xref: /dragonfly/sys/dev/virtual/virtio/net/if_vtnet.c (revision 26720ae0)
1 /*-
2  * Copyright (c) 2011, Bryan Venteicher <bryanv@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /* Driver for VirtIO network devices. */
28 
29 #include "opt_ifpoll.h"
30 
31 #include <sys/cdefs.h>
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/sockio.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/taskqueue.h>
43 #include <sys/random.h>
44 #include <sys/sglist.h>
45 #include <sys/serialize.h>
46 #include <sys/bus.h>
47 #include <sys/rman.h>
48 
49 #include <machine/limits.h>
50 
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/if_media.h>
57 #include <net/vlan/if_vlan_var.h>
58 #include <net/vlan/if_vlan_ether.h>
59 #include <net/if_poll.h>
60 #include <net/ifq_var.h>
61 
62 #include <net/bpf.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/ip6.h>
68 #include <netinet/udp.h>
69 #include <netinet/tcp.h>
70 
71 #include <dev/virtual/virtio/virtio/virtio.h>
72 #include <dev/virtual/virtio/virtio/virtqueue.h>
73 #include <dev/virtual/virtio/net/virtio_net.h>
74 #include <dev/virtual/virtio/net/if_vtnetvar.h>
75 
76 MALLOC_DEFINE(M_VTNET, "VTNET_TX", "Outgoing VTNET TX frame header");
77 
78 static int	vtnet_probe(device_t);
79 static int	vtnet_attach(device_t);
80 static int	vtnet_detach(device_t);
81 static int	vtnet_suspend(device_t);
82 static int	vtnet_resume(device_t);
83 static int	vtnet_shutdown(device_t);
84 
85 static void	vtnet_negotiate_features(struct vtnet_softc *);
86 #ifdef IFPOLL_ENABLE
87 static void	vtnet_npoll(struct ifnet *, struct ifpoll_info *);
88 static void	vtnet_npoll_status(struct ifnet *);
89 static void	vtnet_npoll_rx(struct ifnet *, void *, int);
90 static void	vtnet_npoll_tx(struct ifnet *, void *, int);
91 #endif
92 static void	vtnet_serialize(struct ifnet *, enum ifnet_serialize);
93 static void	vtnet_deserialize(struct ifnet *, enum ifnet_serialize);
94 static int	vtnet_tryserialize(struct ifnet *, enum ifnet_serialize);
95 #ifdef INVARIANTS
96 static void	vtnet_serialize_assert(struct ifnet *, enum ifnet_serialize,
97 		    boolean_t);
98 #endif  /* INVARIANTS */
99 static int	vtnet_alloc_intrs(struct vtnet_softc *);
100 static int	vtnet_alloc_virtqueues(struct vtnet_softc *);
101 static int	vtnet_bind_intrs(struct vtnet_softc *);
102 static void	vtnet_get_hwaddr(struct vtnet_softc *);
103 static void	vtnet_set_hwaddr(struct vtnet_softc *);
104 static int	vtnet_is_link_up(struct vtnet_softc *);
105 static void	vtnet_update_link_status(struct vtnet_softc *);
106 static void	vtnet_watchdog(struct ifaltq_subque *);
107 static int	vtnet_setup_interface(struct vtnet_softc *);
108 static int	vtnet_change_mtu(struct vtnet_softc *, int);
109 static int	vtnet_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
110 
111 static int	vtnet_init_rx_vq(struct vtnet_softc *);
112 static void	vtnet_free_rx_mbufs(struct vtnet_softc *);
113 static void	vtnet_free_tx_mbufs(struct vtnet_softc *);
114 static void	vtnet_free_ctrl_vq(struct vtnet_softc *);
115 
116 static struct mbuf * vtnet_alloc_rxbuf(struct vtnet_softc *, int,
117 		    struct mbuf **);
118 static int	vtnet_replace_rxbuf(struct vtnet_softc *,
119 		    struct mbuf *, int);
120 static int	vtnet_newbuf(struct vtnet_softc *);
121 static void	vtnet_discard_merged_rxbuf(struct vtnet_softc *, int);
122 static void	vtnet_discard_rxbuf(struct vtnet_softc *, struct mbuf *);
123 static int	vtnet_enqueue_rxbuf(struct vtnet_softc *, struct mbuf *);
124 static void	vtnet_vlan_tag_remove(struct mbuf *);
125 static int	vtnet_rx_csum(struct vtnet_softc *, struct mbuf *,
126 		    struct virtio_net_hdr *);
127 static int	vtnet_rxeof_merged(struct vtnet_softc *, struct mbuf *, int);
128 static int	vtnet_rxeof(struct vtnet_softc *, int, int *);
129 static void	vtnet_rx_msix_intr(void *);
130 static void	vtnet_rx_vq_intr(void *);
131 
132 static void	vtnet_enqueue_txhdr(struct vtnet_softc *,
133 		    struct vtnet_tx_header *);
134 static void	vtnet_txeof(struct vtnet_softc *);
135 static struct mbuf * vtnet_tx_offload(struct vtnet_softc *, struct mbuf *,
136 		    struct virtio_net_hdr *);
137 static int	vtnet_enqueue_txbuf(struct vtnet_softc *, struct mbuf **,
138 		    struct vtnet_tx_header *);
139 static int	vtnet_encap(struct vtnet_softc *, struct mbuf **);
140 static void	vtnet_start(struct ifnet *, struct ifaltq_subque *);
141 
142 static void	vtnet_config_intr(void *);
143 static void	vtnet_tx_msix_intr(void *);
144 static void	vtnet_tx_vq_intr(void *);
145 
146 static void	vtnet_stop(struct vtnet_softc *);
147 static int	vtnet_virtio_reinit(struct vtnet_softc *);
148 static void	vtnet_init(void *);
149 
150 static void	vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *,
151 		    struct sglist *, int, int);
152 
153 static int	vtnet_ctrl_mac_cmd(struct vtnet_softc *, uint8_t *);
154 static int	vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int);
155 static int	vtnet_set_promisc(struct vtnet_softc *, int);
156 static int	vtnet_set_allmulti(struct vtnet_softc *, int);
157 static void	vtnet_rx_filter(struct vtnet_softc *sc);
158 static void	vtnet_rx_filter_mac(struct vtnet_softc *);
159 
160 static int	vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t);
161 static void	vtnet_rx_filter_vlan(struct vtnet_softc *);
162 static void	vtnet_update_vlan_filter(struct vtnet_softc *, int, uint16_t);
163 static void	vtnet_register_vlan(void *, struct ifnet *, uint16_t);
164 static void	vtnet_unregister_vlan(void *, struct ifnet *, uint16_t);
165 
166 static int	vtnet_ifmedia_upd(struct ifnet *);
167 static void	vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *);
168 
169 static void	vtnet_add_statistics(struct vtnet_softc *);
170 
171 static int	vtnet_enable_rx_intr(struct vtnet_softc *);
172 static int	vtnet_enable_tx_intr(struct vtnet_softc *);
173 static void	vtnet_disable_rx_intr(struct vtnet_softc *);
174 static void	vtnet_disable_tx_intr(struct vtnet_softc *);
175 
176 /* Tunables. */
177 static int vtnet_csum_disable = 0;
178 TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable);
179 static int vtnet_tso_disable = 1;
180 TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable);
181 static int vtnet_lro_disable = 0;
182 TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable);
183 
184 /*
185  * Reducing the number of transmit completed interrupts can
186  * improve performance. To do so, the define below keeps the
187  * Tx vq interrupt disabled and adds calls to vtnet_txeof()
188  * in the start path. The price to pay for this is the m_free'ing
189  * of transmitted mbufs may be delayed.
