1 /*
2  * Copyright (c) 2018-2021 Maxime Villard, m00nbsd.net
3  * All rights reserved.
4  *
5  * This code is part of the NVMM hypervisor.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/mman.h>
33 
34 #include "../nvmm.h"
35 #include "../nvmm_internal.h"
36 #include "nvmm_x86.h"
37 
38 void svm_vmrun(paddr_t, uint64_t *);
39 
40 static inline void
41 svm_clgi(void)
42 {
43 	__asm volatile ("clgi" ::: "memory");
44 }
45 
46 static inline void
47 svm_stgi(void)
48 {
49 	__asm volatile ("stgi" ::: "memory");
50 }
51 
52 #define	MSR_VM_HSAVE_PA	0xC0010117
53 
54 #define MSR_VM_CR	0xc0010114	/* Virtual Machine Control Register */
55 #define 	VM_CR_DPD	0x00000001	/* Debug port disable */
56 #define 	VM_CR_RINIT	0x00000002	/* Intercept init */
57 #define 	VM_CR_DISA20	0x00000004	/* Disable A20 masking */
58 #define 	VM_CR_LOCK	0x00000008	/* SVM Lock */
59 #define 	VM_CR_SVMED	0x00000010	/* SVME Disable */
60 
61 /* -------------------------------------------------------------------------- */
62 
63 #define VMCB_EXITCODE_CR0_READ		0x0000
64 #define VMCB_EXITCODE_CR1_READ		0x0001
65 #define VMCB_EXITCODE_CR2_READ		0x0002
66 #define VMCB_EXITCODE_CR3_READ		0x0003
67 #define VMCB_EXITCODE_CR4_READ		0x0004
68 #define VMCB_EXITCODE_CR5_READ		0x0005
69 #define VMCB_EXITCODE_CR6_READ		0x0006
70 #define VMCB_EXITCODE_CR7_READ		0x0007
71 #define VMCB_EXITCODE_CR8_READ		0x0008
72 #define VMCB_EXITCODE_CR9_READ		0x0009
73 #define VMCB_EXITCODE_CR10_READ		0x000A
74 #define VMCB_EXITCODE_CR11_READ		0x000B
75 #define VMCB_EXITCODE_CR12_READ		0x000C
76 #define VMCB_EXITCODE_CR13_READ		0x000D
77 #define VMCB_EXITCODE_CR14_READ		0x000E
78 #define VMCB_EXITCODE_CR15_READ		0x000F
79 #define VMCB_EXITCODE_CR0_WRITE		0x0010
80 #define VMCB_EXITCODE_CR1_WRITE		0x0011
81 #define VMCB_EXITCODE_CR2_WRITE		0x0012
82 #define VMCB_EXITCODE_CR3_WRITE		0x0013
83 #define VMCB_EXITCODE_CR4_WRITE		0x0014
84 #define VMCB_EXITCODE_CR5_WRITE		0x0015
85 #define VMCB_EXITCODE_CR6_WRITE		0x0016
86 #define VMCB_EXITCODE_CR7_WRITE		0x0017
87 #define VMCB_EXITCODE_CR8_WRITE		0x0018
88 #define VMCB_EXITCODE_CR9_WRITE		0x0019
89 #define VMCB_EXITCODE_CR10_WRITE	0x001A
90 #define VMCB_EXITCODE_CR11_WRITE	0x001B
91 #define VMCB_EXITCODE_CR12_WRITE	0x001C
92 #define VMCB_EXITCODE_CR13_WRITE	0x001D
93 #define VMCB_EXITCODE_CR14_WRITE	0x001E
94 #define VMCB_EXITCODE_CR15_WRITE	0x001F
95 #define VMCB_EXITCODE_DR0_READ		0x0020
96 #define VMCB_EXITCODE_DR1_READ		0x0021
97 #define VMCB_EXITCODE_DR2_READ		0x0022
98 #define VMCB_EXITCODE_DR3_READ		0x0023
99 #define VMCB_EXITCODE_DR4_READ		0x0024
100 #define VMCB_EXITCODE_DR5_READ		0x0025
101 #define VMCB_EXITCODE_DR6_READ		0x0026
102 #define VMCB_EXITCODE_DR7_READ		0x0027
103 #define VMCB_EXITCODE_DR8_READ		0x0028
104 #define VMCB_EXITCODE_DR9_READ		0x0029
105 #define VMCB_EXITCODE_DR10_READ		0x002A
106 #define VMCB_EXITCODE_DR11_READ		0x002B
107 #define VMCB_EXITCODE_DR12_READ		0x002C
108 #define VMCB_EXITCODE_DR13_READ		0x002D
109 #define VMCB_EXITCODE_DR14_READ		0x002E
110 #define VMCB_EXITCODE_DR15_READ		0x002F
111 #define VMCB_EXITCODE_DR0_WRITE		0x0030
112 #define VMCB_EXITCODE_DR1_WRITE		0x0031
113 #define VMCB_EXITCODE_DR2_WRITE		0x0032
114 #define VMCB_EXITCODE_DR3_WRITE		0x0033
115 #define VMCB_EXITCODE_DR4_WRITE		0x0034
116 #define VMCB_EXITCODE_DR5_WRITE		0x0035
117 #define VMCB_EXITCODE_DR6_WRITE		0x0036
118 #define VMCB_EXITCODE_DR7_WRITE		0x0037
119 #define VMCB_EXITCODE_DR8_WRITE		0x0038
120 #define VMCB_EXITCODE_DR9_WRITE		0x0039
121 #define VMCB_EXITCODE_DR10_WRITE	0x003A
122 #define VMCB_EXITCODE_DR11_WRITE	0x003B
123 #define VMCB_EXITCODE_DR12_WRITE	0x003C
124 #define VMCB_EXITCODE_DR13_WRITE	0x003D
125 #define VMCB_EXITCODE_DR14_WRITE	0x003E
126 #define VMCB_EXITCODE_DR15_WRITE	0x003F
127 #define VMCB_EXITCODE_EXCP0		0x0040
128 #define VMCB_EXITCODE_EXCP1		0x0041
129 #define VMCB_EXITCODE_EXCP2		0x0042
130 #define VMCB_EXITCODE_EXCP3		0x0043
131 #define VMCB_EXITCODE_EXCP4		0x0044
132 #define VMCB_EXITCODE_EXCP5		0x0045
133 #define VMCB_EXITCODE_EXCP6		0x0046
134 #define VMCB_EXITCODE_EXCP7		0x0047
135 #define VMCB_EXITCODE_EXCP8		0x0048
136 #define VMCB_EXITCODE_EXCP9		0x0049
137 #define VMCB_EXITCODE_EXCP10		0x004A
138 #define VMCB_EXITCODE_EXCP11		0x004B
139 #define VMCB_EXITCODE_EXCP12		0x004C
140 #define VMCB_EXITCODE_EXCP13		0x004D
141 #define VMCB_EXITCODE_EXCP14		0x004E
142 #define VMCB_EXITCODE_EXCP15		0x004F
143 #define VMCB_EXITCODE_EXCP16		0x0050
144 #define VMCB_EXITCODE_EXCP17		0x0051
145 #define VMCB_EXITCODE_EXCP18		0x0052
146 #define VMCB_EXITCODE_EXCP19		0x0053
147 #define VMCB_EXITCODE_EXCP20		0x0054
148 #define VMCB_EXITCODE_EXCP21		0x0055
149 #define VMCB_EXITCODE_EXCP22		0x0056
150 #define VMCB_EXITCODE_EXCP23		0x0057
151 #define VMCB_EXITCODE_EXCP24		0x0058
152 #define VMCB_EXITCODE_EXCP25		0x0059
153 #define VMCB_EXITCODE_EXCP26		0x005A
154 #define VMCB_EXITCODE_EXCP27		0x005B
155 #define VMCB_EXITCODE_EXCP28		0x005C
156 #define VMCB_EXITCODE_EXCP29		0x005D
157 #define VMCB_EXITCODE_EXCP30		0x005E
158 #define VMCB_EXITCODE_EXCP31		0x005F
159 #define VMCB_EXITCODE_INTR		0x0060
160 #define VMCB_EXITCODE_NMI		0x0061
161 #define VMCB_EXITCODE_SMI		0x0062
162 #define VMCB_EXITCODE_INIT		0x0063
163 #define VMCB_EXITCODE_VINTR		0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
165 #define VMCB_EXITCODE_IDTR_READ		0x0066
166 #define VMCB_EXITCODE_GDTR_READ		0x0067
167 #define VMCB_EXITCODE_LDTR_READ		0x0068
168 #define VMCB_EXITCODE_TR_READ		0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE	0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE	0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE	0x006C
172 #define VMCB_EXITCODE_TR_WRITE		0x006D
173 #define VMCB_EXITCODE_RDTSC		0x006E
174 #define VMCB_EXITCODE_RDPMC		0x006F
175 #define VMCB_EXITCODE_PUSHF		0x0070
176 #define VMCB_EXITCODE_POPF		0x0071
177 #define VMCB_EXITCODE_CPUID		0x0072
178 #define VMCB_EXITCODE_RSM		0x0073
179 #define VMCB_EXITCODE_IRET		0x0074
180 #define VMCB_EXITCODE_SWINT		0x0075
181 #define VMCB_EXITCODE_INVD		0x0076
182 #define VMCB_EXITCODE_PAUSE		0x0077
183 #define VMCB_EXITCODE_HLT		0x0078
184 #define VMCB_EXITCODE_INVLPG		0x0079
185 #define VMCB_EXITCODE_INVLPGA		0x007A
186 #define VMCB_EXITCODE_IOIO		0x007B
187 #define VMCB_EXITCODE_MSR		0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH	0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE	0x007E
190 #define VMCB_EXITCODE_SHUTDOWN		0x007F
191 #define VMCB_EXITCODE_VMRUN		0x0080
192 #define VMCB_EXITCODE_VMMCALL		0x0081
193 #define VMCB_EXITCODE_VMLOAD		0x0082
194 #define VMCB_EXITCODE_VMSAVE		0x0083
195 #define VMCB_EXITCODE_STGI		0x0084
196 #define VMCB_EXITCODE_CLGI		0x0085
197 #define VMCB_EXITCODE_SKINIT		0x0086
198 #define VMCB_EXITCODE_RDTSCP		0x0087
199 #define VMCB_EXITCODE_ICEBP		0x0088
200 #define VMCB_EXITCODE_WBINVD		0x0089
201 #define VMCB_EXITCODE_MONITOR		0x008A
202 #define VMCB_EXITCODE_MWAIT		0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
204 #define VMCB_EXITCODE_XSETBV		0x008D
205 #define VMCB_EXITCODE_RDPRU		0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
223 #define VMCB_EXITCODE_INVLPGB		0x00A0
224 #define VMCB_EXITCODE_INVLPGB_ILLEGAL	0x00A1
225 #define VMCB_EXITCODE_INVPCID		0x00A2
226 #define VMCB_EXITCODE_MCOMMIT		0x00A3
227 #define VMCB_EXITCODE_TLBSYNC		0x00A4
228 #define VMCB_EXITCODE_NPF		0x0400
229 #define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
230 #define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
231 #define VMCB_EXITCODE_VMGEXIT		0x0403
232 #define VMCB_EXITCODE_BUSY		-2ULL
233 #define VMCB_EXITCODE_INVALID		-1ULL
234 
235 /* -------------------------------------------------------------------------- */
236 
237 struct vmcb_ctrl {
238 	uint32_t intercept_cr;
239 #define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
240 #define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
241 
242 	uint32_t intercept_dr;
243 #define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
244 #define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
245 
246 	uint32_t intercept_vec;
247 #define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
248 
249 	uint32_t intercept_misc1;
250 #define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
251 #define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
252 #define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
253 #define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
254 #define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
255 #define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
256 #define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
257 #define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
258 #define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
259 #define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
260 #define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
261 #define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
262 #define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
263 #define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
264 #define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
265 #define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
266 #define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
267 #define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
268 #define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
269 #define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
270 #define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
271 #define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
272 #define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
273 #define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
274 #define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
275 #define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
276 #define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
277 #define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
278 #define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
279 #define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
280 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
281 #define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
282 
283 	uint32_t intercept_misc2;
284 #define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
285 #define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
286 #define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
287 #define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
288 #define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
289 #define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
290 #define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
291 #define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
292 #define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
293 #define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
294 #define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
295 #define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(11)
296 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED	__BIT(12)
297 #define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
298 #define VMCB_CTRL_INTERCEPT_RDPRU	__BIT(14)
299 #define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
300 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
301 
302 	uint32_t intercept_misc3;
