1 /*	$NetBSD: nvmm_x86_svm.c,v 1.46.4.13 2020/09/13 11:56:44 martin Exp $	*/
2 
3 /*
4  * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Maxime Villard.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 
35 #include <sys/globaldata.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h> /* contigmalloc, contigfree */
38 #include <sys/thread2.h> /* lwkt_send_ipiq, lwkt_send_ipiq_mask */
39 
40 #include <vm/vm_map.h>
41 
42 #include <machine/cputypes.h> /* CPU_VENDOR_* */
43 #include <machine/md_var.h> /* cpu_*, amd_feature2 */
44 #include <machine/specialreg.h>
45 
46 #include <dev/virtual/nvmm/nvmm_compat.h>
47 #include <dev/virtual/nvmm/nvmm.h>
48 #include <dev/virtual/nvmm/nvmm_internal.h>
49 #include <dev/virtual/nvmm/x86/nvmm_x86.h>
50 
51 int svm_vmrun(paddr_t, uint64_t *);
52 
53 #define	MSR_VM_HSAVE_PA	0xC0010117
54 
55 /* -------------------------------------------------------------------------- */
56 
57 #define VMCB_EXITCODE_CR0_READ		0x0000
58 #define VMCB_EXITCODE_CR1_READ		0x0001
59 #define VMCB_EXITCODE_CR2_READ		0x0002
60 #define VMCB_EXITCODE_CR3_READ		0x0003
61 #define VMCB_EXITCODE_CR4_READ		0x0004
62 #define VMCB_EXITCODE_CR5_READ		0x0005
63 #define VMCB_EXITCODE_CR6_READ		0x0006
64 #define VMCB_EXITCODE_CR7_READ		0x0007
65 #define VMCB_EXITCODE_CR8_READ		0x0008
66 #define VMCB_EXITCODE_CR9_READ		0x0009
67 #define VMCB_EXITCODE_CR10_READ		0x000A
68 #define VMCB_EXITCODE_CR11_READ		0x000B
69 #define VMCB_EXITCODE_CR12_READ		0x000C
70 #define VMCB_EXITCODE_CR13_READ		0x000D
71 #define VMCB_EXITCODE_CR14_READ		0x000E
72 #define VMCB_EXITCODE_CR15_READ		0x000F
73 #define VMCB_EXITCODE_CR0_WRITE		0x0010
74 #define VMCB_EXITCODE_CR1_WRITE		0x0011
75 #define VMCB_EXITCODE_CR2_WRITE		0x0012
76 #define VMCB_EXITCODE_CR3_WRITE		0x0013
77 #define VMCB_EXITCODE_CR4_WRITE		0x0014
78 #define VMCB_EXITCODE_CR5_WRITE		0x0015
79 #define VMCB_EXITCODE_CR6_WRITE		0x0016
80 #define VMCB_EXITCODE_CR7_WRITE		0x0017
81 #define VMCB_EXITCODE_CR8_WRITE		0x0018
82 #define VMCB_EXITCODE_CR9_WRITE		0x0019
83 #define VMCB_EXITCODE_CR10_WRITE	0x001A
84 #define VMCB_EXITCODE_CR11_WRITE	0x001B
85 #define VMCB_EXITCODE_CR12_WRITE	0x001C
86 #define VMCB_EXITCODE_CR13_WRITE	0x001D
87 #define VMCB_EXITCODE_CR14_WRITE	0x001E
88 #define VMCB_EXITCODE_CR15_WRITE	0x001F
89 #define VMCB_EXITCODE_DR0_READ		0x0020
90 #define VMCB_EXITCODE_DR1_READ		0x0021
91 #define VMCB_EXITCODE_DR2_READ		0x0022
92 #define VMCB_EXITCODE_DR3_READ		0x0023
93 #define VMCB_EXITCODE_DR4_READ		0x0024
94 #define VMCB_EXITCODE_DR5_READ		0x0025
95 #define VMCB_EXITCODE_DR6_READ		0x0026
96 #define VMCB_EXITCODE_DR7_READ		0x0027
97 #define VMCB_EXITCODE_DR8_READ		0x0028
98 #define VMCB_EXITCODE_DR9_READ		0x0029
99 #define VMCB_EXITCODE_DR10_READ		0x002A
100 #define VMCB_EXITCODE_DR11_READ		0x002B
101 #define VMCB_EXITCODE_DR12_READ		0x002C
102 #define VMCB_EXITCODE_DR13_READ		0x002D
103 #define VMCB_EXITCODE_DR14_READ		0x002E
104 #define VMCB_EXITCODE_DR15_READ		0x002F
105 #define VMCB_EXITCODE_DR0_WRITE		0x0030
106 #define VMCB_EXITCODE_DR1_WRITE		0x0031
107 #define VMCB_EXITCODE_DR2_WRITE		0x0032
108 #define VMCB_EXITCODE_DR3_WRITE		0x0033
109 #define VMCB_EXITCODE_DR4_WRITE		0x0034
110 #define VMCB_EXITCODE_DR5_WRITE		0x0035
111 #define VMCB_EXITCODE_DR6_WRITE		0x0036
112 #define VMCB_EXITCODE_DR7_WRITE		0x0037
113 #define VMCB_EXITCODE_DR8_WRITE		0x0038
114 #define VMCB_EXITCODE_DR9_WRITE		0x0039
115 #define VMCB_EXITCODE_DR10_WRITE	0x003A
116 #define VMCB_EXITCODE_DR11_WRITE	0x003B
117 #define VMCB_EXITCODE_DR12_WRITE	0x003C
118 #define VMCB_EXITCODE_DR13_WRITE	0x003D
119 #define VMCB_EXITCODE_DR14_WRITE	0x003E
120 #define VMCB_EXITCODE_DR15_WRITE	0x003F
121 #define VMCB_EXITCODE_EXCP0		0x0040
122 #define VMCB_EXITCODE_EXCP1		0x0041
123 #define VMCB_EXITCODE_EXCP2		0x0042
124 #define VMCB_EXITCODE_EXCP3		0x0043
125 #define VMCB_EXITCODE_EXCP4		0x0044
126 #define VMCB_EXITCODE_EXCP5		0x0045
127 #define VMCB_EXITCODE_EXCP6		0x0046
128 #define VMCB_EXITCODE_EXCP7		0x0047
129 #define VMCB_EXITCODE_EXCP8		0x0048
130 #define VMCB_EXITCODE_EXCP9		0x0049
131 #define VMCB_EXITCODE_EXCP10		0x004A
132 #define VMCB_EXITCODE_EXCP11		0x004B
133 #define VMCB_EXITCODE_EXCP12		0x004C
134 #define VMCB_EXITCODE_EXCP13		0x004D
135 #define VMCB_EXITCODE_EXCP14		0x004E
136 #define VMCB_EXITCODE_EXCP15		0x004F
137 #define VMCB_EXITCODE_EXCP16		0x0050
138 #define VMCB_EXITCODE_EXCP17		0x0051
139 #define VMCB_EXITCODE_EXCP18		0x0052
140 #define VMCB_EXITCODE_EXCP19		0x0053
141 #define VMCB_EXITCODE_EXCP20		0x0054
142 #define VMCB_EXITCODE_EXCP21		0x0055
143 #define VMCB_EXITCODE_EXCP22		0x0056
144 #define VMCB_EXITCODE_EXCP23		0x0057
145 #define VMCB_EXITCODE_EXCP24		0x0058
146 #define VMCB_EXITCODE_EXCP25		0x0059
147 #define VMCB_EXITCODE_EXCP26		0x005A
148 #define VMCB_EXITCODE_EXCP27		0x005B
149 #define VMCB_EXITCODE_EXCP28		0x005C
150 #define VMCB_EXITCODE_EXCP29		0x005D
151 #define VMCB_EXITCODE_EXCP30		0x005E
152 #define VMCB_EXITCODE_EXCP31		0x005F
153 #define VMCB_EXITCODE_INTR		0x0060
154 #define VMCB_EXITCODE_NMI		0x0061
155 #define VMCB_EXITCODE_SMI		0x0062
156 #define VMCB_EXITCODE_INIT		0x0063
157 #define VMCB_EXITCODE_VINTR		0x0064
158 #define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
159 #define VMCB_EXITCODE_IDTR_READ		0x0066
160 #define VMCB_EXITCODE_GDTR_READ		0x0067
161 #define VMCB_EXITCODE_LDTR_READ		0x0068
162 #define VMCB_EXITCODE_TR_READ		0x0069
163 #define VMCB_EXITCODE_IDTR_WRITE	0x006A
164 #define VMCB_EXITCODE_GDTR_WRITE	0x006B
165 #define VMCB_EXITCODE_LDTR_WRITE	0x006C
166 #define VMCB_EXITCODE_TR_WRITE		0x006D
167 #define VMCB_EXITCODE_RDTSC		0x006E
168 #define VMCB_EXITCODE_RDPMC		0x006F
169 #define VMCB_EXITCODE_PUSHF		0x0070
170 #define VMCB_EXITCODE_POPF		0x0071
171 #define VMCB_EXITCODE_CPUID		0x0072
172 #define VMCB_EXITCODE_RSM		0x0073
173 #define VMCB_EXITCODE_IRET		0x0074
174 #define VMCB_EXITCODE_SWINT		0x0075
175 #define VMCB_EXITCODE_INVD		0x0076
176 #define VMCB_EXITCODE_PAUSE		0x0077
177 #define VMCB_EXITCODE_HLT		0x0078
178 #define VMCB_EXITCODE_INVLPG		0x0079
179 #define VMCB_EXITCODE_INVLPGA		0x007A
180 #define VMCB_EXITCODE_IOIO		0x007B
181 #define VMCB_EXITCODE_MSR		0x007C
182 #define VMCB_EXITCODE_TASK_SWITCH	0x007D
183 #define VMCB_EXITCODE_FERR_FREEZE	0x007E
184 #define VMCB_EXITCODE_SHUTDOWN		0x007F
185 #define VMCB_EXITCODE_VMRUN		0x0080
186 #define VMCB_EXITCODE_VMMCALL		0x0081
187 #define VMCB_EXITCODE_VMLOAD		0x0082
188 #define VMCB_EXITCODE_VMSAVE		0x0083
189 #define VMCB_EXITCODE_STGI		0x0084
190 #define VMCB_EXITCODE_CLGI		0x0085
191 #define VMCB_EXITCODE_SKINIT		0x0086
192 #define VMCB_EXITCODE_RDTSCP		0x0087
193 #define VMCB_EXITCODE_ICEBP		0x0088
194 #define VMCB_EXITCODE_WBINVD		0x0089
195 #define VMCB_EXITCODE_MONITOR		0x008A
196 #define VMCB_EXITCODE_MWAIT		0x008B
197 #define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
198 #define VMCB_EXITCODE_XSETBV		0x008D
199 #define VMCB_EXITCODE_RDPRU		0x008E
200 #define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
201 #define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
202 #define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
203 #define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
204 #define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
205 #define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
206 #define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
207 #define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
208 #define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
209 #define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
210 #define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
211 #define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
212 #define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
213 #define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
214 #define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
215 #define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
216 #define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
217 #define VMCB_EXITCODE_INVLPGB		0x00A0
218 #define VMCB_EXITCODE_INVLPGB_ILLEGAL	0x00A1
219 #define VMCB_EXITCODE_INVPCID		0x00A2
220 #define VMCB_EXITCODE_MCOMMIT		0x00A3
221 #define VMCB_EXITCODE_TLBSYNC		0x00A4
222 #define VMCB_EXITCODE_NPF		0x0400
223 #define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
224 #define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
225 #define VMCB_EXITCODE_VMGEXIT		0x0403
226 #define VMCB_EXITCODE_BUSY		-2ULL
227 #define VMCB_EXITCODE_INVALID		-1ULL
228 
229 /* -------------------------------------------------------------------------- */
230 
231 struct vmcb_ctrl {
232 	uint32_t intercept_cr;
233 #define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
234 #define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
235 
236 	uint32_t intercept_dr;
237 #define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
238 #define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
239 
240 	uint32_t intercept_vec;
241 #define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
242 
243 	uint32_t intercept_misc1;
244 #define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
245 #define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
246 #define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
247 #define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
248 #define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
249 #define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
250 #define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
251 #define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
252 #define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
253 #define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
254 #define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
255 #define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
256 #define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
257 #define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
258 #define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
259 #define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
260 #define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
261 #define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
262 #define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
263 #define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
264 #define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
265 #define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
266 #define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
267 #define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
268 #define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
269 #define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
270 #define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
271 #define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
272 #define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
273 #define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
274 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
275 #define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
276 
277 	uint32_t intercept_misc2;
278 #define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
279 #define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
