1 /*
2  * Copyright (c) 2018-2021 Maxime Villard, m00nbsd.net
3  * All rights reserved.
4  *
5  * This code is part of the NVMM hypervisor.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/mman.h>
33 
34 #include "../nvmm.h"
35 #include "../nvmm_internal.h"
36 #include "nvmm_x86.h"
37 
38 int vmx_vmlaunch(uint64_t *gprs);
39 int vmx_vmresume(uint64_t *gprs);
40 void vmx_resume_rip(void);
41 
42 struct ept_desc {
43 	uint64_t eptp;
44 	uint64_t mbz;
45 } __packed;
46 
47 struct vpid_desc {
48 	uint64_t vpid;
49 	uint64_t addr;
50 } __packed;
51 
52 static inline void
53 vmx_vmxon(paddr_t *pa)
54 {
55 	__asm volatile (
56 		"vmxon		%[pa];"
57 		"jz		vmx_insn_failvalid;"
58 		"jc		vmx_insn_failinvalid;"
59 		:
60 		: [pa] "m" (*pa)
61 		: "memory", "cc"
62 	);
63 }
64 
65 static inline void
66 vmx_vmxoff(void)
67 {
68 	__asm volatile (
69 		"vmxoff;"
70 		"jz		vmx_insn_failvalid;"
71 		"jc		vmx_insn_failinvalid;"
72 		:
73 		:
74 		: "memory", "cc"
75 	);
76 }
77 
78 static inline void
79 vmx_invept(uint64_t op, struct ept_desc *desc)
80 {
81 	__asm volatile (
82 		"invept		%[desc],%[op];"
83 		"jz		vmx_insn_failvalid;"
84 		"jc		vmx_insn_failinvalid;"
85 		:
86 		: [desc] "m" (*desc), [op] "r" (op)
87 		: "memory", "cc"
88 	);
89 }
90 
91 static inline void
92 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
93 {
94 	__asm volatile (
95 		"invvpid	%[desc],%[op];"
96 		"jz		vmx_insn_failvalid;"
97 		"jc		vmx_insn_failinvalid;"
98 		:
99 		: [desc] "m" (*desc), [op] "r" (op)
100 		: "memory", "cc"
101 	);
102 }
103 
104 static inline uint64_t
105 vmx_vmread(uint64_t field)
106 {
107 	uint64_t value;
108 
109 	__asm volatile (
110 		"vmread		%[field],%[value];"
111 		"jz		vmx_insn_failvalid;"
112 		"jc		vmx_insn_failinvalid;"
113 		: [value] "=r" (value)
114 		: [field] "r" (field)
115 		: "cc"
116 	);
117 
118 	return value;
119 }
120 
121 static inline void
122 vmx_vmwrite(uint64_t field, uint64_t value)
123 {
124 	__asm volatile (
125 		"vmwrite	%[value],%[field];"
126 		"jz		vmx_insn_failvalid;"
127 		"jc		vmx_insn_failinvalid;"
128 		:
129 		: [field] "r" (field), [value] "r" (value)
130 		: "cc"
131 	);
132 }
133 
134 static inline paddr_t __unused
135 vmx_vmptrst(void)
136 {
137 	paddr_t pa;
138 
139 	__asm volatile (
140 		"vmptrst	%[pa];"
141 		:
142 		: [pa] "m" (*(paddr_t *)&pa)
143 		: "memory"
144 	);
145 
146 	return pa;
147 }
148 
149 static inline void
150 vmx_vmptrld(paddr_t *pa)
151 {
152 	__asm volatile (
153 		"vmptrld	%[pa];"
154 		"jz		vmx_insn_failvalid;"
155 		"jc		vmx_insn_failinvalid;"
156 		:
157 		: [pa] "m" (*pa)
158 		: "memory", "cc"
159 	);
160 }
161 
162 static inline void
163 vmx_vmclear(paddr_t *pa)
164 {
165 	__asm volatile (
166 		"vmclear	%[pa];"
167 		"jz		vmx_insn_failvalid;"
168 		"jc		vmx_insn_failinvalid;"
169 		:
170 		: [pa] "m" (*pa)
171 		: "memory", "cc"
172 	);
173 }
174 
175 static inline void
176 vmx_cli(void)
177 {
178 	__asm volatile ("cli" ::: "memory");
179 }
180 
181 static inline void
182 vmx_sti(void)
183 {
184 	__asm volatile ("sti" ::: "memory");
185 }
186 
187 #define MSR_IA32_FEATURE_CONTROL	0x003A
188 #define		IA32_FEATURE_CONTROL_LOCK	__BIT(0)
189 #define		IA32_FEATURE_CONTROL_IN_SMX	__BIT(1)
190 #define		IA32_FEATURE_CONTROL_OUT_SMX	__BIT(2)
191 
192 #define MSR_IA32_VMX_BASIC		0x0480
193 #define		IA32_VMX_BASIC_IDENT		__BITS(30,0)
194 #define		IA32_VMX_BASIC_DATA_SIZE	__BITS(44,32)
195 #define		IA32_VMX_BASIC_MEM_WIDTH	__BIT(48)
196 #define		IA32_VMX_BASIC_DUAL		__BIT(49)
197 #define		IA32_VMX_BASIC_MEM_TYPE		__BITS(53,50)
198 #define			MEM_TYPE_UC		0
199 #define			MEM_TYPE_WB		6
200 #define		IA32_VMX_BASIC_IO_REPORT	__BIT(54)
201 #define		IA32_VMX_BASIC_TRUE_CTLS	__BIT(55)
202 
203 #define MSR_IA32_VMX_PINBASED_CTLS		0x0481
204 #define MSR_IA32_VMX_PROCBASED_CTLS		0x0482
205 #define MSR_IA32_VMX_EXIT_CTLS			0x0483
206 #define MSR_IA32_VMX_ENTRY_CTLS			0x0484
207 #define MSR_IA32_VMX_PROCBASED_CTLS2		0x048B
208 
209 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS		0x048D
210 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS	0x048E
211 #define MSR_IA32_VMX_TRUE_EXIT_CTLS		0x048F
212 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS		0x0490
213 
214 #define MSR_IA32_VMX_CR0_FIXED0			0x0486
215 #define MSR_IA32_VMX_CR0_FIXED1			0x0487
216 #define MSR_IA32_VMX_CR4_FIXED0			0x0488
217 #define MSR_IA32_VMX_CR4_FIXED1			0x0489
218 
219 #define MSR_IA32_VMX_EPT_VPID_CAP	0x048C
220 #define		IA32_VMX_EPT_VPID_XO			__BIT(0)
221 #define		IA32_VMX_EPT_VPID_WALKLENGTH_4		__BIT(6)
222 #define		IA32_VMX_EPT_VPID_UC			__BIT(8)
223 #define		IA32_VMX_EPT_VPID_WB			__BIT(14)
224 #define		IA32_VMX_EPT_VPID_2MB			__BIT(16)
225 #define		IA32_VMX_EPT_VPID_1GB			__BIT(17)
226 #define		IA32_VMX_EPT_VPID_INVEPT		__BIT(20)
227 #define		IA32_VMX_EPT_VPID_FLAGS_AD		__BIT(21)
228 #define		IA32_VMX_EPT_VPID_ADVANCED_VMEXIT_INFO	__BIT(22)
229 #define		IA32_VMX_EPT_VPID_SHSTK			__BIT(23)
230 #define		IA32_VMX_EPT_VPID_INVEPT_CONTEXT	__BIT(25)
231 #define		IA32_VMX_EPT_VPID_INVEPT_ALL		__BIT(26)
232 #define		IA32_VMX_EPT_VPID_INVVPID		__BIT(32)
233 #define		IA32_VMX_EPT_VPID_INVVPID_ADDR		__BIT(40)
234 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT	__BIT(41)
235 #define		IA32_VMX_EPT_VPID_INVVPID_ALL		__BIT(42)
236 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG	__BIT(43)
237 
238 /* -------------------------------------------------------------------------- */
239 
240 /* 16-bit control fields */
241 #define VMCS_VPID				0x00000000
242 #define VMCS_PIR_VECTOR				0x00000002
243 #define VMCS_EPTP_INDEX				0x00000004
244 /* 16-bit guest-state fields */
245 #define VMCS_GUEST_ES_SELECTOR			0x00000800
246 #define VMCS_GUEST_CS_SELECTOR			0x00000802
247 #define VMCS_GUEST_SS_SELECTOR			0x00000804
248 #define VMCS_GUEST_DS_SELECTOR			0x00000806
249 #define VMCS_GUEST_FS_SELECTOR			0x00000808
250 #define VMCS_GUEST_GS_SELECTOR			0x0000080A
251 #define VMCS_GUEST_LDTR_SELECTOR		0x0000080C
252 #define VMCS_GUEST_TR_SELECTOR			0x0000080E
253 #define VMCS_GUEST_INTR_STATUS			0x00000810
254 #define VMCS_PML_INDEX				0x00000812
255 /* 16-bit host-state fields */
256 #define VMCS_HOST_ES_SELECTOR			0x00000C00
257 #define VMCS_HOST_CS_SELECTOR			0x00000C02
258 #define VMCS_HOST_SS_SELECTOR			0x00000C04
259 #define VMCS_HOST_DS_SELECTOR			0x00000C06
260 #define VMCS_HOST_FS_SELECTOR			0x00000C08
261 #define VMCS_HOST_GS_SELECTOR			0x00000C0A
262 #define VMCS_HOST_TR_SELECTOR			0x00000C0C
263 /* 64-bit control fields */
264 #define VMCS_IO_BITMAP_A			0x00002000
265 #define VMCS_IO_BITMAP_B			0x00002002
266 #define VMCS_MSR_BITMAP				0x00002004
267 #define VMCS_EXIT_MSR_STORE_ADDRESS		0x00002006
268 #define VMCS_EXIT_MSR_LOAD_ADDRESS		0x00002008
269 #define VMCS_ENTRY_MSR_LOAD_ADDRESS		0x0000200A
270 #define VMCS_EXECUTIVE_VMCS			0x0000200C
271 #define VMCS_PML_ADDRESS			0x0000200E
272 #define VMCS_TSC_OFFSET				0x00002010
273 #define VMCS_VIRTUAL_APIC			0x00002012
274 #define VMCS_APIC_ACCESS			0x00002014
275 #define VMCS_PIR_DESC				0x00002016
276 #define VMCS_VM_CONTROL				0x00002018
277 #define VMCS_EPTP				0x0000201A
278 #define		EPTP_TYPE			__BITS(2,0)
279 #define			EPTP_TYPE_UC		0
280 #define			EPTP_TYPE_WB		6
281 #define		EPTP_WALKLEN			__BITS(5,3)
282 #define		EPTP_FLAGS_AD			__BIT(6)
283 #define		EPTP_SSS			__BIT(7)
284 #define		EPTP_PHYSADDR			__BITS(63,12)
285 #define VMCS_EOI_EXIT0				0x0000201C
286 #define VMCS_EOI_EXIT1				0x0000201E
287 #define VMCS_EOI_EXIT2				0x00002020
288 #define VMCS_EOI_EXIT3				0x00002022
289 #define VMCS_EPTP_LIST				0x00002024
290 #define VMCS_VMREAD_BITMAP			0x00002026
291 #define VMCS_VMWRITE_BITMAP			0x00002028
292 #define VMCS_VIRTUAL_EXCEPTION			0x0000202A
293 #define VMCS_XSS_EXIT_BITMAP			0x0000202C
294 #define VMCS_ENCLS_EXIT_BITMAP			0x0000202E
295 #define VMCS_SUBPAGE_PERM_TABLE_PTR		0x00002030
296 #define VMCS_TSC_MULTIPLIER			0x00002032
297 #define VMCS_ENCLV_EXIT_BITMAP			0x00002036
298 /* 64-bit read-only fields */
299 #define VMCS_GUEST_PHYSICAL_ADDRESS		0x00002400
300 /* 64-bit guest-state fields */
301 #define VMCS_LINK_POINTER			0x00002800
302 #define VMCS_GUEST_IA32_DEBUGCTL		0x00002802
303 #define VMCS_GUEST_IA32_PAT			0x00002804
304 #define VMCS_GUEST_IA32_EFER			0x00002806
305 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL	0x00002808
306 #define VMCS_GUEST_PDPTE0			0x0000280A
307 #define VMCS_GUEST_PDPTE1			0x0000280C
308 #define VMCS_GUEST_PDPTE2			0x0000280E
309 #define VMCS_GUEST_PDPTE3			0x00002810
310 #define VMCS_GUEST_BNDCFGS			0x00002812
311 #define VMCS_GUEST_RTIT_CTL			0x00002814
312 #define VMCS_GUEST_PKRS				0x00002818
313 /* 64-bit host-state fields */
314 #define VMCS_HOST_IA32_PAT			0x00002C00
315 #define VMCS_HOST_IA32_EFER			0x00002C02
316 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL		0x00002C04
317 #define VMCS_HOST_IA32_PKRS			0x00002C06
318 /* 32-bit control fields */
319 #define VMCS_PINBASED_CTLS			0x00004000
320 #define		PIN_CTLS_INT_EXITING		__BIT(0)
321 #define		PIN_CTLS_NMI_EXITING		__BIT(3)
322 #define		PIN_CTLS_VIRTUAL_NMIS		__BIT(5)
323 #define		PIN_CTLS_ACTIVATE_PREEMPT_TIMER	__BIT(6)
324 #define		PIN_CTLS_PROCESS_POSTED_INTS	__BIT(7)
325 #define VMCS_PROCBASED_CTLS			0x00004002
326 #define		PROC_CTLS_INT_WINDOW_EXITING	__BIT(2)
327 #define		PROC_CTLS_USE_TSC_OFFSETTING	__BIT(3)
328 #define		PROC_CTLS_HLT_EXITING		__BIT(7)
329 #define		PROC_CTLS_INVLPG_EXITING	__BIT(9)
330 #define		PROC_CTLS_MWAIT_EXITING		__BIT(10)
331 #define		PROC_CTLS_RDPMC_EXITING		__BIT(11)
332 #define		PROC_CTLS_RDTSC_EXITING		__BIT(12)
333 #define		PROC_CTLS_RCR3_EXITING		__BIT(15)
334 #define		PROC_CTLS_LCR3_EXITING		__BIT(16)
335 #define		PROC_CTLS_RCR8_EXITING		__BIT(19)
336 #define		PROC_CTLS_LCR8_EXITING		__BIT(20)
337 #define		PROC_CTLS_USE_TPR_SHADOW	__BIT(21)
338 #define		PROC_CTLS_NMI_WINDOW_EXITING	__BIT(22)
339 #define		PROC_CTLS_DR_EXITING		__BIT(23)
340 #define		PROC_CTLS_UNCOND_IO_EXITING	__BIT(24)
341 #define		PROC_CTLS_USE_IO_BITMAPS	__BIT(25)
342 #define		PROC_CTLS_MONITOR_TRAP_FLAG	__BIT(27)
343 #define		PROC_CTLS_USE_MSR_BITMAPS	__BIT(28)
344 #define		PROC_CTLS_MONITOR_EXITING	__BIT(29)
345 #define		PROC_CTLS_PAUSE_EXITING		__BIT(30)
346 #define		PROC_CTLS_ACTIVATE_CTLS2	__BIT(31)
347 #define VMCS_EXCEPTION_BITMAP			0x00004004
348 #define VMCS_PF_ERROR_MASK			0x00004006
349 #define VMCS_PF_ERROR_MATCH			0x00004008
350 #define VMCS_CR3_TARGET_COUNT			0x0000400A
351 #define VMCS_EXIT_CTLS				0x0000400C
352 #define		EXIT_CTLS_SAVE_DEBUG_CONTROLS	__BIT(2)
353 #define		EXIT_CTLS_HOST_LONG_MODE	__BIT(9)
354 #define		EXIT_CTLS_LOAD_PERFGLOBALCTRL	__BIT(12)