303 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL	__BIT(0)
304 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL	__BIT(1)
305 #define VMCB_CTRL_INTERCEPT_PCID	__BIT(2)
306 #define VMCB_CTRL_INTERCEPT_MCOMMIT	__BIT(3)
307 #define VMCB_CTRL_INTERCEPT_TLBSYNC	__BIT(4)
308 
309 	uint8_t  rsvd1[36];
310 	uint16_t pause_filt_thresh;
311 	uint16_t pause_filt_cnt;
312 	uint64_t iopm_base_pa;
313 	uint64_t msrpm_base_pa;
314 	uint64_t tsc_offset;
315 	uint32_t guest_asid;
316 
317 	uint32_t tlb_ctrl;
318 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
319 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
320 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
321 
322 	uint64_t v;
323 #define VMCB_CTRL_V_TPR			__BITS(3,0)
324 #define VMCB_CTRL_V_IRQ			__BIT(8)
325 #define VMCB_CTRL_V_VGIF		__BIT(9)
326 #define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
327 #define VMCB_CTRL_V_IGN_TPR		__BIT(20)
328 #define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
329 #define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
330 #define VMCB_CTRL_V_AVIC_EN		__BIT(31)
331 #define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
332 
333 	uint64_t intr;
334 #define VMCB_CTRL_INTR_SHADOW		__BIT(0)
335 #define VMCB_CTRL_INTR_MASK		__BIT(1)
336 
337 	uint64_t exitcode;
338 	uint64_t exitinfo1;
339 	uint64_t exitinfo2;
340 
341 	uint64_t exitintinfo;
342 #define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
343 #define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
344 #define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
345 #define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
346 #define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
347 
348 	uint64_t enable1;
349 #define VMCB_CTRL_ENABLE_NP		__BIT(0)
350 #define VMCB_CTRL_ENABLE_SEV		__BIT(1)
351 #define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
352 #define VMCB_CTRL_ENABLE_GMET		__BIT(3)
353 #define VMCB_CTRL_ENABLE_SSS		__BIT(4)
354 #define VMCB_CTRL_ENABLE_VTE		__BIT(5)
355 
356 	uint64_t avic;
357 #define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
358 
359 	uint64_t ghcb;
360 
361 	uint64_t eventinj;
362 #define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
363 #define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
364 #define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
365 #define VMCB_CTRL_EVENTINJ_V		__BIT(31)
366 #define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
367 
368 	uint64_t n_cr3;
369 
370 	uint64_t enable2;
371 #define VMCB_CTRL_ENABLE_LBR		__BIT(0)
372 #define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
373 
374 	uint32_t vmcb_clean;
375 #define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
376 #define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
377 #define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
378 #define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
379 #define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
380 #define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
381 #define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
382 #define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
383 #define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
384 #define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
385 #define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
386 #define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
387 #define VMCB_CTRL_VMCB_CLEAN_CET	__BIT(12)
388 
389 	uint32_t rsvd2;
390 	uint64_t nrip;
391 	uint8_t	inst_len;
392 	uint8_t	inst_bytes[15];
393 	uint64_t avic_abpp;
394 	uint64_t rsvd3;
395 	uint64_t avic_ltp;
396 
397 	uint64_t avic_phys;
398 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
399 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
400 
401 	uint64_t rsvd4;
402 	uint64_t vmsa_ptr;
403 
404 	uint8_t	pad[752];
405 } __packed;
406 
407 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
408 
409 struct vmcb_segment {
410 	uint16_t selector;
411 	uint16_t attrib;	/* hidden */
412 	uint32_t limit;		/* hidden */
413 	uint64_t base;		/* hidden */
414 } __packed;
415 
416 CTASSERT(sizeof(struct vmcb_segment) == 16);
417 
418 struct vmcb_state {
419 	struct   vmcb_segment es;
420 	struct   vmcb_segment cs;
421 	struct   vmcb_segment ss;
422 	struct   vmcb_segment ds;
423 	struct   vmcb_segment fs;
424 	struct   vmcb_segment gs;
425 	struct   vmcb_segment gdt;
426 	struct   vmcb_segment ldt;
427 	struct   vmcb_segment idt;
428 	struct   vmcb_segment tr;
429 	uint8_t	 rsvd1[43];
430 	uint8_t	 cpl;
431 	uint8_t  rsvd2[4];
432 	uint64_t efer;
433 	uint8_t	 rsvd3[112];
434 	uint64_t cr4;
435 	uint64_t cr3;
436 	uint64_t cr0;
437 	uint64_t dr7;
438 	uint64_t dr6;
439 	uint64_t rflags;
440 	uint64_t rip;
441 	uint8_t	 rsvd4[88];
442 	uint64_t rsp;
443 	uint64_t s_cet;
444 	uint64_t ssp;
445 	uint64_t isst_addr;
446 	uint64_t rax;
447 	uint64_t star;
448 	uint64_t lstar;
449 	uint64_t cstar;
450 	uint64_t sfmask;
451 	uint64_t kernelgsbase;
452 	uint64_t sysenter_cs;
453 	uint64_t sysenter_esp;
454 	uint64_t sysenter_eip;
455 	uint64_t cr2;
456 	uint8_t	 rsvd6[32];
457 	uint64_t g_pat;
458 	uint64_t dbgctl;
459 	uint64_t br_from;
460 	uint64_t br_to;
461 	uint64_t int_from;
462 	uint64_t int_to;
463 	uint8_t	 pad[2408];
464 } __packed;
465 
466 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
467 
468 struct vmcb {
469 	struct vmcb_ctrl ctrl;
470 	struct vmcb_state state;
471 } __packed;
472 
473 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
474 CTASSERT(offsetof(struct vmcb, state) == 0x400);
475 
476 /* -------------------------------------------------------------------------- */
477 
478 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
479 static void svm_vcpu_state_commit(struct nvmm_cpu *);
480 
481 /*
482  * These host values are static, they do not change at runtime and are the same
483  * on all CPUs. We save them here because they are not saved in the VMCB.
484  */
485 static struct {
486 	uint64_t xcr0;
487 	uint64_t star;
488 	uint64_t lstar;
489 	uint64_t cstar;
490 	uint64_t sfmask;
491 } svm_global_hstate __cacheline_aligned;
492 
493 struct svm_hsave {
494 	paddr_t pa;
495 };
496 
497 static struct svm_hsave hsave[OS_MAXCPUS];
498 
499 static uint8_t *svm_asidmap __read_mostly;
500 static uint32_t svm_maxasid __read_mostly;
501 static os_mtx_t svm_asidlock __cacheline_aligned;
502 
503 static bool svm_decode_assist __read_mostly;
504 static uint32_t svm_ctrl_tlb_flush __read_mostly;
505 
506 #define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
507 static uint64_t svm_xcr0_mask __read_mostly;
508 
509 #define SVM_NCPUIDS	32
510 
511 #define VMCB_NPAGES	1
512 
513 #define MSRBM_NPAGES	2
514 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
515 
516 #define IOBM_NPAGES	3
517 #define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
518 
519 /* Does not include EFER_LMSLE. */
520 #define EFER_VALID \
521 	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
522 
523 #define EFER_TLB_FLUSH \
524 	(EFER_NXE|EFER_LMA|EFER_LME)
525 #define CR0_TLB_FLUSH \
526 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
527 #define CR4_TLB_FLUSH \
528 	(CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
529 
530 /* -------------------------------------------------------------------------- */
531 
532 struct svm_machdata {
533 	volatile uint64_t mach_htlb_gen;
534 };
535 
536 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
537 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
538 	    sizeof(struct nvmm_vcpu_conf_cpuid),
539 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
540 	    sizeof(struct nvmm_vcpu_conf_tpr)
541 };
542 
543 struct svm_cpudata {
544 	/* General. */
545 	bool shared_asid;
546 	bool gtlb_want_flush;
547 	bool htlb_want_flush;
548 	bool gtsc_want_update;
549 	uint64_t vcpu_htlb_gen;
550 
551 	/* VMCB. */
552 	struct vmcb *vmcb;
553 	paddr_t vmcb_pa;
554 
555 	/* I/O bitmap. */
556 	uint8_t *iobm;
557 	paddr_t iobm_pa;
558 
559 	/* MSR bitmap. */
560 	uint8_t *msrbm;
561 	paddr_t msrbm_pa;
562 
563 	/* Percpu host state, absent from VMCB. */
564 	struct {
565 		uint64_t fsbase;
566 		uint64_t kernelgsbase;
567 		uint64_t drs[NVMM_X64_NDR];
568 #ifdef __DragonFly__
569 		mcontext_t hmctx;  /* TODO: remove this like NetBSD */
570 #endif
571 	} hstate;
572 
573 	/* Intr state. */
574 	bool int_window_exit;
575 	bool nmi_window_exit;
576 	bool evt_pending;
577 
578 	/* Guest state. */
579 	uint64_t gxcr0;
580 	uint64_t gprs[NVMM_X64_NGPR];
581 	uint64_t drs[NVMM_X64_NDR];
582 	uint64_t gtsc_offset;
583 	uint64_t gtsc_match;
584 	struct nvmm_x86_xsave gxsave __aligned(64);
585 
586 	/* VCPU configuration. */
587 	bool cpuidpresent[SVM_NCPUIDS];
588 	struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
589 };
590 
591 static void
592 svm_vmcb_cache_default(struct vmcb *vmcb)
593 {
594 	vmcb->ctrl.vmcb_clean =
595 	    VMCB_CTRL_VMCB_CLEAN_I |
596 	    VMCB_CTRL_VMCB_CLEAN_IOPM |
597 	    VMCB_CTRL_VMCB_CLEAN_ASID |
598 	    VMCB_CTRL_VMCB_CLEAN_TPR |
599 	    VMCB_CTRL_VMCB_CLEAN_NP |
600 	    VMCB_CTRL_VMCB_CLEAN_CR |
601 	    VMCB_CTRL_VMCB_CLEAN_DR |
602 	    VMCB_CTRL_VMCB_CLEAN_DT |
603 	    VMCB_CTRL_VMCB_CLEAN_SEG |
604 	    VMCB_CTRL_VMCB_CLEAN_CR2 |
605 	    VMCB_CTRL_VMCB_CLEAN_LBR |
606 	    VMCB_CTRL_VMCB_CLEAN_AVIC;
607 }
608 
609 static void
610 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
611 {
612 	if (flags & NVMM_X64_STATE_SEGS) {
613 		vmcb->ctrl.vmcb_clean &=
614 		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
615 	}
616 	if (flags & NVMM_X64_STATE_CRS) {
617 		vmcb->ctrl.vmcb_clean &=
618 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
619 		      VMCB_CTRL_VMCB_CLEAN_TPR);
620 	}
621 	if (flags & NVMM_X64_STATE_DRS) {
622 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
623 	}
624 	if (flags & NVMM_X64_STATE_MSRS) {
625 		/* CR for EFER, NP for PAT. */
626 		vmcb->ctrl.vmcb_clean &=
627 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
628 	}
629 }
630 
631 static inline void
632 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
633 {
634 	vmcb->ctrl.vmcb_clean &= ~flags;
635 }
636 
637 static inline void
638 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
639 {
640 	vmcb->ctrl.vmcb_clean = 0;
641 }
642 
643 #define SVM_EVENT_TYPE_HW_INT	0
644 #define SVM_EVENT_TYPE_NMI	2
645 #define SVM_EVENT_TYPE_EXC	3
646 #define SVM_EVENT_TYPE_SW_INT	4
647 
648 static void
649 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
650 {
651 	struct svm_cpudata *cpudata = vcpu->cpudata;
652 	struct vmcb *vmcb = cpudata->vmcb;
653 
654 	if (nmi) {
655 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
656 		cpudata->nmi_window_exit = true;
657 	} else {
658 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
659 		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
660 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
661 		cpudata->int_window_exit = true;
662 	}
663 
664 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
665 }
666 
667 static void
668 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
669 {
670 	struct svm_cpudata *cpudata = vcpu->cpudata;
671 	struct vmcb *vmcb = cpudata->vmcb;
672 
673 	if (nmi) {
674 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
675 		cpudata->nmi_window_exit = false;
676 	} else {
677 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