280 #define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
281 #define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
282 #define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
283 #define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
284 #define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
285 #define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
286 #define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
287 #define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
288 #define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
289 #define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(11)
290 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED	__BIT(12)
291 #define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
292 #define VMCB_CTRL_INTERCEPT_RDPRU	__BIT(14)
293 #define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
294 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
295 
296 	uint32_t intercept_misc3;
297 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL	__BIT(0)
298 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL	__BIT(1)
299 #define VMCB_CTRL_INTERCEPT_PCID	__BIT(2)
300 #define VMCB_CTRL_INTERCEPT_MCOMMIT	__BIT(3)
301 #define VMCB_CTRL_INTERCEPT_TLBSYNC	__BIT(4)
302 
303 	uint8_t  rsvd1[36];
304 	uint16_t pause_filt_thresh;
305 	uint16_t pause_filt_cnt;
306 	uint64_t iopm_base_pa;
307 	uint64_t msrpm_base_pa;
308 	uint64_t tsc_offset;
309 	uint32_t guest_asid;
310 
311 	uint32_t tlb_ctrl;
312 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
313 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
314 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
315 
316 	uint64_t v;
317 #define VMCB_CTRL_V_TPR			__BITS(3,0)
318 #define VMCB_CTRL_V_IRQ			__BIT(8)
319 #define VMCB_CTRL_V_VGIF		__BIT(9)
320 #define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
321 #define VMCB_CTRL_V_IGN_TPR		__BIT(20)
322 #define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
323 #define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
324 #define VMCB_CTRL_V_AVIC_EN		__BIT(31)
325 #define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
326 
327 	uint64_t intr;
328 #define VMCB_CTRL_INTR_SHADOW		__BIT(0)
329 #define VMCB_CTRL_INTR_MASK		__BIT(1)
330 
331 	uint64_t exitcode;
332 	uint64_t exitinfo1;
333 	uint64_t exitinfo2;
334 
335 	uint64_t exitintinfo;
336 #define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
337 #define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
338 #define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
339 #define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
340 #define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
341 
342 	uint64_t enable1;
343 #define VMCB_CTRL_ENABLE_NP		__BIT(0)
344 #define VMCB_CTRL_ENABLE_SEV		__BIT(1)
345 #define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
346 #define VMCB_CTRL_ENABLE_GMET		__BIT(3)
347 #define VMCB_CTRL_ENABLE_VTE		__BIT(5)
348 
349 	uint64_t avic;
350 #define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
351 
352 	uint64_t ghcb;
353 
354 	uint64_t eventinj;
355 #define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
356 #define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
357 #define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
358 #define VMCB_CTRL_EVENTINJ_V		__BIT(31)
359 #define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
360 
361 	uint64_t n_cr3;
362 
363 	uint64_t enable2;
364 #define VMCB_CTRL_ENABLE_LBR		__BIT(0)
365 #define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
366 
367 	uint32_t vmcb_clean;
368 #define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
369 #define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
370 #define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
371 #define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
372 #define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
373 #define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
374 #define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
375 #define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
376 #define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
377 #define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
378 #define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
379 #define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
380 
381 	uint32_t rsvd2;
382 	uint64_t nrip;
383 	uint8_t	inst_len;
384 	uint8_t	inst_bytes[15];
385 	uint64_t avic_abpp;
386 	uint64_t rsvd3;
387 	uint64_t avic_ltp;
388 
389 	uint64_t avic_phys;
390 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
391 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
392 
393 	uint64_t rsvd4;
394 	uint64_t vmsa_ptr;
395 
396 	uint8_t	pad[752];
397 } __packed;
398 
399 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
400 
401 struct vmcb_segment {
402 	uint16_t selector;
403 	uint16_t attrib;	/* hidden */
404 	uint32_t limit;		/* hidden */
405 	uint64_t base;		/* hidden */
406 } __packed;
407 
408 CTASSERT(sizeof(struct vmcb_segment) == 16);
409 
410 struct vmcb_state {
411 	struct   vmcb_segment es;
412 	struct   vmcb_segment cs;
413 	struct   vmcb_segment ss;
414 	struct   vmcb_segment ds;
415 	struct   vmcb_segment fs;
416 	struct   vmcb_segment gs;
417 	struct   vmcb_segment gdt;
418 	struct   vmcb_segment ldt;
419 	struct   vmcb_segment idt;
420 	struct   vmcb_segment tr;
421 	uint8_t	 rsvd1[43];
422 	uint8_t	 cpl;
423 	uint8_t  rsvd2[4];
424 	uint64_t efer;
425 	uint8_t	 rsvd3[112];
426 	uint64_t cr4;
427 	uint64_t cr3;
428 	uint64_t cr0;
429 	uint64_t dr7;
430 	uint64_t dr6;
431 	uint64_t rflags;
432 	uint64_t rip;
433 	uint8_t	 rsvd4[88];
434 	uint64_t rsp;
435 	uint8_t	 rsvd5[24];
436 	uint64_t rax;
437 	uint64_t star;
438 	uint64_t lstar;
439 	uint64_t cstar;
440 	uint64_t sfmask;
441 	uint64_t kernelgsbase;
442 	uint64_t sysenter_cs;
443 	uint64_t sysenter_esp;
444 	uint64_t sysenter_eip;
445 	uint64_t cr2;
446 	uint8_t	 rsvd6[32];
447 	uint64_t g_pat;
448 	uint64_t dbgctl;
449 	uint64_t br_from;
450 	uint64_t br_to;
451 	uint64_t int_from;
452 	uint64_t int_to;
453 	uint8_t	 pad[2408];
454 } __packed;
455 
456 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
457 
458 struct vmcb {
459 	struct vmcb_ctrl ctrl;
460 	struct vmcb_state state;
461 } __packed;
462 
463 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
464 CTASSERT(offsetof(struct vmcb, state) == 0x400);
465 
466 /* -------------------------------------------------------------------------- */
467 
468 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
469 static void svm_vcpu_state_commit(struct nvmm_cpu *);
470 
471 struct svm_hsave {
472 	paddr_t pa;
473 };
474 
475 static struct svm_hsave hsave[MAXCPUS];
476 
477 static uint8_t *svm_asidmap __read_mostly;
478 static uint32_t svm_maxasid __read_mostly;
479 static kmutex_t svm_asidlock __cacheline_aligned;
480 
481 static bool svm_decode_assist __read_mostly;
482 static uint32_t svm_ctrl_tlb_flush __read_mostly;
483 
484 #define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
485 static uint64_t svm_xcr0_mask __read_mostly;
486 
487 #define SVM_NCPUIDS	32
488 
489 #define VMCB_NPAGES	1
490 
491 #define MSRBM_NPAGES	2
492 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
493 
494 #define IOBM_NPAGES	3
495 #define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
496 
497 /* Does not include EFER_LMSLE. */
498 #define EFER_VALID \
499 	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
500 
501 #define EFER_TLB_FLUSH \
502 	(EFER_NXE|EFER_LMA|EFER_LME)
503 #define CR0_TLB_FLUSH \
504 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
505 #define CR4_TLB_FLUSH \
506 	(CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
507 
508 /* -------------------------------------------------------------------------- */
509 
510 struct svm_machdata {
511 	volatile uint64_t mach_htlb_gen;
512 };
513 
514 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
515 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
516 	    sizeof(struct nvmm_vcpu_conf_cpuid),
517 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
518 	    sizeof(struct nvmm_vcpu_conf_tpr)
519 };
520 
521 struct svm_cpudata {
522 	/* General */
523 	bool shared_asid;
524 	bool gtlb_want_flush;
525 	bool gtsc_want_update;
526 	uint64_t vcpu_htlb_gen;
527 
528 	/* VMCB */
529 	struct vmcb *vmcb;
530 	paddr_t vmcb_pa;
531 
532 	/* I/O bitmap */
533 	uint8_t *iobm;
534 	paddr_t iobm_pa;
535 
536 	/* MSR bitmap */
537 	uint8_t *msrbm;
538 	paddr_t msrbm_pa;
539 
540 	/* Host state */
541 	uint64_t hxcr0;
542 	uint64_t star;
543 	uint64_t lstar;
544 	uint64_t cstar;
545 	uint64_t sfmask;
546 	uint64_t fsbase;
547 	uint64_t kernelgsbase;
548 	bool ts_set;
549 	mcontext_t hmctx;
550 
551 	/* Intr state */
552 	bool int_window_exit;
553 	bool nmi_window_exit;
554 	bool evt_pending;
555 
556 	/* Guest state */
557 	uint64_t gxcr0;
558 	uint64_t gprs[NVMM_X64_NGPR];
559 	uint64_t drs[NVMM_X64_NDR];
560 	uint64_t gtsc;
561 	union savefpu gfpu __aligned(64);
562 
563 	/* VCPU configuration. */
564 	bool cpuidpresent[SVM_NCPUIDS];
565 	struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
566 };
567 
568 static void
569 svm_vmcb_cache_default(struct vmcb *vmcb)
570 {
571 	vmcb->ctrl.vmcb_clean =
572 	    VMCB_CTRL_VMCB_CLEAN_I |
573 	    VMCB_CTRL_VMCB_CLEAN_IOPM |
574 	    VMCB_CTRL_VMCB_CLEAN_ASID |
575 	    VMCB_CTRL_VMCB_CLEAN_TPR |
576 	    VMCB_CTRL_VMCB_CLEAN_NP |
577 	    VMCB_CTRL_VMCB_CLEAN_CR |
578 	    VMCB_CTRL_VMCB_CLEAN_DR |
579 	    VMCB_CTRL_VMCB_CLEAN_DT |
580 	    VMCB_CTRL_VMCB_CLEAN_SEG |
581 	    VMCB_CTRL_VMCB_CLEAN_CR2 |
582 	    VMCB_CTRL_VMCB_CLEAN_LBR |
583 	    VMCB_CTRL_VMCB_CLEAN_AVIC;
584 }
585 
586 static void
587 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
588 {
589 	if (flags & NVMM_X64_STATE_SEGS) {
590 		vmcb->ctrl.vmcb_clean &=
591 		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
592 	}
593 	if (flags & NVMM_X64_STATE_CRS) {
594 		vmcb->ctrl.vmcb_clean &=
595 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
596 		      VMCB_CTRL_VMCB_CLEAN_TPR);
597 	}
598 	if (flags & NVMM_X64_STATE_DRS) {
599 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
600 	}
601 	if (flags & NVMM_X64_STATE_MSRS) {
602 		/* CR for EFER, NP for PAT. */
603 		vmcb->ctrl.vmcb_clean &=
604 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
605 	}
606 }
607 
608 static inline void
609 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
610 {
611 	vmcb->ctrl.vmcb_clean &= ~flags;
612 }
613 
614 static inline void
615 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
616 {
617 	vmcb->ctrl.vmcb_clean = 0;
618 }
619 
620 #define SVM_EVENT_TYPE_HW_INT	0
621 #define SVM_EVENT_TYPE_NMI	2
622 #define SVM_EVENT_TYPE_EXC	3
623 #define SVM_EVENT_TYPE_SW_INT	4
624 
625 static void
626 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
627 {
628 	struct svm_cpudata *cpudata = vcpu->cpudata;
629 	struct vmcb *vmcb = cpudata->vmcb;
630 
631 	if (nmi) {
632 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
633 		cpudata->nmi_window_exit = true;
634 	} else {
635 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
636 		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
637 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