190  */
191 #define VTNET_TX_INTR_MODERATION
192 
193 static struct virtio_feature_desc vtnet_feature_desc[] = {
194 	{ VIRTIO_NET_F_CSUM,		"TxChecksum"	},
195 	{ VIRTIO_NET_F_GUEST_CSUM,	"RxChecksum"	},
196 	{ VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, "DynOffload"	},
197 	{ VIRTIO_NET_F_MAC,		"MacAddress"	},
198 	{ VIRTIO_NET_F_GSO,		"TxAllGSO"	},
199 	{ VIRTIO_NET_F_GUEST_TSO4,	"RxTSOv4"	},
200 	{ VIRTIO_NET_F_GUEST_TSO6,	"RxTSOv6"	},
201 	{ VIRTIO_NET_F_GUEST_ECN,	"RxECN"		},
202 	{ VIRTIO_NET_F_GUEST_UFO,	"RxUFO"		},
203 	{ VIRTIO_NET_F_HOST_TSO4,	"TxTSOv4"	},
204 	{ VIRTIO_NET_F_HOST_TSO6,	"TxTSOv6"	},
205 	{ VIRTIO_NET_F_HOST_ECN,	"TxTSOECN"	},
206 	{ VIRTIO_NET_F_HOST_UFO,	"TxUFO"		},
207 	{ VIRTIO_NET_F_MRG_RXBUF,	"MrgRxBuf"	},
208 	{ VIRTIO_NET_F_STATUS,		"Status"	},
209 	{ VIRTIO_NET_F_CTRL_VQ,		"ControlVq"	},
210 	{ VIRTIO_NET_F_CTRL_RX,		"RxMode"	},
211 	{ VIRTIO_NET_F_CTRL_VLAN,	"VLanFilter"	},
212 	{ VIRTIO_NET_F_CTRL_RX_EXTRA,	"RxModeExtra"	},
213 	{ VIRTIO_NET_F_GUEST_ANNOUNCE,	"GuestAnnounce"	},
214 	{ VIRTIO_NET_F_MQ,		"Multiqueue"	},
215 	{ VIRTIO_NET_F_CTRL_MAC_ADDR,	"SetMacAddress"	},
216 	{ 0, NULL }
217 };
218 
219 static device_method_t vtnet_methods[] = {
220 	/* Device methods. */
221 	DEVMETHOD(device_probe,		vtnet_probe),
222 	DEVMETHOD(device_attach,	vtnet_attach),
223 	DEVMETHOD(device_detach,	vtnet_detach),
224 	DEVMETHOD(device_suspend,	vtnet_suspend),
225 	DEVMETHOD(device_resume,	vtnet_resume),
226 	DEVMETHOD(device_shutdown,	vtnet_shutdown),
227 
228 	DEVMETHOD_END
229 };
230 
231 static driver_t vtnet_driver = {
232 	"vtnet",
233 	vtnet_methods,
234 	sizeof(struct vtnet_softc)
235 };
236 
237 static devclass_t vtnet_devclass;
238 
239 DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass, NULL, NULL);
240 MODULE_VERSION(vtnet, 1);
241 MODULE_DEPEND(vtnet, virtio, 1, 1, 1);
242 
243 static int
244 vtnet_probe(device_t dev)
245 {
246 	if (virtio_get_device_type(dev) != VIRTIO_ID_NETWORK)
247 		return (ENXIO);
248 
249 	device_set_desc(dev, "VirtIO Networking Adapter");
250 
251 	return (BUS_PROBE_DEFAULT);
252 }
253 
254 static int
255 vtnet_attach(device_t dev)
256 {
257 	struct vtnet_softc *sc;
258 	int i, error;
259 
260 	sc = device_get_softc(dev);
261 	sc->vtnet_dev = dev;
262 
263 	lwkt_serialize_init(&sc->vtnet_slz);
264 	lwkt_serialize_init(&sc->vtnet_rx_slz);
265 	lwkt_serialize_init(&sc->vtnet_tx_slz);
266 	sc->serializes[0] = &sc->vtnet_slz;
267 	sc->serializes[1] = &sc->vtnet_rx_slz;
268 	sc->serializes[2] = &sc->vtnet_tx_slz;
269 
270 	ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd,
271 		     vtnet_ifmedia_sts);
272 	ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL);
273 	ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE);
274 
275 	vtnet_add_statistics(sc);
276 	SLIST_INIT(&sc->vtnet_txhdr_free);
277 
278 	/* Register our feature descriptions. */
279 	virtio_set_feature_desc(dev, vtnet_feature_desc);
280 	vtnet_negotiate_features(sc);
281 
282 	if (virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC))
283 		sc->vtnet_flags |= VTNET_FLAG_INDIRECT;
284 
285 	if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) {
286 		/* This feature should always be negotiated. */
287 		sc->vtnet_flags |= VTNET_FLAG_MAC;
288 	}
289 
290 	if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) {
291 		sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS;
292 		sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf);
293 	} else {
294 		sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr);
295 	}
296 
297 	sc->vtnet_rx_mbuf_size = MCLBYTES;
298 	sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc);
299 
300 	if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) {
301 		sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ;
302 
303 		if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX))
304 			sc->vtnet_flags |= VTNET_FLAG_CTRL_RX;
305 		if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN))
306 			sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER;
307 		if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_MAC_ADDR) &&
308 		    virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX))
309 			sc->vtnet_flags |= VTNET_FLAG_CTRL_MAC;
310 	}
311 
312 	error = vtnet_alloc_intrs(sc);
313 	if (error) {
314 		device_printf(dev, "cannot allocate interrupts\n");
315 		goto fail;
316 	}
317 
318 	error = vtnet_alloc_virtqueues(sc);
319 	if (error) {
320 		device_printf(dev, "cannot allocate virtqueues\n");
321 		goto fail;
322 	}
323 
324 	error = vtnet_bind_intrs(sc);
325 	if (error) {
326 		device_printf(dev, "cannot bind virtqueues to interrupts\n");
327 		goto fail;
328 	}
329 
330 	/* Read (or generate) the MAC address for the adapter. */
331 	vtnet_get_hwaddr(sc);
332 
333 	error = vtnet_setup_interface(sc);
334 	if (error) {
335 		device_printf(dev, "cannot setup interface\n");
336 		goto fail;
337 	}
338 
339 	for (i = 0; i < sc->vtnet_nintr; i++) {
340 		error = virtio_setup_intr(dev, i, sc->vtnet_intr_slz[i]);
341 		if (error) {
342 			device_printf(dev, "cannot setup virtqueue "
343 			    "interrupts\n");
344 			ether_ifdetach(sc->vtnet_ifp);
345 			goto fail;
346 		}
347 	}
348 
349 	if ((sc->vtnet_flags & VTNET_FLAG_MAC) == 0) {
350 		ifnet_serialize_all(sc->vtnet_ifp);
351 		vtnet_set_hwaddr(sc);
352 		ifnet_deserialize_all(sc->vtnet_ifp);
353 	}
354 
355 	/*
356 	 * Device defaults to promiscuous mode for backwards
357 	 * compatibility. Turn it off if possible.