678 		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
679 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
680 		cpudata->int_window_exit = false;
681 	}
682 
683 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
684 }
685 
686 static inline bool
687 svm_excp_has_rf(uint8_t vector)
688 {
689 	switch (vector) {
690 	case 1:		/* #DB */
691 	case 4:		/* #OF */
692 	case 8:		/* #DF */
693 	case 18:	/* #MC */
694 		return false;
695 	default:
696 		return true;
697 	}
698 }
699 
700 static inline int
701 svm_excp_has_error(uint8_t vector)
702 {
703 	switch (vector) {
704 	case 8:		/* #DF */
705 	case 10:	/* #TS */
706 	case 11:	/* #NP */
707 	case 12:	/* #SS */
708 	case 13:	/* #GP */
709 	case 14:	/* #PF */
710 	case 17:	/* #AC */
711 	case 21:	/* #CP */
712 	case 30:	/* #SX */
713 		return 1;
714 	default:
715 		return 0;
716 	}
717 }
718 
719 static int
720 svm_vcpu_inject(struct nvmm_cpu *vcpu)
721 {
722 	struct nvmm_comm_page *comm = vcpu->comm;
723 	struct svm_cpudata *cpudata = vcpu->cpudata;
724 	struct vmcb *vmcb = cpudata->vmcb;
725 	u_int evtype;
726 	uint8_t vector;
727 	uint64_t error;
728 	int type = 0, err = 0;
729 
730 	evtype = comm->event.type;
731 	vector = comm->event.vector;
732 	error = comm->event.u.excp.error;
733 	__insn_barrier();
734 
735 	switch (evtype) {
736 	case NVMM_VCPU_EVENT_EXCP:
737 		type = SVM_EVENT_TYPE_EXC;
738 		if (vector == 2 || vector >= 32)
739 			return EINVAL;
740 		if (vector == 3 || vector == 0)
741 			return EINVAL;
742 		if (svm_excp_has_rf(vector)) {
743 			vmcb->state.rflags |= PSL_RF;
744 		}
745 		err = svm_excp_has_error(vector);
746 		break;
747 	case NVMM_VCPU_EVENT_INTR:
748 		type = SVM_EVENT_TYPE_HW_INT;
749 		if (vector == 2) {
750 			type = SVM_EVENT_TYPE_NMI;
751 			svm_event_waitexit_enable(vcpu, true);
752 		}
753 		err = 0;
754 		break;
755 	default:
756 		return EINVAL;
757 	}
758 
759 	vmcb->ctrl.eventinj =
760 	    __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
761 	    __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
762 	    __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
763 	    __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
764 	    __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
765 
766 	cpudata->evt_pending = true;
767 
768 	return 0;
769 }
770 
771 static void
772 svm_inject_ud(struct nvmm_cpu *vcpu)
773 {
774 	struct nvmm_comm_page *comm = vcpu->comm;
775 	int ret __diagused;
776 
777 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
778 	comm->event.vector = 6;
779 	comm->event.u.excp.error = 0;
780 
781 	ret = svm_vcpu_inject(vcpu);
782 	OS_ASSERT(ret == 0);
783 }
784 
785 static void
786 svm_inject_gp(struct nvmm_cpu *vcpu)
787 {
788 	struct nvmm_comm_page *comm = vcpu->comm;
789 	int ret __diagused;
790 
791 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
792 	comm->event.vector = 13;
793 	comm->event.u.excp.error = 0;
794 
795 	ret = svm_vcpu_inject(vcpu);
796 	OS_ASSERT(ret == 0);
797 }
798 
799 static inline int
800 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
801 {
802 	if (__predict_true(!vcpu->comm->event_commit)) {
803 		return 0;
804 	}
805 	vcpu->comm->event_commit = false;
806 	return svm_vcpu_inject(vcpu);
807 }
808 
809 static inline void
810 svm_inkernel_advance(struct vmcb *vmcb)
811 {
812 	/*
813 	 * Maybe we should also apply single-stepping and debug exceptions.
814 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
815 	 * debugger.
816 	 */
817 	vmcb->state.rip = vmcb->ctrl.nrip;
818 	vmcb->state.rflags &= ~PSL_RF;
819 	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
820 }
821 
822 #define SVM_CPUID_MAX_BASIC		0xD
823 #define SVM_CPUID_MAX_HYPERVISOR	0x40000000
824 #define SVM_CPUID_MAX_EXTENDED		0x8000001F
825 static uint32_t svm_cpuid_max_basic __read_mostly;
826 static uint32_t svm_cpuid_max_extended __read_mostly;
827 
828 static void
829 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint32_t eax, uint32_t ecx)
830 {
831 	cpuid_desc_t descs;
832 
833 	x86_get_cpuid2(eax, ecx, &descs);
834 	cpudata->vmcb->state.rax = descs.eax;
835 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs.ebx;
836 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs.ecx;
837 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs.edx;
838 }
839 
840 static void
841 svm_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
842     uint32_t eax, uint32_t ecx)
843 {
844 	struct svm_cpudata *cpudata = vcpu->cpudata;
845 	unsigned int ncpus;
846 	uint64_t cr4;
847 
848 	if (eax < 0x40000000) {
849 		if (__predict_false(eax > svm_cpuid_max_basic)) {
850 			eax = svm_cpuid_max_basic;
851 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
852 		}
853 	} else if (eax < 0x80000000) {
854 		if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
855 			eax = svm_cpuid_max_basic;
856 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
857 		}
858 	} else {
859 		if (__predict_false(eax > svm_cpuid_max_extended)) {
860 			eax = svm_cpuid_max_basic;
861 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
862 		}
863 	}
864 
865 	switch (eax) {
866 	case 0x00000000:
867 		cpudata->vmcb->state.rax = svm_cpuid_max_basic;
868 		break;
869 	case 0x00000001:
870 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
871 
872 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_0_01_EBX_LOCAL_APIC_ID;
873 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
874 		    CPUID_0_01_EBX_LOCAL_APIC_ID);
875 
876 		ncpus = os_atomic_load_uint(&mach->ncpus);
877 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_0_01_EBX_HTT_CORES;
878 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(ncpus,
879 		    CPUID_0_01_EBX_HTT_CORES);
880 
881 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
882 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID_0_01_ECX_RAZ;
883 
884 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
885 
886 		/* CPUID_0_01_ECX_OSXSAVE depends on CR4. */
887 		cr4 = cpudata->vmcb->state.cr4;
888 		if (!(cr4 & CR4_OSXSAVE)) {
889 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_0_01_ECX_OSXSAVE;
890 		}
891 		break;
892 	case 0x00000002: /* Empty */
893 	case 0x00000003: /* Empty */
894 	case 0x00000004: /* Empty */
895 	case 0x00000005: /* Monitor/MWait */
896 	case 0x00000006: /* Power Management Related Features */
897 		cpudata->vmcb->state.rax = 0;
898 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
899 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
900 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
901 		break;
902 	case 0x00000007: /* Structured Extended Features */
903 		switch (ecx) {
904 		case 0:
905 			cpudata->vmcb->state.rax = 0;
906 			cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
907 			cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
908 			cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
909 			break;
910 		default:
911 			cpudata->vmcb->state.rax = 0;
912 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
913 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
914 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
915 			break;
916 		}
917 		break;
918 	case 0x00000008: /* Empty */
919 	case 0x00000009: /* Empty */
920 	case 0x0000000A: /* Empty */
921 	case 0x0000000B: /* Empty */
922 	case 0x0000000C: /* Empty */
923 		cpudata->vmcb->state.rax = 0;
924 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
925 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
926 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
927 		break;
928 	case 0x0000000D: /* Processor Extended State Enumeration */
929 		if (svm_xcr0_mask == 0) {
930 			break;
931 		}
932 		switch (ecx) {
933 		case 0:
934 			/* Supported XCR0 bits. */
935 			cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
936 			cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
937 			/* XSAVE size for currently enabled XCR0 features. */
938 			cpudata->gprs[NVMM_X64_GPR_RBX] = nvmm_x86_xsave_size(cpudata->gxcr0);
939 			/* XSAVE size for all supported XCR0 features. */
940 			cpudata->gprs[NVMM_X64_GPR_RCX] = nvmm_x86_xsave_size(svm_xcr0_mask);
941 			break;
942 		case 1:
943 			cpudata->vmcb->state.rax &=
944 			    (CPUID_0_0D_ECX1_EAX_XSAVEOPT |
945 			     CPUID_0_0D_ECX1_EAX_XSAVEC |
946 			     CPUID_0_0D_ECX1_EAX_XGETBV);
947 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
948 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
949 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
950 			break;
951 		default:
952 			cpudata->vmcb->state.rax = 0;
953 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
954 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
955 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
956 			break;
957 		}
958 		break;
959 
960 	case 0x40000000: /* Hypervisor Information */
961 		cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
962 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
963 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
964 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
965 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
966 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
967 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
968 		break;
969 
970 	case 0x80000000:
971 		cpudata->vmcb->state.rax = svm_cpuid_max_extended;
972 		break;
973 	case 0x80000001:
974 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
975 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
976 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
977 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
978 		break;
979 	case 0x80000002: /* Extended Processor Name String */
980 	case 0x80000003: /* Extended Processor Name String */
981 	case 0x80000004: /* Extended Processor Name String */
982 	case 0x80000005: /* L1 Cache and TLB Information */
983 	case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
984 		break;
985 	case 0x80000007: /* Processor Power Management and RAS Capabilities */
986 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
987 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
988 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
989 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
990 		break;
991 	case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
992 		ncpus = os_atomic_load_uint(&mach->ncpus);
993 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
994 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
995 		cpudata->gprs[NVMM_X64_GPR_RCX] =
996 		    __SHIFTIN(ncpus - 1, CPUID_8_08_ECX_NC) |
997 		    __SHIFTIN(ilog2(NVMM_MAX_VCPUS), CPUID_8_08_ECX_ApicIdSize);
998 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
999 		break;
1000 	case 0x80000009: /* Empty */
1001 	case 0x8000000A: /* SVM Features */
1002 	case 0x8000000B: /* Empty */
1003 	case 0x8000000C: /* Empty */
1004 	case 0x8000000D: /* Empty */
1005 	case 0x8000000E: /* Empty */
1006 	case 0x8000000F: /* Empty */
1007 	case 0x80000010: /* Empty */
1008 	case 0x80000011: /* Empty */
1009 	case 0x80000012: /* Empty */
1010 	case 0x80000013: /* Empty */
1011 	case 0x80000014: /* Empty */
1012 	case 0x80000015: /* Empty */
1013 	case 0x80000016: /* Empty */
1014 	case 0x80000017: /* Empty */
1015 	case 0x80000018: /* Empty */
1016 		cpudata->vmcb->state.rax = 0;
1017 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1018 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1019 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1020 		break;