638 		cpudata->int_window_exit = true;
639 	}
640 
641 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
642 }
643 
644 static void
645 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
646 {
647 	struct svm_cpudata *cpudata = vcpu->cpudata;
648 	struct vmcb *vmcb = cpudata->vmcb;
649 
650 	if (nmi) {
651 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
652 		cpudata->nmi_window_exit = false;
653 	} else {
654 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
655 		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
656 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
657 		cpudata->int_window_exit = false;
658 	}
659 
660 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
661 }
662 
663 static inline bool
664 svm_excp_has_rf(uint8_t vector)
665 {
666 	switch (vector) {
667 	case 1:		/* #DB */
668 	case 4:		/* #OF */
669 	case 8:		/* #DF */
670 	case 18:	/* #MC */
671 		return false;
672 	default:
673 		return true;
674 	}
675 }
676 
677 static inline int
678 svm_excp_has_error(uint8_t vector)
679 {
680 	switch (vector) {
681 	case 8:		/* #DF */
682 	case 10:	/* #TS */
683 	case 11:	/* #NP */
684 	case 12:	/* #SS */
685 	case 13:	/* #GP */
686 	case 14:	/* #PF */
687 	case 17:	/* #AC */
688 	case 30:	/* #SX */
689 		return 1;
690 	default:
691 		return 0;
692 	}
693 }
694 
695 static int
696 svm_vcpu_inject(struct nvmm_cpu *vcpu)
697 {
698 	struct nvmm_comm_page *comm = vcpu->comm;
699 	struct svm_cpudata *cpudata = vcpu->cpudata;
700 	struct vmcb *vmcb = cpudata->vmcb;
701 	u_int evtype;
702 	uint8_t vector;
703 	uint64_t error;
704 	int type = 0, err = 0;
705 
706 	evtype = comm->event.type;
707 	vector = comm->event.vector;
708 	error = comm->event.u.excp.error;
709 	__insn_barrier();
710 
711 	switch (evtype) {
712 	case NVMM_VCPU_EVENT_EXCP:
713 		type = SVM_EVENT_TYPE_EXC;
714 		if (vector == 2 || vector >= 32)
715 			return EINVAL;
716 		if (vector == 3 || vector == 0)
717 			return EINVAL;
718 		if (svm_excp_has_rf(vector)) {
719 			vmcb->state.rflags |= PSL_RF;
720 		}
721 		err = svm_excp_has_error(vector);
722 		break;
723 	case NVMM_VCPU_EVENT_INTR:
724 		type = SVM_EVENT_TYPE_HW_INT;
725 		if (vector == 2) {
726 			type = SVM_EVENT_TYPE_NMI;
727 			svm_event_waitexit_enable(vcpu, true);
728 		}
729 		err = 0;
730 		break;
731 	default:
732 		return EINVAL;
733 	}
734 
735 	vmcb->ctrl.eventinj =
736 	    __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
737 	    __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
738 	    __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
739 	    __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
740 	    __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
741 
742 	cpudata->evt_pending = true;
743 
744 	return 0;
745 }
746 
747 static void
748 svm_inject_ud(struct nvmm_cpu *vcpu)
749 {
750 	struct nvmm_comm_page *comm = vcpu->comm;
751 	int ret __diagused;
752 
753 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
754 	comm->event.vector = 6;
755 	comm->event.u.excp.error = 0;
756 
757 	ret = svm_vcpu_inject(vcpu);
758 	KASSERT(ret == 0);
759 }
760 
761 static void
762 svm_inject_gp(struct nvmm_cpu *vcpu)
763 {
764 	struct nvmm_comm_page *comm = vcpu->comm;
765 	int ret __diagused;
766 
767 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
768 	comm->event.vector = 13;
769 	comm->event.u.excp.error = 0;
770 
771 	ret = svm_vcpu_inject(vcpu);
772 	KASSERT(ret == 0);
773 }
774 
775 static inline int
776 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
777 {
778 	if (__predict_true(!vcpu->comm->event_commit)) {
779 		return 0;
780 	}
781 	vcpu->comm->event_commit = false;
782 	return svm_vcpu_inject(vcpu);
783 }
784 
785 static inline void
786 svm_inkernel_advance(struct vmcb *vmcb)
787 {
788 	/*
789 	 * Maybe we should also apply single-stepping and debug exceptions.
790 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
791 	 * debugger.
792 	 */
793 	vmcb->state.rip = vmcb->ctrl.nrip;
794 	vmcb->state.rflags &= ~PSL_RF;
795 	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
796 }
797 
798 #define SVM_CPUID_MAX_BASIC		0xD
799 #define SVM_CPUID_MAX_HYPERVISOR	0x40000000
800 #define SVM_CPUID_MAX_EXTENDED		0x8000001F
801 static uint32_t svm_cpuid_max_basic __read_mostly;
802 static uint32_t svm_cpuid_max_extended __read_mostly;
803 
804 static void
805 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
806 {
807 	u_int descs[4];
808 
809 	x86_cpuid2(eax, ecx, descs);
810 	cpudata->vmcb->state.rax = descs[0];
811 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
812 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
813 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
814 }
815 
816 static void
817 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
818 {
819 	struct svm_cpudata *cpudata = vcpu->cpudata;
820 	uint64_t cr4;
821 
822 	if (eax < 0x40000000) {
823 		if (__predict_false(eax > svm_cpuid_max_basic)) {
824 			eax = svm_cpuid_max_basic;
825 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
826 		}
827 	} else if (eax < 0x80000000) {
828 		if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
829 			eax = svm_cpuid_max_basic;
830 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
831 		}
832 	} else {
833 		if (__predict_false(eax > svm_cpuid_max_extended)) {
834 			eax = svm_cpuid_max_basic;
835 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
836 		}
837 	}
838 
839 	switch (eax) {
840 	case 0x00000000:
841 		cpudata->vmcb->state.rax = svm_cpuid_max_basic;
842 		break;
843 	case 0x00000001:
844 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
845 
846 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
847 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
848 		    CPUID_LOCAL_APIC_ID);
849 
850 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
851 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
852 
853 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
854 
855 		/* CPUID2_OSXSAVE depends on CR4. */
856 		cr4 = cpudata->vmcb->state.cr4;
857 		if (!(cr4 & CR4_OSXSAVE)) {
858 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
859 		}
860 		break;
861 	case 0x00000002: /* Empty */
862 	case 0x00000003: /* Empty */
863 	case 0x00000004: /* Empty */
864 	case 0x00000005: /* Monitor/MWait */
865 	case 0x00000006: /* Power Management Related Features */
866 		cpudata->vmcb->state.rax = 0;
867 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
868 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
869 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
870 		break;
871 	case 0x00000007: /* Structured Extended Features */
872 		switch (ecx) {
873 		case 0:
874 			cpudata->vmcb->state.rax = 0;
875 			cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
876 			cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
877 			cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
878 			break;
879 		default:
880 			cpudata->vmcb->state.rax = 0;
881 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
882 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
883 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
884 			break;
885 		}
886 		break;
887 	case 0x00000008: /* Empty */
888 	case 0x00000009: /* Empty */
889 	case 0x0000000A: /* Empty */
890 	case 0x0000000B: /* Empty */
891 	case 0x0000000C: /* Empty */
892 		cpudata->vmcb->state.rax = 0;
893 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
894 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
895 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
896 		break;
897 	case 0x0000000D: /* Processor Extended State Enumeration */
898 		if (svm_xcr0_mask == 0) {
899 			break;
900 		}
901 		switch (ecx) {
902 		case 0:
903 			cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
904 			if (cpudata->gxcr0 & XCR0_SSE) {
905 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct savexmm64);
906 			} else {
907 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
908 			}
909 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
910 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct savexmm64) + 64;
911 			cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
912 			break;
913 		case 1:
914 			cpudata->vmcb->state.rax &=
915 			    (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
916 			     CPUID_PES1_XGETBV);
917 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
918 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
919 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
920 			break;
921 		default:
922 			cpudata->vmcb->state.rax = 0;
923 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
924 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
925 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
926 			break;
927 		}
928 		break;
929 
930 	case 0x40000000: /* Hypervisor Information */
931 		cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
932 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
933 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
934 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
935 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
936 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
937 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
938 		break;
939 
940 	case 0x80000000:
941 		cpudata->vmcb->state.rax = svm_cpuid_max_extended;
942 		break;
943 	case 0x80000001:
944 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
945 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
946 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
947 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
948 		break;
949 	case 0x80000002: /* Extended Processor Name String */
950 	case 0x80000003: /* Extended Processor Name String */
951 	case 0x80000004: /* Extended Processor Name String */
952 	case 0x80000005: /* L1 Cache and TLB Information */
953 	case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
954 		break;
955 	case 0x80000007: /* Processor Power Management and RAS Capabilities */
956 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
957 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
958 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
959 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
960 		break;
961 	case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
962 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
963 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
964 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
965 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
966 		break;
967 	case 0x80000009: /* Empty */
968 	case 0x8000000A: /* SVM Features */
969 	case 0x8000000B: /* Empty */
970 	case 0x8000000C: /* Empty */
971 	case 0x8000000D: /* Empty */
972 	case 0x8000000E: /* Empty */
973 	case 0x8000000F: /* Empty */
974 	case 0x80000010: /* Empty */
975 	case 0x80000011: /* Empty */
976 	case 0x80000012: /* Empty */
977 	case 0x80000013: /* Empty */
978 	case 0x80000014: /* Empty */
979 	case 0x80000015: /* Empty */
980 	case 0x80000016: /* Empty */
981 	case 0x80000017: /* Empty */
982 	case 0x80000018: /* Empty */
983 		cpudata->vmcb->state.rax = 0;
984 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
985 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
986 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
987 		break;
988 	case 0x80000019: /* TLB Characteristics for 1GB pages */