358 	 */
359 	if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
360 		ifnet_serialize_all(sc->vtnet_ifp);
361 		if (vtnet_set_promisc(sc, 0) != 0) {
362 			sc->vtnet_ifp->if_flags |= IFF_PROMISC;
363 			device_printf(dev,
364 			    "cannot disable promiscuous mode\n");
365 		}
366 		ifnet_deserialize_all(sc->vtnet_ifp);
367 	} else
368 		sc->vtnet_ifp->if_flags |= IFF_PROMISC;
369 
370 fail:
371 	if (error)
372 		vtnet_detach(dev);
373 
374 	return (error);
375 }
376 
377 static int
378 vtnet_detach(device_t dev)
379 {
380 	struct vtnet_softc *sc;
381 	struct ifnet *ifp;
382 	int i;
383 
384 	sc = device_get_softc(dev);
385 	ifp = sc->vtnet_ifp;
386 
387 	for (i = 0; i < sc->vtnet_nintr; i++)
388 		virtio_teardown_intr(dev, i);
389 
390 	if (device_is_attached(dev)) {
391 		ifnet_serialize_all(ifp);
392 		vtnet_stop(sc);
393 		lwkt_serialize_handler_disable(&sc->vtnet_slz);
394 		lwkt_serialize_handler_disable(&sc->vtnet_rx_slz);
395 		lwkt_serialize_handler_disable(&sc->vtnet_tx_slz);
396 		ifnet_deserialize_all(ifp);
397 
398 		ether_ifdetach(ifp);
399 	}
400 
401 	if (sc->vtnet_vlan_attach != NULL) {
402 		EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach);
403 		sc->vtnet_vlan_attach = NULL;
404 	}
405 	if (sc->vtnet_vlan_detach != NULL) {
406 		EVENTHANDLER_DEREGISTER(vlan_unconfig, sc->vtnet_vlan_detach);
407 		sc->vtnet_vlan_detach = NULL;
408 	}
409 
410 	if (ifp) {
411 		if_free(ifp);
412 		sc->vtnet_ifp = NULL;
413 	}
414 
415 	if (sc->vtnet_rx_vq != NULL)
416 		vtnet_free_rx_mbufs(sc);
417 	if (sc->vtnet_tx_vq != NULL)
418 		vtnet_free_tx_mbufs(sc);
419 	if (sc->vtnet_ctrl_vq != NULL)
420 		vtnet_free_ctrl_vq(sc);
421 
422 	if (sc->vtnet_txhdrarea != NULL) {
423 		contigfree(sc->vtnet_txhdrarea,
424 		    sc->vtnet_txhdrcount * sizeof(struct vtnet_tx_header),
425 		    M_VTNET);
426 		sc->vtnet_txhdrarea = NULL;
427 	}
428 	SLIST_INIT(&sc->vtnet_txhdr_free);
429 	if (sc->vtnet_macfilter != NULL) {
430 		contigfree(sc->vtnet_macfilter,
431 		    sizeof(struct vtnet_mac_filter), M_DEVBUF);
432 		sc->vtnet_macfilter = NULL;
433 	}
434 
435 	ifmedia_removeall(&sc->vtnet_media);
436 
437 	return (0);
438 }
439 
440 static int
441 vtnet_suspend(device_t dev)
442 {
443 	struct vtnet_softc *sc;
444 
445 	sc = device_get_softc(dev);
446 
447 	ifnet_serialize_all(sc->vtnet_ifp);
448 	vtnet_stop(sc);
449 	sc->vtnet_flags |= VTNET_FLAG_SUSPENDED;
450 	ifnet_deserialize_all(sc->vtnet_ifp);
451 
452 	return (0);
453 }
454 
455 static int
456 vtnet_resume(device_t dev)
457 {
458 	struct vtnet_softc *sc;
459 	struct ifnet *ifp;
460 
461 	sc = device_get_softc(dev);
462 	ifp = sc->vtnet_ifp;
463 
464 	ifnet_serialize_all(ifp);
465 	if (ifp->if_flags & IFF_UP)
466 		vtnet_init(sc);
467 	sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED;
468 	ifnet_deserialize_all(ifp);
469 
470 	return (0);
471 }
472 
473 static int
474 vtnet_shutdown(device_t dev)
475 {
476 
477 	/*
478 	 * Suspend already does all of what we need to
479 	 * do here; we just never expect to be resumed.
480 	 */
481 	return (vtnet_suspend(dev));
482 }
483 
484 static void
485 vtnet_negotiate_features(struct vtnet_softc *sc)
486 {
487 	device_t dev;
488 	uint64_t mask, features;
489 
490 	dev = sc->vtnet_dev;
491 	mask = 0;
492 
493 	if (vtnet_csum_disable)
494 		mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM;
495 
496 	/*
497 	 * XXX DragonFly doesn't support receive checksum offload for ipv6 yet,
498 	 *     hence always disable the virtio feature for now.
499 	 * XXX We need to support the DynOffload feature, in order to
500 	 *     dynamically enable/disable this feature.
501 	 */
502 	mask |= VIRTIO_NET_F_GUEST_CSUM;
503 
504 	/*
505 	 * TSO is only available when the tx checksum offload feature is also
506 	 * negotiated.
507 	 */
508 	if (vtnet_csum_disable || vtnet_tso_disable)
509 		mask |= VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
510 		    VIRTIO_NET_F_HOST_ECN;
511 
512 	if (vtnet_lro_disable)
513 		mask |= VTNET_LRO_FEATURES;
514 
515 	features = VTNET_FEATURES & ~mask;
516 	features |= VIRTIO_F_NOTIFY_ON_EMPTY;
517 	features |= VIRTIO_F_ANY_LAYOUT;
518 	sc->vtnet_features = virtio_negotiate_features(dev, features);
519 
520 	if (virtio_with_feature(dev, VTNET_LRO_FEATURES) &&
521 	    virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF) == 0) {
522 		/*
523 		 * LRO without mergeable buffers requires special care. This
524 		 * is not ideal because every receive buffer must be large
525 		 * enough to hold the maximum TCP packet, the Ethernet header,
526 		 * and the header. This requires up to 34 descriptors with
527 		 * MCLBYTES clusters. If we do not have indirect descriptors,
528 		 * LRO is disabled since the virtqueue will not contain very
529 		 * many receive buffers.