1021 	case 0x80000019: /* TLB Characteristics for 1GB pages */
1022 	case 0x8000001A: /* Instruction Optimizations */
1023 		break;
1024 	case 0x8000001B: /* Instruction-Based Sampling Capabilities */
1025 	case 0x8000001C: /* Lightweight Profiling Capabilities */
1026 		cpudata->vmcb->state.rax = 0;
1027 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1028 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1029 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1030 		break;
1031 	case 0x8000001D: /* Cache Topology Information */
1032 	case 0x8000001E: /* Processor Topology Information */
1033 		break; /* TODO? */
1034 	case 0x8000001F: /* Encrypted Memory Capabilities */
1035 		cpudata->vmcb->state.rax = 0;
1036 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1037 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1038 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1039 		break;
1040 
1041 	default:
1042 		break;
1043 	}
1044 }
1045 
1046 static void
1047 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
1048 {
1049 	exit->u.insn.npc = vmcb->ctrl.nrip;
1050 	exit->reason = reason;
1051 }
1052 
1053 static void
1054 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1055     struct nvmm_vcpu_exit *exit)
1056 {
1057 	struct svm_cpudata *cpudata = vcpu->cpudata;
1058 	struct nvmm_vcpu_conf_cpuid *cpuid;
1059 	uint32_t eax, ecx;
1060 	size_t i;
1061 
1062 	eax = (cpudata->vmcb->state.rax & 0xFFFFFFFF);
1063 	ecx = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1064 	svm_inkernel_exec_cpuid(cpudata, eax, ecx);
1065 	svm_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1066 
1067 	for (i = 0; i < SVM_NCPUIDS; i++) {
1068 		if (!cpudata->cpuidpresent[i]) {
1069 			continue;
1070 		}
1071 		cpuid = &cpudata->cpuid[i];
1072 		if (cpuid->leaf != eax) {
1073 			continue;
1074 		}
1075 
1076 		if (cpuid->exit) {
1077 			svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
1078 			return;
1079 		}
1080 		OS_ASSERT(cpuid->mask);
1081 
1082 		/* del */
1083 		cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
1084 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1085 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1086 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1087 
1088 		/* set */
1089 		cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
1090 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1091 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1092 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1093 
1094 		break;
1095 	}
1096 
1097 	svm_inkernel_advance(cpudata->vmcb);
1098 	exit->reason = NVMM_VCPU_EXIT_NONE;
1099 }
1100 
1101 static void
1102 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1103     struct nvmm_vcpu_exit *exit)
1104 {
1105 	struct svm_cpudata *cpudata = vcpu->cpudata;
1106 	struct vmcb *vmcb = cpudata->vmcb;
1107 
1108 	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1109 		svm_event_waitexit_disable(vcpu, false);
1110 	}
1111 
1112 	svm_inkernel_advance(cpudata->vmcb);
1113 	exit->reason = NVMM_VCPU_EXIT_HALTED;
1114 }
1115 
1116 #define SVM_EXIT_IO_PORT	__BITS(31,16)
1117 #define SVM_EXIT_IO_SEG		__BITS(12,10)
1118 #define SVM_EXIT_IO_A64		__BIT(9)
1119 #define SVM_EXIT_IO_A32		__BIT(8)
1120 #define SVM_EXIT_IO_A16		__BIT(7)
1121 #define SVM_EXIT_IO_SZ32	__BIT(6)
1122 #define SVM_EXIT_IO_SZ16	__BIT(5)
1123 #define SVM_EXIT_IO_SZ8		__BIT(4)
1124 #define SVM_EXIT_IO_REP		__BIT(3)
1125 #define SVM_EXIT_IO_STR		__BIT(2)
1126 #define SVM_EXIT_IO_IN		__BIT(0)
1127 
1128 static void
1129 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1130     struct nvmm_vcpu_exit *exit)
1131 {
1132 	struct svm_cpudata *cpudata = vcpu->cpudata;
1133 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1134 	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1135 
1136 	exit->reason = NVMM_VCPU_EXIT_IO;
1137 
1138 	exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1139 	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1140 
1141 	if (svm_decode_assist) {
1142 		OS_ASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1143 		exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1144 	} else {
1145 		exit->u.io.seg = -1;
1146 	}
1147 
1148 	if (info & SVM_EXIT_IO_A64) {
1149 		exit->u.io.address_size = 8;
1150 	} else if (info & SVM_EXIT_IO_A32) {
1151 		exit->u.io.address_size = 4;
1152 	} else if (info & SVM_EXIT_IO_A16) {
1153 		exit->u.io.address_size = 2;
1154 	}
1155 
1156 	if (info & SVM_EXIT_IO_SZ32) {
1157 		exit->u.io.operand_size = 4;
1158 	} else if (info & SVM_EXIT_IO_SZ16) {
1159 		exit->u.io.operand_size = 2;
1160 	} else if (info & SVM_EXIT_IO_SZ8) {
1161 		exit->u.io.operand_size = 1;
1162 	}
1163 
1164 	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1165 	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1166 	exit->u.io.npc = nextpc;
1167 
1168 	svm_vcpu_state_provide(vcpu,
1169 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1170 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1171 }
1172 
1173 static const uint64_t msr_ignore_list[] = {
1174 	0xc0010055, /* MSR_CMPHALT */
1175 	MSR_DE_CFG,
1176 	MSR_IC_CFG,
1177 	MSR_UCODE_AMD_PATCHLEVEL
1178 };
1179 
1180 static bool
1181 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1182     struct nvmm_vcpu_exit *exit)
1183 {
1184 	struct svm_cpudata *cpudata = vcpu->cpudata;
1185 	struct vmcb *vmcb = cpudata->vmcb;
1186 	uint64_t val;
1187 	size_t i;
1188 
1189 	if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1190 		if (exit->u.rdmsr.msr == MSR_EFER) {
1191 			val = vmcb->state.efer & ~EFER_SVME;
1192 			vmcb->state.rax = (val & 0xFFFFFFFF);
1193 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1194 			goto handled;
1195 		}
1196 		if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1197 			val = NB_CFG_INITAPICCPUIDLO;
1198 			vmcb->state.rax = (val & 0xFFFFFFFF);
1199 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1200 			goto handled;
1201 		}
1202 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1203 			if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1204 				continue;
1205 			val = 0;
1206 			vmcb->state.rax = (val & 0xFFFFFFFF);
1207 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1208 			goto handled;
1209 		}
1210 	} else {
1211 		if (exit->u.wrmsr.msr == MSR_EFER) {
1212 			if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1213 				goto error;
1214 			}
1215 			if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1216 			     EFER_TLB_FLUSH) {
1217 				cpudata->gtlb_want_flush = true;
1218 			}
1219 			vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1220 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1221 			goto handled;
1222 		}
1223 		if (exit->u.wrmsr.msr == MSR_TSC) {
1224 			cpudata->gtsc_offset = exit->u.wrmsr.val - rdtsc();
1225 			cpudata->gtsc_want_update = true;
1226 			goto handled;
1227 		}
1228 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1229 			if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1230 				continue;
1231 			goto handled;
1232 		}
1233 	}
1234 
1235 	return false;
1236 
1237 handled:
1238 	svm_inkernel_advance(cpudata->vmcb);
1239 	return true;
1240 
1241 error:
1242 	svm_inject_gp(vcpu);
1243 	return true;
1244 }
1245 
1246 static inline void
1247 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1248     struct nvmm_vcpu_exit *exit)
1249 {
1250 	struct svm_cpudata *cpudata = vcpu->cpudata;
1251 
1252 	exit->reason = NVMM_VCPU_EXIT_RDMSR;
1253 	exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1254 	exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1255 
1256 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1257 		exit->reason = NVMM_VCPU_EXIT_NONE;
1258 		return;
1259 	}
1260 
1261 	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1262 }
1263 
1264 static inline void
1265 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1266     struct nvmm_vcpu_exit *exit)
1267 {
1268 	struct svm_cpudata *cpudata = vcpu->cpudata;
1269 	uint64_t rdx, rax;
1270 
1271 	rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1272 	rax = cpudata->vmcb->state.rax;
1273 
1274 	exit->reason = NVMM_VCPU_EXIT_WRMSR;
1275 	exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1276 	exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1277 	exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1278 
1279 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1280 		exit->reason = NVMM_VCPU_EXIT_NONE;
1281 		return;
1282 	}
1283 
1284 	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1285 }
1286 
1287 static void
1288 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1289     struct nvmm_vcpu_exit *exit)
1290 {
1291 	struct svm_cpudata *cpudata = vcpu->cpudata;
1292 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1293 
1294 	if (info == 0) {
1295 		svm_exit_rdmsr(mach, vcpu, exit);
1296 	} else {
1297 		svm_exit_wrmsr(mach, vcpu, exit);
1298 	}
1299 }
1300 
1301 static void
1302 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1303     struct nvmm_vcpu_exit *exit)
1304 {
1305 	struct svm_cpudata *cpudata = vcpu->cpudata;
1306 	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1307 
1308 	exit->reason = NVMM_VCPU_EXIT_MEMORY;
1309 	if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1310 		exit->u.mem.prot = PROT_WRITE;
1311 	else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_I)
1312 		exit->u.mem.prot = PROT_EXEC;
1313 	else
1314 		exit->u.mem.prot = PROT_READ;
1315 	exit->u.mem.gpa = gpa;
1316 	exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1317 	memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1318 	    sizeof(exit->u.mem.inst_bytes));
1319 
1320 	svm_vcpu_state_provide(vcpu,
1321 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1322 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1323 }
1324 
1325 static void
1326 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1327     struct nvmm_vcpu_exit *exit)
1328 {
1329 	struct svm_cpudata *cpudata = vcpu->cpudata;
1330 	struct vmcb *vmcb = cpudata->vmcb;
1331 	uint64_t val;
1332 
1333 	exit->reason = NVMM_VCPU_EXIT_NONE;
1334 
1335 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1336 	    (vmcb->state.rax & 0xFFFFFFFF);
1337 
1338 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1339 		goto error;
1340 	} else if (__predict_false(vmcb->state.cpl != 0)) {
1341 		goto error;
1342 	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1343 		goto error;
1344 	} else if (__predict_false((val & XCR0_X87) == 0)) {
1345 		goto error;
1346 	}
1347 
1348 	cpudata->gxcr0 = val;
1349 
1350 	svm_inkernel_advance(cpudata->vmcb);
1351 	return;
1352 
1353 error:
1354 	svm_inject_gp(vcpu);
1355 }
1356 
1357 static void
1358 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1359 {
1360 	exit->u.inv.hwcode = code;
1361 	exit->reason = NVMM_VCPU_EXIT_INVALID;
1362 }
1363 
1364 /* -------------------------------------------------------------------------- */
1365 
1366 static void
1367 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1368 {
1369 	struct svm_cpudata *cpudata = vcpu->cpudata;
1370 
1371 #if defined(__NetBSD__)
1372 	x86_curthread_save_fpu();
1373 #elif defined(__DragonFly__)
1374 	/*
1375 	 * NOTE: Host FPU state depends on whether the user program used the
1376 	 *       FPU or not.  Need to use npxpush()/npxpop() to handle this.