355 #define		EXIT_CTLS_ACK_INTERRUPT		__BIT(15)
356 #define		EXIT_CTLS_SAVE_PAT		__BIT(18)
357 #define		EXIT_CTLS_LOAD_PAT		__BIT(19)
358 #define		EXIT_CTLS_SAVE_EFER		__BIT(20)
359 #define		EXIT_CTLS_LOAD_EFER		__BIT(21)
360 #define		EXIT_CTLS_SAVE_PREEMPT_TIMER	__BIT(22)
361 #define		EXIT_CTLS_CLEAR_BNDCFGS		__BIT(23)
362 #define		EXIT_CTLS_CONCEAL_PT		__BIT(24)
363 #define		EXIT_CTLS_CLEAR_RTIT_CTL	__BIT(25)
364 #define		EXIT_CTLS_LOAD_CET		__BIT(28)
365 #define		EXIT_CTLS_LOAD_PKRS		__BIT(29)
366 #define VMCS_EXIT_MSR_STORE_COUNT		0x0000400E
367 #define VMCS_EXIT_MSR_LOAD_COUNT		0x00004010
368 #define VMCS_ENTRY_CTLS				0x00004012
369 #define		ENTRY_CTLS_LOAD_DEBUG_CONTROLS	__BIT(2)
370 #define		ENTRY_CTLS_LONG_MODE		__BIT(9)
371 #define		ENTRY_CTLS_SMM			__BIT(10)
372 #define		ENTRY_CTLS_DISABLE_DUAL		__BIT(11)
373 #define		ENTRY_CTLS_LOAD_PERFGLOBALCTRL	__BIT(13)
374 #define		ENTRY_CTLS_LOAD_PAT		__BIT(14)
375 #define		ENTRY_CTLS_LOAD_EFER		__BIT(15)
376 #define		ENTRY_CTLS_LOAD_BNDCFGS		__BIT(16)
377 #define		ENTRY_CTLS_CONCEAL_PT		__BIT(17)
378 #define		ENTRY_CTLS_LOAD_RTIT_CTL	__BIT(18)
379 #define		ENTRY_CTLS_LOAD_CET		__BIT(20)
380 #define		ENTRY_CTLS_LOAD_PKRS		__BIT(22)
381 #define VMCS_ENTRY_MSR_LOAD_COUNT		0x00004014
382 #define VMCS_ENTRY_INTR_INFO			0x00004016
383 #define		INTR_INFO_VECTOR		__BITS(7,0)
384 #define		INTR_INFO_TYPE			__BITS(10,8)
385 #define			INTR_TYPE_EXT_INT	0
386 #define			INTR_TYPE_NMI		2
387 #define			INTR_TYPE_HW_EXC	3
388 #define			INTR_TYPE_SW_INT	4
389 #define			INTR_TYPE_PRIV_SW_EXC	5
390 #define			INTR_TYPE_SW_EXC	6
391 #define			INTR_TYPE_OTHER		7
392 #define		INTR_INFO_ERROR			__BIT(11)
393 #define		INTR_INFO_VALID			__BIT(31)
394 #define VMCS_ENTRY_EXCEPTION_ERROR		0x00004018
395 #define VMCS_ENTRY_INSTRUCTION_LENGTH		0x0000401A
396 #define VMCS_TPR_THRESHOLD			0x0000401C
397 #define VMCS_PROCBASED_CTLS2			0x0000401E
398 #define		PROC_CTLS2_VIRT_APIC_ACCESSES	__BIT(0)
399 #define		PROC_CTLS2_ENABLE_EPT		__BIT(1)
400 #define		PROC_CTLS2_DESC_TABLE_EXITING	__BIT(2)
401 #define		PROC_CTLS2_ENABLE_RDTSCP	__BIT(3)
402 #define		PROC_CTLS2_VIRT_X2APIC		__BIT(4)
403 #define		PROC_CTLS2_ENABLE_VPID		__BIT(5)
404 #define		PROC_CTLS2_WBINVD_EXITING	__BIT(6)
405 #define		PROC_CTLS2_UNRESTRICTED_GUEST	__BIT(7)
406 #define		PROC_CTLS2_APIC_REG_VIRT	__BIT(8)
407 #define		PROC_CTLS2_VIRT_INT_DELIVERY	__BIT(9)
408 #define		PROC_CTLS2_PAUSE_LOOP_EXITING	__BIT(10)
409 #define		PROC_CTLS2_RDRAND_EXITING	__BIT(11)
410 #define		PROC_CTLS2_INVPCID_ENABLE	__BIT(12)
411 #define		PROC_CTLS2_VMFUNC_ENABLE	__BIT(13)
412 #define		PROC_CTLS2_VMCS_SHADOWING	__BIT(14)
413 #define		PROC_CTLS2_ENCLS_EXITING	__BIT(15)
414 #define		PROC_CTLS2_RDSEED_EXITING	__BIT(16)
415 #define		PROC_CTLS2_PML_ENABLE		__BIT(17)
416 #define		PROC_CTLS2_EPT_VIOLATION	__BIT(18)
417 #define		PROC_CTLS2_CONCEAL_VMX_FROM_PT	__BIT(19)
418 #define		PROC_CTLS2_XSAVES_ENABLE	__BIT(20)
419 #define		PROC_CTLS2_MODE_BASED_EXEC_EPT	__BIT(22)
420 #define		PROC_CTLS2_SUBPAGE_PERMISSIONS	__BIT(23)
421 #define		PROC_CTLS2_PT_USES_GPA		__BIT(24)
422 #define		PROC_CTLS2_USE_TSC_SCALING	__BIT(25)
423 #define		PROC_CTLS2_WAIT_PAUSE_ENABLE	__BIT(26)
424 #define		PROC_CTLS2_ENCLV_EXITING	__BIT(28)
425 #define VMCS_PLE_GAP				0x00004020
426 #define VMCS_PLE_WINDOW				0x00004022
427 /* 32-bit read-only data fields */
428 #define VMCS_INSTRUCTION_ERROR			0x00004400
429 #define VMCS_EXIT_REASON			0x00004402
430 #define VMCS_EXIT_INTR_INFO			0x00004404
431 #define VMCS_EXIT_INTR_ERRCODE			0x00004406
432 #define VMCS_IDT_VECTORING_INFO			0x00004408
433 #define VMCS_IDT_VECTORING_ERROR		0x0000440A
434 #define VMCS_EXIT_INSTRUCTION_LENGTH		0x0000440C
435 #define VMCS_EXIT_INSTRUCTION_INFO		0x0000440E
436 /* 32-bit guest-state fields */
437 #define VMCS_GUEST_ES_LIMIT			0x00004800
438 #define VMCS_GUEST_CS_LIMIT			0x00004802
439 #define VMCS_GUEST_SS_LIMIT			0x00004804
440 #define VMCS_GUEST_DS_LIMIT			0x00004806
441 #define VMCS_GUEST_FS_LIMIT			0x00004808
442 #define VMCS_GUEST_GS_LIMIT			0x0000480A
443 #define VMCS_GUEST_LDTR_LIMIT			0x0000480C
444 #define VMCS_GUEST_TR_LIMIT			0x0000480E
445 #define VMCS_GUEST_GDTR_LIMIT			0x00004810
446 #define VMCS_GUEST_IDTR_LIMIT			0x00004812
447 #define VMCS_GUEST_ES_ACCESS_RIGHTS		0x00004814
448 #define VMCS_GUEST_CS_ACCESS_RIGHTS		0x00004816
449 #define VMCS_GUEST_SS_ACCESS_RIGHTS		0x00004818
450 #define VMCS_GUEST_DS_ACCESS_RIGHTS		0x0000481A
451 #define VMCS_GUEST_FS_ACCESS_RIGHTS		0x0000481C
452 #define VMCS_GUEST_GS_ACCESS_RIGHTS		0x0000481E
453 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS		0x00004820
454 #define VMCS_GUEST_TR_ACCESS_RIGHTS		0x00004822
455 #define VMCS_GUEST_INTERRUPTIBILITY		0x00004824
456 #define		INT_STATE_STI			__BIT(0)
457 #define		INT_STATE_MOVSS			__BIT(1)
458 #define		INT_STATE_SMI			__BIT(2)
459 #define		INT_STATE_NMI			__BIT(3)
460 #define		INT_STATE_ENCLAVE		__BIT(4)
461 #define VMCS_GUEST_ACTIVITY			0x00004826
462 #define VMCS_GUEST_SMBASE			0x00004828
463 #define VMCS_GUEST_IA32_SYSENTER_CS		0x0000482A
464 #define VMCS_PREEMPTION_TIMER_VALUE		0x0000482E
465 /* 32-bit host state fields */
466 #define VMCS_HOST_IA32_SYSENTER_CS		0x00004C00
467 /* Natural-Width control fields */
468 #define VMCS_CR0_MASK				0x00006000
469 #define VMCS_CR4_MASK				0x00006002
470 #define VMCS_CR0_SHADOW				0x00006004
471 #define VMCS_CR4_SHADOW				0x00006006
472 #define VMCS_CR3_TARGET0			0x00006008
473 #define VMCS_CR3_TARGET1			0x0000600A
474 #define VMCS_CR3_TARGET2			0x0000600C
475 #define VMCS_CR3_TARGET3			0x0000600E
476 /* Natural-Width read-only fields */
477 #define VMCS_EXIT_QUALIFICATION			0x00006400
478 #define VMCS_IO_RCX				0x00006402
479 #define VMCS_IO_RSI				0x00006404
480 #define VMCS_IO_RDI				0x00006406
481 #define VMCS_IO_RIP				0x00006408
482 #define VMCS_GUEST_LINEAR_ADDRESS		0x0000640A
483 /* Natural-Width guest-state fields */
484 #define VMCS_GUEST_CR0				0x00006800
485 #define VMCS_GUEST_CR3				0x00006802
486 #define VMCS_GUEST_CR4				0x00006804
487 #define VMCS_GUEST_ES_BASE			0x00006806
488 #define VMCS_GUEST_CS_BASE			0x00006808
489 #define VMCS_GUEST_SS_BASE			0x0000680A
490 #define VMCS_GUEST_DS_BASE			0x0000680C
491 #define VMCS_GUEST_FS_BASE			0x0000680E
492 #define VMCS_GUEST_GS_BASE			0x00006810
493 #define VMCS_GUEST_LDTR_BASE			0x00006812
494 #define VMCS_GUEST_TR_BASE			0x00006814
495 #define VMCS_GUEST_GDTR_BASE			0x00006816
496 #define VMCS_GUEST_IDTR_BASE			0x00006818
497 #define VMCS_GUEST_DR7				0x0000681A
498 #define VMCS_GUEST_RSP				0x0000681C
499 #define VMCS_GUEST_RIP				0x0000681E
500 #define VMCS_GUEST_RFLAGS			0x00006820
501 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS	0x00006822
502 #define VMCS_GUEST_IA32_SYSENTER_ESP		0x00006824
503 #define VMCS_GUEST_IA32_SYSENTER_EIP		0x00006826
504 #define VMCS_GUEST_IA32_S_CET			0x00006828
505 #define VMCS_GUEST_SSP				0x0000682A
506 #define VMCS_GUEST_IA32_INTR_SSP_TABLE		0x0000682C
507 /* Natural-Width host-state fields */
508 #define VMCS_HOST_CR0				0x00006C00
509 #define VMCS_HOST_CR3				0x00006C02
510 #define VMCS_HOST_CR4				0x00006C04
511 #define VMCS_HOST_FS_BASE			0x00006C06
512 #define VMCS_HOST_GS_BASE			0x00006C08
513 #define VMCS_HOST_TR_BASE			0x00006C0A
514 #define VMCS_HOST_GDTR_BASE			0x00006C0C
515 #define VMCS_HOST_IDTR_BASE			0x00006C0E
516 #define VMCS_HOST_IA32_SYSENTER_ESP		0x00006C10
517 #define VMCS_HOST_IA32_SYSENTER_EIP		0x00006C12
518 #define VMCS_HOST_RSP				0x00006C14
519 #define VMCS_HOST_RIP				0x00006C16
520 #define VMCS_HOST_IA32_S_CET			0x00006C18
521 #define VMCS_HOST_SSP				0x00006C1A
522 #define VMCS_HOST_IA32_INTR_SSP_TABLE		0x00006C1C
523 
524 /* VMX basic exit reasons. */
525 #define VMCS_EXITCODE_EXC_NMI			0
526 #define VMCS_EXITCODE_EXT_INT			1
527 #define VMCS_EXITCODE_SHUTDOWN			2
528 #define VMCS_EXITCODE_INIT			3
529 #define VMCS_EXITCODE_SIPI			4
530 #define VMCS_EXITCODE_SMI			5
531 #define VMCS_EXITCODE_OTHER_SMI			6
532 #define VMCS_EXITCODE_INT_WINDOW		7
533 #define VMCS_EXITCODE_NMI_WINDOW		8
534 #define VMCS_EXITCODE_TASK_SWITCH		9
535 #define VMCS_EXITCODE_CPUID			10
536 #define VMCS_EXITCODE_GETSEC			11
537 #define VMCS_EXITCODE_HLT			12
538 #define VMCS_EXITCODE_INVD			13
539 #define VMCS_EXITCODE_INVLPG			14
540 #define VMCS_EXITCODE_RDPMC			15
541 #define VMCS_EXITCODE_RDTSC			16
542 #define VMCS_EXITCODE_RSM			17
543 #define VMCS_EXITCODE_VMCALL			18
544 #define VMCS_EXITCODE_VMCLEAR			19
545 #define VMCS_EXITCODE_VMLAUNCH			20
546 #define VMCS_EXITCODE_VMPTRLD			21
547 #define VMCS_EXITCODE_VMPTRST			22
548 #define VMCS_EXITCODE_VMREAD			23
549 #define VMCS_EXITCODE_VMRESUME			24
550 #define VMCS_EXITCODE_VMWRITE			25
551 #define VMCS_EXITCODE_VMXOFF			26
552 #define VMCS_EXITCODE_VMXON			27
553 #define VMCS_EXITCODE_CR			28
554 #define VMCS_EXITCODE_DR			29
555 #define VMCS_EXITCODE_IO			30
556 #define VMCS_EXITCODE_RDMSR			31
557 #define VMCS_EXITCODE_WRMSR			32
558 #define VMCS_EXITCODE_FAIL_GUEST_INVALID	33
559 #define VMCS_EXITCODE_FAIL_MSR_INVALID		34
560 #define VMCS_EXITCODE_MWAIT			36
561 #define VMCS_EXITCODE_TRAP_FLAG			37
562 #define VMCS_EXITCODE_MONITOR			39
563 #define VMCS_EXITCODE_PAUSE			40
564 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK	41
565 #define VMCS_EXITCODE_TPR_BELOW			43
566 #define VMCS_EXITCODE_APIC_ACCESS		44
567 #define VMCS_EXITCODE_VEOI			45
568 #define VMCS_EXITCODE_GDTR_IDTR			46
569 #define VMCS_EXITCODE_LDTR_TR			47
570 #define VMCS_EXITCODE_EPT_VIOLATION		48
571 #define VMCS_EXITCODE_EPT_MISCONFIG		49
572 #define VMCS_EXITCODE_INVEPT			50
573 #define VMCS_EXITCODE_RDTSCP			51
574 #define VMCS_EXITCODE_PREEMPT_TIMEOUT		52
575 #define VMCS_EXITCODE_INVVPID			53
576 #define VMCS_EXITCODE_WBINVD			54
577 #define VMCS_EXITCODE_XSETBV			55
578 #define VMCS_EXITCODE_APIC_WRITE		56
579 #define VMCS_EXITCODE_RDRAND			57
580 #define VMCS_EXITCODE_INVPCID			58
581 #define VMCS_EXITCODE_VMFUNC			59
582 #define VMCS_EXITCODE_ENCLS			60
583 #define VMCS_EXITCODE_RDSEED			61
584 #define VMCS_EXITCODE_PAGE_LOG_FULL		62
585 #define VMCS_EXITCODE_XSAVES			63
586 #define VMCS_EXITCODE_XRSTORS			64
587 #define VMCS_EXITCODE_SPP			66
588 #define VMCS_EXITCODE_UMWAIT			67
589 #define VMCS_EXITCODE_TPAUSE			68
590 
591 /* -------------------------------------------------------------------------- */
592 
593 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
594 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
595 
596 /*
597  * These host values are static, they do not change at runtime and are the same
598  * on all CPUs. We save them here because they are not saved in the VMCS.