530 		 */
531 		if (!virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC)) {
532 			device_printf(dev,
533 			    "LRO disabled due to both mergeable buffers and "
534 			    "indirect descriptors not negotiated\n");
535 
536 			features &= ~VTNET_LRO_FEATURES;
537 			sc->vtnet_features =
538 			    virtio_negotiate_features(dev, features);
539 		} else
540 			sc->vtnet_flags |= VTNET_FLAG_LRO_NOMRG;
541 	}
542 }
543 
544 static void
545 vtnet_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
546 {
547 	struct vtnet_softc *sc = ifp->if_softc;
548 
549 	ifnet_serialize_array_enter(sc->serializes, 3, slz);
550 }
551 
552 static void
553 vtnet_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
554 {
555 	struct vtnet_softc *sc = ifp->if_softc;
556 
557 	ifnet_serialize_array_exit(sc->serializes, 3, slz);
558 }
559 
560 static int
561 vtnet_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
562 {
563 	struct vtnet_softc *sc = ifp->if_softc;
564 
565 	return ifnet_serialize_array_try(sc->serializes, 3, slz);
566 }
567 
568 #ifdef INVARIANTS
569 
570 static void
571 vtnet_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
572     boolean_t serialized)
573 {
574 	struct vtnet_softc *sc = ifp->if_softc;
575 
576 	ifnet_serialize_array_assert(sc->serializes, 3, slz, serialized);
577 }
578 
579 #endif  /* INVARIANTS */
580 
581 static int
582 vtnet_alloc_intrs(struct vtnet_softc *sc)
583 {
584 	int cnt, error;
585 	int intrcount = virtio_intr_count(sc->vtnet_dev);
586 	int i;
587 	int use_config;
588 
589 	if (virtio_with_feature(sc->vtnet_dev, VIRTIO_NET_F_STATUS)) {
590 		use_config = 1;
591 		/* We can use a maximum of 3 interrupt vectors. */
592 		intrcount = imin(intrcount, 3);
593 	} else {
594 		/* We can use a maximum of 2 interrupt vectors. */
595 		intrcount = imin(intrcount, 2);
596 	}
597 
598 	if (intrcount < 1)
599 		return (ENXIO);
600 
601 	for (i = 0; i < intrcount; i++)
602 		sc->vtnet_cpus[i] = -1;
603 
604 	cnt = intrcount;
605 	error = virtio_intr_alloc(sc->vtnet_dev, &cnt, use_config,
606 	    sc->vtnet_cpus);
607 	if (error != 0) {
608 		virtio_intr_release(sc->vtnet_dev);
609 		return (error);
610 	}
611 	sc->vtnet_nintr = cnt;
612 
613 	return (0);
614 }
615 
616 static int
617 vtnet_alloc_virtqueues(struct vtnet_softc *sc)
618 {
619 	device_t dev;
620 	struct vq_alloc_info vq_info[3];
621 	int nvqs;
622 
623 	dev = sc->vtnet_dev;
624 	nvqs = 2;
625 
626 	/*
627 	 * Indirect descriptors are not needed for the Rx
628 	 * virtqueue when mergeable buffers are negotiated.
629 	 * The header is placed inline with the data, not
630 	 * in a separate descriptor, and mbuf clusters are
631 	 * always physically contiguous.
632 	 */
633 	if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
634 		sc->vtnet_rx_nsegs = (sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) ?
635 		    VTNET_MAX_RX_SEGS : VTNET_MIN_RX_SEGS;
636 	} else
637 		sc->vtnet_rx_nsegs = VTNET_MRG_RX_SEGS;
638 
639 	if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4) ||
640 	    virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6))
641 		sc->vtnet_tx_nsegs = VTNET_MAX_TX_SEGS;
642 	else
643 		sc->vtnet_tx_nsegs = VTNET_MIN_TX_SEGS;
644 
645 	VQ_ALLOC_INFO_INIT(&vq_info[0], sc->vtnet_rx_nsegs, &sc->vtnet_rx_vq,
646 	    "%s receive", device_get_nameunit(dev));
647 
648 	VQ_ALLOC_INFO_INIT(&vq_info[1], sc->vtnet_tx_nsegs, &sc->vtnet_tx_vq,
649 	    "%s transmit", device_get_nameunit(dev));
650 
651 	if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
652 		nvqs++;
653 
654 		VQ_ALLOC_INFO_INIT(&vq_info[2], 0, &sc->vtnet_ctrl_vq,
655 		    "%s control", device_get_nameunit(dev));
656 	}
657 
658 	return (virtio_alloc_virtqueues(dev, nvqs, vq_info));
659 }
660 
661 static int
662 vtnet_bind_intrs(struct vtnet_softc *sc)
663 {
664 	int error = 0;
665 	int i;
666 
667 	for (i = 0; i < 3; i++)
668 		sc->vtnet_intr_slz[i] = &sc->vtnet_slz;
669 
670 	/* Possible "Virtqueue <-> IRQ" configurations */
671 	switch (sc->vtnet_nintr) {
672 	case 1:
673 		sc->vtnet_irqmap[0] = (struct irqmap){0, vtnet_rx_vq_intr};
674 		sc->vtnet_irqmap[1] = (struct irqmap){0, vtnet_tx_vq_intr};
675 		break;
676 	case 2:
677 		if (virtio_with_feature(sc->vtnet_dev, VIRTIO_NET_F_STATUS)) {
678 			sc->vtnet_irqmap[0] =
679 			    (struct irqmap){1, vtnet_rx_vq_intr};
680 			sc->vtnet_irqmap[1] =
681 			    (struct irqmap){1, vtnet_tx_vq_intr};
682 		} else {
683 			sc->vtnet_irqmap[0] =
684 			    (struct irqmap){0, vtnet_rx_msix_intr};
685 			sc->vtnet_irqmap[1] =
686 			    (struct irqmap){1, vtnet_tx_msix_intr};
687 			sc->vtnet_intr_slz[0] = &sc->vtnet_rx_slz;
688 			sc->vtnet_intr_slz[1] = &sc->vtnet_tx_slz;
689 		}
690 		break;
691 	case 3:
692 		sc->vtnet_irqmap[0] = (struct irqmap){1, vtnet_rx_msix_intr};
693 		sc->vtnet_irqmap[1] = (struct irqmap){2, vtnet_tx_msix_intr};
694 		sc->vtnet_intr_slz[1] = &sc->vtnet_rx_slz;
695 		sc->vtnet_intr_slz[2] = &sc->vtnet_tx_slz;
696 		break;
697 	default:
698 		device_printf(sc->vtnet_dev,
699 		    "Invalid interrupt vector count: %d\n", sc->vtnet_nintr);
700 		error = EINVAL;
701 		goto fail;
702 	}
703 
704 	for (i = 0; i < 2; i++) {
705 		error = virtio_bind_intr(sc->vtnet_dev,
706 		    sc->vtnet_irqmap[i].irq, i, sc->vtnet_irqmap[i].handler,
707 		    sc);
708 		if (error) {
709 			device_printf(sc->vtnet_dev,
710 			    "cannot bind virtqueue IRQs\n");
711 			goto fail;
712 		}
713 	}
714 	if (virtio_with_feature(sc->vtnet_dev, VIRTIO_NET_F_STATUS)) {
715 		error = virtio_bind_intr(sc->vtnet_dev, 0, -1,
716 		    vtnet_config_intr, sc);
717 		if (error) {