1377 	 */
1378 	npxpush(&cpudata->hstate.hmctx);
1379 #endif
1380 
1381 	x86_restore_fpu(&cpudata->gxsave, svm_xcr0_mask);
1382 	if (svm_xcr0_mask != 0) {
1383 		x86_set_xcr(0, cpudata->gxcr0);
1384 	}
1385 }
1386 
1387 static void
1388 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1389 {
1390 	struct svm_cpudata *cpudata = vcpu->cpudata;
1391 
1392 	if (svm_xcr0_mask != 0) {
1393 		x86_set_xcr(0, svm_global_hstate.xcr0);
1394 	}
1395 	x86_save_fpu(&cpudata->gxsave, svm_xcr0_mask);
1396 
1397 #if defined(__NetBSD__)
1398 	x86_curthread_restore_fpu();
1399 #elif defined(__DragonFly__)
1400 	npxpop(&cpudata->hstate.hmctx);
1401 #endif
1402 }
1403 
1404 static void
1405 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1406 {
1407 	struct svm_cpudata *cpudata = vcpu->cpudata;
1408 
1409 	x86_curthread_save_dbregs(cpudata->hstate.drs);
1410 
1411 	x86_set_dr7(0);
1412 
1413 	x86_set_dr0(cpudata->drs[NVMM_X64_DR_DR0]);
1414 	x86_set_dr1(cpudata->drs[NVMM_X64_DR_DR1]);
1415 	x86_set_dr2(cpudata->drs[NVMM_X64_DR_DR2]);
1416 	x86_set_dr3(cpudata->drs[NVMM_X64_DR_DR3]);
1417 }
1418 
1419 static void
1420 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1421 {
1422 	struct svm_cpudata *cpudata = vcpu->cpudata;
1423 
1424 	cpudata->drs[NVMM_X64_DR_DR0] = x86_get_dr0();
1425 	cpudata->drs[NVMM_X64_DR_DR1] = x86_get_dr1();
1426 	cpudata->drs[NVMM_X64_DR_DR2] = x86_get_dr2();
1427 	cpudata->drs[NVMM_X64_DR_DR3] = x86_get_dr3();
1428 
1429 	x86_curthread_restore_dbregs(cpudata->hstate.drs);
1430 }
1431 
1432 static void
1433 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1434 {
1435 	struct svm_cpudata *cpudata = vcpu->cpudata;
1436 
1437 	/* Save the percpu host state. */
1438 	cpudata->hstate.fsbase = rdmsr(MSR_FSBASE);
1439 	cpudata->hstate.kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1440 }
1441 
1442 static void
1443 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1444 {
1445 	struct svm_cpudata *cpudata = vcpu->cpudata;
1446 
1447 	/* Restore the global host state. */
1448 	wrmsr(MSR_STAR, svm_global_hstate.star);
1449 	wrmsr(MSR_LSTAR, svm_global_hstate.lstar);
1450 	wrmsr(MSR_CSTAR, svm_global_hstate.cstar);
1451 	wrmsr(MSR_SFMASK, svm_global_hstate.sfmask);
1452 
1453 	/* Restore the percpu host state. */
1454 	wrmsr(MSR_FSBASE, cpudata->hstate.fsbase);
1455 	wrmsr(MSR_KERNELGSBASE, cpudata->hstate.kernelgsbase);
1456 }
1457 
1458 /* -------------------------------------------------------------------------- */
1459 
1460 static inline void
1461 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1462 {
1463 	struct svm_cpudata *cpudata = vcpu->cpudata;
1464 
1465 	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1466 		cpudata->gtlb_want_flush = true;
1467 	}
1468 }
1469 
1470 static inline void
1471 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1472 {
1473 	/*
1474 	 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1475 	 * executing on this hCPU and the hTLB already got flushed, or it
1476 	 * was executing on another hCPU in which case the catchup is done
1477 	 * indirectly when svm_gtlb_catchup() sets gtlb_want_flush.
1478 	 */
1479 }
1480 
1481 static inline uint64_t
1482 svm_htlb_flush(struct nvmm_machine *mach, struct svm_cpudata *cpudata)
1483 {
1484 	struct vmcb *vmcb = cpudata->vmcb;
1485 	uint64_t machgen;
1486 
1487 #if defined(__NetBSD__)
1488 	machgen = ((struct svm_machdata *)mach->machdata)->mach_htlb_gen;
1489 #elif defined(__DragonFly__)
1490 	clear_xinvltlb();
1491 	machgen = vmspace_pmap(mach->vm)->pm_invgen;
1492 #endif
1493 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1494 		return machgen;
1495 	}
1496 
1497 	cpudata->htlb_want_flush = true;
1498 	vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1499 	return machgen;
1500 }
1501 
1502 static inline void
1503 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1504 {
1505 	struct vmcb *vmcb = cpudata->vmcb;
1506 
1507 	if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1508 		cpudata->vcpu_htlb_gen = machgen;
1509 		cpudata->htlb_want_flush = false;
1510 	}
1511 }
1512 
1513 static inline void
1514 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1515 {
1516 	cpudata->evt_pending = false;
1517 
1518 	if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1519 		vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1520 		cpudata->evt_pending = true;
1521 	}
1522 }
1523 
1524 static int
1525 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1526     struct nvmm_vcpu_exit *exit)
1527 {
1528 	struct nvmm_comm_page *comm = vcpu->comm;
1529 	struct svm_cpudata *cpudata = vcpu->cpudata;
1530 	struct vmcb *vmcb = cpudata->vmcb;
1531 	uint64_t machgen;
1532 	int hcpu;
1533 	int error = 0;
1534 
1535 	svm_vcpu_state_commit(vcpu);
1536 	comm->state_cached = 0;
1537 
1538 #ifndef __DragonFly__
1539 	if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1540 		return EINVAL;
1541 	}
1542 #endif
1543 
1544 	os_preempt_disable();
1545 	hcpu = os_curcpu_number();
1546 
1547 	svm_gtlb_catchup(vcpu, hcpu);
1548 	svm_htlb_catchup(vcpu, hcpu);
1549 
1550 	if (vcpu->hcpu_last != hcpu) {
1551 		svm_vmcb_cache_flush_all(vmcb);
1552 		cpudata->gtsc_want_update = true;
1553 
1554 #ifdef __DragonFly__
1555 		/*
1556 		 * XXX: We aren't tracking overloaded CPUs (multiple vCPUs
1557 		 *      scheduled on the same physical CPU) yet so there are
1558 		 *      currently no calls to pmap_del_cpu().
1559 		 */
1560 		pmap_add_cpu(mach->vm, hcpu);
1561 #endif
1562 	}
1563 
1564 	svm_vcpu_guest_dbregs_enter(vcpu);
1565 	svm_vcpu_guest_misc_enter(vcpu);
1566 
1567 	while (1) {
1568 		if (__predict_false(cpudata->gtlb_want_flush ||
1569 				    cpudata->htlb_want_flush))
1570 		{
1571 			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1572 		} else {
1573 			vmcb->ctrl.tlb_ctrl = 0;
1574 		}
1575 
1576 		if (__predict_false(cpudata->gtsc_want_update)) {
1577 			vmcb->ctrl.tsc_offset = cpudata->gtsc_offset;
1578 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1579 		}
1580 
1581 		svm_clgi();
1582 		svm_vcpu_guest_fpu_enter(vcpu);
1583 		machgen = svm_htlb_flush(mach, cpudata);
1584 
1585 #ifdef __DragonFly__
1586 		/*
1587 		 * Check for pending host events (e.g., interrupt, AST)
1588 		 * to make the state safe to VM Entry.  This check must
1589 		 * be done after the clgi to avoid gd_reqflags pending
1590 		 * races.
1591 		 *
1592 		 * Emulators may assume that event injection succeeds, but
1593 		 * we have to return to process these events.  To deal with
1594 		 * this, use ERESTART mechanics.
1595 		 */
1596 		if (__predict_false(mycpu->gd_reqflags & RQF_HVM_MASK)) {
1597 			/* No hTLB flush ack, because it's not executed. */
1598 			svm_vcpu_guest_fpu_leave(vcpu);
1599 			svm_stgi();
1600 			exit->reason = NVMM_VCPU_EXIT_NONE;
1601 			error = ERESTART;
1602 			break;
1603 		}
1604 
1605 		/*
1606 		 * Don't try to inject an event until we are absolutely
1607 		 * sure that the vmrun will be executed, otherwise we
1608 		 * might overwrite/miss an event.