599  */
600 static struct {
601 	uint64_t xcr0;
602 	uint64_t star;
603 	uint64_t lstar;
604 	uint64_t cstar;
605 	uint64_t sfmask;
606 } vmx_global_hstate __cacheline_aligned;
607 
608 #define VMX_MSRLIST_STAR		0
609 #define VMX_MSRLIST_LSTAR		1
610 #define VMX_MSRLIST_CSTAR		2
611 #define VMX_MSRLIST_SFMASK		3
612 #define VMX_MSRLIST_KERNELGSBASE	4
613 #define VMX_MSRLIST_EXIT_NMSR		5
614 #define VMX_MSRLIST_L1DFLUSH		5
615 
616 /* On entry, we may do +1 to include L1DFLUSH. */
617 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
618 
619 struct vmxon {
620 	uint32_t ident;
621 #define VMXON_IDENT_REVISION	__BITS(30,0)
622 
623 	uint8_t data[PAGE_SIZE - 4];
624 } __packed;
625 
626 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
627 
628 struct vmxoncpu {
629 	vaddr_t va;
630 	paddr_t pa;
631 };
632 
633 static struct vmxoncpu vmxoncpu[OS_MAXCPUS];
634 
635 struct vmcs {
636 	uint32_t ident;
637 #define VMCS_IDENT_REVISION	__BITS(30,0)
638 #define VMCS_IDENT_SHADOW	__BIT(31)
639 
640 	uint32_t abort;
641 	uint8_t data[PAGE_SIZE - 8];
642 } __packed;
643 
644 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
645 
646 struct msr_entry {
647 	uint32_t msr;
648 	uint32_t rsvd;
649 	uint64_t val;
650 } __packed;
651 
652 #define VPID_MAX	0xFFFF
653 
654 /* Make sure we never run out of VPIDs. */
655 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
656 
657 static uint64_t vmx_tlb_flush_op __read_mostly;
658 static uint64_t vmx_ept_flush_op __read_mostly;
659 static uint64_t vmx_eptp_type __read_mostly;
660 static bool vmx_ept_has_ad __read_mostly;
661 
662 static uint64_t vmx_pinbased_ctls __read_mostly;
663 static uint64_t vmx_procbased_ctls __read_mostly;
664 static uint64_t vmx_procbased_ctls2 __read_mostly;
665 static uint64_t vmx_entry_ctls __read_mostly;
666 static uint64_t vmx_exit_ctls __read_mostly;
667 
668 static uint64_t vmx_cr0_fixed0 __read_mostly;
669 static uint64_t vmx_cr0_fixed1 __read_mostly;
670 static uint64_t vmx_cr4_fixed0 __read_mostly;
671 static uint64_t vmx_cr4_fixed1 __read_mostly;
672 
673 #define VMX_PINBASED_CTLS_ONE	\
674 	(PIN_CTLS_INT_EXITING| \
675 	 PIN_CTLS_NMI_EXITING| \
676 	 PIN_CTLS_VIRTUAL_NMIS)
677 
678 #define VMX_PINBASED_CTLS_ZERO	0
679 
680 #define VMX_PROCBASED_CTLS_ONE	\
681 	(PROC_CTLS_USE_TSC_OFFSETTING| \
682 	 PROC_CTLS_HLT_EXITING| \
683 	 PROC_CTLS_MWAIT_EXITING | \
684 	 PROC_CTLS_RDPMC_EXITING | \
685 	 PROC_CTLS_RCR8_EXITING | \
686 	 PROC_CTLS_LCR8_EXITING | \
687 	 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
688 	 PROC_CTLS_USE_MSR_BITMAPS | \
689 	 PROC_CTLS_MONITOR_EXITING | \
690 	 PROC_CTLS_ACTIVATE_CTLS2)
691 
692 #define VMX_PROCBASED_CTLS_ZERO	\
693 	(PROC_CTLS_RCR3_EXITING| \
694 	 PROC_CTLS_LCR3_EXITING)
695 
696 #define VMX_PROCBASED_CTLS2_ONE	\
697 	(PROC_CTLS2_ENABLE_EPT| \
698 	 PROC_CTLS2_ENABLE_VPID| \
699 	 PROC_CTLS2_UNRESTRICTED_GUEST)
700 
701 #define VMX_PROCBASED_CTLS2_ZERO	0
702 
703 #define VMX_ENTRY_CTLS_ONE	\
704 	(ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
705 	 ENTRY_CTLS_LOAD_EFER| \
706 	 ENTRY_CTLS_LOAD_PAT)
707 
708 #define VMX_ENTRY_CTLS_ZERO	\
709 	(ENTRY_CTLS_SMM| \
710 	 ENTRY_CTLS_DISABLE_DUAL)
711 
712 #define VMX_EXIT_CTLS_ONE	\
713 	(EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
714 	 EXIT_CTLS_HOST_LONG_MODE| \
715 	 EXIT_CTLS_SAVE_PAT| \
716 	 EXIT_CTLS_LOAD_PAT| \
717 	 EXIT_CTLS_SAVE_EFER| \
718 	 EXIT_CTLS_LOAD_EFER)
719 
720 #define VMX_EXIT_CTLS_ZERO	0
721 
722 static uint8_t *vmx_asidmap __read_mostly;
723 static uint32_t vmx_maxasid __read_mostly;
724 static os_mtx_t vmx_asidlock __cacheline_aligned;
725 
726 #define VMX_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
727 static uint64_t vmx_xcr0_mask __read_mostly;
728 
729 #define VMX_NCPUIDS	32
730 
731 #define VMCS_NPAGES	1
732 #define VMCS_SIZE	(VMCS_NPAGES * PAGE_SIZE)
733 
734 #define MSRBM_NPAGES	1
735 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
736 
737 #define CR0_STATIC_MASK \
738 	(CR0_ET | CR0_NW | CR0_CD)
739 
740 #define CR4_VALID \
741 	(CR4_VME |			\
742 	 CR4_PVI |			\
743 	 CR4_TSD |			\
744 	 CR4_DE |			\
745 	 CR4_PSE |			\
746 	 CR4_PAE |			\
747 	 CR4_MCE |			\
748 	 CR4_PGE |			\
749 	 CR4_PCE |			\
750 	 CR4_OSFXSR |			\
751 	 CR4_OSXMMEXCPT |		\
752 	 CR4_UMIP |			\
753 	 /* CR4_LA57 excluded */	\
754 	 /* CR4_VMXE excluded */	\
755 	 /* CR4_SMXE excluded */	\
756 	 CR4_FSGSBASE |			\
757 	 CR4_PCIDE |			\
758 	 CR4_OSXSAVE |			\
759 	 CR4_SMEP |			\
760 	 CR4_SMAP			\
761 	 /* CR4_PKE excluded */		\
762 	 /* CR4_CET excluded */		\
763 	 /* CR4_PKS excluded */)
764 #define CR4_INVALID \
765 	(0xFFFFFFFFFFFFFFFFULL & ~CR4_VALID)
766 
767 #define EFER_TLB_FLUSH \
768 	(EFER_NXE|EFER_LMA|EFER_LME)
769 #define CR0_TLB_FLUSH \
770 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
771 #define CR4_TLB_FLUSH \
772 	(CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
773 
774 /* -------------------------------------------------------------------------- */
775 
776 struct vmx_machdata {
777 	volatile uint64_t mach_htlb_gen;
778 };
779 
780 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
781 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
782 	    sizeof(struct nvmm_vcpu_conf_cpuid),
783 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
784 	    sizeof(struct nvmm_vcpu_conf_tpr)
785 };
786 
787 struct vmx_cpudata {
788 	/* General. */
789 	uint64_t asid;
790 	bool gtlb_want_flush;
791 	bool gtsc_want_update;
792 	uint64_t vcpu_htlb_gen;
793 	os_cpuset_t *htlb_want_flush;
794 
795 	/* VMCS. */
796 	struct vmcs *vmcs;
797 	paddr_t vmcs_pa;
798 	size_t vmcs_refcnt;
799 	os_cpu_t *vmcs_cpu;
800 	bool vmcs_launched;
801 
802 	/* MSR bitmap. */
803 	uint8_t *msrbm;
804 	paddr_t msrbm_pa;
805 
806 	/* Percpu host state, absent from VMCS. */
807 	struct {
808 		uint64_t kernelgsbase;
809 		uint64_t drs[NVMM_X64_NDR];
810 #ifdef __DragonFly__
811 		mcontext_t hmctx;  /* TODO: remove this like NetBSD */
812 #endif
813 	} hstate;
814 
815 	/* Intr state. */
816 	bool int_window_exit;
817 	bool nmi_window_exit;
818 	bool evt_pending;
819 
820 	/* Guest state. */
821 	struct msr_entry *gmsr;
822 	paddr_t gmsr_pa;
823 	uint64_t gmsr_misc_enable;
824 	uint64_t gcr2;
825 	uint64_t gcr8;
826 	uint64_t gxcr0;
827 	uint64_t gprs[NVMM_X64_NGPR];
828 	uint64_t drs[NVMM_X64_NDR];
829 	uint64_t gtsc_offset;
830 	uint64_t gtsc_match;
831 	struct nvmm_x86_xsave gxsave __aligned(64);
832 
833 	/* VCPU configuration. */
834 	bool cpuidpresent[VMX_NCPUIDS];
835 	struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
836 	struct nvmm_vcpu_conf_tpr tpr;
837 };
838 
839 static const struct {
840 	uint64_t selector;
841 	uint64_t attrib;
842 	uint64_t limit;
843 	uint64_t base;
844 } vmx_guest_segs[NVMM_X64_NSEG] = {
845 	[NVMM_X64_SEG_ES] = {
846 		VMCS_GUEST_ES_SELECTOR,
847 		VMCS_GUEST_ES_ACCESS_RIGHTS,
848 		VMCS_GUEST_ES_LIMIT,
849 		VMCS_GUEST_ES_BASE
850 	},
851 	[NVMM_X64_SEG_CS] = {
852 		VMCS_GUEST_CS_SELECTOR,
853 		VMCS_GUEST_CS_ACCESS_RIGHTS,
854 		VMCS_GUEST_CS_LIMIT,
855 		VMCS_GUEST_CS_BASE
856 	},
857 	[NVMM_X64_SEG_SS] = {
858 		VMCS_GUEST_SS_SELECTOR,
859 		VMCS_GUEST_SS_ACCESS_RIGHTS,
860 		VMCS_GUEST_SS_LIMIT,
861 		VMCS_GUEST_SS_BASE
862 	},
863 	[NVMM_X64_SEG_DS] = {
864 		VMCS_GUEST_DS_SELECTOR,
865 		VMCS_GUEST_DS_ACCESS_RIGHTS,
866 		VMCS_GUEST_DS_LIMIT,
867 		VMCS_GUEST_DS_BASE
868 	},
869 	[NVMM_X64_SEG_FS] = {
870 		VMCS_GUEST_FS_SELECTOR,
871 		VMCS_GUEST_FS_ACCESS_RIGHTS,
872 		VMCS_GUEST_FS_LIMIT,
873 		VMCS_GUEST_FS_BASE
874 	},
875 	[NVMM_X64_SEG_GS] = {
876 		VMCS_GUEST_GS_SELECTOR,
877 		VMCS_GUEST_GS_ACCESS_RIGHTS,
878 		VMCS_GUEST_GS_LIMIT,
879 		VMCS_GUEST_GS_BASE
880 	},
881 	[NVMM_X64_SEG_GDT] = {
882 		0, /* doesn't exist */
883 		0, /* doesn't exist */
884 		VMCS_GUEST_GDTR_LIMIT,
885 		VMCS_GUEST_GDTR_BASE
886 	},
887 	[NVMM_X64_SEG_IDT] = {
888 		0, /* doesn't exist */
889 		0, /* doesn't exist */
890 		VMCS_GUEST_IDTR_LIMIT,
891 		VMCS_GUEST_IDTR_BASE
892 	},
893 	[NVMM_X64_SEG_LDT] = {
894 		VMCS_GUEST_LDTR_SELECTOR,
895 		VMCS_GUEST_LDTR_ACCESS_RIGHTS,
896 		VMCS_GUEST_LDTR_LIMIT,
897 		VMCS_GUEST_LDTR_BASE
898 	},
899 	[NVMM_X64_SEG_TR] = {
900 		VMCS_GUEST_TR_SELECTOR,
901 		VMCS_GUEST_TR_ACCESS_RIGHTS,
902 		VMCS_GUEST_TR_LIMIT,
903 		VMCS_GUEST_TR_BASE
904 	}
905 };
906 
907 /* -------------------------------------------------------------------------- */
908 
909 static uint64_t
910 vmx_get_revision(void)
911 {
912 	uint64_t msr;
913 
914 	msr = rdmsr(MSR_IA32_VMX_BASIC);
915 	msr &= IA32_VMX_BASIC_IDENT;
916 
917 	return msr;
918 }
919 
920 static
921 OS_IPI_FUNC(vmx_vmclear_ipi)
922 {
923 	paddr_t vmcs_pa = (paddr_t)arg;
924 	vmx_vmclear(&vmcs_pa);
925 }
926 
927 static void
928 vmx_vmclear_remote(os_cpu_t *cpu, paddr_t vmcs_pa)
929 {
930 	int bound;
931 
932 	OS_ASSERT(os_preempt_disabled());
933 
934 	/*
935 	 * TODO: OSify curlwp_bind().
936 	 */
937 
938 	bound = curlwp_bind();
939 	os_preempt_enable();
940 
941 	os_ipi_unicast(cpu, vmx_vmclear_ipi, (void *)vmcs_pa);
942 
943 	os_preempt_disable();
944 	curlwp_bindx(bound);
945 }
946 
947 static void
948 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
949 {
950 	struct vmx_cpudata *cpudata = vcpu->cpudata;
951 	os_cpu_t *vmcs_cpu;
952 
953 	cpudata->vmcs_refcnt++;
954 	if (cpudata->vmcs_refcnt > 1) {
955 		OS_ASSERT(os_preempt_disabled());
956 		OS_ASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
957 		return;
958 	}
959 
960 	vmcs_cpu = cpudata->vmcs_cpu;
961 	cpudata->vmcs_cpu = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
962 
963 	os_preempt_disable();
964 
965 	if (vmcs_cpu == NULL) {
966 		/* This VMCS is loaded for the first time. */
967 		vmx_vmclear(&cpudata->vmcs_pa);
968 		cpudata->vmcs_launched = false;
969 	} else if (vmcs_cpu != os_curcpu()) {
970 		/* This VMCS is active on a remote CPU. */
971 		vmx_vmclear_remote(vmcs_cpu, cpudata->vmcs_pa);
972 		cpudata->vmcs_launched = false;
973 	} else {
974 		/* This VMCS is active on curcpu, nothing to do. */
975 	}
976 
977 	vmx_vmptrld(&cpudata->vmcs_pa);
978 }
979 
980 static void
981 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
982 {
983 	struct vmx_cpudata *cpudata = vcpu->cpudata;
984 
985 	OS_ASSERT(os_preempt_disabled());
986 	OS_ASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
987 	OS_ASSERT(cpudata->vmcs_refcnt > 0);
988 	cpudata->vmcs_refcnt--;
989 
990 	if (cpudata->vmcs_refcnt > 0) {
991 		return;
992 	}
993 
994 	cpudata->vmcs_cpu = os_curcpu();
995 	os_preempt_enable();
996 }
997 
998 static void
999 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
1000 {
1001 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1002 
1003 	OS_ASSERT(os_preempt_disabled());
1004 	OS_ASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
1005 	OS_ASSERT(cpudata->vmcs_refcnt == 1);
1006 	cpudata->vmcs_refcnt--;
1007 
1008 	vmx_vmclear(&cpudata->vmcs_pa);
1009 	os_preempt_enable();
1010 }
1011 
1012 /* -------------------------------------------------------------------------- */
1013 
1014 static void
1015 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
1016 {
1017 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1018 	uint64_t ctls1;
1019 
1020 	ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1021 
1022 	if (nmi) {
1023 		// XXX INT_STATE_NMI?
