 	return( (bktr->tuner.channel = channel) );
995 }
996 
997 /*
998  * get channelset name
999  */
1000 int
1001 tuner_getchnlset(struct bktr_chnlset *chnlset)
1002 {
1003        if (( chnlset->index < CHNLSET_MIN ) ||
1004                ( chnlset->index > CHNLSET_MAX ))
1005                        return( EINVAL );
1006 
1007        memcpy(&chnlset->name, &freqTable[chnlset->index].name,
1008                BT848_MAX_CHNLSET_NAME_LEN);
1009 
1010        chnlset->max_channel=freqTable[chnlset->index].ptr[0];
1011        return( 0 );
1012 }
1013 
1014 
1015 
1016 
1017 #define	TDA9887_ADDR	0x86
1018 
1019 static int
1020 TDA9887_init(bktr_ptr_t bktr, int output2_enable)
1021 {
1022 	u_char addr = TDA9887_ADDR;
1023 
1024 	i2cWrite(bktr, addr, 0, output2_enable ? 0x50 : 0xd0);
1025 	i2cWrite(bktr, addr, 1, 0x6e); /* takeover point / de-emphasis */
1026 
1027 	/* PAL BG: 0x09  PAL I: 0x0a  NTSC: 0x04 */
1028 #ifdef MT2032_NTSC
1029 	i2cWrite(bktr, addr, 2, 0x04);
1030 #else
1031 	i2cWrite(bktr, addr, 2, 0x09);
1032 #endif
1033 	return 0;
1034 }
1035 
1036 
1037 
1038 #define MT2032_OPTIMIZE_VCO	 1
1039 
1040 /* holds the value of XOGC register after init */
1041 static int      MT2032_XOGC = 4;
1042 
1043 /* card.tuner_pllAddr not set during init */
1044 #define	MT2032_ADDR		0xc0
1045 
1046 #ifndef MT2032_ADDR
1047 #define	MT2032_ADDR		(bktr->card.tuner_pllAddr)
1048 #endif
1049 
1050 static int
1051 _MT2032_GetRegister(bktr_ptr_t bktr, u_char regNum)
1052 {
1053 	int		ch;
1054 
1055 	if (i2cWrite(bktr, MT2032_ADDR, regNum, -1) == -1) {
1056 		if (bootverbose)
1057 			kprintf("%s: MT2032 write failed (i2c addr %#x)\n",
1058 				bktr_name(bktr), MT2032_ADDR);
1059 		return -1;
1060 	}
1061 	if ((ch = i2cRead(bktr, MT2032_ADDR + 1)) == -1) {
1062 		if (bootverbose)
1063 			kprintf("%s: MT2032 get register %d failed\n",
1064 				bktr_name(bktr), regNum);
1065 		return -1;
1066 	}
1067 	return ch;
1068 }
1069 
1070 static void
1071 _MT2032_SetRegister(bktr_ptr_t bktr, u_char regNum, u_char data)
1072 {
1073 	i2cWrite(bktr, MT2032_ADDR, regNum, data);
1074 }
1075 
1076 #define	MT2032_GetRegister(r)		_MT2032_GetRegister(bktr,r)
1077 #define	MT2032_SetRegister(r,d)		_MT2032_SetRegister(bktr,r,d)
1078 
1079 
1080 int
1081 mt2032_init(bktr_ptr_t bktr)
1082 {
1083 	u_char            rdbuf[22];
1084 	int             xogc, xok = 0;
1085 	int             i;
1086 	int		x;
1087 
1088 	TDA9887_init(bktr, 0);
1089 
1090 	for (i = 0; i < 21; i++) {
1091 		if ((x = MT2032_GetRegister(i)) == -1)
1092 			break;
1093 		rdbuf[i] = x;
1094 	}
1095 	if (i < 21)
1096 		return -1;