718 			device_printf(sc->vtnet_dev,
719 			    "cannot bind config_change IRQ\n");
720 			goto fail;
721 		}
722 	}
723 
724 fail:
725 	return (error);
726 }
727 
728 static int
729 vtnet_setup_interface(struct vtnet_softc *sc)
730 {
731 	device_t dev;
732 	struct ifnet *ifp;
733 	int i;
734 
735 	dev = sc->vtnet_dev;
736 
737 	ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER);
738 	if (ifp == NULL) {
739 		device_printf(dev, "cannot allocate ifnet structure\n");
740 		return (ENOSPC);
741 	}
742 
743 	ifp->if_softc = sc;
744 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
745 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
746 	ifp->if_init = vtnet_init;
747 	ifp->if_start = vtnet_start;
748 #ifdef IFPOLL_ENABLE
749 	ifp->if_npoll = vtnet_npoll;
750 #endif
751 	ifp->if_serialize = vtnet_serialize;
752 	ifp->if_deserialize = vtnet_deserialize;
753 	ifp->if_tryserialize = vtnet_tryserialize;
754 #ifdef INVARIANTS
755 	ifp->if_serialize_assert = vtnet_serialize_assert;
756 #endif
757 	ifp->if_ioctl = vtnet_ioctl;
758 
759 	sc->vtnet_rx_process_limit = virtqueue_size(sc->vtnet_rx_vq);
760 	sc->vtnet_tx_size = virtqueue_size(sc->vtnet_tx_vq);
761 	if (sc->vtnet_flags & VTNET_FLAG_INDIRECT)
762 		sc->vtnet_txhdrcount = sc->vtnet_tx_size;
763 	else
764 		sc->vtnet_txhdrcount = (sc->vtnet_tx_size / 2) + 1;
765 	sc->vtnet_txhdrarea = contigmalloc(
766 	    sc->vtnet_txhdrcount * sizeof(struct vtnet_tx_header),
767 	    M_VTNET, M_WAITOK, 0, BUS_SPACE_MAXADDR, 4, 0);
768 	if (sc->vtnet_txhdrarea == NULL) {
769 		device_printf(dev, "cannot contigmalloc the tx headers\n");
770 		return (ENOMEM);
771 	}
772 	for (i = 0; i < sc->vtnet_txhdrcount; i++)
773 		vtnet_enqueue_txhdr(sc, &sc->vtnet_txhdrarea[i]);
774 	sc->vtnet_macfilter = contigmalloc(
775 	    sizeof(struct vtnet_mac_filter),
776 	    M_DEVBUF, M_WAITOK, 0, BUS_SPACE_MAXADDR, 4, 0);
777 	if (sc->vtnet_macfilter == NULL) {
778 		device_printf(dev,
779 		    "cannot contigmalloc the mac filter table\n");
780 		return (ENOMEM);
781 	}
782 	ifq_set_maxlen(&ifp->if_snd, sc->vtnet_tx_size - 1);
783 	ifq_set_ready(&ifp->if_snd);
784 
785 	ether_ifattach(ifp, sc->vtnet_hwaddr, NULL);
786 
787 	/* The Tx IRQ is currently always the last allocated interrupt. */
788 	ifq_set_cpuid(&ifp->if_snd, sc->vtnet_cpus[sc->vtnet_nintr - 1]);
789 	ifsq_watchdog_init(&sc->vtnet_tx_watchdog,
790 			   ifq_get_subq_default(&ifp->if_snd),
791 			   vtnet_watchdog,
792 			   IF_WDOG_LASTTICK);
793 	ifq_set_hw_serialize(&ifp->if_snd, &sc->vtnet_tx_slz);
794 
795 	/* Tell the upper layer(s) we support long frames. */
796 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
797 	ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU;
798 
799 	if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) {
800 		ifp->if_capabilities |= IFCAP_TXCSUM;
801 
802 		if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4))
803 			ifp->if_capabilities |= IFCAP_TSO4;
804 		if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6))
805 			ifp->if_capabilities |= IFCAP_TSO6;
806 		if (ifp->if_capabilities & IFCAP_TSO)
807 			ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
808 
809 		if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN))
810 			sc->vtnet_flags |= VTNET_FLAG_TSO_ECN;
811 	}
812 
813 	if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM))
814 		ifp->if_capabilities |= IFCAP_RXCSUM;
815 
816 #if 0	/* IFCAP_LRO doesn't exist in DragonFly. */
817 	if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) ||
818 	    virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6))
819 		ifp->if_capabilities |= IFCAP_LRO;
820 #endif
821 
822 	if ((ifp->if_capabilities & IFCAP_HWCSUM) == IFCAP_HWCSUM) {
823 		/*
824 		 * VirtIO does not support VLAN tagging, but we can fake
825 		 * it by inserting and removing the 802.1Q header during
826 		 * transmit and receive. We are then able to do checksum
827 		 * offloading of VLAN frames.
828 		 */
829 		ifp->if_capabilities |=
830 			IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
831 	}
832 
833 	ifp->if_capenable = ifp->if_capabilities;
834 
835 	/*
836 	 * Capabilities after here are not enabled by default.
837 	 */
838 
839 	if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) {
840 		ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
841 
842 		sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
843 		    vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST);
844 		sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
845 		    vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST);
846 	}
847 
848 	return (0);
849 }
850 
851 static void
852 vtnet_set_hwaddr(struct vtnet_softc *sc)
853 {
854 	device_t dev;
855 
856 	dev = sc->vtnet_dev;
857 
858 	if ((sc->vtnet_flags & VTNET_FLAG_CTRL_MAC) &&
859 	    (sc->vtnet_flags & VTNET_FLAG_CTRL_RX)) {
860 		if (vtnet_ctrl_mac_cmd(sc, sc->vtnet_hwaddr) != 0)
861 			device_printf(dev, "unable to set MAC address\n");
862 	} else if (sc->vtnet_flags & VTNET_FLAG_MAC) {
863 		virtio_write_device_config(dev,
864 		    offsetof(struct virtio_net_config, mac),
865 		    sc->vtnet_hwaddr, ETHER_ADDR_LEN);
866 	}
867 }
868 
869 static void
870 vtnet_get_hwaddr(struct vtnet_softc *sc)
871 {
872 	device_t dev;
873 
874 	dev = sc->vtnet_dev;
875 
876 	if ((sc->vtnet_flags & VTNET_FLAG_MAC) == 0) {
877 		/*
878 		 * Generate a random locally administered unicast address.
879 		 *
880 		 * It would be nice to generate the same MAC address across
881 		 * reboots, but it seems all the hosts currently available
882 		 * support the MAC feature, so this isn't too important.