1024 		ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
1025 		cpudata->nmi_window_exit = true;
1026 	} else {
1027 		ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
1028 		cpudata->int_window_exit = true;
1029 	}
1030 
1031 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1032 }
1033 
1034 static void
1035 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
1036 {
1037 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1038 	uint64_t ctls1;
1039 
1040 	ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1041 
1042 	if (nmi) {
1043 		ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
1044 		cpudata->nmi_window_exit = false;
1045 	} else {
1046 		ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
1047 		cpudata->int_window_exit = false;
1048 	}
1049 
1050 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1051 }
1052 
1053 static inline bool
1054 vmx_excp_has_rf(uint8_t vector)
1055 {
1056 	switch (vector) {
1057 	case 1:		/* #DB */
1058 	case 4:		/* #OF */
1059 	case 8:		/* #DF */
1060 	case 18:	/* #MC */
1061 		return false;
1062 	default:
1063 		return true;
1064 	}
1065 }
1066 
1067 static inline int
1068 vmx_excp_has_error(uint8_t vector)
1069 {
1070 	switch (vector) {
1071 	case 8:		/* #DF */
1072 	case 10:	/* #TS */
1073 	case 11:	/* #NP */
1074 	case 12:	/* #SS */
1075 	case 13:	/* #GP */
1076 	case 14:	/* #PF */
1077 	case 17:	/* #AC */
1078 	case 21:	/* #CP */
1079 	case 30:	/* #SX */
1080 		return 1;
1081 	default:
1082 		return 0;
1083 	}
1084 }
1085 
1086 static int
1087 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1088 {
1089 	struct nvmm_comm_page *comm = vcpu->comm;
1090 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1091 	int type = 0, err = 0, ret = EINVAL;
1092 	uint64_t rflags, info, error;
1093 	u_int evtype;
1094 	uint8_t vector;
1095 
1096 	evtype = comm->event.type;
1097 	vector = comm->event.vector;
1098 	error = comm->event.u.excp.error;
1099 	__insn_barrier();
1100 
1101 	vmx_vmcs_enter(vcpu);
1102 
1103 	switch (evtype) {
1104 	case NVMM_VCPU_EVENT_EXCP:
1105 		if (vector == 2 || vector >= 32)
1106 			goto out;
1107 		if (vector == 3 || vector == 0)
1108 			goto out;
1109 		if (vmx_excp_has_rf(vector)) {
1110 			rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1111 			vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags | PSL_RF);
1112 		}
1113 		type = INTR_TYPE_HW_EXC;
1114 		err = vmx_excp_has_error(vector);
1115 		break;
1116 	case NVMM_VCPU_EVENT_INTR:
1117 		type = INTR_TYPE_EXT_INT;
1118 		if (vector == 2) {
1119 			type = INTR_TYPE_NMI;
1120 			vmx_event_waitexit_enable(vcpu, true);
1121 		}
1122 		err = 0;
1123 		break;
1124 	default:
1125 		goto out;
1126 	}
1127 
1128 	info =
1129 	    __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1130 	    __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1131 	    __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1132 	    __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1133 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1134 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1135 
1136 	cpudata->evt_pending = true;
1137 	ret = 0;
1138 
1139 out:
1140 	vmx_vmcs_leave(vcpu);
1141 	return ret;
1142 }
1143 
1144 static void
1145 vmx_inject_ud(struct nvmm_cpu *vcpu)
1146 {
1147 	struct nvmm_comm_page *comm = vcpu->comm;
1148 	int ret __diagused;
1149 
1150 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
1151 	comm->event.vector = 6;
1152 	comm->event.u.excp.error = 0;
1153 
1154 	ret = vmx_vcpu_inject(vcpu);
1155 	OS_ASSERT(ret == 0);
1156 }
1157 
1158 static void
1159 vmx_inject_gp(struct nvmm_cpu *vcpu)
1160 {
1161 	struct nvmm_comm_page *comm = vcpu->comm;
1162 	int ret __diagused;
1163 
1164 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
1165 	comm->event.vector = 13;
1166 	comm->event.u.excp.error = 0;
1167 
1168 	ret = vmx_vcpu_inject(vcpu);
1169 	OS_ASSERT(ret == 0);
1170 }
1171 
1172 static inline int
1173 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1174 {
1175 	if (__predict_true(!vcpu->comm->event_commit)) {
1176 		return 0;
1177 	}
1178 	vcpu->comm->event_commit = false;
1179 	return vmx_vcpu_inject(vcpu);
1180 }
1181 
1182 static inline void
1183 vmx_inkernel_advance(void)
1184 {
1185 	uint64_t rip, inslen, intstate, rflags;
1186 
1187 	/*
1188 	 * Maybe we should also apply single-stepping and debug exceptions.
1189 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
1190 	 * debugger.
1191 	 */
1192 
1193 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1194 	rip = vmx_vmread(VMCS_GUEST_RIP);
1195 	vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1196 
1197 	rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1198 	vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags & ~PSL_RF);
1199 
1200 	intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1201 	vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1202 	    intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1203 }
1204 
1205 static void
1206 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1207 {
1208 	exit->u.inv.hwcode = code;
1209 	exit->reason = NVMM_VCPU_EXIT_INVALID;
1210 }
1211 
1212 static void
1213 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1214     struct nvmm_vcpu_exit *exit)
1215 {
1216 	uint64_t qual;
1217 
1218 	qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1219 
1220 	if ((qual & INTR_INFO_VALID) == 0) {
1221 		goto error;
1222 	}
1223 	if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1224 		goto error;
1225 	}
1226 
1227 	exit->reason = NVMM_VCPU_EXIT_NONE;
1228 	return;
1229 
1230 error:
1231 	vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1232 }
1233 
1234 #define VMX_CPUID_MAX_BASIC		0x16
1235 #define VMX_CPUID_MAX_HYPERVISOR	0x40000000
1236 #define VMX_CPUID_MAX_EXTENDED		0x80000008
1237 static uint32_t vmx_cpuid_max_basic __read_mostly;
1238 static uint32_t vmx_cpuid_max_extended __read_mostly;
1239 
1240 static void
1241 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint32_t eax, uint32_t ecx)
1242 {
1243 	cpuid_desc_t descs;
1244 
1245 	x86_get_cpuid2(eax, ecx, &descs);
1246 	cpudata->gprs[NVMM_X64_GPR_RAX] = descs.eax;
1247 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs.ebx;
1248 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs.ecx;
1249 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs.edx;
1250 }
1251 
1252 static void
1253 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1254     uint32_t eax, uint32_t ecx)
1255 {
1256 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1257 	unsigned int ncpus;
1258 	uint32_t clevel;
1259 	uint64_t cr4;
1260 
1261 	if (eax < 0x40000000) {
1262 		if (__predict_false(eax > vmx_cpuid_max_basic)) {
1263 			eax = vmx_cpuid_max_basic;
1264 			vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1265 		}
1266 	} else if (eax < 0x80000000) {
1267 		if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
1268 			eax = vmx_cpuid_max_basic;
1269 			vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1270 		}
1271 	} else {
1272 		if (__predict_false(eax > vmx_cpuid_max_extended)) {
1273 			eax = vmx_cpuid_max_basic;
1274 			vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1275 		}
1276 	}
1277 
1278 	switch (eax) {
1279 	case 0x00000000:
1280 		cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
1281 		break;
1282 	case 0x00000001:
1283 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1284 
1285 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_0_01_EBX_LOCAL_APIC_ID;
1286 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1287 		    CPUID_0_01_EBX_LOCAL_APIC_ID);
1288 
1289 		ncpus = os_atomic_load_uint(&mach->ncpus);
1290 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_0_01_EBX_HTT_CORES;
1291 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(ncpus,
1292 		    CPUID_0_01_EBX_HTT_CORES);
1293 
1294 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1295 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID_0_01_ECX_RAZ;
1296 		if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1297 			cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID_0_01_ECX_PCID;
1298 		}
1299 
1300 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1301 
1302 		/* CPUID_0_01_ECX_OSXSAVE depends on CR4. */
1303 		cr4 = vmx_vmread(VMCS_GUEST_CR4);
1304 		if (!(cr4 & CR4_OSXSAVE)) {
1305 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_0_01_ECX_OSXSAVE;
1306 		}
1307 		break;
1308 	case 0x00000002:
1309 		break;
1310 	case 0x00000003:
1311 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1312 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1313 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1314 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1315 		break;
1316 	case 0x00000004: /* Deterministic Cache Parameters */
1317 		ncpus = os_atomic_load_uint(&mach->ncpus);
1318 		clevel = __SHIFTOUT(cpudata->gprs[NVMM_X64_GPR_RAX],
1319 		    CPUID_0_04_EAX_CACHELEVEL);
1320 
1321 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_0_04_EAX_SHARING;
1322 		if (clevel >= 3) {
1323 			/* L3 and above: all CPUs. */
1324 			cpudata->gprs[NVMM_X64_GPR_RAX] |=
1325 			    __SHIFTIN(ncpus - 1, CPUID_0_04_EAX_SHARING);
1326 		} else {
1327 			/* L2 and below: one LP per CPU. */
1328 			cpudata->gprs[NVMM_X64_GPR_RAX] |=
1329 			    __SHIFTIN(0, CPUID_0_04_EAX_SHARING);
1330 		}
1331 
1332 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_0_04_EAX_CORE_P_PKG;
1333 		cpudata->gprs[NVMM_X64_GPR_RAX] |=
1334 		    __SHIFTIN(ncpus - 1, CPUID_0_04_EAX_CORE_P_PKG);
1335 		break;
1336 	case 0x00000005: /* MONITOR/MWAIT */
1337 	case 0x00000006: /* Thermal and Power Management */
1338 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1339 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1340 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1341 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1342 		break;
1343 	case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1344 		switch (ecx) {
1345 		case 0:
1346 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1347 			cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1348 			cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1349 			cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1350 			if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1351 				cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_0_07_EBX_INVPCID;
1352 			}
1353 			break;
1354 		default:
1355 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1356 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1357 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1358 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1359 			break;
1360 		}
1361 		break;
1362 	case 0x00000008: /* Empty */
1363 	case 0x00000009: /* Direct Cache Access Information */
1364 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1365 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1366 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1367 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1368 		break;
1369 	case 0x0000000A: /* Architectural Performance Monitoring */
1370 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1371 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1372 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1373 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1374 		break;
1375 	case 0x0000000B: /* Extended Topology Enumeration */
1376 		switch (ecx) {
1377 		case 0: /* Threads */
1378 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1379 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1380 			cpudata->gprs[NVMM_X64_GPR_RCX] =
1381 			    __SHIFTIN(ecx, CPUID_0_0B_ECX_LVLNUM) |
1382 			    __SHIFTIN(CPUID_0_0B_ECX_LVLTYPE_SMT, CPUID_0_0B_ECX_LVLTYPE);
1383 			cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1384 			break;
1385 		case 1: /* Cores */
1386 			ncpus = os_atomic_load_uint(&mach->ncpus);
1387 			cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1388 			cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1389 			cpudata->gprs[NVMM_X64_GPR_RCX] =
1390 			    __SHIFTIN(ecx, CPUID_0_0B_ECX_LVLNUM) |
1391 			    __SHIFTIN(CPUID_0_0B_ECX_LVLTYPE_CORE, CPUID_0_0B_ECX_LVLTYPE);
1392 			cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1393 			break;
1394 		default:
1395 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1396 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1397 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1398 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1399 			break;
1400 		}
1401 		break;
1402 	case 0x0000000C: /* Empty */
1403 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1404 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1405 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1406 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1407 		break;
1408 	case 0x0000000D: /* Processor Extended State Enumeration */
1409 		if (vmx_xcr0_mask == 0) {
1410 			break;
1411 		}
1412 		switch (ecx) {
1413 		case 0:
1414 			/* Supported XCR0 bits. */
1415 			cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1416 			cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1417 			/* XSAVE size for currently enabled XCR0 features. */
1418 			cpudata->gprs[NVMM_X64_GPR_RBX] = nvmm_x86_xsave_size(cpudata->gxcr0);
1419 			/* XSAVE size for all supported XCR0 features. */
1420 			cpudata->gprs[NVMM_X64_GPR_RCX] = nvmm_x86_xsave_size(vmx_xcr0_mask);
1421 			break;
1422 		case 1:
1423 			cpudata->gprs[NVMM_X64_GPR_RAX] &=
1424 			    (CPUID_0_0D_ECX1_EAX_XSAVEOPT |
1425 			     CPUID_0_0D_ECX1_EAX_XSAVEC |
1426 			     CPUID_0_0D_ECX1_EAX_XGETBV);
1427 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1428 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1429 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1430 			break;
1431 		default:
1432 			cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1433 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1434 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1435 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1436 			break;
1437 		}
1438 		break;
1439 	case 0x0000000E: /* Empty */
1440 	case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1441 	case 0x00000010: /* Intel RDT Allocation Enumeration */
1442 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1443 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1444 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1445 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1446 		break;
1447 	case 0x00000011: /* Empty */
1448 	case 0x00000012: /* Intel SGX Capability Enumeration */
1449 	case 0x00000013: /* Empty */
1450 	case 0x00000014: /* Intel Processor Trace Enumeration */
1451 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1452 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1453 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1454 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1455 		break;
1456 	case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1457 	case 0x00000016: /* Processor Frequency Information */
1458 		break;
1459 
1460 	case 0x40000000: /* Hypervisor Information */
1461 		cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
1462 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1463 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1464 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1465 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1466 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1467 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1468 		break;
1469 
1470 	case 0x80000000:
1471 		cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_extended;
1472 		break;
1473 	case 0x80000001:
1474 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1475 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1476 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1477 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1478 		break;
1479 	case 0x80000002: /* Processor Brand String */
1480 	case 0x80000003: /* Processor Brand String */
1481 	case 0x80000004: /* Processor Brand String */
1482 	case 0x80000005: /* Reserved Zero */
1483 	case 0x80000006: /* Cache Information */
1484 		break;
1485 	case 0x80000007: /* TSC Information */
1486 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000007.eax;
1487 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
1488 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
1489 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
1490 		break;
1491 	case 0x80000008: /* Address Sizes */
1492 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000008.eax;
1493 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
1494 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
1495 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
1496 		break;
1497 
1498 	default:
1499 		break;
1500 	}
1501 }
1502 
1503 static void
1504 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1505 {
1506 	uint64_t inslen, rip;
1507 
1508 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1509 	rip = vmx_vmread(VMCS_GUEST_RIP);
1510 	exit->u.insn.npc = rip + inslen;
1511 	exit->reason = reason;
1512 }
1513 
1514 static void
1515 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1516     struct nvmm_vcpu_exit *exit)
1517 {
1518 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1519 	struct nvmm_vcpu_conf_cpuid *cpuid;
1520 	uint32_t eax, ecx;
1521 	size_t i;
1522 
1523 	eax = (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1524 	ecx = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1525 	vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1526 	vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1527 
1528 	for (i = 0; i < VMX_NCPUIDS; i++) {
1529 		if (!cpudata->cpuidpresent[i]) {
1530 			continue;
1531 		}
1532 		cpuid = &cpudata->cpuid[i];
1533 		if (cpuid->leaf != eax) {
1534 			continue;
1535 		}
1536 
1537 		if (cpuid->exit) {
1538 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1539 			return;
1540 		}
1541 		OS_ASSERT(cpuid->mask);
1542 
1543 		/* del */
1544 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1545 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1546 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1547 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1548 
1549 		/* set */
1550 		cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1551 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1552 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1553 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1554 
1555 		break;
1556 	}
1557 
1558 	vmx_inkernel_advance();
1559 	exit->reason = NVMM_VCPU_EXIT_NONE;
1560 }
1561 
1562 static void
1563 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1564     struct nvmm_vcpu_exit *exit)
1565 {
1566 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1567 	uint64_t rflags;
1568 
1569 	if (cpudata->int_window_exit) {
1570 		rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1571 		if (rflags & PSL_I) {
1572 			vmx_event_waitexit_disable(vcpu, false);
1573 		}
1574 	}
1575 
1576 	vmx_inkernel_advance();
1577 	exit->reason = NVMM_VCPU_EXIT_HALTED;
1578 }
1579 
1580 #define VMX_QUAL_CR_NUM		__BITS(3,0)
1581 #define VMX_QUAL_CR_TYPE	__BITS(5,4)
1582 #define		CR_TYPE_WRITE	0
1583 #define		CR_TYPE_READ	1
1584 #define		CR_TYPE_CLTS	2
1585 #define		CR_TYPE_LMSW	3
1586 #define VMX_QUAL_CR_LMSW_OPMEM	__BIT(6)
1587 #define VMX_QUAL_CR_GPR		__BITS(11,8)
1588 #define VMX_QUAL_CR_LMSW_SRC	__BIT(31,16)
1589 
1590 static inline int
1591 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1592 {
1593 	/* Bits set to 1 in fixed0 are fixed to 1. */
1594 	if ((crval & fixed0) != fixed0) {
1595 		return -1;
1596 	}
1597 	/* Bits set to 0 in fixed1 are fixed to 0. */
1598 	if (crval & ~fixed1) {
1599 		return -1;
1600 	}
1601 	return 0;
1602 }
1603 
1604 static int
1605 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1606     uint64_t qual)
1607 {
1608 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1609 	uint64_t type, gpr, oldcr0, realcr0, fakecr0;
1610 	uint64_t efer, ctls1;
1611 
1612 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1613 	if (type != CR_TYPE_WRITE) {
1614 		return -1;
1615 	}
1616 
1617 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1618 	OS_ASSERT(gpr < 16);
1619 
1620 	if (gpr == NVMM_X64_GPR_RSP) {
1621 		fakecr0 = vmx_vmread(VMCS_GUEST_RSP);
1622 	} else {
1623 		fakecr0 = cpudata->gprs[gpr];
1624 	}
1625 
1626 	/*
1627 	 * fakecr0 is the value the guest believes is in %cr0. realcr0 is the
1628 	 * actual value in %cr0.
1629 	 *
1630 	 * In fakecr0 we must force CR0_ET to 1.
1631 	 *
1632 	 * In realcr0 we must force CR0_NW and CR0_CD to 0, and CR0_ET and
1633 	 * CR0_NE to 1.
1634 	 */
1635 	fakecr0 |= CR0_ET;
1636 	realcr0 = (fakecr0 & ~CR0_STATIC_MASK) | CR0_ET | CR0_NE;
1637 
1638 	if (vmx_check_cr(realcr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1639 		return -1;
1640 	}
1641 
1642 	/*
1643 	 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1644 	 * from CR3.