1609 		 */
1610 		if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1611 			/* No hTLB flush ack, because it's not executed. */
1612 			svm_vcpu_guest_fpu_leave(vcpu);
1613 			svm_stgi();
1614 			exit->reason = NVMM_VCPU_EXIT_NONE;
1615 			error = EINVAL;
1616 			break;
1617 		}
1618 #endif
1619 
1620 		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1621 		svm_htlb_flush_ack(cpudata, machgen);
1622 		svm_vcpu_guest_fpu_leave(vcpu);
1623 		svm_stgi();
1624 
1625 		svm_vmcb_cache_default(vmcb);
1626 
1627 		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1628 			cpudata->gtlb_want_flush = false;
1629 			cpudata->gtsc_want_update = false;
1630 			vcpu->hcpu_last = hcpu;
1631 		}
1632 		svm_exit_evt(cpudata, vmcb);
1633 
1634 		switch (vmcb->ctrl.exitcode) {
1635 		case VMCB_EXITCODE_INTR:
1636 		case VMCB_EXITCODE_NMI:
1637 			exit->reason = NVMM_VCPU_EXIT_NONE;
1638 			break;
1639 		case VMCB_EXITCODE_VINTR:
1640 			svm_event_waitexit_disable(vcpu, false);
1641 			exit->reason = NVMM_VCPU_EXIT_INT_READY;
1642 			break;
1643 		case VMCB_EXITCODE_IRET:
1644 			svm_event_waitexit_disable(vcpu, true);
1645 			exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1646 			break;
1647 		case VMCB_EXITCODE_CPUID:
1648 			svm_exit_cpuid(mach, vcpu, exit);
1649 			break;
1650 		case VMCB_EXITCODE_HLT:
1651 			svm_exit_hlt(mach, vcpu, exit);
1652 			break;
1653 		case VMCB_EXITCODE_IOIO:
1654 			svm_exit_io(mach, vcpu, exit);
1655 			break;
1656 		case VMCB_EXITCODE_MSR:
1657 			svm_exit_msr(mach, vcpu, exit);
1658 			break;
1659 		case VMCB_EXITCODE_SHUTDOWN:
1660 			exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1661 			break;
1662 		case VMCB_EXITCODE_RDPMC:
1663 		case VMCB_EXITCODE_RSM:
1664 		case VMCB_EXITCODE_INVLPGA:
1665 		case VMCB_EXITCODE_VMRUN:
1666 		case VMCB_EXITCODE_VMMCALL:
1667 		case VMCB_EXITCODE_VMLOAD:
1668 		case VMCB_EXITCODE_VMSAVE:
1669 		case VMCB_EXITCODE_STGI:
1670 		case VMCB_EXITCODE_CLGI:
1671 		case VMCB_EXITCODE_SKINIT:
1672 		case VMCB_EXITCODE_RDTSCP:
1673 		case VMCB_EXITCODE_RDPRU:
1674 		case VMCB_EXITCODE_INVLPGB:
1675 		case VMCB_EXITCODE_INVPCID:
1676 		case VMCB_EXITCODE_MCOMMIT:
1677 		case VMCB_EXITCODE_TLBSYNC:
1678 			svm_inject_ud(vcpu);
1679 			exit->reason = NVMM_VCPU_EXIT_NONE;
1680 			break;
1681 		case VMCB_EXITCODE_MONITOR:
1682 			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1683 			break;
1684 		case VMCB_EXITCODE_MWAIT:
1685 		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1686 			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1687 			break;
1688 		case VMCB_EXITCODE_XSETBV:
1689 			svm_exit_xsetbv(mach, vcpu, exit);
1690 			break;
1691 		case VMCB_EXITCODE_NPF:
1692 			svm_exit_npf(mach, vcpu, exit);
1693 			break;
1694 		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1695 		default:
1696 			svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1697 			break;
1698 		}
1699 
1700 		/* If no reason to return to userland, keep rolling. */
1701 		if (os_return_needed()) {
1702 			break;
1703 		}
1704 		if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1705 			break;
1706 		}
1707 	}
1708 
1709 	svm_vcpu_guest_misc_leave(vcpu);
1710 	svm_vcpu_guest_dbregs_leave(vcpu);
1711 
1712 	os_preempt_enable();
1713 
1714 	exit->exitstate.rflags = vmcb->state.rflags;
1715 	exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1716 	exit->exitstate.int_shadow =
1717 	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1718 	exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1719 	exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1720 	exit->exitstate.evt_pending = cpudata->evt_pending;
1721 
1722 	return error;
1723 }
1724 
1725 /* -------------------------------------------------------------------------- */
1726 
1727 #define SVM_MSRBM_READ	__BIT(0)
1728 #define SVM_MSRBM_WRITE	__BIT(1)
1729 
1730 static void
1731 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1732 {
1733 	uint64_t byte;
1734 	uint8_t bitoff;
1735 
1736 	if (msr < 0x00002000) {
1737 		/* Range 1 */
1738 		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1739 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1740 		/* Range 2 */
1741 		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1742 	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1743 		/* Range 3 */
1744 		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1745 	} else {
1746 		panic("%s: wrong range", __func__);
1747 	}
1748 
1749 	bitoff = (msr & 0x3) << 1;
1750 
1751 	if (read) {
1752 		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1753 	}
1754 	if (write) {
1755 		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1756 	}
1757 }
1758 
1759 #define SVM_SEG_ATTRIB_TYPE		__BITS(3,0)
1760 #define SVM_SEG_ATTRIB_S		__BIT(4)
1761 #define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
1762 #define SVM_SEG_ATTRIB_P		__BIT(7)
1763 #define SVM_SEG_ATTRIB_AVL		__BIT(8)
1764 #define SVM_SEG_ATTRIB_L		__BIT(9)
1765 #define SVM_SEG_ATTRIB_DEF		__BIT(10)
1766 #define SVM_SEG_ATTRIB_G		__BIT(11)
1767 
1768 static void
1769 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1770     struct vmcb_segment *vseg)
1771 {
1772 	vseg->selector = seg->selector;
1773 	vseg->attrib =
1774 	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1775 	    __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1776 	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1777 	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1778 	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1779 	    __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1780 	    __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1781 	    __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1782 	vseg->limit = seg->limit;
1783 	vseg->base = seg->base;
1784 }
1785 
1786 static void
1787 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1788 {
1789 	seg->selector = vseg->selector;
1790 	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1791 	seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1792 	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1793 	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1794 	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1795 	seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1796 	seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1797 	seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1798 	seg->limit = vseg->limit;
1799 	seg->base = vseg->base;
1800 }
1801 
1802 static inline bool
1803 svm_state_gtlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1804     uint64_t flags)
1805 {
1806 	if (flags & NVMM_X64_STATE_CRS) {
1807 		if ((vmcb->state.cr0 ^
1808 		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1809 			return true;
1810 		}
1811 		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1812 			return true;
1813 		}
1814 		if ((vmcb->state.cr4 ^
1815 		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1816 			return true;
1817 		}
1818 	}
1819 
1820 	if (flags & NVMM_X64_STATE_MSRS) {
1821 		if ((vmcb->state.efer ^
1822 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1823 			return true;
1824 		}
1825 	}
1826 
1827 	return false;
1828 }
1829 
1830 static void
1831 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1832 {
1833 	struct nvmm_comm_page *comm = vcpu->comm;
1834 	const struct nvmm_x64_state *state = &comm->state;
1835 	struct svm_cpudata *cpudata = vcpu->cpudata;
1836 	struct vmcb *vmcb = cpudata->vmcb;
1837 	struct nvmm_x64_state_fpu *fpustate;
1838 	uint64_t flags;
1839 
1840 	flags = comm->state_wanted;
1841 
1842 	if (svm_state_gtlb_flush(vmcb, state, flags)) {
1843 		cpudata->gtlb_want_flush = true;
1844 	}
1845 
1846 	if (flags & NVMM_X64_STATE_SEGS) {
1847 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1848 		    &vmcb->state.cs);
1849 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1850 		    &vmcb->state.ds);
1851 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1852 		    &vmcb->state.es);
1853 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1854 		    &vmcb->state.fs);
1855 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1856 		    &vmcb->state.gs);
1857 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1858 		    &vmcb->state.ss);
1859 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1860 		    &vmcb->state.gdt);
1861 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1862 		    &vmcb->state.idt);
1863 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1864 		    &vmcb->state.ldt);
1865 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1866 		    &vmcb->state.tr);
1867 
1868 		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1869 	}
1870 
1871 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1872 	if (flags & NVMM_X64_STATE_GPRS) {
1873 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1874 
1875 		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1876 		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1877 		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1878 		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1879 	}
1880 
1881 	if (flags & NVMM_X64_STATE_CRS) {
1882 		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1883 		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1884 		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1885 		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1886 
1887 		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1888 		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1889 		    VMCB_CTRL_V_TPR);
1890 
1891 		if (svm_xcr0_mask != 0) {
1892 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
1893 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1894 			cpudata->gxcr0 &= svm_xcr0_mask;
1895 			cpudata->gxcr0 |= XCR0_X87;
1896 		}
1897 	}
1898 
1899 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1900 	if (flags & NVMM_X64_STATE_DRS) {
1901 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1902 
1903 		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1904 		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1905 	}
1906 
1907 	if (flags & NVMM_X64_STATE_MSRS) {
1908 		/*
1909 		 * EFER_SVME is mandatory.
1910 		 */
1911 		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1912 		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1913 		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1914 		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1915 		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1916 		vmcb->state.kernelgsbase =
1917 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1918 		vmcb->state.sysenter_cs =
1919 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1920 		vmcb->state.sysenter_esp =
1921 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1922 		vmcb->state.sysenter_eip =
1923 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1924 		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1925 
1926 		/*
1927 		 * The emulator might NOT want to set the TSC, because doing
1928 		 * so would destroy TSC MP-synchronization across CPUs.  Try
1929 		 * to figure out what the emulator meant to do.
1930 		 *
1931 		 * If writing the last TSC value we reported via getstate or
1932 		 * a zero value, assume that the emulator does not want to
1933 		 * write to the TSC.
1934 		 */
1935 		if (state->msrs[NVMM_X64_MSR_TSC] != cpudata->gtsc_match &&
1936 		    state->msrs[NVMM_X64_MSR_TSC] != 0) {
1937 			cpudata->gtsc_offset =
1938 			    state->msrs[NVMM_X64_MSR_TSC] - rdtsc();
1939 			cpudata->gtsc_want_update = true;
1940 		}
1941 	}
1942 
1943 	if (flags & NVMM_X64_STATE_INTR) {
1944 		if (state->intr.int_shadow) {
1945 			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1946 		} else {
1947 			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1948 		}
1949 
1950 		if (state->intr.int_window_exiting) {
1951 			svm_event_waitexit_enable(vcpu, false);
1952 		} else {
1953 			svm_event_waitexit_disable(vcpu, false);
1954 		}
1955 
1956 		if (state->intr.nmi_window_exiting) {
1957 			svm_event_waitexit_enable(vcpu, true);
1958 		} else {
1959 			svm_event_waitexit_disable(vcpu, true);
1960 		}
1961 	}
1962 
1963 	CTASSERT(sizeof(cpudata->gxsave.fpu) == sizeof(state->fpu));
1964 	if (flags & NVMM_X64_STATE_FPU) {
1965 		memcpy(&cpudata->gxsave.fpu, &state->fpu, sizeof(state->fpu));
1966 
1967 		fpustate = (struct nvmm_x64_state_fpu *)&cpudata->gxsave.fpu;
1968 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1969 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1970 
1971 		if (svm_xcr0_mask != 0) {
1972 			/* Reset XSTATE_BV, to force a reload. */
1973 			cpudata->gxsave.xstate_bv = svm_xcr0_mask;
1974 		}
1975 	}
1976 
1977 	svm_vmcb_cache_update(vmcb, flags);
1978 
1979 	comm->state_wanted = 0;
1980 	comm->state_cached |= flags;
1981 }
1982 
1983 static void
1984 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1985 {
1986 	struct nvmm_comm_page *comm = vcpu->comm;
1987 	struct nvmm_x64_state *state = &comm->state;
1988 	struct svm_cpudata *cpudata = vcpu->cpudata;
1989 	struct vmcb *vmcb = cpudata->vmcb;
1990 	uint64_t flags;
1991 
1992 	flags = comm->state_wanted;
1993 
1994 	if (flags & NVMM_X64_STATE_SEGS) {
1995 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1996 		    &vmcb->state.cs);
1997 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1998 		    &vmcb->state.ds);
1999 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
2000 		    &vmcb->state.es);
2001 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
2002 		    &vmcb->state.fs);
2003 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
2004 		    &vmcb->state.gs);
2005 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
2006 		    &vmcb->state.ss);
2007 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
2008 		    &vmcb->state.gdt);
2009 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
2010 		    &vmcb->state.idt);
2011 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
2012 		    &vmcb->state.ldt);
2013 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
2014 		    &vmcb->state.tr);
2015 
2016 		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
2017 	}
2018 
2019 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2020 	if (flags & NVMM_X64_STATE_GPRS) {
2021 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2022 
2023 		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
2024 		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
2025 		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
2026 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
2027 	}
2028 
2029 	if (flags & NVMM_X64_STATE_CRS) {
2030 		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
2031 		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
2032 		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
2033 		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
2034 		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
2035 		    VMCB_CTRL_V_TPR);
2036 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2037 	}
2038 
2039 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2040 	if (flags & NVMM_X64_STATE_DRS) {
2041 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2042 
2043 		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
2044 		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
2045 	}
2046 
2047 	if (flags & NVMM_X64_STATE_MSRS) {
2048 		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
2049 		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
2050 		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
2051 		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
2052 		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
2053 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2054 		    vmcb->state.kernelgsbase;
2055 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2056 		    vmcb->state.sysenter_cs;
2057 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2058 		    vmcb->state.sysenter_esp;
2059 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2060 		    vmcb->state.sysenter_eip;
2061 		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
2062 		state->msrs[NVMM_X64_MSR_TSC] = rdtsc() + cpudata->gtsc_offset;
2063 
2064 		/* Hide SVME. */
2065 		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
2066 
2067 		/* Save reported TSC value for later setstate check. */
2068 		cpudata->gtsc_match = state->msrs[NVMM_X64_MSR_TSC];
2069 	}
2070 
2071 	if (flags & NVMM_X64_STATE_INTR) {
2072 		state->intr.int_shadow =
2073 		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
2074 		state->intr.int_window_exiting = cpudata->int_window_exit;
2075 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2076 		state->intr.evt_pending = cpudata->evt_pending;
2077 	}
2078 
2079 	CTASSERT(sizeof(cpudata->gxsave.fpu) == sizeof(state->fpu));
2080 	if (flags & NVMM_X64_STATE_FPU) {
2081 		memcpy(&state->fpu, &cpudata->gxsave.fpu, sizeof(state->fpu));
2082 	}
2083 
2084 	comm->state_wanted = 0;
2085 	comm->state_cached |= flags;
2086 }
2087 
2088 static void
2089 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2090 {
2091 	vcpu->comm->state_wanted = flags;
2092 	svm_vcpu_getstate(vcpu);
2093 }
2094 
2095 static void
2096 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
2097 {
2098 	vcpu->comm->state_wanted = vcpu->comm->state_commit;
2099 	vcpu->comm->state_commit = 0;
2100 	svm_vcpu_setstate(vcpu);
2101 }
2102 
2103 /* -------------------------------------------------------------------------- */
2104 
2105 static void
2106 svm_asid_alloc(struct nvmm_cpu *vcpu)
2107 {
2108 	struct svm_cpudata *cpudata = vcpu->cpudata;
2109 	struct vmcb *vmcb = cpudata->vmcb;
2110 	size_t i, oct, bit;
2111 
2112 	os_mtx_lock(&svm_asidlock);
2113 
2114 	for (i = 0; i < svm_maxasid; i++) {
2115 		oct = i / 8;
2116 		bit = i % 8;
2117 
2118 		if (svm_asidmap[oct] & __BIT(bit)) {
2119 			continue;
2120 		}
2121 
2122 		svm_asidmap[oct] |= __BIT(bit);
2123 		vmcb->ctrl.guest_asid = i;
2124 		os_mtx_unlock(&svm_asidlock);
2125 		return;
2126 	}
2127 
2128 	/*
2129 	 * No free ASID. Use the last one, which is shared and requires
2130 	 * special TLB handling.