1097 
1098 	kprintf("%s: MT2032: Companycode=%02x%02x Part=%02x Revision=%02x\n",
1099 		bktr_name(bktr),
1100 		rdbuf[0x11], rdbuf[0x12], rdbuf[0x13], rdbuf[0x14]);
1101 	if (rdbuf[0x13] != 4) {
1102 		kprintf("%s: MT2032 not found or unknown type\n", bktr_name(bktr));
1103 		return -1;
1104 	}
1105 
1106 	/* Initialize Registers per spec. */
1107 	MT2032_SetRegister(2, 0xff);
1108 	MT2032_SetRegister(3, 0x0f);
1109 	MT2032_SetRegister(4, 0x1f);
1110 	MT2032_SetRegister(6, 0xe4);
1111 	MT2032_SetRegister(7, 0x8f);
1112 	MT2032_SetRegister(8, 0xc3);
1113 	MT2032_SetRegister(9, 0x4e);
1114 	MT2032_SetRegister(10, 0xec);
1115 	MT2032_SetRegister(13, 0x32);
1116 
1117 	/* Adjust XOGC (register 7), wait for XOK */
1118 	xogc = 7;
1119 	do {
1120 		DELAY(10000);
1121 		xok = MT2032_GetRegister(0x0e) & 0x01;
1122 		if (xok == 1) {
1123 			break;
1124 		}
1125 		xogc--;
1126 		if (xogc == 3) {
1127 			xogc = 4;	/* min. 4 per spec */
1128 			break;
1129 		}
1130 		MT2032_SetRegister(7, 0x88 + xogc);
1131 	} while (xok != 1);
1132 
1133 	TDA9887_init(bktr, 1);
1134 
1135 	MT2032_XOGC = xogc;
1136 
1137 	return 0;
1138 }
1139 
1140 static int
1141 MT2032_SpurCheck(int f1, int f2, int spectrum_from, int spectrum_to)
1142 {
1143 	int             n1 = 1, n2, f;
1144 
1145 	f1 = f1 / 1000;		/* scale to kHz to avoid 32bit overflows */
1146 	f2 = f2 / 1000;
1147 	spectrum_from /= 1000;
1148 	spectrum_to /= 1000;
1149 
1150 	do {
1151 		n2 = -n1;
1152 		f = n1 * (f1 - f2);
1153 		do {
1154 			n2--;
1155 			f = f - f2;
1156 			if ((f > spectrum_from) && (f < spectrum_to)) {
1157 				return 1;
1158 			}
1159 		} while ((f > (f2 - spectrum_to)) || (n2 > -5));
1160 		n1++;
1161 	} while (n1 < 5);
1162 
1163 	return 0;
1164 }
1165 
1166 static int
1167 MT2032_ComputeFreq(
1168 		   int rfin,
1169 		   int if1,
1170 		   int if2,
1171 		   int spectrum_from,
1172 		   int spectrum_to,
1173 		   unsigned char *buf,
1174 		   int *ret_sel,
1175 		   int xogc
1176 )
1177 {				/* all in Hz */
1178 	int             fref, lo1, lo1n, lo1a, s, sel;
1179 	int             lo1freq, desired_lo1, desired_lo2, lo2, lo2n, lo2a,
1180 	                lo2num, lo2freq;
1181 	int             nLO1adjust;
1182 
1183 	fref = 5250 * 1000;	/* 5.25MHz */
1184 
1185 	/* per spec 2.3.1 */
1186 	desired_lo1 = rfin + if1;
1187 	lo1 = (2 * (desired_lo1 / 1000) + (fref / 1000)) / (2 * fref / 1000);
1188 	lo1freq = lo1 * fref;
1189 	desired_lo2 = lo1freq - rfin - if2;
1190 
1191 	/* per spec 2.3.2 */
1192 	for (nLO1adjust = 1; nLO1adjust < 3; nLO1adjust++) {