1645 	 */
1646 
1647 	if (realcr0 & CR0_PG) {
1648 		ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1649 		efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1650 		if (efer & EFER_LME) {
1651 			ctls1 |= ENTRY_CTLS_LONG_MODE;
1652 			efer |= EFER_LMA;
1653 		} else {
1654 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1655 			efer &= ~EFER_LMA;
1656 		}
1657 		vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1658 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1659 	}
1660 
1661 	oldcr0 = (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
1662 	    (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
1663 	if ((oldcr0 ^ fakecr0) & CR0_TLB_FLUSH) {
1664 		cpudata->gtlb_want_flush = true;
1665 	}
1666 
1667 	vmx_vmwrite(VMCS_CR0_SHADOW, fakecr0);
1668 	vmx_vmwrite(VMCS_GUEST_CR0, realcr0);
1669 	vmx_inkernel_advance();
1670 	return 0;
1671 }
1672 
1673 static int
1674 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1675     uint64_t qual)
1676 {
1677 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1678 	uint64_t type, gpr, oldcr4, cr4;
1679 
1680 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1681 	if (type != CR_TYPE_WRITE) {
1682 		return -1;
1683 	}
1684 
1685 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1686 	OS_ASSERT(gpr < 16);
1687 
1688 	if (gpr == NVMM_X64_GPR_RSP) {
1689 		gpr = vmx_vmread(VMCS_GUEST_RSP);
1690 	} else {
1691 		gpr = cpudata->gprs[gpr];
1692 	}
1693 
1694 	if (gpr & CR4_INVALID) {
1695 		return -1;
1696 	}
1697 	cr4 = gpr | CR4_VMXE;
1698 	if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1699 		return -1;
1700 	}
1701 
1702 	oldcr4 = vmx_vmread(VMCS_GUEST_CR4);
1703 	if ((oldcr4 ^ gpr) & CR4_TLB_FLUSH) {
1704 		cpudata->gtlb_want_flush = true;
1705 	}
1706 
1707 	vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1708 	vmx_inkernel_advance();
1709 	return 0;
1710 }
1711 
1712 static int
1713 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1714     uint64_t qual, struct nvmm_vcpu_exit *exit)
1715 {
1716 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1717 	uint64_t type, gpr;
1718 	bool write;
1719 
1720 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1721 	if (type == CR_TYPE_WRITE) {
1722 		write = true;
1723 	} else if (type == CR_TYPE_READ) {
1724 		write = false;
1725 	} else {
1726 		return -1;
1727 	}
1728 
1729 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1730 	OS_ASSERT(gpr < 16);
1731 
1732 	if (write) {
1733 		if (gpr == NVMM_X64_GPR_RSP) {
1734 			cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1735 		} else {
1736 			cpudata->gcr8 = cpudata->gprs[gpr];
1737 		}
1738 		if (cpudata->tpr.exit_changed) {
1739 			exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1740 		}
1741 	} else {
1742 		if (gpr == NVMM_X64_GPR_RSP) {
1743 			vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1744 		} else {
1745 			cpudata->gprs[gpr] = cpudata->gcr8;
1746 		}
1747 	}
1748 
1749 	vmx_inkernel_advance();
1750 	return 0;
1751 }
1752 
1753 static void
1754 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1755     struct nvmm_vcpu_exit *exit)
1756 {
1757 	uint64_t qual;
1758 	int ret;
1759 
1760 	exit->reason = NVMM_VCPU_EXIT_NONE;
1761 
1762 	qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1763 
1764 	switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1765 	case 0:
1766 		ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1767 		break;
1768 	case 4:
1769 		ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1770 		break;
1771 	case 8:
1772 		ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1773 		break;
1774 	default:
1775 		ret = -1;
1776 		break;
1777 	}
1778 
1779 	if (ret == -1) {
1780 		vmx_inject_gp(vcpu);
1781 	}
1782 }
1783 
1784 #define VMX_QUAL_IO_SIZE	__BITS(2,0)
1785 #define		IO_SIZE_8	0
1786 #define		IO_SIZE_16	1
1787 #define		IO_SIZE_32	3
1788 #define VMX_QUAL_IO_IN		__BIT(3)
1789 #define VMX_QUAL_IO_STR		__BIT(4)
1790 #define VMX_QUAL_IO_REP		__BIT(5)
1791 #define VMX_QUAL_IO_DX		__BIT(6)
1792 #define VMX_QUAL_IO_PORT	__BITS(31,16)
1793 
1794 #define VMX_INFO_IO_ADRSIZE	__BITS(9,7)
1795 #define		IO_ADRSIZE_16	0
1796 #define		IO_ADRSIZE_32	1
1797 #define		IO_ADRSIZE_64	2
1798 #define VMX_INFO_IO_SEG		__BITS(17,15)
1799 
1800 static void
1801 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1802     struct nvmm_vcpu_exit *exit)
1803 {
1804 	uint64_t qual, info, inslen, rip;
1805 
1806 	qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1807 	info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1808 
1809 	exit->reason = NVMM_VCPU_EXIT_IO;
1810 
1811 	exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1812 	exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1813 
1814 	OS_ASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1815 	exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1816 
1817 	if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1818 		exit->u.io.address_size = 8;
1819 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1820 		exit->u.io.address_size = 4;
1821 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1822 		exit->u.io.address_size = 2;
1823 	}
1824 
1825 	if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1826 		exit->u.io.operand_size = 4;
1827 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1828 		exit->u.io.operand_size = 2;
1829 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1830 		exit->u.io.operand_size = 1;
1831 	}
1832 
1833 	exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1834 	exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1835 
1836 	if (exit->u.io.in && exit->u.io.str) {
1837 		exit->u.io.seg = NVMM_X64_SEG_ES;
1838 	}
1839 
1840 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1841 	rip = vmx_vmread(VMCS_GUEST_RIP);
1842 	exit->u.io.npc = rip + inslen;
1843 
1844 	vmx_vcpu_state_provide(vcpu,
1845 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1846 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1847 }
1848 
1849 static const uint64_t msr_ignore_list[] = {
1850 	MSR_BIOS_SIGN,
1851 	MSR_IA32_PLATFORM_ID
1852 };
1853 
1854 static bool
1855 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1856     struct nvmm_vcpu_exit *exit)
1857 {
1858 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1859 	uint64_t val;
1860 	size_t i;
1861 
1862 	if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1863 		if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1864 			val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1865 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1866 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1867 			goto handled;
1868 		}
1869 		if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1870 			val = cpudata->gmsr_misc_enable;
1871 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1872 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1873 			goto handled;
1874 		}
1875 		if (exit->u.rdmsr.msr == MSR_IA32_ARCH_CAPABILITIES) {
1876 			cpuid_desc_t descs;
1877 			x86_get_cpuid(0x00000000, &descs);
1878 			if (descs.eax < 7) {
1879 				goto error;
1880 			}
1881 			x86_get_cpuid(0x00000007, &descs);
1882 			if (!(descs.edx & CPUID_0_07_EDX_ARCH_CAP)) {
1883 				goto error;
1884 			}
1885 			val = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
1886 			val &= (IA32_ARCH_RDCL_NO |
1887 			    IA32_ARCH_SSB_NO |
1888 			    IA32_ARCH_MDS_NO |
1889 			    IA32_ARCH_TAA_NO);
1890 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1891 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1892 			goto handled;
1893 		}
1894 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1895 			if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1896 				continue;
1897 			val = 0;
1898 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1899 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1900 			goto handled;
1901 		}
1902 	} else {
1903 		if (exit->u.wrmsr.msr == MSR_TSC) {
1904 			cpudata->gtsc_offset = exit->u.wrmsr.val - rdtsc();
1905 			cpudata->gtsc_want_update = true;
1906 			goto handled;
1907 		}
1908 		if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1909 			val = exit->u.wrmsr.val;
1910 			if (__predict_false(!nvmm_x86_pat_validate(val))) {
1911 				goto error;
1912 			}
1913 			vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1914 			goto handled;
1915 		}
1916 		if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1917 			/* Don't care. */
1918 			goto handled;
1919 		}
1920 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1921 			if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1922 				continue;
1923 			goto handled;
1924 		}
1925 	}
1926 
1927 	return false;
1928 
1929 handled:
1930 	vmx_inkernel_advance();
1931 	return true;
1932 
1933 error:
1934 	vmx_inject_gp(vcpu);
1935 	return true;
1936 }
1937 
1938 static void
1939 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1940     struct nvmm_vcpu_exit *exit)
1941 {
1942 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1943 	uint64_t inslen, rip;
1944 
1945 	exit->reason = NVMM_VCPU_EXIT_RDMSR;
1946 	exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1947 
1948 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1949 		exit->reason = NVMM_VCPU_EXIT_NONE;
1950 		return;
1951 	}
1952 
1953 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1954 	rip = vmx_vmread(VMCS_GUEST_RIP);
1955 	exit->u.rdmsr.npc = rip + inslen;
1956 
1957 	vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1958 }
1959 
1960 static void
1961 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1962     struct nvmm_vcpu_exit *exit)
1963 {
1964 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1965 	uint64_t rdx, rax, inslen, rip;
1966 
1967 	rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1968 	rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1969 
1970 	exit->reason = NVMM_VCPU_EXIT_WRMSR;
1971 	exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1972 	exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1973 
1974 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1975 		exit->reason = NVMM_VCPU_EXIT_NONE;
1976 		return;
1977 	}
1978 
1979 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1980 	rip = vmx_vmread(VMCS_GUEST_RIP);
1981 	exit->u.wrmsr.npc = rip + inslen;
1982 
1983 	vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1984 }
1985 
1986 static void
1987 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1988     struct nvmm_vcpu_exit *exit)
1989 {
1990 	struct vmx_cpudata *cpudata = vcpu->cpudata;
1991 	uint64_t val;
1992 
1993 	exit->reason = NVMM_VCPU_EXIT_NONE;
1994 
1995 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1996 	    (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1997 
1998 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1999 		goto error;
2000 	} else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
2001 		goto error;
2002 	} else if (__predict_false((val & XCR0_X87) == 0)) {
2003 		goto error;
2004 	}
2005 
2006 	cpudata->gxcr0 = val;
2007 
2008 	vmx_inkernel_advance();
2009 	return;
2010 
2011 error:
2012 	vmx_inject_gp(vcpu);
2013 }
2014 
2015 #define VMX_EPT_VIOLATION_READ		__BIT(0)
2016 #define VMX_EPT_VIOLATION_WRITE		__BIT(1)
2017 #define VMX_EPT_VIOLATION_EXECUTE	__BIT(2)
2018 
2019 static void
2020 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2021     struct nvmm_vcpu_exit *exit)
2022 {
2023 	uint64_t perm;
2024 	gpaddr_t gpa;
2025 
2026 	gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
2027 
2028 	exit->reason = NVMM_VCPU_EXIT_MEMORY;
2029 	perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
2030 	if (perm & VMX_EPT_VIOLATION_WRITE)
2031 		exit->u.mem.prot = PROT_WRITE;
2032 	else if (perm & VMX_EPT_VIOLATION_EXECUTE)
2033 		exit->u.mem.prot = PROT_EXEC;
2034 	else
2035 		exit->u.mem.prot = PROT_READ;
2036 	exit->u.mem.gpa = gpa;
2037 	exit->u.mem.inst_len = 0;
2038 
2039 	vmx_vcpu_state_provide(vcpu,
2040 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
2041 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
2042 }
2043 
2044 /* -------------------------------------------------------------------------- */
2045 
2046 static void
2047 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
2048 {
2049 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2050 
2051 #if defined(__NetBSD__)
2052 	x86_curthread_save_fpu();
2053 #elif defined(__DragonFly__)
2054 	/*
2055 	 * NOTE: Host FPU state depends on whether the user program used the
2056 	 *       FPU or not.  Need to use npxpush()/npxpop() to handle this.
2057 	 */
2058 	npxpush(&cpudata->hstate.hmctx);
2059 #endif
2060 
2061 	x86_restore_fpu(&cpudata->gxsave, vmx_xcr0_mask);
2062 	if (vmx_xcr0_mask != 0) {
2063 		x86_set_xcr(0, cpudata->gxcr0);
2064 	}
2065 }
2066 
2067 static void
2068 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
2069 {
2070 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2071 
2072 	if (vmx_xcr0_mask != 0) {
2073 		x86_set_xcr(0, vmx_global_hstate.xcr0);
2074 	}
2075 	x86_save_fpu(&cpudata->gxsave, vmx_xcr0_mask);
2076 
2077 #if defined(__NetBSD__)
2078 	x86_curthread_restore_fpu();
2079 #elif defined(__DragonFly__)
2080 	npxpop(&cpudata->hstate.hmctx);
2081 #endif
2082 }
2083 
2084 static void
2085 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
2086 {
2087 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2088 
2089 	x86_curthread_save_dbregs(cpudata->hstate.drs);
2090 
2091 	x86_set_dr7(0);
2092 
2093 	x86_set_dr0(cpudata->drs[NVMM_X64_DR_DR0]);
2094 	x86_set_dr1(cpudata->drs[NVMM_X64_DR_DR1]);
2095 	x86_set_dr2(cpudata->drs[NVMM_X64_DR_DR2]);
2096 	x86_set_dr3(cpudata->drs[NVMM_X64_DR_DR3]);
2097 	x86_set_dr6(cpudata->drs[NVMM_X64_DR_DR6]);
2098 }
2099 
2100 static void
2101 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
2102 {
2103 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2104 
2105 	cpudata->drs[NVMM_X64_DR_DR0] = x86_get_dr0();
2106 	cpudata->drs[NVMM_X64_DR_DR1] = x86_get_dr1();
2107 	cpudata->drs[NVMM_X64_DR_DR2] = x86_get_dr2();
2108 	cpudata->drs[NVMM_X64_DR_DR3] = x86_get_dr3();
2109 	cpudata->drs[NVMM_X64_DR_DR6] = x86_get_dr6();
2110 
2111 	x86_curthread_restore_dbregs(cpudata->hstate.drs);
2112 }
2113 
2114 static void
2115 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
2116 {
2117 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2118 
2119 	/* This gets restored automatically by the CPU. */
2120 	vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)os_curcpu_idt());
2121 	vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
2122 	vmx_vmwrite(VMCS_HOST_CR3, x86_get_cr3());
2123 	vmx_vmwrite(VMCS_HOST_CR4, x86_get_cr4());
2124 
2125 	/* Save the percpu host state. */
2126 	cpudata->hstate.kernelgsbase = rdmsr(MSR_KERNELGSBASE);
2127 }
2128 
2129 static void
2130 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
2131 {
2132 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2133 
2134 	/* Restore the global host state. */
2135 	wrmsr(MSR_STAR, vmx_global_hstate.star);
2136 	wrmsr(MSR_LSTAR, vmx_global_hstate.lstar);
2137 	wrmsr(MSR_CSTAR, vmx_global_hstate.cstar);
2138 	wrmsr(MSR_SFMASK, vmx_global_hstate.sfmask);
2139 
2140 	/* Restore the percpu host state. */
2141 	wrmsr(MSR_KERNELGSBASE, cpudata->hstate.kernelgsbase);
2142 }
2143 
2144 /* -------------------------------------------------------------------------- */
2145 
2146 #define VMX_INVVPID_ADDRESS		0
2147 #define VMX_INVVPID_CONTEXT		1
2148 #define VMX_INVVPID_ALL			2
2149 #define VMX_INVVPID_CONTEXT_NOGLOBAL	3
2150 
2151 #define VMX_INVEPT_CONTEXT		1
2152 #define VMX_INVEPT_ALL			2
2153 
2154 static inline void
2155 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2156 {
2157 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2158 
2159 	if (vcpu->hcpu_last != hcpu) {
2160 		cpudata->gtlb_want_flush = true;
2161 	}
2162 }
2163 
2164 static inline void
2165 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2166 {
2167 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2168 	struct ept_desc ept_desc;
2169 
2170 	if (__predict_true(!os_cpuset_isset(cpudata->htlb_want_flush, hcpu))) {
2171 		return;
2172 	}
2173 
2174 	ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2175 	ept_desc.mbz = 0;
2176 	vmx_invept(vmx_ept_flush_op, &ept_desc);
2177 	os_cpuset_clear(cpudata->htlb_want_flush, hcpu);
2178 }
2179 
2180 static inline uint64_t
2181 vmx_htlb_flush(struct nvmm_machine *mach, struct vmx_cpudata *cpudata)
2182 {
2183 	struct ept_desc ept_desc;
2184 	uint64_t machgen;
2185 
2186 #if defined(__NetBSD__)
2187 	machgen = ((struct vmx_machdata *)mach->machdata)->mach_htlb_gen;
2188 #elif defined(__DragonFly__)
2189 	clear_xinvltlb();
2190 	machgen = vmspace_pmap(mach->vm)->pm_invgen;
2191 #endif
2192 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
2193 		return machgen;
2194 	}
2195 
2196 	os_cpuset_setrunning(cpudata->htlb_want_flush);
2197 
2198 	ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2199 	ept_desc.mbz = 0;
2200 	vmx_invept(vmx_ept_flush_op, &ept_desc);
2201 
2202 	return machgen;
2203 }
2204 
2205 static inline void
2206 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
2207 {
2208 	cpudata->vcpu_htlb_gen = machgen;
2209 	os_cpuset_clear(cpudata->htlb_want_flush, os_curcpu_number());
2210 }
2211 
2212 static inline void
2213 vmx_exit_evt(struct vmx_cpudata *cpudata)
2214 {
2215 	uint64_t info, err, inslen;
2216 
2217 	cpudata->evt_pending = false;
2218 
2219 	info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
2220 	if (__predict_true((info & INTR_INFO_VALID) == 0)) {
2221 		return;
2222 	}
2223 	err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
2224 
2225 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
2226 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
2227 
2228 	switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
2229 	case INTR_TYPE_SW_INT:
2230 	case INTR_TYPE_PRIV_SW_EXC:
2231 	case INTR_TYPE_SW_EXC:
2232 		inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
2233 		vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
2234 	}
2235 
2236 	cpudata->evt_pending = true;
2237 }
2238 
2239 static int
2240 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2241     struct nvmm_vcpu_exit *exit)
2242 {
2243 	struct nvmm_comm_page *comm = vcpu->comm;
2244 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2245 	struct vpid_desc vpid_desc;
2246 	uint64_t exitcode;
2247 	uint64_t intstate;
2248 	uint64_t machgen;
2249 	int hcpu, ret;
2250 	int error = 0;
2251 	bool launched;
2252 
2253 	vmx_vmcs_enter(vcpu);
2254 
2255 	vmx_vcpu_state_commit(vcpu);
2256 	comm->state_cached = 0;
2257 
2258 #ifndef __DragonFly__
2259 	if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2260 		vmx_vmcs_leave(vcpu);
2261 		return EINVAL;
2262 	}
2263 #endif
2264 
2265 	hcpu = os_curcpu_number();
2266 	launched = cpudata->vmcs_launched;
2267 
2268 	vmx_gtlb_catchup(vcpu, hcpu);
2269 	vmx_htlb_catchup(vcpu, hcpu);
2270 
2271 	if (vcpu->hcpu_last != hcpu) {
2272 		vmx_vmwrite(VMCS_HOST_TR_SELECTOR, os_curcpu_tss_sel());
2273 		vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)os_curcpu_tss());
2274 		vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)os_curcpu_gdt());
2275 		vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2276 		cpudata->gtsc_want_update = true;
2277 		vcpu->hcpu_last = hcpu;
2278 
2279 #ifdef __DragonFly__
2280 		/*
2281 		 * XXX: We aren't tracking overloaded CPUs (multiple vCPUs
2282 		 *      scheduled on the same physical CPU) yet so there are
2283 		 *      currently no calls to pmap_del_cpu().