989 	case 0x8000001A: /* Instruction Optimizations */
990 		break;
991 	case 0x8000001B: /* Instruction-Based Sampling Capabilities */
992 	case 0x8000001C: /* Lightweight Profiling Capabilities */
993 		cpudata->vmcb->state.rax = 0;
994 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
995 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
996 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
997 		break;
998 	case 0x8000001D: /* Cache Topology Information */
999 	case 0x8000001E: /* Processor Topology Information */
1000 		break; /* TODO? */
1001 	case 0x8000001F: /* Encrypted Memory Capabilities */
1002 		cpudata->vmcb->state.rax = 0;
1003 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1004 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1005 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1006 		break;
1007 
1008 	default:
1009 		break;
1010 	}
1011 }
1012 
1013 static void
1014 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
1015 {
1016 	exit->u.insn.npc = vmcb->ctrl.nrip;
1017 	exit->reason = reason;
1018 }
1019 
1020 static void
1021 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1022     struct nvmm_vcpu_exit *exit)
1023 {
1024 	struct svm_cpudata *cpudata = vcpu->cpudata;
1025 	struct nvmm_vcpu_conf_cpuid *cpuid;
1026 	uint64_t eax, ecx;
1027 	size_t i;
1028 
1029 	eax = cpudata->vmcb->state.rax;
1030 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1031 	svm_inkernel_exec_cpuid(cpudata, eax, ecx);
1032 	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
1033 
1034 	for (i = 0; i < SVM_NCPUIDS; i++) {
1035 		if (!cpudata->cpuidpresent[i]) {
1036 			continue;
1037 		}
1038 		cpuid = &cpudata->cpuid[i];
1039 		if (cpuid->leaf != eax) {
1040 			continue;
1041 		}
1042 
1043 		if (cpuid->exit) {
1044 			svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
1045 			return;
1046 		}
1047 		KASSERT(cpuid->mask);
1048 
1049 		/* del */
1050 		cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
1051 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1052 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1053 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1054 
1055 		/* set */
1056 		cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
1057 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1058 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1059 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1060 
1061 		break;
1062 	}
1063 
1064 	svm_inkernel_advance(cpudata->vmcb);
1065 	exit->reason = NVMM_VCPU_EXIT_NONE;
1066 }
1067 
1068 static void
1069 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1070     struct nvmm_vcpu_exit *exit)
1071 {
1072 	struct svm_cpudata *cpudata = vcpu->cpudata;
1073 	struct vmcb *vmcb = cpudata->vmcb;
1074 
1075 	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1076 		svm_event_waitexit_disable(vcpu, false);
1077 	}
1078 
1079 	svm_inkernel_advance(cpudata->vmcb);
1080 	exit->reason = NVMM_VCPU_EXIT_HALTED;
1081 }
1082 
1083 #define SVM_EXIT_IO_PORT	__BITS(31,16)
1084 #define SVM_EXIT_IO_SEG		__BITS(12,10)
1085 #define SVM_EXIT_IO_A64		__BIT(9)
1086 #define SVM_EXIT_IO_A32		__BIT(8)
1087 #define SVM_EXIT_IO_A16		__BIT(7)
1088 #define SVM_EXIT_IO_SZ32	__BIT(6)
1089 #define SVM_EXIT_IO_SZ16	__BIT(5)
1090 #define SVM_EXIT_IO_SZ8		__BIT(4)
1091 #define SVM_EXIT_IO_REP		__BIT(3)
1092 #define SVM_EXIT_IO_STR		__BIT(2)
1093 #define SVM_EXIT_IO_IN		__BIT(0)
1094 
1095 static void
1096 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1097     struct nvmm_vcpu_exit *exit)
1098 {
1099 	struct svm_cpudata *cpudata = vcpu->cpudata;
1100 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1101 	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1102 
1103 	exit->reason = NVMM_VCPU_EXIT_IO;
1104 
1105 	exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1106 	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1107 
1108 	if (svm_decode_assist) {
1109 		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1110 		exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1111 	} else {
1112 		exit->u.io.seg = -1;
1113 	}
1114 
1115 	if (info & SVM_EXIT_IO_A64) {
1116 		exit->u.io.address_size = 8;
1117 	} else if (info & SVM_EXIT_IO_A32) {
1118 		exit->u.io.address_size = 4;
1119 	} else if (info & SVM_EXIT_IO_A16) {
1120 		exit->u.io.address_size = 2;
1121 	}
1122 
1123 	if (info & SVM_EXIT_IO_SZ32) {
1124 		exit->u.io.operand_size = 4;
1125 	} else if (info & SVM_EXIT_IO_SZ16) {
1126 		exit->u.io.operand_size = 2;
1127 	} else if (info & SVM_EXIT_IO_SZ8) {
1128 		exit->u.io.operand_size = 1;
1129 	}
1130 
1131 	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1132 	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1133 	exit->u.io.npc = nextpc;
1134 
1135 	svm_vcpu_state_provide(vcpu,
1136 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1137 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1138 }
1139 
1140 static const uint64_t msr_ignore_list[] = {
1141 	0xc0010055, /* MSR_CMPHALT */
1142 	MSR_DE_CFG,
1143 	MSR_IC_CFG,
1144 	MSR_UCODE_AMD_PATCHLEVEL
1145 };
1146 
1147 static bool
1148 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1149     struct nvmm_vcpu_exit *exit)
1150 {
1151 	struct svm_cpudata *cpudata = vcpu->cpudata;
1152 	struct vmcb *vmcb = cpudata->vmcb;
1153 	uint64_t val;
1154 	size_t i;
1155 
1156 	if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1157 		if (exit->u.rdmsr.msr == MSR_EFER) {
1158 			val = vmcb->state.efer & ~EFER_SVME;
1159 			vmcb->state.rax = (val & 0xFFFFFFFF);
1160 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1161 			goto handled;
1162 		}
1163 		if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1164 			val = NB_CFG_INITAPICCPUIDLO;
1165 			vmcb->state.rax = (val & 0xFFFFFFFF);
1166 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1167 			goto handled;
1168 		}
1169 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1170 			if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1171 				continue;
1172 			val = 0;
1173 			vmcb->state.rax = (val & 0xFFFFFFFF);
1174 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1175 			goto handled;
1176 		}
1177 	} else {
1178 		if (exit->u.wrmsr.msr == MSR_EFER) {
1179 			if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1180 				goto error;
1181 			}
1182 			if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1183 			     EFER_TLB_FLUSH) {
1184 				cpudata->gtlb_want_flush = true;
1185 			}
1186 			vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1187 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1188 			goto handled;
1189 		}
1190 		if (exit->u.wrmsr.msr == MSR_TSC) {
1191 			cpudata->gtsc = exit->u.wrmsr.val;
1192 			cpudata->gtsc_want_update = true;
1193 			goto handled;
1194 		}
1195 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1196 			if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1197 				continue;
1198 			goto handled;
1199 		}
1200 	}
1201 
1202 	return false;
1203 
1204 handled:
1205 	svm_inkernel_advance(cpudata->vmcb);
1206 	return true;
1207 
1208 error:
1209 	svm_inject_gp(vcpu);
1210 	return true;
1211 }
1212 
1213 static inline void
1214 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1215     struct nvmm_vcpu_exit *exit)
1216 {
1217 	struct svm_cpudata *cpudata = vcpu->cpudata;
1218 
1219 	exit->reason = NVMM_VCPU_EXIT_RDMSR;
1220 	exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1221 	exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1222 
1223 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1224 		exit->reason = NVMM_VCPU_EXIT_NONE;
1225 		return;
1226 	}
1227 
1228 	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1229 }
1230 
1231 static inline void
1232 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1233     struct nvmm_vcpu_exit *exit)
1234 {
1235 	struct svm_cpudata *cpudata = vcpu->cpudata;
1236 	uint64_t rdx, rax;
1237 
1238 	rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1239 	rax = cpudata->vmcb->state.rax;
1240 
1241 	exit->reason = NVMM_VCPU_EXIT_WRMSR;
1242 	exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1243 	exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1244 	exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1245 
1246 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1247 		exit->reason = NVMM_VCPU_EXIT_NONE;
1248 		return;
1249 	}
1250 
1251 	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1252 }
1253 
1254 static void
1255 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1256     struct nvmm_vcpu_exit *exit)
1257 {
1258 	struct svm_cpudata *cpudata = vcpu->cpudata;
1259 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1260 
1261 	if (info == 0) {
1262 		svm_exit_rdmsr(mach, vcpu, exit);
1263 	} else {
1264 		svm_exit_wrmsr(mach, vcpu, exit);
1265 	}
1266 }
1267 
1268 static void
1269 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1270     struct nvmm_vcpu_exit *exit)
1271 {
1272 	struct svm_cpudata *cpudata = vcpu->cpudata;
1273 	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1274 
1275 	exit->reason = NVMM_VCPU_EXIT_MEMORY;
1276 	if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1277 		exit->u.mem.prot = PROT_WRITE;
1278 	else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_I)
1279 		exit->u.mem.prot = PROT_EXEC;
1280 	else
1281 		exit->u.mem.prot = PROT_READ;
1282 	exit->u.mem.gpa = gpa;
1283 	exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1284 	memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1285 	    sizeof(exit->u.mem.inst_bytes));
1286 
1287 	svm_vcpu_state_provide(vcpu,
1288 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1289 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1290 }
1291 
1292 static void
1293 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1294     struct nvmm_vcpu_exit *exit)
1295 {
1296 	struct svm_cpudata *cpudata = vcpu->cpudata;
1297 	struct vmcb *vmcb = cpudata->vmcb;
1298 	uint64_t val;
1299 
1300 	exit->reason = NVMM_VCPU_EXIT_NONE;
1301 
1302 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1303 	    (vmcb->state.rax & 0xFFFFFFFF);
1304 
1305 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1306 		goto error;
1307 	} else if (__predict_false(vmcb->state.cpl != 0)) {
1308 		goto error;
1309 	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1310 		goto error;
1311 	} else if (__predict_false((val & XCR0_X87) == 0)) {
1312 		goto error;
1313 	}
1314 
1315 	cpudata->gxcr0 = val;
1316 
1317 	svm_inkernel_advance(cpudata->vmcb);
1318 	return;
1319 
1320 error:
1321 	svm_inject_gp(vcpu);
1322 }
1323 
1324 static void
1325 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1326 {
1327 	exit->u.inv.hwcode = code;
1328 	exit->reason = NVMM_VCPU_EXIT_INVALID;
1329 }
1330 
1331 /* -------------------------------------------------------------------------- */
1332 
1333 static void
1334 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1335 {
1336 	struct svm_cpudata *cpudata = vcpu->cpudata;
1337 
1338 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1339 
1340 #ifdef __NetBSD__
1341 	fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1342 	fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1343 #else /* DragonFly */
1344 	/*
1345 	 * NOTE: Host FPU state depends on whether the user program used the
1346 	 *       FPU or not.  Need to use npxpush()/npxpop() to handle this.