1193 		if (!MT2032_SpurCheck(lo1freq, desired_lo2, spectrum_from, spectrum_to)) {
1194 			break;
1195 		}
1196 		if (lo1freq < desired_lo1) {
1197 			lo1 += nLO1adjust;
1198 		} else {
1199 			lo1 -= nLO1adjust;
1200 		}
1201 
1202 		lo1freq = lo1 * fref;
1203 		desired_lo2 = lo1freq - rfin - if2;
1204 	}
1205 
1206 	/* per spec 2.3.3 */
1207 	s = lo1freq / 1000 / 1000;
1208 
1209 	if (MT2032_OPTIMIZE_VCO) {
1210 		if (s > 1890) {
1211 			sel = 0;
1212 		} else if (s > 1720) {
1213 			sel = 1;
1214 		} else if (s > 1530) {
1215 			sel = 2;
1216 		} else if (s > 1370) {
1217 			sel = 3;
1218 		} else {
1219 			sel = 4;/* >1090 */
1220 		}
1221 	} else {
1222 		if (s > 1790) {
1223 			sel = 0;/* <1958 */
1224 		} else if (s > 1617) {
1225 			sel = 1;
1226 		} else if (s > 1449) {
1227 			sel = 2;
1228 		} else if (s > 1291) {
1229 			sel = 3;
1230 		} else {
1231 			sel = 4;/* >1090 */
1232 		}
1233 	}
1234 
1235 	*ret_sel = sel;
1236 
1237 	/* per spec 2.3.4 */
1238 	lo1n = lo1 / 8;
1239 	lo1a = lo1 - (lo1n * 8);
1240 	lo2 = desired_lo2 / fref;
1241 	lo2n = lo2 / 8;
1242 	lo2a = lo2 - (lo2n * 8);
1243 	/* scale to fit in 32bit arith */
1244 	lo2num = ((desired_lo2 / 1000) % (fref / 1000)) * 3780 / (fref / 1000);
1245 	lo2freq = (lo2a + 8 * lo2n) * fref + lo2num * (fref / 1000) / 3780 * 1000;
1246 
1247 	if (lo1a < 0 || lo1a > 7 || lo1n < 17 || lo1n > 48 || lo2a < 0 ||
1248 	    lo2a > 7 || lo2n < 17 || lo2n > 30) {
1249 		kprintf("MT2032: parameter out of range\n");
1250 		return -1;
1251 	}
1252 	/* set up MT2032 register map for transfer over i2c */
1253 	buf[0] = lo1n - 1;
1254 	buf[1] = lo1a | (sel << 4);
1255 	buf[2] = 0x86;		/* LOGC */
1256 	buf[3] = 0x0f;		/* reserved */
1257 	buf[4] = 0x1f;
1258 	buf[5] = (lo2n - 1) | (lo2a << 5);
1259 	if (rfin < 400 * 1000 * 1000) {
1260 		buf[6] = 0xe4;
1261 	} else {
1262 		buf[6] = 0xf4;	/* set PKEN per rev 1.2 */
1263 	}
1264 
1265 	buf[7] = 8 + xogc;
1266 	buf[8] = 0xc3;		/* reserved */
1267 	buf[9] = 0x4e;		/* reserved */
1268 	buf[10] = 0xec;		/* reserved */
1269 	buf[11] = (lo2num & 0xff);
1270 	buf[12] = (lo2num >> 8) | 0x80;	/* Lo2RST */
1271 
1272 	return 0;
1273 }
1274 
1275 static int
1276 MT2032_CheckLOLock(bktr_ptr_t bktr)
1277 {
1278 	int             t, lock = 0;
1279 	for (t = 0; t < 10; t++) {
1280 		lock = MT2032_GetRegister(0x0e) & 0x06;
1281 		if (lock == 6) {
1282 			break;
1283 		}
1284 		DELAY(1000);
1285 	}
1286 	return lock;
1287 }
1288 
1289 static int
1290 MT2032_OptimizeVCO(bktr_ptr_t bktr, int sel, int lock)
1291 {
1292 	int             tad1, lo1a;
1293 
1294 	tad1 = MT2032_GetRegister(0x0f) & 0x07;
1295 