2284 		 */
2285 		pmap_add_cpu(mach->vm, hcpu);
2286 #endif
2287 	}
2288 
2289 	vmx_vcpu_guest_dbregs_enter(vcpu);
2290 	vmx_vcpu_guest_misc_enter(vcpu);
2291 
2292 	while (1) {
2293 		if (cpudata->gtlb_want_flush) {
2294 			vpid_desc.vpid = cpudata->asid;
2295 			vpid_desc.addr = 0;
2296 			vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2297 			cpudata->gtlb_want_flush = false;
2298 		}
2299 
2300 		if (__predict_false(cpudata->gtsc_want_update)) {
2301 			vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc_offset);
2302 			cpudata->gtsc_want_update = false;
2303 		}
2304 
2305 		vmx_cli();
2306 		vmx_vcpu_guest_fpu_enter(vcpu);
2307 		machgen = vmx_htlb_flush(mach, cpudata);
2308 
2309 #ifdef __DragonFly__
2310 		/*
2311 		 * Check for pending host events (e.g., interrupt, AST)
2312 		 * to make the state safe to VM Entry.  This check must
2313 		 * be done after the cli to avoid gd_reqflags pending
2314 		 * races.
2315 		 *
2316 		 * Emulators may assume that event injection succeeds, but
2317 		 * we have to return to process these events.  To deal with
2318 		 * this, use ERESTART mechanics.
2319 		 */
2320 		if (__predict_false(mycpu->gd_reqflags & RQF_HVM_MASK)) {
2321 			/* INVEPT executed, so ack hTLB flush. */
2322 			vmx_htlb_flush_ack(cpudata, machgen);
2323 			vmx_vcpu_guest_fpu_leave(vcpu);
2324 			vmx_sti();
2325 			exit->reason = NVMM_VCPU_EXIT_NONE;
2326 			error = ERESTART;
2327 			break;
2328 		}
2329 
2330 		/*
2331 		 * Only commit event requests when we are absolutely
2332 		 * sure that we can issue the vmlaunch/vmresume.
2333 		 */
2334 		if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2335 			/* INVEPT executed, so ack hTLB flush. */
2336 			vmx_htlb_flush_ack(cpudata, machgen);
2337 			vmx_vcpu_guest_fpu_leave(vcpu);
2338 			vmx_sti();
2339 			exit->reason = NVMM_VCPU_EXIT_NONE;
2340 			error = EINVAL;
2341 			break;
2342 		}
2343 #endif
2344 
2345 		x86_set_cr2(cpudata->gcr2);
2346 		if (launched) {
2347 			ret = vmx_vmresume(cpudata->gprs);
2348 		} else {
2349 			ret = vmx_vmlaunch(cpudata->gprs);
2350 		}
2351 		cpudata->gcr2 = x86_get_cr2();
2352 		vmx_htlb_flush_ack(cpudata, machgen);
2353 		vmx_vcpu_guest_fpu_leave(vcpu);
2354 		vmx_sti();
2355 
2356 		if (__predict_false(ret != 0)) {
2357 			vmx_exit_invalid(exit, -1);
2358 			break;
2359 		}
2360 		vmx_exit_evt(cpudata);
2361 
2362 		launched = true;
2363 
2364 		exitcode = vmx_vmread(VMCS_EXIT_REASON);
2365 		exitcode &= __BITS(15,0);
2366 
2367 		switch (exitcode) {
2368 		case VMCS_EXITCODE_EXC_NMI:
2369 			vmx_exit_exc_nmi(mach, vcpu, exit);
2370 			break;
2371 		case VMCS_EXITCODE_EXT_INT:
2372 			exit->reason = NVMM_VCPU_EXIT_NONE;
2373 			break;
2374 		case VMCS_EXITCODE_CPUID:
2375 			vmx_exit_cpuid(mach, vcpu, exit);
2376 			break;
2377 		case VMCS_EXITCODE_HLT:
2378 			vmx_exit_hlt(mach, vcpu, exit);
2379 			break;
2380 		case VMCS_EXITCODE_CR:
2381 			vmx_exit_cr(mach, vcpu, exit);
2382 			break;
2383 		case VMCS_EXITCODE_IO:
2384 			vmx_exit_io(mach, vcpu, exit);
2385 			break;
2386 		case VMCS_EXITCODE_RDMSR:
2387 			vmx_exit_rdmsr(mach, vcpu, exit);
2388 			break;
2389 		case VMCS_EXITCODE_WRMSR:
2390 			vmx_exit_wrmsr(mach, vcpu, exit);
2391 			break;
2392 		case VMCS_EXITCODE_SHUTDOWN:
2393 			exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2394 			break;
2395 		case VMCS_EXITCODE_MONITOR:
2396 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2397 			break;
2398 		case VMCS_EXITCODE_MWAIT:
2399 			vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2400 			break;
2401 		case VMCS_EXITCODE_XSETBV:
2402 			vmx_exit_xsetbv(mach, vcpu, exit);
2403 			break;
2404 		case VMCS_EXITCODE_RDPMC:
2405 		case VMCS_EXITCODE_RDTSCP:
2406 		case VMCS_EXITCODE_INVVPID:
2407 		case VMCS_EXITCODE_INVEPT:
2408 		case VMCS_EXITCODE_VMCALL:
2409 		case VMCS_EXITCODE_VMCLEAR:
2410 		case VMCS_EXITCODE_VMLAUNCH:
2411 		case VMCS_EXITCODE_VMPTRLD:
2412 		case VMCS_EXITCODE_VMPTRST:
2413 		case VMCS_EXITCODE_VMREAD:
2414 		case VMCS_EXITCODE_VMRESUME:
2415 		case VMCS_EXITCODE_VMWRITE:
2416 		case VMCS_EXITCODE_VMXOFF:
2417 		case VMCS_EXITCODE_VMXON:
2418 			vmx_inject_ud(vcpu);
2419 			exit->reason = NVMM_VCPU_EXIT_NONE;
2420 			break;
2421 		case VMCS_EXITCODE_EPT_VIOLATION:
2422 			vmx_exit_epf(mach, vcpu, exit);
2423 			break;
2424 		case VMCS_EXITCODE_INT_WINDOW:
2425 			vmx_event_waitexit_disable(vcpu, false);
2426 			exit->reason = NVMM_VCPU_EXIT_INT_READY;
2427 			break;
2428 		case VMCS_EXITCODE_NMI_WINDOW:
2429 			vmx_event_waitexit_disable(vcpu, true);
2430 			exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2431 			break;
2432 		default:
2433 			vmx_exit_invalid(exit, exitcode);
2434 			break;
2435 		}
2436 
2437 		/* If no reason to return to userland, keep rolling. */
2438 		if (os_return_needed()) {
2439 			break;
2440 		}
2441 		if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2442 			break;
2443 		}
2444 	}
2445 
2446 	cpudata->vmcs_launched = launched;
2447 
2448 	vmx_vcpu_guest_misc_leave(vcpu);
2449 	vmx_vcpu_guest_dbregs_leave(vcpu);
2450 
2451 	exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2452 	exit->exitstate.cr8 = cpudata->gcr8;
2453 	intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2454 	exit->exitstate.int_shadow =
2455 	    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2456 	exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2457 	exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2458 	exit->exitstate.evt_pending = cpudata->evt_pending;
2459 
2460 	vmx_vmcs_leave(vcpu);
2461 
2462 	return error;
2463 }
2464 
2465 /* -------------------------------------------------------------------------- */
2466 
2467 static void
2468 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2469 {
2470 	uint64_t byte;
2471 	uint8_t bitoff;
2472 
2473 	if (msr < 0x00002000) {
2474 		/* Range 1 */
2475 		byte = ((msr - 0x00000000) / 8) + 0;
2476 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2477 		/* Range 2 */
2478 		byte = ((msr - 0xC0000000) / 8) + 1024;
2479 	} else {
2480 		panic("%s: wrong range", __func__);
2481 	}
2482 
2483 	bitoff = (msr & 0x7);
2484 
2485 	if (read) {
2486 		bitmap[byte] &= ~__BIT(bitoff);
2487 	}
2488 	if (write) {
2489 		bitmap[2048 + byte] &= ~__BIT(bitoff);
2490 	}
2491 }
2492 
2493 #define VMX_SEG_ATTRIB_TYPE		__BITS(3,0)
2494 #define VMX_SEG_ATTRIB_S		__BIT(4)
2495 #define VMX_SEG_ATTRIB_DPL		__BITS(6,5)
2496 #define VMX_SEG_ATTRIB_P		__BIT(7)
2497 #define VMX_SEG_ATTRIB_AVL		__BIT(12)
2498 #define VMX_SEG_ATTRIB_L		__BIT(13)
2499 #define VMX_SEG_ATTRIB_DEF		__BIT(14)
2500 #define VMX_SEG_ATTRIB_G		__BIT(15)
2501 #define VMX_SEG_ATTRIB_UNUSABLE		__BIT(16)
2502 
2503 static void
2504 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2505 {
2506 	uint64_t attrib;
2507 
2508 	attrib =
2509 	    __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2510 	    __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2511 	    __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2512 	    __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2513 	    __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2514 	    __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2515 	    __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2516 	    __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2517 	    (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2518 
2519 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2520 		vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2521 		vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2522 	}
2523 	vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2524 	vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2525 }
2526 
2527 static void
2528 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2529 {
2530 	uint64_t selector = 0, attrib = 0, base, limit;
2531 
2532 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2533 		selector = vmx_vmread(vmx_guest_segs[idx].selector);
2534 		attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2535 	}
2536 	limit = vmx_vmread(vmx_guest_segs[idx].limit);
2537 	base = vmx_vmread(vmx_guest_segs[idx].base);
2538 
2539 	segs[idx].selector = selector;
2540 	segs[idx].limit = limit;
2541 	segs[idx].base = base;
2542 	segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2543 	segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2544 	segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2545 	segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2546 	segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2547 	segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2548 	segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2549 	segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2550 	if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2551 		segs[idx].attrib.p = 0;
2552 	}
2553 }
2554 
2555 static inline bool
2556 vmx_state_gtlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2557 {
2558 	uint64_t cr0, cr3, cr4, efer;
2559 
2560 	if (flags & NVMM_X64_STATE_CRS) {
2561 		cr0 = vmx_vmread(VMCS_GUEST_CR0);
2562 		if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2563 			return true;
2564 		}
2565 		cr3 = vmx_vmread(VMCS_GUEST_CR3);
2566 		if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2567 			return true;
2568 		}
2569 		cr4 = vmx_vmread(VMCS_GUEST_CR4);
2570 		if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2571 			return true;
2572 		}
2573 	}
2574 
2575 	if (flags & NVMM_X64_STATE_MSRS) {
2576 		efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2577 		if ((efer ^
2578 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2579 			return true;
2580 		}
2581 	}
2582 
2583 	return false;
2584 }
2585 
2586 static void
2587 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2588 {
2589 	struct nvmm_comm_page *comm = vcpu->comm;
2590 	const struct nvmm_x64_state *state = &comm->state;
2591 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2592 	struct msr_entry *gmsr = cpudata->gmsr;
2593 	struct nvmm_x64_state_fpu *fpustate;
2594 	uint64_t ctls1, intstate;
2595 	uint64_t flags;
2596 
2597 	flags = comm->state_wanted;
2598 
2599 	vmx_vmcs_enter(vcpu);
2600 
2601 	if (vmx_state_gtlb_flush(state, flags)) {
2602 		cpudata->gtlb_want_flush = true;
2603 	}
2604 
2605 	if (flags & NVMM_X64_STATE_SEGS) {
2606 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2607 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2608 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2609 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2610 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2611 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2612 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2613 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2614 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2615 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2616 	}
2617 
2618 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2619 	if (flags & NVMM_X64_STATE_GPRS) {
2620 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2621 
2622 		vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2623 		vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2624 		vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2625 	}
2626 
2627 	if (flags & NVMM_X64_STATE_CRS) {
2628 		/*
2629 		 * CR0_ET must be 1 both in the shadow and the real register.
2630 		 * CR0_NE must be 1 in the real register.
2631 		 * CR0_NW and CR0_CD must be 0 in the real register.
2632 		 */
2633 		vmx_vmwrite(VMCS_CR0_SHADOW,
2634 		    (state->crs[NVMM_X64_CR_CR0] & CR0_STATIC_MASK) |
2635 		    CR0_ET);
2636 		vmx_vmwrite(VMCS_GUEST_CR0,
2637 		    (state->crs[NVMM_X64_CR_CR0] & ~CR0_STATIC_MASK) |
2638 		    CR0_ET | CR0_NE);
2639 
2640 		cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2641 
2642 		/* XXX We are not handling PDPTE here. */
2643 		vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]);
2644 
2645 		/* CR4_VMXE is mandatory. */
2646 		vmx_vmwrite(VMCS_GUEST_CR4,
2647 		    (state->crs[NVMM_X64_CR_CR4] & CR4_VALID) | CR4_VMXE);
2648 
2649 		cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2650 
2651 		if (vmx_xcr0_mask != 0) {
2652 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
2653 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2654 			cpudata->gxcr0 &= vmx_xcr0_mask;
2655 			cpudata->gxcr0 |= XCR0_X87;
2656 		}
2657 	}
2658 
2659 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2660 	if (flags & NVMM_X64_STATE_DRS) {
2661 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2662 
2663 		cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2664 		vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2665 	}
2666 
2667 	if (flags & NVMM_X64_STATE_MSRS) {
2668 		gmsr[VMX_MSRLIST_STAR].val =
2669 		    state->msrs[NVMM_X64_MSR_STAR];
2670 		gmsr[VMX_MSRLIST_LSTAR].val =
2671 		    state->msrs[NVMM_X64_MSR_LSTAR];
2672 		gmsr[VMX_MSRLIST_CSTAR].val =
2673 		    state->msrs[NVMM_X64_MSR_CSTAR];
2674 		gmsr[VMX_MSRLIST_SFMASK].val =
2675 		    state->msrs[NVMM_X64_MSR_SFMASK];
2676 		gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2677 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2678 
2679 		vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2680 		    state->msrs[NVMM_X64_MSR_EFER]);
2681 		vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2682 		    state->msrs[NVMM_X64_MSR_PAT]);
2683 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2684 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2685 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2686 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2687 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2688 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2689 
2690 		/*
2691 		 * The emulator might NOT want to set the TSC, because doing
2692 		 * so would destroy TSC MP-synchronization across CPUs.  Try
2693 		 * to figure out what the emulator meant to do.