1347 	 */
1348 	npxpush(&cpudata->hmctx);
1349 	clts();
1350 	fpurstor(&cpudata->gfpu, svm_xcr0_mask);
1351 #endif
1352 
1353 	if (svm_xcr0_mask != 0) {
1354 		cpudata->hxcr0 = rdxcr(0);
1355 		wrxcr(0, cpudata->gxcr0);
1356 	}
1357 }
1358 
1359 static void
1360 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1361 {
1362 	struct svm_cpudata *cpudata = vcpu->cpudata;
1363 
1364 	if (svm_xcr0_mask != 0) {
1365 		cpudata->gxcr0 = rdxcr(0);
1366 		wrxcr(0, cpudata->hxcr0);
1367 	}
1368 
1369 #ifdef __NetBSD__
1370 	fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1371 	fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1372 #else /* DragonFly */
1373 	fpusave(&cpudata->gfpu, svm_xcr0_mask);
1374 	stts();
1375 	npxpop(&cpudata->hmctx);
1376 #endif
1377 
1378 	if (cpudata->ts_set) {
1379 		stts();
1380 	}
1381 }
1382 
1383 static void
1384 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1385 {
1386 	struct svm_cpudata *cpudata = vcpu->cpudata;
1387 
1388 	x86_dbregs_save(curlwp);
1389 
1390 	ldr7(0);
1391 
1392 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1393 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1394 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1395 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1396 }
1397 
1398 static void
1399 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1400 {
1401 	struct svm_cpudata *cpudata = vcpu->cpudata;
1402 
1403 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1404 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1405 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1406 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1407 
1408 	x86_dbregs_restore(curlwp);
1409 }
1410 
1411 static void
1412 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1413 {
1414 	struct svm_cpudata *cpudata = vcpu->cpudata;
1415 
1416 	cpudata->fsbase = rdmsr(MSR_FSBASE);
1417 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1418 }
1419 
1420 static void
1421 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1422 {
1423 	struct svm_cpudata *cpudata = vcpu->cpudata;
1424 
1425 	wrmsr(MSR_STAR, cpudata->star);
1426 	wrmsr(MSR_LSTAR, cpudata->lstar);
1427 	wrmsr(MSR_CSTAR, cpudata->cstar);
1428 	wrmsr(MSR_SFMASK, cpudata->sfmask);
1429 	wrmsr(MSR_FSBASE, cpudata->fsbase);
1430 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1431 }
1432 
1433 /* -------------------------------------------------------------------------- */
1434 
1435 static inline void
1436 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1437 {
1438 	struct svm_cpudata *cpudata = vcpu->cpudata;
1439 
1440 	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1441 		cpudata->gtlb_want_flush = true;
1442 	}
1443 }
1444 
1445 static inline void
1446 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1447 {
1448 	/*
1449 	 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1450 	 * executing on this hCPU and the hTLB already got flushed, or it
1451 	 * was executing on another hCPU in which case the catchup is done
1452 	 * in svm_gtlb_catchup().
1453 	 */
1454 }
1455 
1456 static inline uint64_t
1457 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1458 {
1459 	struct vmcb *vmcb = cpudata->vmcb;
1460 	uint64_t machgen;
1461 
1462 	machgen = machdata->mach_htlb_gen;
1463 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1464 		return machgen;
1465 	}
1466 
1467 	vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1468 	return machgen;
1469 }
1470 
1471 static inline void
1472 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1473 {
1474 	struct vmcb *vmcb = cpudata->vmcb;
1475 
1476 	if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1477 		cpudata->vcpu_htlb_gen = machgen;
1478 	}
1479 }
1480 
1481 static inline void
1482 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1483 {
1484 	cpudata->evt_pending = false;
1485 
1486 	if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1487 		vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1488 		cpudata->evt_pending = true;
1489 	}
1490 }
1491 
1492 static int
1493 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1494     struct nvmm_vcpu_exit *exit)
1495 {
1496 	struct nvmm_comm_page *comm = vcpu->comm;
1497 	struct svm_machdata *machdata = mach->machdata;
1498 	struct svm_cpudata *cpudata = vcpu->cpudata;
1499 	struct vmcb *vmcb = cpudata->vmcb;
1500 	uint64_t machgen;
1501 	int hcpu, s;
1502 
1503 	svm_vcpu_state_commit(vcpu);
1504 	comm->state_cached = 0;
1505 
1506 	if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1507 		return EINVAL;
1508 	}
1509 
1510 	kpreempt_disable();
1511 	hcpu = mycpuid;
1512 
1513 	svm_gtlb_catchup(vcpu, hcpu);
1514 	svm_htlb_catchup(vcpu, hcpu);
1515 
1516 	if (vcpu->hcpu_last != hcpu) {
1517 		svm_vmcb_cache_flush_all(vmcb);
1518 		cpudata->gtsc_want_update = true;
1519 	}
1520 
1521 	svm_vcpu_guest_dbregs_enter(vcpu);
1522 	svm_vcpu_guest_misc_enter(vcpu);
1523 
1524 	while (1) {
1525 		if (cpudata->gtlb_want_flush) {
1526 			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1527 		} else {
1528 			vmcb->ctrl.tlb_ctrl = 0;
1529 		}
1530 
1531 		if (__predict_false(cpudata->gtsc_want_update)) {
1532 			vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1533 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1534 		}
1535 
1536 		s = splhigh();
1537 		machgen = svm_htlb_flush(machdata, cpudata);
1538 		svm_vcpu_guest_fpu_enter(vcpu);
1539 		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1540 		svm_vcpu_guest_fpu_leave(vcpu);
1541 		svm_htlb_flush_ack(cpudata, machgen);
1542 		splx(s);
1543 
1544 		svm_vmcb_cache_default(vmcb);
1545 
1546 		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1547 			cpudata->gtlb_want_flush = false;
1548 			cpudata->gtsc_want_update = false;
1549 			vcpu->hcpu_last = hcpu;
1550 		}
1551 		svm_exit_evt(cpudata, vmcb);
1552 
1553 		switch (vmcb->ctrl.exitcode) {
1554 		case VMCB_EXITCODE_INTR:
1555 		case VMCB_EXITCODE_NMI:
1556 			exit->reason = NVMM_VCPU_EXIT_NONE;
1557 			break;
1558 		case VMCB_EXITCODE_VINTR:
1559 			svm_event_waitexit_disable(vcpu, false);
1560 			exit->reason = NVMM_VCPU_EXIT_INT_READY;
1561 			break;
1562 		case VMCB_EXITCODE_IRET:
1563 			svm_event_waitexit_disable(vcpu, true);
1564 			exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1565 			break;
1566 		case VMCB_EXITCODE_CPUID:
1567 			svm_exit_cpuid(mach, vcpu, exit);
1568 			break;
1569 		case VMCB_EXITCODE_HLT:
1570 			svm_exit_hlt(mach, vcpu, exit);
1571 			break;
1572 		case VMCB_EXITCODE_IOIO:
1573 			svm_exit_io(mach, vcpu, exit);
1574 			break;
1575 		case VMCB_EXITCODE_MSR:
1576 			svm_exit_msr(mach, vcpu, exit);
1577 			break;
1578 		case VMCB_EXITCODE_SHUTDOWN:
1579 			exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1580 			break;
1581 		case VMCB_EXITCODE_RDPMC:
1582 		case VMCB_EXITCODE_RSM:
1583 		case VMCB_EXITCODE_INVLPGA:
1584 		case VMCB_EXITCODE_VMRUN:
1585 		case VMCB_EXITCODE_VMMCALL:
1586 		case VMCB_EXITCODE_VMLOAD:
1587 		case VMCB_EXITCODE_VMSAVE:
1588 		case VMCB_EXITCODE_STGI:
1589 		case VMCB_EXITCODE_CLGI:
1590 		case VMCB_EXITCODE_SKINIT:
1591 		case VMCB_EXITCODE_RDTSCP:
1592 		case VMCB_EXITCODE_RDPRU:
1593 		case VMCB_EXITCODE_INVLPGB:
1594 		case VMCB_EXITCODE_INVPCID:
1595 		case VMCB_EXITCODE_MCOMMIT:
1596 		case VMCB_EXITCODE_TLBSYNC:
1597 			svm_inject_ud(vcpu);
1598 			exit->reason = NVMM_VCPU_EXIT_NONE;
1599 			break;
1600 		case VMCB_EXITCODE_MONITOR:
1601 			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1602 			break;
1603 		case VMCB_EXITCODE_MWAIT:
1604 		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1605 			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1606 			break;
1607 		case VMCB_EXITCODE_XSETBV:
1608 			svm_exit_xsetbv(mach, vcpu, exit);
1609 			break;
1610 		case VMCB_EXITCODE_NPF:
1611 			svm_exit_npf(mach, vcpu, exit);
1612 			break;
1613 		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1614 		default:
1615 			svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1616 			break;
1617 		}
1618 
1619 		/* If no reason to return to userland, keep rolling. */
1620 		if (nvmm_return_needed()) {
1621 			break;
1622 		}
1623 		if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1624 			break;
1625 		}
1626 	}
1627 
1628 	cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1629 
1630 	svm_vcpu_guest_misc_leave(vcpu);
1631 	svm_vcpu_guest_dbregs_leave(vcpu);
1632 
1633 	kpreempt_enable();
1634 
1635 	exit->exitstate.rflags = vmcb->state.rflags;
1636 	exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1637 	exit->exitstate.int_shadow =
1638 	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1639 	exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1640 	exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1641 	exit->exitstate.evt_pending = cpudata->evt_pending;
1642 
1643 	return 0;
1644 }
1645 
1646 /* -------------------------------------------------------------------------- */
1647 
1648 static int
1649 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1650 {
1651 #ifdef __NetBSD__
1652 	struct pglist pglist;
1653 	paddr_t _pa;
1654 	vaddr_t _va;
1655 	size_t i;
1656 	int ret;
1657 
1658 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1659 	    &pglist, 1, 0);
1660 	if (ret != 0)
1661 		return ENOMEM;
1662 	_pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1663 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1664 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1665 	if (_va == 0)
1666 		goto error;
1667 
1668 	for (i = 0; i < npages; i++) {
1669 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1670 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1671 	}
1672 	pmap_update(pmap_kernel());
1673 
1674 	memset((void *)_va, 0, npages * PAGE_SIZE);
1675 
1676 	*pa = _pa;
1677 	*va = _va;
1678 	return 0;
1679 
1680 error:
1681 	for (i = 0; i < npages; i++) {
1682 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1683 	}
1684 	return ENOMEM;
1685 
1686 #else /* DragonFly */
1687 	void *addr;
1688 
1689 	addr = contigmalloc(npages * PAGE_SIZE, M_NVMM, M_WAITOK | M_ZERO,
1690 	    0, ~0UL, PAGE_SIZE, 0);
1691 	if (addr == NULL)
1692 		return ENOMEM;
1693 
1694 	*va = (vaddr_t)addr;
1695 	*pa = vtophys(addr);
1696 	return 0;
1697 #endif /* __NetBSD__ */
1698 }
1699 
1700 static void
1701 svm_memfree(paddr_t pa __unused, vaddr_t va, size_t npages)
1702 {
1703 #ifdef __NetBSD__
1704 	size_t i;
1705 
1706 	pmap_kremove(va, npages * PAGE_SIZE);
1707 	pmap_update(pmap_kernel());
1708 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1709 	for (i = 0; i < npages; i++) {
1710 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1711 	}
1712 #else /* DragonFly */
1713 	contigfree((void *)va, npages * PAGE_SIZE, M_NVMM);
1714 #endif /* __NetBSD__ */
1715 }
1716 
1717 /* -------------------------------------------------------------------------- */
1718 
1719 #define SVM_MSRBM_READ	__BIT(0)
1720 #define SVM_MSRBM_WRITE	__BIT(1)
1721 
1722 static void
1723 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1724 {
1725 	uint64_t byte;
1726 	uint8_t bitoff;
1727 
1728 	if (msr < 0x00002000) {
1729 		/* Range 1 */
1730 		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1731 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1732 		/* Range 2 */
1733 		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1734 	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1735 		/* Range 3 */
1736 		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1737 	} else {
1738 		panic("%s: wrong range", __func__);
1739 	}
1740 
1741 	bitoff = (msr & 0x3) << 1;
1742 
1743 	if (read) {
1744 		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1745 	}
1746 	if (write) {
1747 		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1748 	}
1749 }
1750 
1751 #define SVM_SEG_ATTRIB_TYPE		__BITS(3,0)
1752 #define SVM_SEG_ATTRIB_S		__BIT(4)
1753 #define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
1754 #define SVM_SEG_ATTRIB_P		__BIT(7)
1755 #define SVM_SEG_ATTRIB_AVL		__BIT(8)
1756 #define SVM_SEG_ATTRIB_L		__BIT(9)
1757 #define SVM_SEG_ATTRIB_DEF		__BIT(10)
1758 #define SVM_SEG_ATTRIB_G		__BIT(11)
1759 
1760 static void
1761 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1762     struct vmcb_segment *vseg)
1763 {