883 		 */
884 		sc->vtnet_hwaddr[0] = 0xB2;
885 		karc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1);
886 		return;
887 	}
888 
889 	virtio_read_device_config(dev,
890 	    offsetof(struct virtio_net_config, mac),
891 	    sc->vtnet_hwaddr, ETHER_ADDR_LEN);
892 }
893 
894 static int
895 vtnet_is_link_up(struct vtnet_softc *sc)
896 {
897 	device_t dev;
898 	struct ifnet *ifp;
899 	uint16_t status;
900 
901 	dev = sc->vtnet_dev;
902 	ifp = sc->vtnet_ifp;
903 
904 	ASSERT_SERIALIZED(&sc->vtnet_slz);
905 
906 	if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS)) {
907 		status = virtio_read_dev_config_2(dev,
908 				offsetof(struct virtio_net_config, status));
909 	} else {
910 		status = VIRTIO_NET_S_LINK_UP;
911 	}
912 
913 	return ((status & VIRTIO_NET_S_LINK_UP) != 0);
914 }
915 
916 static void
917 vtnet_update_link_status(struct vtnet_softc *sc)
918 {
919 	device_t dev;
920 	struct ifnet *ifp;
921 	struct ifaltq_subque *ifsq;
922 	int link;
923 
924 	dev = sc->vtnet_dev;
925 	ifp = sc->vtnet_ifp;
926 	ifsq = ifq_get_subq_default(&ifp->if_snd);
927 
928 	link = vtnet_is_link_up(sc);
929 
930 	if (link && ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0)) {
931 		sc->vtnet_flags |= VTNET_FLAG_LINK;
932 		if (bootverbose)
933 			device_printf(dev, "Link is up\n");
934 		ifp->if_link_state = LINK_STATE_UP;
935 		if_link_state_change(ifp);
936 		if (!ifsq_is_empty(ifsq))
937 			ifsq_devstart_sched(ifsq);
938 	} else if (!link && (sc->vtnet_flags & VTNET_FLAG_LINK)) {
939 		sc->vtnet_flags &= ~VTNET_FLAG_LINK;
940 		if (bootverbose)
941 			device_printf(dev, "Link is down\n");
942 
943 		ifp->if_link_state = LINK_STATE_DOWN;
944 		if_link_state_change(ifp);
945 	}
946 }
947 
948 static void
949 vtnet_watchdog(struct ifaltq_subque *ifsq)
950 {
951 	struct ifnet *ifp;
952 	struct vtnet_softc *sc;
953 
954 	ifp = ifsq_get_ifp(ifsq);
955 	sc = ifp->if_softc;
956 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
957 
958 	/*
959 	 * Clean out expended tx buffers prior to terminal count.
960 	 *
961 	 * NOTE: vtnet_txeof() will set wd_timer to 0 if the virtqueue
962 	 *	 becomes empty, preventing further watchdog callbacks.
963 	 */
964 	if (sc->vtnet_tx_watchdog.wd_timer != 0) {
965 		vtnet_txeof(sc);
966 		if (!ifq_is_empty(&ifp->if_snd))
967 			if_devstart(ifp);
968 		return;
969 	}
970 
971 	/*
972 	 * Check to see if there are any unexpended transmit descriptors.
973 	 */
974 	if (virtqueue_empty(sc->vtnet_tx_vq)) {
975 		if_printf(ifp, "Spurious TX watchdog timeout -- ignoring\n");
976 		ifsq_watchdog_set_count(&sc->vtnet_tx_watchdog, 0);
977 		return;
978 	}
979 
980 	if_printf(ifp, "TX watchdog timeout -- resetting\n");
981 #ifdef VTNET_DEBUG
982 	virtqueue_dump(sc->vtnet_tx_vq);
983 #endif
984 	ifp->if_oerrors++;
985 	ifp->if_flags &= ~IFF_RUNNING;
986 	vtnet_init(sc);
987 	ifsq_devstart_sched(ifsq);
988 }
989 
990 static int
991 vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,struct ucred *cr)
992 {
993 	struct vtnet_softc *sc;
994 	struct ifreq *ifr;
995 	int reinit, mask, error;
996 
997 	sc = ifp->if_softc;
998 	ifr = (struct ifreq *) data;
999 	reinit = 0;
1000 	error = 0;
1001 
1002 	switch (cmd) {
1003 	case SIOCSIFMTU:
1004 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VTNET_MAX_MTU)
1005 			error = EINVAL;
1006 		else if (ifp->if_mtu != ifr->ifr_mtu)
1007 			error = vtnet_change_mtu(sc, ifr->ifr_mtu);
1008 		break;
1009 
1010 	case SIOCSIFFLAGS:
1011 		if ((ifp->if_flags & IFF_UP) == 0) {
1012 			if (ifp->if_flags & IFF_RUNNING)
1013 				vtnet_stop(sc);
1014 		} else if (ifp->if_flags & IFF_RUNNING) {
1015 			if ((ifp->if_flags ^ sc->vtnet_if_flags) &
1016 			    (IFF_PROMISC | IFF_ALLMULTI)) {
1017 				if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX)
1018 					vtnet_rx_filter(sc);
1019 				else
1020 					error = ENOTSUP;
1021 			}
1022 		} else {
1023 			vtnet_init(sc);
1024 		}
1025 
1026 		if (error == 0)
1027 			sc->vtnet_if_flags = ifp->if_flags;
1028 		break;
1029 
1030 	case SIOCADDMULTI:
1031 	case SIOCDELMULTI:
1032 		if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) &&
1033 		    (ifp->if_flags & IFF_RUNNING))
1034 			vtnet_rx_filter_mac(sc);
1035 		break;
1036 
1037 	case SIOCSIFMEDIA:
1038 	case SIOCGIFMEDIA:
1039 		error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd);
1040 		break;
1041 
1042 	case SIOCSIFCAP:
1043 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1044 
1045 
1046 		if (mask & IFCAP_TXCSUM) {
1047 			ifp->if_capenable ^= IFCAP_TXCSUM;
1048 			if (ifp->if_capenable & IFCAP_TXCSUM)
1049 				ifp->if_hwassist |= VTNET_CSUM_OFFLOAD;
1050 			else
1051 				ifp->if_hwassist &= ~VTNET_CSUM_OFFLOAD;
1052 		}
1053 
1054 		if (mask & IFCAP_TSO4) {
1055 			ifp->if_capenable ^= IFCAP_TSO4;
1056 			if (ifp->if_capenable & IFCAP_TSO4)
1057 				ifp->if_hwassist |= CSUM_TSO;
1058 			else
1059 				ifp->if_hwassist &= ~CSUM_TSO;
1060 		}
1061 
1062 		if (mask & IFCAP_RXCSUM) {
1063 			ifp->if_capenable ^= IFCAP_RXCSUM;
1064 			reinit = 1;
1065 		}
1066 
1067 #if 0	/* IFCAP_LRO doesn't exist in DragonFly. */
1068 		if (mask & IFCAP_LRO) {
1069 			ifp->if_capenable ^= IFCAP_LRO;
1070 			reinit = 1;
1071 		}
1072 #endif
1073 
1074 		if (mask & IFCAP_VLAN_HWFILTER) {
1075 			ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
1076 			reinit = 1;
1077 		}
1078 
1079 		if (mask & IFCAP_VLAN_HWTSO)
1080 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1081 