2694 		 *
2695 		 * If writing the last TSC value we reported via getstate or
2696 		 * a zero value, assume that the emulator does not want to
2697 		 * write to the TSC.
2698 		 */
2699 		if (state->msrs[NVMM_X64_MSR_TSC] != cpudata->gtsc_match &&
2700 		    state->msrs[NVMM_X64_MSR_TSC] != 0) {
2701 			cpudata->gtsc_offset =
2702 			    state->msrs[NVMM_X64_MSR_TSC] - rdtsc();
2703 			cpudata->gtsc_want_update = true;
2704 		}
2705 
2706 		/* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2707 		ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2708 		if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2709 			ctls1 |= ENTRY_CTLS_LONG_MODE;
2710 		} else {
2711 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2712 		}
2713 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2714 	}
2715 
2716 	if (flags & NVMM_X64_STATE_INTR) {
2717 		intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2718 		intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2719 		if (state->intr.int_shadow) {
2720 			intstate |= INT_STATE_MOVSS;
2721 		}
2722 		vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2723 
2724 		if (state->intr.int_window_exiting) {
2725 			vmx_event_waitexit_enable(vcpu, false);
2726 		} else {
2727 			vmx_event_waitexit_disable(vcpu, false);
2728 		}
2729 
2730 		if (state->intr.nmi_window_exiting) {
2731 			vmx_event_waitexit_enable(vcpu, true);
2732 		} else {
2733 			vmx_event_waitexit_disable(vcpu, true);
2734 		}
2735 	}
2736 
2737 	CTASSERT(sizeof(cpudata->gxsave.fpu) == sizeof(state->fpu));
2738 	if (flags & NVMM_X64_STATE_FPU) {
2739 		memcpy(&cpudata->gxsave.fpu, &state->fpu, sizeof(state->fpu));
2740 
2741 		fpustate = (struct nvmm_x64_state_fpu *)&cpudata->gxsave.fpu;
2742 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2743 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2744 
2745 		if (vmx_xcr0_mask != 0) {
2746 			/* Reset XSTATE_BV, to force a reload. */
2747 			cpudata->gxsave.xstate_bv = vmx_xcr0_mask;
2748 		}
2749 	}
2750 
2751 	vmx_vmcs_leave(vcpu);
2752 
2753 	comm->state_wanted = 0;
2754 	comm->state_cached |= flags;
2755 }
2756 
2757 static void
2758 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2759 {
2760 	struct nvmm_comm_page *comm = vcpu->comm;
2761 	struct nvmm_x64_state *state = &comm->state;
2762 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2763 	struct msr_entry *gmsr = cpudata->gmsr;
2764 	uint64_t intstate, flags;
2765 
2766 	flags = comm->state_wanted;
2767 
2768 	vmx_vmcs_enter(vcpu);
2769 
2770 	if (flags & NVMM_X64_STATE_SEGS) {
2771 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2772 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2773 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2774 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2775 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2776 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2777 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2778 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2779 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2780 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2781 	}
2782 
2783 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2784 	if (flags & NVMM_X64_STATE_GPRS) {
2785 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2786 
2787 		state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2788 		state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2789 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2790 	}
2791 
2792 	if (flags & NVMM_X64_STATE_CRS) {
2793 		state->crs[NVMM_X64_CR_CR0] =
2794 		    (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
2795 		    (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
2796 		state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2797 		state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2798 		state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2799 		state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2800 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2801 
2802 		/* Hide VMXE. */
2803 		state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2804 	}
2805 
2806 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2807 	if (flags & NVMM_X64_STATE_DRS) {
2808 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2809 
2810 		state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2811 	}
2812 
2813 	if (flags & NVMM_X64_STATE_MSRS) {
2814 		state->msrs[NVMM_X64_MSR_STAR] =
2815 		    gmsr[VMX_MSRLIST_STAR].val;
2816 		state->msrs[NVMM_X64_MSR_LSTAR] =
2817 		    gmsr[VMX_MSRLIST_LSTAR].val;
2818 		state->msrs[NVMM_X64_MSR_CSTAR] =
2819 		    gmsr[VMX_MSRLIST_CSTAR].val;
2820 		state->msrs[NVMM_X64_MSR_SFMASK] =
2821 		    gmsr[VMX_MSRLIST_SFMASK].val;
2822 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2823 		    gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2824 		state->msrs[NVMM_X64_MSR_EFER] =
2825 		    vmx_vmread(VMCS_GUEST_IA32_EFER);
2826 		state->msrs[NVMM_X64_MSR_PAT] =
2827 		    vmx_vmread(VMCS_GUEST_IA32_PAT);
2828 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2829 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2830 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2831 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2832 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2833 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2834 		state->msrs[NVMM_X64_MSR_TSC] = rdtsc() + cpudata->gtsc_offset;
2835 
2836 		/* Save reported TSC value for later setstate check. */
2837 		cpudata->gtsc_match = state->msrs[NVMM_X64_MSR_TSC];
2838 	}
2839 
2840 	if (flags & NVMM_X64_STATE_INTR) {
2841 		intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2842 		state->intr.int_shadow =
2843 		    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2844 		state->intr.int_window_exiting = cpudata->int_window_exit;
2845 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2846 		state->intr.evt_pending = cpudata->evt_pending;
2847 	}
2848 
2849 	CTASSERT(sizeof(cpudata->gxsave.fpu) == sizeof(state->fpu));
2850 	if (flags & NVMM_X64_STATE_FPU) {
2851 		memcpy(&state->fpu, &cpudata->gxsave.fpu, sizeof(state->fpu));
2852 	}
2853 
2854 	vmx_vmcs_leave(vcpu);
2855 
2856 	comm->state_wanted = 0;
2857 	comm->state_cached |= flags;
2858 }
2859 
2860 static void
2861 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2862 {
2863 	vcpu->comm->state_wanted = flags;
2864 	vmx_vcpu_getstate(vcpu);
2865 }
2866 
2867 static void
2868 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2869 {
2870 	vcpu->comm->state_wanted = vcpu->comm->state_commit;
2871 	vcpu->comm->state_commit = 0;
2872 	vmx_vcpu_setstate(vcpu);
2873 }
2874 
2875 /* -------------------------------------------------------------------------- */
2876 
2877 static void
2878 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2879 {
2880 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2881 	size_t i, oct, bit;
2882 
2883 	os_mtx_lock(&vmx_asidlock);
2884 
2885 	for (i = 0; i < vmx_maxasid; i++) {
2886 		oct = i / 8;
2887 		bit = i % 8;
2888 
2889 		if (vmx_asidmap[oct] & __BIT(bit)) {
2890 			continue;
2891 		}
2892 
2893 		cpudata->asid = i;
2894 
2895 		vmx_asidmap[oct] |= __BIT(bit);
2896 		vmx_vmwrite(VMCS_VPID, i);
2897 		os_mtx_unlock(&vmx_asidlock);
2898 		return;
2899 	}
2900 
2901 	os_mtx_unlock(&vmx_asidlock);
2902 
2903 	panic("%s: impossible", __func__);
2904 }
2905 
2906 static void
2907 vmx_asid_free(struct nvmm_cpu *vcpu)
2908 {
2909 	size_t oct, bit;
2910 	uint64_t asid;
2911 
2912 	asid = vmx_vmread(VMCS_VPID);
2913 
2914 	oct = asid / 8;
2915 	bit = asid % 8;
2916 
2917 	os_mtx_lock(&vmx_asidlock);
2918 	vmx_asidmap[oct] &= ~__BIT(bit);
2919 	os_mtx_unlock(&vmx_asidlock);
2920 }
2921 
2922 static void
2923 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2924 {
2925 	struct vmx_cpudata *cpudata = vcpu->cpudata;
2926 	struct vmcs *vmcs = cpudata->vmcs;
2927 	struct msr_entry *gmsr = cpudata->gmsr;
2928 	uint64_t rev, eptp;
2929 
2930 	rev = vmx_get_revision();
2931 
2932 	memset(vmcs, 0, VMCS_SIZE);
2933 	vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2934 	vmcs->abort = 0;
2935 
2936 	vmx_vmcs_enter(vcpu);
2937 
2938 	/* No link pointer. */
2939 	vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2940 
2941 	/* Install the CTLSs. */
2942 	vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2943 	vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2944 	vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2945 	vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2946 	vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2947 
2948 	/* Allow direct access to certain MSRs. */
2949 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2950 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2951 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2952 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2953 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2954 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2955 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2956 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2957 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2958 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2959 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2960 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2961 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2962 	vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2963 
2964 	/*
2965 	 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2966 	 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2967 	 */
2968 	gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2969 	gmsr[VMX_MSRLIST_STAR].val = 0;
2970 	gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2971 	gmsr[VMX_MSRLIST_LSTAR].val = 0;
2972 	gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2973 	gmsr[VMX_MSRLIST_CSTAR].val = 0;
2974 	gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2975 	gmsr[VMX_MSRLIST_SFMASK].val = 0;
2976 	gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2977 	gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2978 	gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2979 	gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2980 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2981 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2982 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2983 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2984 
2985 	/* Set the CR0 mask. Any change of these bits causes a VMEXIT. */
2986 	vmx_vmwrite(VMCS_CR0_MASK, CR0_STATIC_MASK);
2987 
2988 	/* Force unsupported CR4 fields to zero. */
2989 	vmx_vmwrite(VMCS_CR4_MASK, CR4_INVALID);
2990 	vmx_vmwrite(VMCS_CR4_SHADOW, 0);
2991 
2992 	/* Set the Host state for resuming. */
2993 	vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)(uintptr_t)vmx_resume_rip);
2994 	vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2995 	vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2996 	vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2997 	vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2998 	vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2999 	vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
3000 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
3001 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
3002 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
3003 	vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
3004 	vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
3005 	vmx_vmwrite(VMCS_HOST_CR0, x86_get_cr0() & ~CR0_TS);
3006 
3007 	/* Generate ASID. */
3008 	vmx_asid_alloc(vcpu);
3009 
3010 	/* Enable Extended Paging, 4-Level. */
3011 	eptp =
3012 	    __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
3013 	    __SHIFTIN(4-1, EPTP_WALKLEN) |
3014 	    (vmx_ept_has_ad ? EPTP_FLAGS_AD : 0) |
3015 	    os_vmspace_pdirpa(mach->vm);
3016 	vmx_vmwrite(VMCS_EPTP, eptp);
3017 
3018 	/* Init IA32_MISC_ENABLE. */
3019 	cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
3020 	cpudata->gmsr_misc_enable &=
3021 	    ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
3022 	cpudata->gmsr_misc_enable |=
3023 	    (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
3024 
3025 	/* Init XSAVE header. */
3026 	cpudata->gxsave.xstate_bv = vmx_xcr0_mask;
3027 	cpudata->gxsave.xcomp_bv = 0;
3028 
3029 	/* Install the RESET state. */
3030 	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
3031 	    sizeof(nvmm_x86_reset_state));
3032 	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
3033 	vcpu->comm->state_cached = 0;
3034 	vmx_vcpu_setstate(vcpu);
3035 
3036 	vmx_vmcs_leave(vcpu);
3037 }
3038 
3039 static int
3040 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3041 {
3042 	struct vmx_cpudata *cpudata;
3043 	int error;
3044 
3045 	/* Allocate the VMX cpudata. */
3046 	cpudata = (struct vmx_cpudata *)os_pagemem_zalloc(sizeof(*cpudata));
3047 	if (cpudata == NULL)
3048 		return ENOMEM;
3049 
3050 	vcpu->cpudata = cpudata;
3051 
3052 	/* VMCS */
3053 	error = os_contigpa_zalloc(&cpudata->vmcs_pa,
3054 	    (vaddr_t *)&cpudata->vmcs, VMCS_NPAGES);
3055 	if (error)
3056 		goto error;
3057 
3058 	/* MSR Bitmap */
3059 	error = os_contigpa_zalloc(&cpudata->msrbm_pa,
3060 	    (vaddr_t *)&cpudata->msrbm, MSRBM_NPAGES);
3061 	if (error)
3062 		goto error;
3063 
3064 	/* Guest MSR List */
3065 	error = os_contigpa_zalloc(&cpudata->gmsr_pa,
3066 	    (vaddr_t *)&cpudata->gmsr, 1);
3067 	if (error)
3068 		goto error;
3069 
3070 	os_cpuset_init(&cpudata->htlb_want_flush);
3071 
3072 	/* Init the VCPU info. */
3073 	vmx_vcpu_init(mach, vcpu);
3074 
3075 	return 0;
3076 
3077 error:
3078 	if (cpudata->vmcs_pa) {
3079 		os_contigpa_free(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
3080 		    VMCS_NPAGES);
3081 	}
3082 	if (cpudata->msrbm_pa) {
3083 		os_contigpa_free(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
3084 		    MSRBM_NPAGES);
3085 	}
3086 	if (cpudata->gmsr_pa) {
3087 		os_contigpa_free(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
3088 	}
3089 	os_pagemem_free(cpudata, sizeof(*cpudata));
3090 	return error;
3091 }
3092 
3093 static void
3094 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3095 {
3096 	struct vmx_cpudata *cpudata = vcpu->cpudata;
3097 
3098 	vmx_vmcs_enter(vcpu);
3099 	vmx_asid_free(vcpu);
3100 	vmx_vmcs_destroy(vcpu);
3101 
3102 	os_cpuset_destroy(cpudata->htlb_want_flush);
3103 
3104 	os_contigpa_free(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
3105 	    VMCS_NPAGES);
3106 	os_contigpa_free(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
3107 	    MSRBM_NPAGES);
3108 	os_contigpa_free(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr,
3109 	    1);
3110 	os_pagemem_free(cpudata, sizeof(*cpudata));
3111 }
3112 
3113 /* -------------------------------------------------------------------------- */
3114 
3115 static int
3116 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
3117 {
3118 	struct nvmm_vcpu_conf_cpuid *cpuid = data;
3119 	size_t i;
3120 
3121 	if (__predict_false(cpuid->mask && cpuid->exit)) {
3122 		return EINVAL;
3123 	}
3124 	if (__predict_false(cpuid->mask &&
3125 	    ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
3126 	     (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
3127 	     (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
3128 	     (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
3129 		return EINVAL;
3130 	}
3131 
3132 	/* If unset, delete, to restore the default behavior. */
3133 	if (!cpuid->mask && !cpuid->exit) {
3134 		for (i = 0; i < VMX_NCPUIDS; i++) {
3135 			if (!cpudata->cpuidpresent[i]) {
3136 				continue;
3137 			}
3138 			if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3139 				cpudata->cpuidpresent[i] = false;
3140 			}
3141 		}
3142 		return 0;
3143 	}
3144 
3145 	/* If already here, replace. */
3146 	for (i = 0; i < VMX_NCPUIDS; i++) {
3147 		if (!cpudata->cpuidpresent[i]) {
3148 			continue;
3149 		}
3150 		if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3151 			memcpy(&cpudata->cpuid[i], cpuid,
3152 			    sizeof(struct nvmm_vcpu_conf_cpuid));
3153 			return 0;
3154 		}
3155 	}
3156 
3157 	/* Not here, insert. */
3158 	for (i = 0; i < VMX_NCPUIDS; i++) {
3159 		if (!cpudata->cpuidpresent[i]) {
3160 			cpudata->cpuidpresent[i] = true;
3161 			memcpy(&cpudata->cpuid[i], cpuid,
3162 			    sizeof(struct nvmm_vcpu_conf_cpuid));
3163 			return 0;
3164 		}
3165 	}
3166 
3167 	return ENOBUFS;
3168 }
3169 
3170 static int
3171 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
3172 {
3173 	struct nvmm_vcpu_conf_tpr *tpr = data;
3174 
3175 	memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
3176 	return 0;
3177 }
3178 
3179 static int
3180 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
3181 {
3182 	struct vmx_cpudata *cpudata = vcpu->cpudata;
3183 
3184 	switch (op) {
3185 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
3186 		return vmx_vcpu_configure_cpuid(cpudata, data);
3187 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
3188 		return vmx_vcpu_configure_tpr(cpudata, data);
3189 	default:
3190 		return EINVAL;
3191 	}
3192 }
3193 
3194 /* -------------------------------------------------------------------------- */
3195 
3196 #ifdef __NetBSD__
3197 static void
3198 vmx_tlb_flush(struct pmap *pm)
3199 {
3200 	struct nvmm_machine *mach = os_pmap_mach(pm);
3201 	struct vmx_machdata *machdata = mach->machdata;
3202 
3203 	os_atomic_inc_64(&machdata->mach_htlb_gen);
3204 
3205 	/*
3206 	 * Send a dummy IPI to each CPU. The IPIs cause #VMEXITs. Afterwards the
3207 	 * VCPU loops will see that their 'vcpu_htlb_gen' is out of sync, and
3208 	 * will each flush their own TLB.