1764 	vseg->selector = seg->selector;
1765 	vseg->attrib =
1766 	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1767 	    __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1768 	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1769 	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1770 	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1771 	    __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1772 	    __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1773 	    __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1774 	vseg->limit = seg->limit;
1775 	vseg->base = seg->base;
1776 }
1777 
1778 static void
1779 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1780 {
1781 	seg->selector = vseg->selector;
1782 	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1783 	seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1784 	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1785 	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1786 	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1787 	seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1788 	seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1789 	seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1790 	seg->limit = vseg->limit;
1791 	seg->base = vseg->base;
1792 }
1793 
1794 static inline bool
1795 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1796     uint64_t flags)
1797 {
1798 	if (flags & NVMM_X64_STATE_CRS) {
1799 		if ((vmcb->state.cr0 ^
1800 		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1801 			return true;
1802 		}
1803 		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1804 			return true;
1805 		}
1806 		if ((vmcb->state.cr4 ^
1807 		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1808 			return true;
1809 		}
1810 	}
1811 
1812 	if (flags & NVMM_X64_STATE_MSRS) {
1813 		if ((vmcb->state.efer ^
1814 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1815 			return true;
1816 		}
1817 	}
1818 
1819 	return false;
1820 }
1821 
1822 static void
1823 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1824 {
1825 	struct nvmm_comm_page *comm = vcpu->comm;
1826 	const struct nvmm_x64_state *state = &comm->state;
1827 	struct svm_cpudata *cpudata = vcpu->cpudata;
1828 	struct vmcb *vmcb = cpudata->vmcb;
1829 	struct savexmm64 *fpustate;
1830 	uint64_t flags;
1831 
1832 	flags = comm->state_wanted;
1833 
1834 	if (svm_state_tlb_flush(vmcb, state, flags)) {
1835 		cpudata->gtlb_want_flush = true;
1836 	}
1837 
1838 	if (flags & NVMM_X64_STATE_SEGS) {
1839 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1840 		    &vmcb->state.cs);
1841 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1842 		    &vmcb->state.ds);
1843 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1844 		    &vmcb->state.es);
1845 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1846 		    &vmcb->state.fs);
1847 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1848 		    &vmcb->state.gs);
1849 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1850 		    &vmcb->state.ss);
1851 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1852 		    &vmcb->state.gdt);
1853 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1854 		    &vmcb->state.idt);
1855 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1856 		    &vmcb->state.ldt);
1857 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1858 		    &vmcb->state.tr);
1859 
1860 		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1861 	}
1862 
1863 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1864 	if (flags & NVMM_X64_STATE_GPRS) {
1865 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1866 
1867 		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1868 		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1869 		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1870 		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1871 	}
1872 
1873 	if (flags & NVMM_X64_STATE_CRS) {
1874 		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1875 		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1876 		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1877 		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1878 
1879 		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1880 		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1881 		    VMCB_CTRL_V_TPR);
1882 
1883 		if (svm_xcr0_mask != 0) {
1884 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
1885 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1886 			cpudata->gxcr0 &= svm_xcr0_mask;
1887 			cpudata->gxcr0 |= XCR0_X87;
1888 		}
1889 	}
1890 
1891 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1892 	if (flags & NVMM_X64_STATE_DRS) {
1893 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1894 
1895 		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1896 		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1897 	}
1898 
1899 	if (flags & NVMM_X64_STATE_MSRS) {
1900 		/*
1901 		 * EFER_SVME is mandatory.
1902 		 */
1903 		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1904 		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1905 		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1906 		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1907 		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1908 		vmcb->state.kernelgsbase =
1909 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1910 		vmcb->state.sysenter_cs =
1911 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1912 		vmcb->state.sysenter_esp =
1913 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1914 		vmcb->state.sysenter_eip =
1915 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1916 		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1917 
1918 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1919 		cpudata->gtsc_want_update = true;
1920 	}
1921 
1922 	if (flags & NVMM_X64_STATE_INTR) {
1923 		if (state->intr.int_shadow) {
1924 			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1925 		} else {
1926 			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1927 		}
1928 
1929 		if (state->intr.int_window_exiting) {
1930 			svm_event_waitexit_enable(vcpu, false);
1931 		} else {
1932 			svm_event_waitexit_disable(vcpu, false);
1933 		}
1934 
1935 		if (state->intr.nmi_window_exiting) {
1936 			svm_event_waitexit_enable(vcpu, true);
1937 		} else {
1938 			svm_event_waitexit_disable(vcpu, true);
1939 		}
1940 	}
1941 
1942 	CTASSERT(sizeof(cpudata->gfpu) == sizeof(state->fpu));
1943 	if (flags & NVMM_X64_STATE_FPU) {
1944 		memcpy(&cpudata->gfpu, &state->fpu, sizeof(state->fpu));
1945 
1946 		fpustate = &cpudata->gfpu.sv_xmm64;
1947 		fpustate->sv_env.en_mxcsr_mask &= x86_fpu_mxcsr_mask;
1948 		fpustate->sv_env.en_mxcsr &= fpustate->sv_env.en_mxcsr_mask;
1949 
1950 #ifdef __NetBSD__
1951 		if (svm_xcr0_mask != 0) {
1952 			/* Reset XSTATE_BV, to force a reload. */
1953 			cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1954 		}
1955 #endif /* __NetBSD__ */
1956 	}
1957 
1958 	svm_vmcb_cache_update(vmcb, flags);
1959 
1960 	comm->state_wanted = 0;
1961 	comm->state_cached |= flags;
1962 }
1963 
1964 static void
1965 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1966 {
1967 	struct nvmm_comm_page *comm = vcpu->comm;
1968 	struct nvmm_x64_state *state = &comm->state;
1969 	struct svm_cpudata *cpudata = vcpu->cpudata;
1970 	struct vmcb *vmcb = cpudata->vmcb;
1971 	uint64_t flags;
1972 
1973 	flags = comm->state_wanted;
1974 
1975 	if (flags & NVMM_X64_STATE_SEGS) {
1976 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1977 		    &vmcb->state.cs);
1978 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1979 		    &vmcb->state.ds);
1980 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1981 		    &vmcb->state.es);
1982 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1983 		    &vmcb->state.fs);
1984 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1985 		    &vmcb->state.gs);
1986 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1987 		    &vmcb->state.ss);
1988 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1989 		    &vmcb->state.gdt);
1990 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1991 		    &vmcb->state.idt);
1992 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1993 		    &vmcb->state.ldt);
1994 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1995 		    &vmcb->state.tr);
1996 
1997 		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1998 	}
1999 
2000 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2001 	if (flags & NVMM_X64_STATE_GPRS) {
2002 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2003 
2004 		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
2005 		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
2006 		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
2007 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
2008 	}
2009 
2010 	if (flags & NVMM_X64_STATE_CRS) {
2011 		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
2012 		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
2013 		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
2014 		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
2015 		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
2016 		    VMCB_CTRL_V_TPR);
2017 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2018 	}
2019 
2020 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2021 	if (flags & NVMM_X64_STATE_DRS) {
2022 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2023 
2024 		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
2025 		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
2026 	}
2027 
2028 	if (flags & NVMM_X64_STATE_MSRS) {
2029 		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
2030 		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
2031 		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
2032 		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
2033 		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
2034 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2035 		    vmcb->state.kernelgsbase;
2036 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2037 		    vmcb->state.sysenter_cs;
2038 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2039 		    vmcb->state.sysenter_esp;
2040 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2041 		    vmcb->state.sysenter_eip;
2042 		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
2043 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2044 
2045 		/* Hide SVME. */
2046 		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
2047 	}
2048 
2049 	if (flags & NVMM_X64_STATE_INTR) {
2050 		state->intr.int_shadow =
2051 		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
2052 		state->intr.int_window_exiting = cpudata->int_window_exit;
2053 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2054 		state->intr.evt_pending = cpudata->evt_pending;
2055 	}
2056 
2057 	CTASSERT(sizeof(cpudata->gfpu) == sizeof(state->fpu));
2058 	if (flags & NVMM_X64_STATE_FPU) {
2059 		memcpy(&state->fpu, &cpudata->gfpu, sizeof(state->fpu));
2060 	}
2061 
2062 	comm->state_wanted = 0;
2063 	comm->state_cached |= flags;
2064 }
2065 
2066 static void
2067 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2068 {
2069 	vcpu->comm->state_wanted = flags;
2070 	svm_vcpu_getstate(vcpu);
2071 }
2072 
2073 static void
2074 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
2075 {
2076 	vcpu->comm->state_wanted = vcpu->comm->state_commit;
2077 	vcpu->comm->state_commit = 0;
2078 	svm_vcpu_setstate(vcpu);
2079 }
2080 
2081 /* -------------------------------------------------------------------------- */
2082 
2083 static void
2084 svm_asid_alloc(struct nvmm_cpu *vcpu)
2085 {
2086 	struct svm_cpudata *cpudata = vcpu->cpudata;
2087 	struct vmcb *vmcb = cpudata->vmcb;
2088 	size_t i, oct, bit;
2089 
2090 	mutex_enter(&svm_asidlock);
2091 
2092 	for (i = 0; i < svm_maxasid; i++) {
2093 		oct = i / 8;
2094 		bit = i % 8;
2095 
2096 		if (svm_asidmap[oct] & __BIT(bit)) {
2097 			continue;
2098 		}
2099 
2100 		svm_asidmap[oct] |= __BIT(bit);
2101 		vmcb->ctrl.guest_asid = i;
2102 		mutex_exit(&svm_asidlock);
2103 		return;
2104 	}
2105 
2106 	/*
2107 	 * No free ASID. Use the last one, which is shared and requires
2108 	 * special TLB handling.