1082 		if (mask & IFCAP_VLAN_HWTAGGING)
1083 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1084 
1085 		if (reinit && (ifp->if_flags & IFF_RUNNING)) {
1086 			ifp->if_flags &= ~IFF_RUNNING;
1087 			vtnet_init(sc);
1088 		}
1089 		//VLAN_CAPABILITIES(ifp);
1090 
1091 		break;
1092 
1093 	default:
1094 		error = ether_ioctl(ifp, cmd, data);
1095 		break;
1096 	}
1097 
1098 	return (error);
1099 }
1100 
1101 static int
1102 vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu)
1103 {
1104 	struct ifnet *ifp;
1105 	int new_frame_size, clsize;
1106 
1107 	ifp = sc->vtnet_ifp;
1108 
1109 	if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1110 		new_frame_size = sizeof(struct vtnet_rx_header) +
1111 		    sizeof(struct ether_vlan_header) + new_mtu;
1112 
1113 		if (new_frame_size > MJUM9BYTES)
1114 			return (EINVAL);
1115 
1116 		if (new_frame_size <= MCLBYTES)
1117 			clsize = MCLBYTES;
1118 		else
1119 			clsize = MJUM9BYTES;
1120 	} else {
1121 		new_frame_size = sizeof(struct virtio_net_hdr_mrg_rxbuf) +
1122 		    sizeof(struct ether_vlan_header) + new_mtu;
1123 
1124 		if (new_frame_size <= MCLBYTES)
1125 			clsize = MCLBYTES;
1126 		else
1127 			clsize = MJUMPAGESIZE;
1128 	}
1129 
1130 	sc->vtnet_rx_mbuf_size = clsize;
1131 	sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc);
1132 	KASSERT(sc->vtnet_rx_mbuf_count < VTNET_MAX_RX_SEGS,
1133 	    ("too many rx mbufs: %d", sc->vtnet_rx_mbuf_count));
1134 
1135 	ifp->if_mtu = new_mtu;
1136 
1137 	if (ifp->if_flags & IFF_RUNNING) {
1138 		ifp->if_flags &= ~IFF_RUNNING;
1139 		vtnet_init(sc);
1140 	}
1141 
1142 	return (0);
1143 }
1144 
1145 static int
1146 vtnet_init_rx_vq(struct vtnet_softc *sc)
1147 {
1148 	struct virtqueue *vq;
1149 	int nbufs, error;
1150 
1151 	vq = sc->vtnet_rx_vq;
1152 	nbufs = 0;
1153 	error = ENOSPC;
1154 
1155 	while (!virtqueue_full(vq)) {
1156 		if ((error = vtnet_newbuf(sc)) != 0)
1157 			break;
1158 		nbufs++;
1159 	}
1160 
1161 	if (nbufs > 0) {
1162 		virtqueue_notify(vq, NULL);
1163 
1164 		/*
1165 		 * EMSGSIZE signifies the virtqueue did not have enough
1166 		 * entries available to hold the last mbuf. This is not
1167 		 * an error. We should not get ENOSPC since we check if
1168 		 * the virtqueue is full before attempting to add a
1169 		 * buffer.
1170 		 */
1171 		if (error == EMSGSIZE)
1172 			error = 0;
1173 	}
1174 
1175 	return (error);
1176 }
1177 
1178 static void
1179 vtnet_free_rx_mbufs(struct vtnet_softc *sc)
1180 {
1181 	struct virtqueue *vq;
1182 	struct mbuf *m;
1183 	int last;
1184 
1185 	vq = sc->vtnet_rx_vq;
1186 	last = 0;
1187 
1188 	while ((m = virtqueue_drain(vq, &last)) != NULL)
1189 		m_freem(m);
1190 
1191 	KASSERT(virtqueue_empty(vq), ("mbufs remaining in Rx Vq"));
1192 }
1193 
1194 static void
1195 vtnet_free_tx_mbufs(struct vtnet_softc *sc)
1196 {
1197 	struct virtqueue *vq;
1198 	struct vtnet_tx_header *txhdr;
1199 	int last;
1200 
1201 	vq = sc->vtnet_tx_vq;
1202 	last = 0;
1203 
1204 	while ((txhdr = virtqueue_drain(vq, &last)) != NULL) {
1205 		m_freem(txhdr->vth_mbuf);
1206 		vtnet_enqueue_txhdr(sc, txhdr);
1207 	}
1208 
1209 	KASSERT(virtqueue_empty(vq), ("mbufs remaining in Tx Vq"));
1210 }
1211 
1212 static void
1213 vtnet_free_ctrl_vq(struct vtnet_softc *sc)
1214 {
1215 	/*
1216 	 * The control virtqueue is only polled, therefore
1217 	 * it should already be empty.
1218 	 */
1219 	KASSERT(virtqueue_empty(sc->vtnet_ctrl_vq),
1220 		("Ctrl Vq not empty"));
1221 }
1222 
1223 static struct mbuf *
1224 vtnet_alloc_rxbuf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp)
1225 {
1226 	struct mbuf *m_head, *m_tail, *m;
1227 	int i, clsize;
1228 
1229 	clsize = sc->vtnet_rx_mbuf_size;
1230 
1231 	/*use getcl instead of getjcl. see  if_mxge.c comment line 2398*/
1232 	//m_head = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, clsize);
1233 	m_head = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR );
1234 	if (m_head == NULL)
1235 		goto fail;
1236 
1237 	m_head->m_len = clsize;
1238 	m_tail = m_head;
1239 
1240 	if (nbufs > 1) {
1241 		KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG,
1242 			("chained Rx mbuf requested without LRO_NOMRG"));
1243 
1244 		for (i = 0; i < nbufs - 1; i++) {
1245 			//m = m_getjcl(M_DONTWAIT, MT_DATA, 0, clsize);
1246 			m = m_getcl(M_NOWAIT, MT_DATA, 0);
1247 			if (m == NULL)
1248 				goto fail;
1249 
1250 			m->m_len = clsize;
1251 			m_tail->m_next = m;
1252 			m_tail = m;
1253 		}
1254 	}
1255 
1256 	if (m_tailp != NULL)
1257 		*m_tailp = m_tail;
1258 
1259 	return (m_head);
1260 
1261 fail:
1262 	sc->vtnet_stats.mbuf_alloc_failed++;
1263 	m_freem(m_head);
1264 
1265 	return (NULL);
1266 }
1267 
1268 static int
1269 vtnet_replace_rxbuf(struct vtnet_softc *sc, struct mbuf *m0, int len0)
1270 {
1271 	struct mbuf *m, *m_prev;
1272 	struct mbuf *m_new, *m_tail;
1273 	int len, clsize, nreplace, error;
1274 
1275 	m = m0;
1276 	m_prev = NULL;
1277 	len = len0;
1278 
1279 	m_tail = NULL;
1280 	clsize = sc->vtnet_rx_mbuf_size;
1281 	nreplace = 0;
1282 
1283 	if (m->m_next != NULL)
1284 		KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG,
1285 		    ("chained Rx mbuf without LRO_NOMRG"));
1286 
1287 	/*
1288 	 * Since LRO_NOMRG mbuf chains are so large, we want to avoid
1289 	 * allocating an entire chain for each received frame. When
1290 	 * the received frame's length is less than that of the chain,
1291 	 * the unused mbufs are reassigned to the new chain.