2131 	 */
2132 	cpudata->shared_asid = true;
2133 	vmcb->ctrl.guest_asid = svm_maxasid - 1;
2134 	os_mtx_unlock(&svm_asidlock);
2135 }
2136 
2137 static void
2138 svm_asid_free(struct nvmm_cpu *vcpu)
2139 {
2140 	struct svm_cpudata *cpudata = vcpu->cpudata;
2141 	struct vmcb *vmcb = cpudata->vmcb;
2142 	size_t oct, bit;
2143 
2144 	if (cpudata->shared_asid) {
2145 		return;
2146 	}
2147 
2148 	oct = vmcb->ctrl.guest_asid / 8;
2149 	bit = vmcb->ctrl.guest_asid % 8;
2150 
2151 	os_mtx_lock(&svm_asidlock);
2152 	svm_asidmap[oct] &= ~__BIT(bit);
2153 	os_mtx_unlock(&svm_asidlock);
2154 }
2155 
2156 static void
2157 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2158 {
2159 	struct svm_cpudata *cpudata = vcpu->cpudata;
2160 	struct vmcb *vmcb = cpudata->vmcb;
2161 
2162 	/* Allow reads/writes of Control Registers. */
2163 	vmcb->ctrl.intercept_cr = 0;
2164 
2165 	/* Allow reads/writes of Debug Registers. */
2166 	vmcb->ctrl.intercept_dr = 0;
2167 
2168 	/* Allow exceptions 0 to 31. */
2169 	vmcb->ctrl.intercept_vec = 0;
2170 
2171 	/*
2172 	 * Allow:
2173 	 *  - SMI [smm interrupts]
2174 	 *  - VINTR [virtual interrupts]
2175 	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2176 	 *  - RIDTR [reads of IDTR]
2177 	 *  - RGDTR [reads of GDTR]
2178 	 *  - RLDTR [reads of LDTR]
2179 	 *  - RTR [reads of TR]
2180 	 *  - WIDTR [writes of IDTR]
2181 	 *  - WGDTR [writes of GDTR]
2182 	 *  - WLDTR [writes of LDTR]
2183 	 *  - WTR [writes of TR]
2184 	 *  - RDTSC [rdtsc instruction]
2185 	 *  - PUSHF [pushf instruction]
2186 	 *  - POPF [popf instruction]
2187 	 *  - IRET [iret instruction]
2188 	 *  - INTN [int $n instructions]
2189 	 *  - PAUSE [pause instruction]
2190 	 *  - INVLPG [invplg instruction]
2191 	 *  - TASKSW [task switches]
2192 	 *
2193 	 * Intercept the rest below.
2194 	 */
2195 	vmcb->ctrl.intercept_misc1 =
2196 	    VMCB_CTRL_INTERCEPT_INTR |
2197 	    VMCB_CTRL_INTERCEPT_NMI |
2198 	    VMCB_CTRL_INTERCEPT_INIT |
2199 	    VMCB_CTRL_INTERCEPT_RDPMC |
2200 	    VMCB_CTRL_INTERCEPT_CPUID |
2201 	    VMCB_CTRL_INTERCEPT_RSM |
2202 	    VMCB_CTRL_INTERCEPT_INVD |
2203 	    VMCB_CTRL_INTERCEPT_HLT |
2204 	    VMCB_CTRL_INTERCEPT_INVLPGA |
2205 	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
2206 	    VMCB_CTRL_INTERCEPT_MSR_PROT |
2207 	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2208 	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
2209 
2210 	/*
2211 	 * Allow:
2212 	 *  - ICEBP [icebp instruction]
2213 	 *  - WBINVD [wbinvd instruction]
2214 	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2215 	 *
2216 	 * Intercept the rest below.
2217 	 */
2218 	vmcb->ctrl.intercept_misc2 =
2219 	    VMCB_CTRL_INTERCEPT_VMRUN |
2220 	    VMCB_CTRL_INTERCEPT_VMMCALL |
2221 	    VMCB_CTRL_INTERCEPT_VMLOAD |
2222 	    VMCB_CTRL_INTERCEPT_VMSAVE |
2223 	    VMCB_CTRL_INTERCEPT_STGI |
2224 	    VMCB_CTRL_INTERCEPT_CLGI |
2225 	    VMCB_CTRL_INTERCEPT_SKINIT |
2226 	    VMCB_CTRL_INTERCEPT_RDTSCP |
2227 	    VMCB_CTRL_INTERCEPT_MONITOR |
2228 	    VMCB_CTRL_INTERCEPT_MWAIT |
2229 	    VMCB_CTRL_INTERCEPT_XSETBV |
2230 	    VMCB_CTRL_INTERCEPT_RDPRU;
2231 
2232 	/*
2233 	 * Intercept everything.
2234 	 */
2235 	vmcb->ctrl.intercept_misc3 =
2236 	    VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2237 	    VMCB_CTRL_INTERCEPT_PCID |
2238 	    VMCB_CTRL_INTERCEPT_MCOMMIT |
2239 	    VMCB_CTRL_INTERCEPT_TLBSYNC;
2240 
2241 	/* Intercept all I/O accesses. */
2242 	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2243 	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2244 
2245 	/* Allow direct access to certain MSRs. */
2246 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2247 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2248 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2249 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2250 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2251 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2252 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2253 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2254 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2255 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2256 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2257 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2258 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2259 	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2260 
2261 	/* Generate ASID. */
2262 	svm_asid_alloc(vcpu);
2263 
2264 	/* Virtual TPR. */
2265 	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2266 
2267 	/* Enable Nested Paging. */
2268 	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2269 	vmcb->ctrl.n_cr3 = os_vmspace_pdirpa(mach->vm);
2270 
2271 	/* Init XSAVE header. */
2272 	cpudata->gxsave.xstate_bv = svm_xcr0_mask;
2273 	cpudata->gxsave.xcomp_bv = 0;
2274 
2275 	/* Install the RESET state. */
2276 	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2277 	    sizeof(nvmm_x86_reset_state));
2278 	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2279 	vcpu->comm->state_cached = 0;
2280 	svm_vcpu_setstate(vcpu);
2281 }
2282 
2283 static int
2284 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2285 {
2286 	struct svm_cpudata *cpudata;
2287 	int error;
2288 
2289 	/* Allocate the SVM cpudata. */
2290 	cpudata = (struct svm_cpudata *)os_pagemem_zalloc(sizeof(*cpudata));
2291 	if (cpudata == NULL)
2292 		return ENOMEM;
2293 
2294 	vcpu->cpudata = cpudata;
2295 
2296 	/* VMCB */
2297 	error = os_contigpa_zalloc(&cpudata->vmcb_pa,
2298 	    (vaddr_t *)&cpudata->vmcb, VMCB_NPAGES);
2299 	if (error)
2300 		goto error;
2301 
2302 	/* I/O Bitmap */
2303 	error = os_contigpa_zalloc(&cpudata->iobm_pa,
2304 	    (vaddr_t *)&cpudata->iobm, IOBM_NPAGES);
2305 	if (error)
2306 		goto error;
2307 
2308 	/* MSR Bitmap */
2309 	error = os_contigpa_zalloc(&cpudata->msrbm_pa,
2310 	    (vaddr_t *)&cpudata->msrbm, MSRBM_NPAGES);
2311 	if (error)
2312 		goto error;
2313 
2314 	/* Init the VCPU info. */
2315 	svm_vcpu_init(mach, vcpu);
2316 
2317 	return 0;
2318 
2319 error:
2320 	if (cpudata->vmcb_pa) {
2321 		os_contigpa_free(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2322 		    VMCB_NPAGES);
2323 	}
2324 	if (cpudata->iobm_pa) {
2325 		os_contigpa_free(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2326 		    IOBM_NPAGES);
2327 	}
2328 	if (cpudata->msrbm_pa) {
2329 		os_contigpa_free(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2330 		    MSRBM_NPAGES);
2331 	}
2332 	os_pagemem_free(cpudata, sizeof(*cpudata));
2333 	return error;
2334 }
2335 
2336 static void
2337 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2338 {
2339 	struct svm_cpudata *cpudata = vcpu->cpudata;
2340 
2341 	svm_asid_free(vcpu);
2342 
2343 	os_contigpa_free(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2344 	    VMCB_NPAGES);
2345 	os_contigpa_free(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2346 	    IOBM_NPAGES);
2347 	os_contigpa_free(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2348 	    MSRBM_NPAGES);
2349 
2350 	os_pagemem_free(cpudata, sizeof(*cpudata));
2351 }
2352 
2353 /* -------------------------------------------------------------------------- */
2354 
2355 static int
2356 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2357 {
2358 	struct nvmm_vcpu_conf_cpuid *cpuid = data;
2359 	size_t i;
2360 
2361 	if (__predict_false(cpuid->mask && cpuid->exit)) {
2362 		return EINVAL;
2363 	}
2364 	if (__predict_false(cpuid->mask &&
2365 	    ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2366 	     (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2367 	     (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2368 	     (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2369 		return EINVAL;
2370 	}
2371 
2372 	/* If unset, delete, to restore the default behavior. */
2373 	if (!cpuid->mask && !cpuid->exit) {
2374 		for (i = 0; i < SVM_NCPUIDS; i++) {
2375 			if (!cpudata->cpuidpresent[i]) {
2376 				continue;
2377 			}
2378 			if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2379 				cpudata->cpuidpresent[i] = false;
2380 			}
2381 		}
2382 		return 0;
2383 	}
2384 
2385 	/* If already here, replace. */
2386 	for (i = 0; i < SVM_NCPUIDS; i++) {
2387 		if (!cpudata->cpuidpresent[i]) {
2388 			continue;
2389 		}
2390 		if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2391 			memcpy(&cpudata->cpuid[i], cpuid,
2392 			    sizeof(struct nvmm_vcpu_conf_cpuid));
2393 			return 0;
2394 		}
2395 	}
2396 
2397 	/* Not here, insert. */
2398 	for (i = 0; i < SVM_NCPUIDS; i++) {
2399 		if (!cpudata->cpuidpresent[i]) {
2400 			cpudata->cpuidpresent[i] = true;
2401 			memcpy(&cpudata->cpuid[i], cpuid,
2402 			    sizeof(struct nvmm_vcpu_conf_cpuid));
2403 			return 0;
2404 		}
2405 	}
2406 
2407 	return ENOBUFS;
2408 }
2409 
2410 static int
2411 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2412 {
2413 	struct svm_cpudata *cpudata = vcpu->cpudata;
2414 
2415 	switch (op) {
2416 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2417 		return svm_vcpu_configure_cpuid(cpudata, data);
2418 	default:
2419 		return EINVAL;
2420 	}
2421 }
2422 
2423 /* -------------------------------------------------------------------------- */
2424 
2425 #ifdef __NetBSD__
2426 static void
2427 svm_tlb_flush(struct pmap *pm)
2428 {
2429 	struct nvmm_machine *mach = os_pmap_mach(pm);
2430 	struct svm_machdata *machdata = mach->machdata;
2431 
2432 	os_atomic_inc_64(&machdata->mach_htlb_gen);
2433 
2434 	/*
2435 	 * Send a dummy IPI to each CPU. The IPIs cause #VMEXITs. Afterwards the
2436 	 * VCPU loops will see that their 'vcpu_htlb_gen' is out of sync, and
2437 	 * will each flush their own TLB.