2109 	 */
2110 	cpudata->shared_asid = true;
2111 	vmcb->ctrl.guest_asid = svm_maxasid - 1;
2112 	mutex_exit(&svm_asidlock);
2113 }
2114 
2115 static void
2116 svm_asid_free(struct nvmm_cpu *vcpu)
2117 {
2118 	struct svm_cpudata *cpudata = vcpu->cpudata;
2119 	struct vmcb *vmcb = cpudata->vmcb;
2120 	size_t oct, bit;
2121 
2122 	if (cpudata->shared_asid) {
2123 		return;
2124 	}
2125 
2126 	oct = vmcb->ctrl.guest_asid / 8;
2127 	bit = vmcb->ctrl.guest_asid % 8;
2128 
2129 	mutex_enter(&svm_asidlock);
2130 	svm_asidmap[oct] &= ~__BIT(bit);
2131 	mutex_exit(&svm_asidlock);
2132 }
2133 
2134 static void
2135 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2136 {
2137 	struct svm_cpudata *cpudata = vcpu->cpudata;
2138 	struct vmcb *vmcb = cpudata->vmcb;
2139 
2140 	/* Allow reads/writes of Control Registers. */
2141 	vmcb->ctrl.intercept_cr = 0;
2142 
2143 	/* Allow reads/writes of Debug Registers. */
2144 	vmcb->ctrl.intercept_dr = 0;
2145 
2146 	/* Allow exceptions 0 to 31. */
2147 	vmcb->ctrl.intercept_vec = 0;
2148 
2149 	/*
2150 	 * Allow:
2151 	 *  - SMI [smm interrupts]
2152 	 *  - VINTR [virtual interrupts]
2153 	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2154 	 *  - RIDTR [reads of IDTR]
2155 	 *  - RGDTR [reads of GDTR]
2156 	 *  - RLDTR [reads of LDTR]
2157 	 *  - RTR [reads of TR]
2158 	 *  - WIDTR [writes of IDTR]
2159 	 *  - WGDTR [writes of GDTR]
2160 	 *  - WLDTR [writes of LDTR]
2161 	 *  - WTR [writes of TR]
2162 	 *  - RDTSC [rdtsc instruction]
2163 	 *  - PUSHF [pushf instruction]
2164 	 *  - POPF [popf instruction]
2165 	 *  - IRET [iret instruction]
2166 	 *  - INTN [int $n instructions]
2167 	 *  - PAUSE [pause instruction]
2168 	 *  - INVLPG [invplg instruction]
2169 	 *  - TASKSW [task switches]
2170 	 *
2171 	 * Intercept the rest below.
2172 	 */
2173 	vmcb->ctrl.intercept_misc1 =
2174 	    VMCB_CTRL_INTERCEPT_INTR |
2175 	    VMCB_CTRL_INTERCEPT_NMI |
2176 	    VMCB_CTRL_INTERCEPT_INIT |
2177 	    VMCB_CTRL_INTERCEPT_RDPMC |
2178 	    VMCB_CTRL_INTERCEPT_CPUID |
2179 	    VMCB_CTRL_INTERCEPT_RSM |
2180 	    VMCB_CTRL_INTERCEPT_INVD |
2181 	    VMCB_CTRL_INTERCEPT_HLT |
2182 	    VMCB_CTRL_INTERCEPT_INVLPGA |
2183 	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
2184 	    VMCB_CTRL_INTERCEPT_MSR_PROT |
2185 	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2186 	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
2187 
2188 	/*
2189 	 * Allow:
2190 	 *  - ICEBP [icebp instruction]
2191 	 *  - WBINVD [wbinvd instruction]
2192 	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2193 	 *
2194 	 * Intercept the rest below.
2195 	 */
2196 	vmcb->ctrl.intercept_misc2 =
2197 	    VMCB_CTRL_INTERCEPT_VMRUN |
2198 	    VMCB_CTRL_INTERCEPT_VMMCALL |
2199 	    VMCB_CTRL_INTERCEPT_VMLOAD |
2200 	    VMCB_CTRL_INTERCEPT_VMSAVE |
2201 	    VMCB_CTRL_INTERCEPT_STGI |
2202 	    VMCB_CTRL_INTERCEPT_CLGI |
2203 	    VMCB_CTRL_INTERCEPT_SKINIT |
2204 	    VMCB_CTRL_INTERCEPT_RDTSCP |
2205 	    VMCB_CTRL_INTERCEPT_MONITOR |
2206 	    VMCB_CTRL_INTERCEPT_MWAIT |
2207 	    VMCB_CTRL_INTERCEPT_XSETBV |
2208 	    VMCB_CTRL_INTERCEPT_RDPRU;
2209 
2210 	/*
2211 	 * Intercept everything.