3209 	 */
3210 	os_ipi_kickall();
3211 }
3212 #endif
3213 
3214 static void
3215 vmx_machine_create(struct nvmm_machine *mach)
3216 {
3217 	struct pmap *pmap = os_vmspace_pmap(mach->vm);
3218 	struct vmx_machdata *machdata;
3219 
3220 	/* Transform into an EPT pmap. */
3221 #if defined(__NetBSD__)
3222 	pmap_ept_transform(pmap);
3223 	os_pmap_mach(pmap) = (void *)mach;
3224 	pmap->pm_tlb_flush = vmx_tlb_flush;
3225 #elif defined(__DragonFly__)
3226 	pmap_ept_transform(pmap, vmx_ept_has_ad ? 0 : PMAP_EMULATE_AD_BITS);
3227 #endif
3228 
3229 	machdata = os_mem_zalloc(sizeof(struct vmx_machdata));
3230 	mach->machdata = machdata;
3231 
3232 	/* Start with an hTLB flush everywhere. */
3233 	machdata->mach_htlb_gen = 1;
3234 }
3235 
3236 static void
3237 vmx_machine_destroy(struct nvmm_machine *mach)
3238 {
3239 	os_mem_free(mach->machdata, sizeof(struct vmx_machdata));
3240 }
3241 
3242 static int
3243 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
3244 {
3245 	panic("%s: impossible", __func__);
3246 }
3247 
3248 /* -------------------------------------------------------------------------- */
3249 
3250 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
3251 	((msrval & __BIT(32 + bitoff)) != 0)
3252 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
3253 	((msrval & __BIT(bitoff)) == 0)
3254 
3255 static int
3256 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
3257 {
3258 	uint64_t basic, val, true_val;
3259 	bool has_true;
3260 	size_t i;
3261 
3262 	basic = rdmsr(MSR_IA32_VMX_BASIC);
3263 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3264 
3265 	val = rdmsr(msr_ctls);
3266 	if (has_true) {
3267 		true_val = rdmsr(msr_true_ctls);
3268 	} else {
3269 		true_val = val;
3270 	}
3271 
3272 	for (i = 0; i < 32; i++) {
3273 		if (!(set_one & __BIT(i))) {
3274 			continue;
3275 		}
3276 		if (!CTLS_ONE_ALLOWED(true_val, i)) {
3277 			return -1;
3278 		}
3279 	}
3280 
3281 	return 0;
3282 }
3283 
3284 static int
3285 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3286     uint64_t set_one, uint64_t set_zero, uint64_t *res)
3287 {
3288 	uint64_t basic, val, true_val;
3289 	bool one_allowed, zero_allowed, has_true;
3290 	size_t i;
3291 
3292 	basic = rdmsr(MSR_IA32_VMX_BASIC);
3293 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3294 
3295 	val = rdmsr(msr_ctls);
3296 	if (has_true) {
3297 		true_val = rdmsr(msr_true_ctls);
3298 	} else {
3299 		true_val = val;
3300 	}
3301 
3302 	for (i = 0; i < 32; i++) {
3303 		one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3304 		zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3305 
3306 		if (zero_allowed && !one_allowed) {
3307 			if (set_one & __BIT(i))
3308 				return -1;
3309 			*res &= ~__BIT(i);
3310 		} else if (one_allowed && !zero_allowed) {
3311 			if (set_zero & __BIT(i))
3312 				return -1;
3313 			*res |= __BIT(i);
3314 		} else {
3315 			if (set_zero & __BIT(i)) {
3316 				*res &= ~__BIT(i);
3317 			} else if (set_one & __BIT(i)) {
3318 				*res |= __BIT(i);
3319 			} else if (!has_true) {
3320 				*res &= ~__BIT(i);
3321 			} else if (CTLS_ZERO_ALLOWED(val, i)) {
3322 				*res &= ~__BIT(i);
3323 			} else if (CTLS_ONE_ALLOWED(val, i)) {
3324 				*res |= __BIT(i);
3325 			} else {
3326 				return -1;
3327 			}
3328 		}
3329 	}
3330 
3331 	return 0;
3332 }
3333 
3334 static bool
3335 vmx_ident(void)
3336 {
3337 	cpuid_desc_t descs;
3338 	uint64_t msr;
3339 	int ret;
3340 
3341 	x86_get_cpuid(0x00000001, &descs);
3342 	if (!(descs.ecx & CPUID_0_01_ECX_VMX)) {
3343 		return false;
3344 	}
3345 
3346 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3347 	if ((msr & IA32_FEATURE_CONTROL_LOCK) != 0 &&
3348 	    (msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3349 		os_printf("nvmm: VMX disabled in BIOS\n");
3350 		return false;
3351 	}
3352 
3353 	msr = rdmsr(MSR_IA32_VMX_BASIC);
3354 	if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3355 		os_printf("nvmm: I/O reporting not supported\n");
3356 		return false;
3357 	}
3358 	if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3359 		os_printf("nvmm: WB memory not supported\n");
3360 		return false;
3361 	}
3362 
3363 	/* PG and PE are reported, even if Unrestricted Guests is supported. */
3364 	vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3365 	vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3366 	ret = vmx_check_cr(x86_get_cr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3367 	if (ret == -1) {
3368 		os_printf("nvmm: CR0 requirements not satisfied\n");
3369 		return false;
3370 	}
3371 
3372 	vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3373 	vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3374 	ret = vmx_check_cr(x86_get_cr4() | CR4_VMXE, vmx_cr4_fixed0,
3375 	    vmx_cr4_fixed1);
3376 	if (ret == -1) {
3377 		os_printf("nvmm: CR4 requirements not satisfied\n");
3378 		return false;
3379 	}
3380 
3381 	/* Init the CTLSs right now, and check for errors. */
3382 	ret = vmx_init_ctls(
3383 	    MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3384 	    VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3385 	    &vmx_pinbased_ctls);
3386 	if (ret == -1) {
3387 		os_printf("nvmm: pin-based-ctls requirements not satisfied\n");
3388 		return false;
3389 	}
3390 	ret = vmx_init_ctls(
3391 	    MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3392 	    VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3393 	    &vmx_procbased_ctls);
3394 	if (ret == -1) {
3395 		os_printf("nvmm: proc-based-ctls requirements not satisfied\n");
3396 		return false;
3397 	}
3398 	ret = vmx_init_ctls(
3399 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3400 	    VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3401 	    &vmx_procbased_ctls2);
3402 	if (ret == -1) {
3403 		os_printf("nvmm: proc-based-ctls2 requirements not satisfied\n");
3404 		return false;
3405 	}
3406 	ret = vmx_check_ctls(
3407 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3408 	    PROC_CTLS2_INVPCID_ENABLE);
3409 	if (ret != -1) {
3410 		vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3411 	}
3412 	ret = vmx_init_ctls(
3413 	    MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3414 	    VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3415 	    &vmx_entry_ctls);
3416 	if (ret == -1) {
3417 		os_printf("nvmm: entry-ctls requirements not satisfied\n");
3418 		return false;
3419 	}
3420 	ret = vmx_init_ctls(
3421 	    MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3422 	    VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3423 	    &vmx_exit_ctls);
3424 	if (ret == -1) {
3425 		os_printf("nvmm: exit-ctls requirements not satisfied\n");
3426 		return false;
3427 	}
3428 
3429 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3430 	if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3431 		os_printf("nvmm: 4-level page tree not supported\n");
3432 		return false;
3433 	}
3434 	if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3435 		os_printf("nvmm: INVEPT not supported\n");
3436 		return false;
3437 	}
3438 	if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3439 		os_printf("nvmm: INVVPID not supported\n");
3440 		return false;
3441 	}
3442 	if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3443 		vmx_ept_has_ad = true;
3444 	} else {
3445 		vmx_ept_has_ad = false;
3446 	}
3447 #ifdef __NetBSD__
3448 	pmap_ept_has_ad = vmx_ept_has_ad;
3449 #endif
3450 	if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3451 		os_printf("nvmm: EPT UC/WB memory types not supported\n");
3452 		return false;
3453 	}
3454 
3455 	return true;
3456 }
3457 
3458 static void
3459 vmx_init_asid(uint32_t maxasid)
3460 {
3461 	size_t allocsz;
3462 
3463 	os_mtx_init(&vmx_asidlock);
3464 
3465 	vmx_maxasid = maxasid;
3466 	allocsz = roundup(maxasid, 8) / 8;
3467 	vmx_asidmap = os_mem_zalloc(allocsz);
3468 
3469 	/* ASID 0 is reserved for the host. */
3470 	vmx_asidmap[0] |= __BIT(0);
3471 }
3472 
3473 static
3474 OS_IPI_FUNC(vmx_change_cpu)
3475 {
3476 	bool enable = arg != NULL;
3477 	uint64_t msr, cr4;
3478 
3479 	if (enable) {
3480 		msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3481 		if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3482 			/* Lock now, with VMX-outside-SMX enabled. */
3483 			wrmsr(MSR_IA32_FEATURE_CONTROL, msr |
3484 			    IA32_FEATURE_CONTROL_LOCK |
3485 			    IA32_FEATURE_CONTROL_OUT_SMX);
3486 		}
3487 	}
3488 
3489 	if (!enable) {
3490 		vmx_vmxoff();
3491 	}
3492 
3493 	cr4 = x86_get_cr4();
3494 	if (enable) {
3495 		cr4 |= CR4_VMXE;
3496 	} else {
3497 		cr4 &= ~CR4_VMXE;
3498 	}
3499 	x86_set_cr4(cr4);
3500 
3501 	if (enable) {
3502 		vmx_vmxon(&vmxoncpu[os_curcpu_number()].pa);
3503 	}
3504 }
3505 
3506 static void
3507 vmx_init_l1tf(void)
3508 {
3509 	cpuid_desc_t descs;
3510 	uint64_t msr;
3511 
3512 	x86_get_cpuid(0x00000000, &descs);
3513 	if (descs.eax < 7) {
3514 		return;
3515 	}
3516 
3517 	x86_get_cpuid(0x00000007, &descs);
3518 
3519 	if (descs.edx & CPUID_0_07_EDX_ARCH_CAP) {
3520 		msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3521 		if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3522 			/* No mitigation needed. */
3523 			return;
3524 		}
3525 	}
3526 
3527 	if (descs.edx & CPUID_0_07_EDX_L1D_FLUSH) {
3528 		/* Enable hardware mitigation. */
3529 		vmx_msrlist_entry_nmsr += 1;
3530 	}
3531 }
3532 
3533 static void
3534 vmx_init(void)
3535 {
3536 	struct vmxon *vmxon;
3537 	uint32_t revision;
3538 	cpuid_desc_t descs;
3539 	os_cpu_t *cpu;
3540 	uint64_t msr;
3541 	paddr_t pa;
3542 	vaddr_t va;
3543 	int error;
3544 
3545 	/* Init the ASID bitmap (VPID). */
3546 	vmx_init_asid(VPID_MAX);
3547 
3548 	/* Init the XCR0 mask. */
3549 	vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3550 
3551 	/* Init the max basic CPUID leaf. */
3552 	x86_get_cpuid(0x00000000, &descs);
3553 	vmx_cpuid_max_basic = uimin(descs.eax, VMX_CPUID_MAX_BASIC);
3554 
3555 	/* Init the max extended CPUID leaf. */
3556 	x86_get_cpuid(0x80000000, &descs);
3557 	vmx_cpuid_max_extended = uimin(descs.eax, VMX_CPUID_MAX_EXTENDED);
3558 
3559 	/* Init the TLB flush op, the EPT flush op and the EPTP type. */
3560 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3561 	if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3562 		vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3563 	} else {
3564 		vmx_tlb_flush_op = VMX_INVVPID_ALL;
3565 	}
3566 	if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3567 		vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3568 	} else {
3569 		vmx_ept_flush_op = VMX_INVEPT_ALL;
3570 	}
3571 	if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3572 		vmx_eptp_type = EPTP_TYPE_WB;
3573 	} else {
3574 		vmx_eptp_type = EPTP_TYPE_UC;
3575 	}
3576 
3577 	/* Init the L1TF mitigation. */
3578 	vmx_init_l1tf();
3579 
3580 	/* Init the global host state. */
3581 	if (vmx_xcr0_mask != 0) {
3582 		vmx_global_hstate.xcr0 = x86_get_xcr(0);
3583 	}
3584 	vmx_global_hstate.star = rdmsr(MSR_STAR);
3585 	vmx_global_hstate.lstar = rdmsr(MSR_LSTAR);
3586 	vmx_global_hstate.cstar = rdmsr(MSR_CSTAR);
3587 	vmx_global_hstate.sfmask = rdmsr(MSR_SFMASK);
3588 
3589 	memset(vmxoncpu, 0, sizeof(vmxoncpu));
3590 	revision = vmx_get_revision();
3591 
3592 	OS_CPU_FOREACH(cpu) {
3593 		error = os_contigpa_zalloc(&pa, &va, 1);
3594 		if (error) {
3595 			panic("%s: out of memory", __func__);
3596 		}
3597 		vmxoncpu[os_cpu_number(cpu)].pa = pa;
3598 		vmxoncpu[os_cpu_number(cpu)].va = va;
3599 
3600 		vmxon = (struct vmxon *)vmxoncpu[os_cpu_number(cpu)].va;
3601 		vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3602 	}
3603 
3604 	os_ipi_broadcast(vmx_change_cpu, (void *)true);
3605 }
3606 
3607 static void
3608 vmx_fini_asid(void)
3609 {
3610 	size_t allocsz;
3611 
3612 	allocsz = roundup(vmx_maxasid, 8) / 8;
3613 	os_mem_free(vmx_asidmap, allocsz);
3614 
3615 	os_mtx_destroy(&vmx_asidlock);
3616 }
3617 
3618 static void
3619 vmx_fini(void)
3620 {
3621 	size_t i;
3622 
3623 	os_ipi_broadcast(vmx_change_cpu, (void *)false);
3624 
3625 	for (i = 0; i < OS_MAXCPUS; i++) {
3626 		if (vmxoncpu[i].pa != 0)
3627 			os_contigpa_free(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3628 	}
3629 
3630 	vmx_fini_asid();
3631 }
3632 
3633 static void
3634 vmx_capability(struct nvmm_capability *cap)
3635 {
3636 	cap->arch.mach_conf_support = 0;
3637 	cap->arch.vcpu_conf_support =
3638 	    NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3639 	    NVMM_CAP_ARCH_VCPU_CONF_TPR;
3640 	cap->arch.xcr0_mask = vmx_xcr0_mask;
3641 	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3642 	cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3643 }
3644 
3645 const struct nvmm_impl nvmm_x86_vmx = {
3646 	.name = "x86-vmx",
3647 	.ident = vmx_ident,
3648 	.init = vmx_init,
3649 	.fini = vmx_fini,
3650 	.capability = vmx_capability,
3651 	.mach_conf_max = NVMM_X86_MACH_NCONF,
3652 	.mach_conf_sizes = NULL,
3653 	.vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3654 	.vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3655 	.state_size = sizeof(struct nvmm_x64_state),
3656 	.machine_create = vmx_machine_create,
3657 	.machine_destroy = vmx_machine_destroy,
3658 	.machine_configure = vmx_machine_configure,
3659 	.vcpu_create = vmx_vcpu_create,
3660 	.vcpu_destroy = vmx_vcpu_destroy,
3661 	.vcpu_configure = vmx_vcpu_configure,
3662 	.vcpu_setstate = vmx_vcpu_setstate,
3663 	.vcpu_getstate = vmx_vcpu_getstate,
3664 	.vcpu_inject = vmx_vcpu_inject,
3665 	.vcpu_run = vmx_vcpu_run
3666 };
3667