2438 	 */
2439 	os_ipi_kickall();
2440 }
2441 #endif
2442 
2443 static void
2444 svm_machine_create(struct nvmm_machine *mach)
2445 {
2446 	struct pmap *pmap = os_vmspace_pmap(mach->vm);
2447 	struct svm_machdata *machdata;
2448 
2449 	/* Transform pmap. */
2450 #if defined(__NetBSD__)
2451 	os_pmap_mach(pmap) = (void *)mach;
2452 	pmap->pm_tlb_flush = svm_tlb_flush;
2453 #elif defined(__DragonFly__)
2454 	pmap_npt_transform(pmap, 0);
2455 #endif
2456 
2457 	machdata = os_mem_zalloc(sizeof(struct svm_machdata));
2458 	mach->machdata = machdata;
2459 
2460 	/* Start with an hTLB flush everywhere. */
2461 	machdata->mach_htlb_gen = 1;
2462 }
2463 
2464 static void
2465 svm_machine_destroy(struct nvmm_machine *mach)
2466 {
2467 	os_mem_free(mach->machdata, sizeof(struct svm_machdata));
2468 }
2469 
2470 static int
2471 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2472 {
2473 	panic("%s: impossible", __func__);
2474 }
2475 
2476 /* -------------------------------------------------------------------------- */
2477 
2478 static bool
2479 svm_ident(void)
2480 {
2481 	cpuid_desc_t descs;
2482 	uint64_t msr;
2483 
2484 	/* Must be AMD CPU. */
2485 	x86_get_cpuid(0x00000000, &descs);
2486 	if (memcmp(&descs.ebx, "Auth", 4) ||
2487 	    memcmp(&descs.edx, "enti", 4) ||
2488 	    memcmp(&descs.ecx, "cAMD", 4)) {
2489 		return false;
2490 	}
2491 
2492 	/* Want leaf Fn8000_000A. */
2493 	x86_get_cpuid(0x80000000, &descs);
2494 	if (descs.eax < 0x8000000a) {
2495 		os_printf("nvmm: CPUID leaf not available\n");
2496 		return false;
2497 	}
2498 
2499 	/* Want SVM support. */
2500 	x86_get_cpuid(0x80000001, &descs);
2501 	if (!(descs.ecx & CPUID_8_01_ECX_SVM)) {
2502 		os_printf("nvmm: SVM not supported\n");
2503 		return false;
2504 	}
2505 
2506 	/* Want SVM revision 1. */
2507 	x86_get_cpuid(0x8000000a, &descs);
2508 	if (__SHIFTOUT(descs.eax, CPUID_8_0A_EAX_SvmRev) != 1) {
2509 		os_printf("nvmm: SVM revision not supported\n");
2510 		return false;
2511 	}
2512 
2513 	/* Want Nested Paging. */
2514 	if (!(descs.edx & CPUID_8_0A_EDX_NP)) {
2515 		os_printf("nvmm: SVM-NP not supported\n");
2516 		return false;
2517 	}
2518 
2519 	/* Want nRIP. */
2520 	if (!(descs.edx & CPUID_8_0A_EDX_NRIPS)) {
2521 		os_printf("nvmm: SVM-NRIPS not supported\n");
2522 		return false;
2523 	}
2524 
2525 	svm_decode_assist = (descs.edx & CPUID_8_0A_EDX_DecodeAssists) != 0;
2526 
2527 	msr = rdmsr(MSR_VM_CR);
2528 	if ((msr & VM_CR_SVMED) && (msr & VM_CR_LOCK)) {
2529 		os_printf("nvmm: SVM disabled in BIOS\n");
2530 		return false;
2531 	}
2532 
2533 	return true;
2534 }
2535 
2536 static void
2537 svm_init_asid(uint32_t maxasid)
2538 {
2539 	size_t i, j, allocsz;
2540 
2541 	os_mtx_init(&svm_asidlock);
2542 
2543 	/* Arbitrarily limit. */
2544 	maxasid = uimin(maxasid, 8192);
2545 
2546 	svm_maxasid = maxasid;
2547 	allocsz = roundup(maxasid, 8) / 8;
2548 	svm_asidmap = os_mem_zalloc(allocsz);
2549 
2550 	/* ASID 0 is reserved for the host. */
2551 	svm_asidmap[0] |= __BIT(0);
2552 
2553 	/* ASID n-1 is special, we share it. */
2554 	i = (maxasid - 1) / 8;
2555 	j = (maxasid - 1) % 8;
2556 	svm_asidmap[i] |= __BIT(j);
2557 }
2558 
2559 static
2560 OS_IPI_FUNC(svm_change_cpu)
2561 {
2562 	bool enable = arg != NULL;
2563 	uint64_t msr;
2564 
2565 	msr = rdmsr(MSR_VM_CR);
2566 	if (msr & VM_CR_SVMED) {
2567 		wrmsr(MSR_VM_CR, msr & ~VM_CR_SVMED);
2568 	}
2569 
2570 	if (!enable) {
2571 		wrmsr(MSR_VM_HSAVE_PA, 0);
2572 	}
2573 
2574 	msr = rdmsr(MSR_EFER);
2575 	if (enable) {
2576 		msr |= EFER_SVME;
2577 	} else {
2578 		msr &= ~EFER_SVME;
2579 	}
2580 	wrmsr(MSR_EFER, msr);
2581 
2582 	if (enable) {
2583 		wrmsr(MSR_VM_HSAVE_PA, hsave[os_curcpu_number()].pa);
2584 	}
2585 }
2586 
2587 static void
2588 svm_init(void)
2589 {
2590 	cpuid_desc_t descs;
2591 	os_cpu_t *cpu;
2592 
2593 	x86_get_cpuid(0x8000000a, &descs);
2594 
2595 	/* The guest TLB flush command. */
2596 	if (descs.edx & CPUID_8_0A_EDX_FlushByASID) {
2597 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2598 	} else {
2599 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2600 	}
2601 
2602 	/* Init the ASID. */
2603 	svm_init_asid(descs.ebx);
2604 
2605 	/* Init the XCR0 mask. */
2606 	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2607 
2608 	/* Init the max basic CPUID leaf. */
2609 	x86_get_cpuid(0x00000000, &descs);
2610 	svm_cpuid_max_basic = uimin(descs.eax, SVM_CPUID_MAX_BASIC);
2611 
2612 	/* Init the max extended CPUID leaf. */
2613 	x86_get_cpuid(0x80000000, &descs);
2614 	svm_cpuid_max_extended = uimin(descs.eax, SVM_CPUID_MAX_EXTENDED);
2615 
2616 	/* Init the global host state. */
2617 	if (svm_xcr0_mask != 0) {
2618 		svm_global_hstate.xcr0 = x86_get_xcr(0);
2619 	}
2620 	svm_global_hstate.star = rdmsr(MSR_STAR);
2621 	svm_global_hstate.lstar = rdmsr(MSR_LSTAR);
2622 	svm_global_hstate.cstar = rdmsr(MSR_CSTAR);
2623 	svm_global_hstate.sfmask = rdmsr(MSR_SFMASK);
2624 
2625 	memset(hsave, 0, sizeof(hsave));
2626 	OS_CPU_FOREACH(cpu) {
2627 		hsave[os_cpu_number(cpu)].pa = os_pa_zalloc();
2628 	}
2629 
2630 	os_ipi_broadcast(svm_change_cpu, (void *)true);
2631 }
2632 
2633 static void
2634 svm_fini_asid(void)
2635 {
2636 	size_t allocsz;
2637 
2638 	allocsz = roundup(svm_maxasid, 8) / 8;
2639 	os_mem_free(svm_asidmap, allocsz);
2640 
2641 	os_mtx_destroy(&svm_asidlock);
2642 }
2643 
2644 static void
2645 svm_fini(void)
2646 {
2647 	size_t i;
2648 
2649 	os_ipi_broadcast(svm_change_cpu, (void *)false);
2650 
2651 	for (i = 0; i < OS_MAXCPUS; i++) {
2652 		if (hsave[i].pa != 0)
2653 			os_pa_free(hsave[i].pa);
2654 	}
2655 
2656 	svm_fini_asid();
2657 }
2658 
2659 static void
2660 svm_capability(struct nvmm_capability *cap)
2661 {
2662 	cap->arch.mach_conf_support = 0;
2663 	cap->arch.vcpu_conf_support =
2664 	    NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2665 	cap->arch.xcr0_mask = svm_xcr0_mask;
2666 	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2667 	cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2668 }
2669 
2670 const struct nvmm_impl nvmm_x86_svm = {
2671 	.name = "x86-svm",
2672 	.ident = svm_ident,
2673 	.init = svm_init,
2674 	.fini = svm_fini,
2675 	.capability = svm_capability,
2676 	.mach_conf_max = NVMM_X86_MACH_NCONF,
2677 	.mach_conf_sizes = NULL,
2678 	.vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2679 	.vcpu_conf_sizes = svm_vcpu_conf_sizes,
2680 	.state_size = sizeof(struct nvmm_x64_state),
2681 	.machine_create = svm_machine_create,
2682 	.machine_destroy = svm_machine_destroy,
2683 	.machine_configure = svm_machine_configure,
2684 	.vcpu_create = svm_vcpu_create,
2685 	.vcpu_destroy = svm_vcpu_destroy,
2686 	.vcpu_configure = svm_vcpu_configure,
2687 	.vcpu_setstate = svm_vcpu_setstate,
2688 	.vcpu_getstate = svm_vcpu_getstate,
2689 	.vcpu_inject = svm_vcpu_inject,
2690 	.vcpu_run = svm_vcpu_run
2691 };
2692