2212 	 */
2213 	vmcb->ctrl.intercept_misc3 =
2214 	    VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2215 	    VMCB_CTRL_INTERCEPT_PCID |
2216 	    VMCB_CTRL_INTERCEPT_MCOMMIT |
2217 	    VMCB_CTRL_INTERCEPT_TLBSYNC;
2218 
2219 	/* Intercept all I/O accesses. */
2220 	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2221 	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2222 
2223 	/* Allow direct access to certain MSRs. */
2224 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2225 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2226 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2227 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2228 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2229 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2230 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2231 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2232 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2233 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2234 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2235 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2236 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2237 	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2238 
2239 	/* Generate ASID. */
2240 	svm_asid_alloc(vcpu);
2241 
2242 	/* Virtual TPR. */
2243 	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2244 
2245 	/* Enable Nested Paging. */
2246 	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2247 	vmcb->ctrl.n_cr3 = vtophys(vmspace_pmap(mach->vm)->pm_pml4);
2248 
2249 #ifdef __NetBSD__
2250 	/* Init XSAVE header. */
2251 	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2252 	cpudata->gfpu.xsh_xcomp_bv = 0;
2253 #endif /* __NetBSD__ */
2254 
2255 	/* These MSRs are static. */
2256 	cpudata->star = rdmsr(MSR_STAR);
2257 	cpudata->lstar = rdmsr(MSR_LSTAR);
2258 	cpudata->cstar = rdmsr(MSR_CSTAR);
2259 	cpudata->sfmask = rdmsr(MSR_SFMASK);
2260 
2261 	/* Install the RESET state. */
2262 	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2263 	    sizeof(nvmm_x86_reset_state));
2264 	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2265 	vcpu->comm->state_cached = 0;
2266 	svm_vcpu_setstate(vcpu);
2267 }
2268 
2269 static int
2270 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2271 {
2272 	struct svm_cpudata *cpudata;
2273 	int error;
2274 
2275 	/* Allocate the SVM cpudata. */
2276 	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2277 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2278 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
2279 	if (cpudata == NULL)
2280 		return ENOMEM;
2281 
2282 	vcpu->cpudata = cpudata;
2283 
2284 	/* VMCB */
2285 	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2286 	    VMCB_NPAGES);
2287 	if (error)
2288 		goto error;
2289 
2290 	/* I/O Bitmap */
2291 	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2292 	    IOBM_NPAGES);
2293 	if (error)
2294 		goto error;
2295 
2296 	/* MSR Bitmap */
2297 	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2298 	    MSRBM_NPAGES);
2299 	if (error)
2300 		goto error;
2301 
2302 	/* Init the VCPU info. */
2303 	svm_vcpu_init(mach, vcpu);
2304 
2305 	return 0;
2306 
2307 error:
2308 	if (cpudata->vmcb_pa) {
2309 		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2310 		    VMCB_NPAGES);
2311 	}
2312 	if (cpudata->iobm_pa) {
2313 		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2314 		    IOBM_NPAGES);
2315 	}
2316 	if (cpudata->msrbm_pa) {
2317 		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2318 		    MSRBM_NPAGES);
2319 	}
2320 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
2321 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2322 	return error;
2323 }
2324 
2325 static void
2326 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2327 {
2328 	struct svm_cpudata *cpudata = vcpu->cpudata;
2329 
2330 	svm_asid_free(vcpu);
2331 
2332 	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2333 	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2334 	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2335 
2336 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
2337 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2338 }
2339 
2340 /* -------------------------------------------------------------------------- */
2341 
2342 static int
2343 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2344 {
2345 	struct nvmm_vcpu_conf_cpuid *cpuid = data;
2346 	size_t i;
2347 
2348 	if (__predict_false(cpuid->mask && cpuid->exit)) {
2349 		return EINVAL;
2350 	}
2351 	if (__predict_false(cpuid->mask &&
2352 	    ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2353 	     (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2354 	     (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2355 	     (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2356 		return EINVAL;
2357 	}
2358 
2359 	/* If unset, delete, to restore the default behavior. */
2360 	if (!cpuid->mask && !cpuid->exit) {
2361 		for (i = 0; i < SVM_NCPUIDS; i++) {
2362 			if (!cpudata->cpuidpresent[i]) {
2363 				continue;
2364 			}
2365 			if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2366 				cpudata->cpuidpresent[i] = false;
2367 			}
2368 		}
2369 		return 0;
2370 	}
2371 
2372 	/* If already here, replace. */
2373 	for (i = 0; i < SVM_NCPUIDS; i++) {
2374 		if (!cpudata->cpuidpresent[i]) {
2375 			continue;
2376 		}
2377 		if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2378 			memcpy(&cpudata->cpuid[i], cpuid,
2379 			    sizeof(struct nvmm_vcpu_conf_cpuid));
2380 			return 0;
2381 		}
2382 	}
2383 
2384 	/* Not here, insert. */
2385 	for (i = 0; i < SVM_NCPUIDS; i++) {
2386 		if (!cpudata->cpuidpresent[i]) {
2387 			cpudata->cpuidpresent[i] = true;
2388 			memcpy(&cpudata->cpuid[i], cpuid,
2389 			    sizeof(struct nvmm_vcpu_conf_cpuid));
2390 			return 0;
2391 		}
2392 	}
2393 
2394 	return ENOBUFS;
2395 }
2396 
2397 static int
2398 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2399 {
2400 	struct svm_cpudata *cpudata = vcpu->cpudata;
2401 
2402 	switch (op) {
2403 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2404 		return svm_vcpu_configure_cpuid(cpudata, data);
2405 	default:
2406 		return EINVAL;
2407 	}
2408 }
2409 
2410 /* -------------------------------------------------------------------------- */
2411 
2412 static void
2413 svm_tlb_flush(struct pmap *pm)
2414 {
2415 	struct nvmm_machine *mach = pm->pm_data;
2416 	struct svm_machdata *machdata = mach->machdata;
2417 
2418 	atomic_inc_64(&machdata->mach_htlb_gen);
2419 
2420 	/* Generates IPIs, which cause #VMEXITs. */
2421 	pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2422 }
2423 
2424 static void
2425 svm_machine_create(struct nvmm_machine *mach)
2426 {
2427 	struct pmap *pmap = vmspace_pmap(mach->vm);
2428 	struct svm_machdata *machdata;
2429 
2430 	/* Fill in pmap info. */
2431 	pmap->pm_data = (void *)mach;
2432 	pmap->pm_tlb_flush = svm_tlb_flush;
2433 
2434 	machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2435 	mach->machdata = machdata;
2436 
2437 	/* Start with an hTLB flush everywhere. */
2438 	machdata->mach_htlb_gen = 1;
2439 }
2440 
2441 static void
2442 svm_machine_destroy(struct nvmm_machine *mach)
2443 {
2444 	kmem_free(mach->machdata, sizeof(struct svm_machdata));
2445 }
2446 
2447 static int
2448 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2449 {
2450 	panic("%s: impossible", __func__);
2451 }
2452 
2453 /* -------------------------------------------------------------------------- */
2454 
2455 static bool
2456 svm_ident(void)
2457 {
2458 	u_int descs[4];
2459 	uint64_t msr;
2460 
2461 	if (cpu_vendor_id != CPU_VENDOR_AMD) {
2462 		return false;
2463 	}
2464 	if (!(amd_feature2 & CPUID_SVM)) {
2465 		printf("NVMM: SVM not supported\n");
2466 		return false;
2467 	}
2468 
2469 	if (cpu_exthigh < 0x8000000a) {
2470 		printf("NVMM: CPUID leaf not available\n");
2471 		return false;
2472 	}
2473 	x86_cpuid(0x8000000a, descs);
2474 
2475 	/* Expect revision 1. */
2476 	if (__SHIFTOUT(descs[0], CPUID_AMD_SVM_REV) != 1) {
2477 		printf("NVMM: SVM revision not supported\n");
2478 		return false;
2479 	}
2480 
2481 	/* Want Nested Paging. */
2482 	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2483 		printf("NVMM: SVM-NP not supported\n");
2484 		return false;
2485 	}
2486 
2487 	/* Want nRIP. */
2488 	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2489 		printf("NVMM: SVM-NRIPS not supported\n");
2490 		return false;
2491 	}
2492 
2493 	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2494 
2495 	msr = rdmsr(MSR_VMCR);
2496 	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2497 		printf("NVMM: SVM disabled in BIOS\n");
2498 		return false;
2499 	}
2500 
2501 	return true;
2502 }
2503 
2504 static void
2505 svm_init_asid(uint32_t maxasid)
2506 {
2507 	size_t i, j, allocsz;
2508 
2509 	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2510 
2511 	/* Arbitrarily limit. */
2512 	maxasid = uimin(maxasid, 8192);
2513 
2514 	svm_maxasid = maxasid;
2515 	allocsz = roundup(maxasid, 8) / 8;
2516 	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2517 
2518 	/* ASID 0 is reserved for the host. */
2519 	svm_asidmap[0] |= __BIT(0);
2520 
2521 	/* ASID n-1 is special, we share it. */
2522 	i = (maxasid - 1) / 8;
2523 	j = (maxasid - 1) % 8;
2524 	svm_asidmap[i] |= __BIT(j);
2525 }
2526 
2527 static void
2528 svm_change_cpu(void *arg1)
2529 {
2530 	bool enable = arg1 != NULL;
2531 	uint64_t msr;
2532 
2533 	msr = rdmsr(MSR_VMCR);
2534 	if (msr & VMCR_SVMED) {
2535 		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2536 	}
2537 
2538 	if (!enable) {
2539 		wrmsr(MSR_VM_HSAVE_PA, 0);
2540 	}
2541 
2542 	msr = rdmsr(MSR_EFER);
2543 	if (enable) {
2544 		msr |= EFER_SVME;
2545 	} else {
2546 		msr &= ~EFER_SVME;
2547 	}
2548 	wrmsr(MSR_EFER, msr);
2549 
2550 	if (enable) {
2551 		wrmsr(MSR_VM_HSAVE_PA, hsave[mycpuid].pa);
2552 	}
2553 }
2554 
2555 static void
2556 svm_init(void)
2557 {
2558 	struct vm_page *pg;
2559 	u_int descs[4];
2560 	int i;
2561 
2562 	x86_cpuid(0x8000000a, descs);
2563 
2564 	/* The guest TLB flush command. */
2565 	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2566 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2567 	} else {
2568 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2569 	}
2570 
2571 	/* Init the ASID. */
2572 	svm_init_asid(descs[1]);
2573 
2574 	/* Init the XCR0 mask. */
2575 	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2576 
2577 	/* Init the max basic CPUID leaf. */
2578 	svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
2579 
2580 	/* Init the max extended CPUID leaf. */
2581 	x86_cpuid(0x80000000, descs);
2582 	svm_cpuid_max_extended = uimin(descs[0], SVM_CPUID_MAX_EXTENDED);
2583 
2584 	memset(hsave, 0, sizeof(hsave));
2585 	for (i = 0; i < ncpus; i++) {
2586 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2587 		hsave[i].pa = VM_PAGE_TO_PHYS(pg);
2588 	}
2589 
2590 #ifdef __NetBSD__
2591 	uint64_t xc;
2592 	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2593 	xc_wait(xc);
2594 #endif /* __NetBSD__ */
2595 
2596 	lwkt_send_ipiq_mask(smp_active_mask, svm_change_cpu, (void *)true);
2597 	/* XXX: need any cpu fence ?? */
2598 }
2599 
2600 static void
2601 svm_fini_asid(void)
2602 {
2603 	size_t allocsz;
2604 
2605 	allocsz = roundup(svm_maxasid, 8) / 8;
2606 	kmem_free(svm_asidmap, allocsz);
2607 
2608 	mutex_destroy(&svm_asidlock);
2609 }
2610 
2611 static void
2612 svm_fini(void)
2613 {
2614 	size_t i;
2615 
2616 #ifdef __NetBSD__
2617 	uint64_t xc;
2618 	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2619 	xc_wait(xc);
2620 #endif /* __NetBSD__ */
2621 
2622 	lwkt_send_ipiq_mask(smp_active_mask, svm_change_cpu, (void *)false);
2623 	/* XXX: need any cpu fence ?? */
2624 
2625 	for (i = 0; i < MAXCPUS; i++) {
2626 		if (hsave[i].pa != 0)
2627 			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2628 	}
2629 
2630 	svm_fini_asid();
2631 }
2632 
2633 static void
2634 svm_capability(struct nvmm_capability *cap)
2635 {
2636 	cap->arch.mach_conf_support = 0;
2637 	cap->arch.vcpu_conf_support =
2638 	    NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2639 	cap->arch.xcr0_mask = svm_xcr0_mask;
2640 	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2641 	cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2642 }
2643 
2644 const struct nvmm_impl nvmm_x86_svm = {
2645 	.name = "x86-svm",
2646 	.ident = svm_ident,
2647 	.init = svm_init,
2648 	.fini = svm_fini,
2649 	.capability = svm_capability,
2650 	.mach_conf_max = NVMM_X86_MACH_NCONF,
2651 	.mach_conf_sizes = NULL,
2652 	.vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2653 	.vcpu_conf_sizes = svm_vcpu_conf_sizes,
2654 	.state_size = sizeof(struct nvmm_x64_state),
2655 	.machine_create = svm_machine_create,
2656 	.machine_destroy = svm_machine_destroy,
2657 	.machine_configure = svm_machine_configure,
2658 	.vcpu_create = svm_vcpu_create,
2659 	.vcpu_destroy = svm_vcpu_destroy,
2660 	.vcpu_configure = svm_vcpu_configure,
2661 	.vcpu_setstate = svm_vcpu_setstate,
2662 	.vcpu_getstate = svm_vcpu_getstate,
2663 	.vcpu_inject = svm_vcpu_inject,
2664 	.vcpu_run = svm_vcpu_run
2665 };
2666