1296 	if (tad1 == 0) {
1297 		return lock;
1298 	}
1299 	if (tad1 == 1) {
1300 		return lock;
1301 	}
1302 	if (tad1 == 2) {
1303 		if (sel == 0) {
1304 			return lock;
1305 		} else {
1306 			sel--;
1307 		}
1308 	} else {
1309 		if (sel < 4) {
1310 			sel++;
1311 		} else {
1312 			return lock;
1313 		}
1314 	}
1315 	lo1a = MT2032_GetRegister(0x01) & 0x07;
1316 	MT2032_SetRegister(0x01, lo1a | (sel << 4));
1317 	lock = MT2032_CheckLOLock(bktr);
1318 	return lock;
1319 }
1320 
1321 static int
1322 MT2032_SetIFFreq(bktr_ptr_t bktr, int rfin, int if1, int if2, int from, int to)
1323 {
1324 	u_char          buf[21];
1325 	int             lint_try, sel, lock = 0;
1326 
1327 	if (MT2032_ComputeFreq(rfin, if1, if2, from, to, &buf[0], &sel, MT2032_XOGC) == -1)
1328 		return -1;
1329 
1330 	TDA9887_init(bktr, 0);
1331 
1332 	/* send only the relevant registers per Rev. 1.2 */
1333 	MT2032_SetRegister(0, buf[0x00]);
1334 	MT2032_SetRegister(1, buf[0x01]);
1335 	MT2032_SetRegister(2, buf[0x02]);
1336 
1337 	MT2032_SetRegister(5, buf[0x05]);
1338 	MT2032_SetRegister(6, buf[0x06]);
1339 	MT2032_SetRegister(7, buf[0x07]);
1340 
1341 	MT2032_SetRegister(11, buf[0x0B]);
1342 	MT2032_SetRegister(12, buf[0x0C]);
1343 
1344 	/* wait for PLLs to lock (per manual), retry LINT if not. */
1345 	for (lint_try = 0; lint_try < 2; lint_try++) {
1346 		lock = MT2032_CheckLOLock(bktr);
1347 
1348 		if (MT2032_OPTIMIZE_VCO) {
1349 			lock = MT2032_OptimizeVCO(bktr, sel, lock);
1350 		}
1351 		if (lock == 6) {
1352 			break;
1353 		}
1354 		/* set LINT to re-init PLLs */
1355 		MT2032_SetRegister(7, 0x80 + 8 + MT2032_XOGC);
1356 		DELAY(10000);
1357 		MT2032_SetRegister(7, 8 + MT2032_XOGC);
1358 	}
1359 	if (lock != 6)
1360 		kprintf("%s: PLL didn't lock\n", bktr_name(bktr));
1361 
1362 	MT2032_SetRegister(2, 0x20);
1363 
1364 	TDA9887_init(bktr, 1);
1365 	return 0;
1366 }
1367 
1368 static void
1369 mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq)
1370 {
1371 	int if2,from,to;
1372 	int stat, tad;
1373 
1374 #ifdef MT2032_NTSC
1375 	from=40750*1000;
1376 	to=46750*1000;
1377 	if2=45750*1000;
1378 #else
1379 	from=32900*1000;
1380 	to=39900*1000;
1381 	if2=38900*1000;
1382 #endif
1383 
1384 	if (MT2032_SetIFFreq(bktr, freq*62500 /* freq*1000*1000/16 */,
1385 			1090*1000*1000, if2, from, to) == 0) {
1386 		bktr->tuner.frequency = freq;
1387 		stat = MT2032_GetRegister(0x0e);
1388 		tad = MT2032_GetRegister(0x0f);
1389 		if (bootverbose)
1390 			kprintf("%s: frequency set to %d, st = %#x, tad = %#x\n",
1391 				bktr_name(bktr), freq*62500, stat, tad);
1392 	}
1393 }
1394