1292 	 */
1293 	while (len > 0) {
1294 		/*
1295 		 * Something is seriously wrong if we received
1296 		 * a frame larger than the mbuf chain. Drop it.
1297 		 */
1298 		if (m == NULL) {
1299 			sc->vtnet_stats.rx_frame_too_large++;
1300 			return (EMSGSIZE);
1301 		}
1302 
1303 		KASSERT(m->m_len == clsize,
1304 		    ("mbuf length not expected cluster size: %d",
1305 		    m->m_len));
1306 
1307 		m->m_len = MIN(m->m_len, len);
1308 		len -= m->m_len;
1309 
1310 		m_prev = m;
1311 		m = m->m_next;
1312 		nreplace++;
1313 	}
1314 
1315 	KASSERT(m_prev != NULL, ("m_prev == NULL"));
1316 	KASSERT(nreplace <= sc->vtnet_rx_mbuf_count,
1317 		("too many replacement mbufs: %d/%d", nreplace,
1318 		sc->vtnet_rx_mbuf_count));
1319 
1320 	m_new = vtnet_alloc_rxbuf(sc, nreplace, &m_tail);
1321 	if (m_new == NULL) {
1322 		m_prev->m_len = clsize;
1323 		return (ENOBUFS);
1324 	}
1325 
1326 	/*
1327 	 * Move unused mbufs, if any, from the original chain
1328 	 * onto the end of the new chain.
1329 	 */
1330 	if (m_prev->m_next != NULL) {
1331 		m_tail->m_next = m_prev->m_next;
1332 		m_prev->m_next = NULL;
1333 	}
1334 
1335 	error = vtnet_enqueue_rxbuf(sc, m_new);
1336 	if (error) {
1337 		/*
1338 		 * BAD! We could not enqueue the replacement mbuf chain. We
1339 		 * must restore the m0 chain to the original state if it was
1340 		 * modified so we can subsequently discard it.
1341 		 *
1342 		 * NOTE: The replacement is suppose to be an identical copy
1343 		 * to the one just dequeued so this is an unexpected error.
1344 		 */
1345 		sc->vtnet_stats.rx_enq_replacement_failed++;
1346 
1347 		if (m_tail->m_next != NULL) {
1348 			m_prev->m_next = m_tail->m_next;
1349 			m_tail->m_next = NULL;
1350 		}
1351 
1352 		m_prev->m_len = clsize;
1353 		m_freem(m_new);
1354 	}
1355 
1356 	return (error);
1357 }
1358 
1359 static int
1360 vtnet_newbuf(struct vtnet_softc *sc)
1361 {
1362 	struct mbuf *m;
1363 	int error;
1364 
1365 	m = vtnet_alloc_rxbuf(sc, sc->vtnet_rx_mbuf_count, NULL);
1366 	if (m == NULL)
1367 		return (ENOBUFS);
1368 
1369 	error = vtnet_enqueue_rxbuf(sc, m);
1370 	if (error)
1371 		m_freem(m);
1372 
1373 	return (error);
1374 }
1375 
1376 static void
1377 vtnet_discard_merged_rxbuf(struct vtnet_softc *sc, int nbufs)
1378 {
1379 	struct virtqueue *vq;
1380 	struct mbuf *m;
1381 
1382 	vq = sc->vtnet_rx_vq;
1383 
1384 	while (--nbufs > 0) {
1385 		if ((m = virtqueue_dequeue(vq, NULL)) == NULL)
1386 			break;
1387 		vtnet_discard_rxbuf(sc, m);
1388 	}
1389 }
1390 
1391 static void
1392 vtnet_discard_rxbuf(struct vtnet_softc *sc, struct mbuf *m)
1393 {
1394 	int error;
1395 
1396 	/*
1397 	 * Requeue the discarded mbuf. This should always be
1398 	 * successful since it was just dequeued.
1399 	 */
1400 	error = vtnet_enqueue_rxbuf(sc, m);
1401 	KASSERT(error == 0, ("cannot requeue discarded mbuf"));
1402 }
1403 
1404 static int
1405 vtnet_enqueue_rxbuf(struct vtnet_softc *sc, struct mbuf *m)
1406 {
1407 	struct sglist sg;
1408 	struct sglist_seg segs[VTNET_MAX_RX_SEGS];
1409 	struct vtnet_rx_header *rxhdr;
1410 	struct virtio_net_hdr *hdr;
1411 	uint8_t *mdata;
1412 	int offset, error;
1413 
1414 	ASSERT_SERIALIZED(&sc->vtnet_rx_slz);
1415 	if ((sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) == 0)
1416 		KASSERT(m->m_next == NULL, ("chained Rx mbuf"));
1417 
1418 	sglist_init(&sg, sc->vtnet_rx_nsegs, segs);
1419 
1420 	mdata = mtod(m, uint8_t *);
1421 	offset = 0;
1422 
1423 	if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1424 		rxhdr = (struct vtnet_rx_header *) mdata;
1425 		hdr = &rxhdr->vrh_hdr;
1426 		offset += sizeof(struct vtnet_rx_header);
1427 
1428 		error = sglist_append(&sg, hdr, sc->vtnet_hdr_size);
1429 		KASSERT(error == 0, ("cannot add header to sglist"));
1430 	}
1431 
1432 	error = sglist_append(&sg, mdata + offset, m->m_len - offset);
1433 	if (error)
1434 		return (error);
1435 
1436 	if (m->m_next != NULL) {
1437 		error = sglist_append_mbuf(&sg, m->m_next);
1438 		if (error)
1439 			return (error);
1440 	}
1441 
1442 	return (virtqueue_enqueue(sc->vtnet_rx_vq, m, &sg, 0, sg.sg_nseg));
1443 }
1444 
1445 #ifdef IFPOLL_ENABLE
1446 
1447 static void
1448 vtnet_npoll_status(struct ifnet *ifp)
1449 {
1450 	struct vtnet_softc *sc = ifp->if_softc;
1451 
1452 	ASSERT_SERIALIZED(&sc->vtnet_slz);
1453 
1454 	vtnet_update_link_status(sc);
1455 }
1456 
1457 static void
1458 vtnet_npoll_rx(struct ifnet *ifp, void *arg __unused, int cycle)
1459 {
1460 	struct vtnet_softc *sc = ifp->if_softc;
1461 
1462 	vtnet_rxeof(sc, cycle, NULL);
1463 }
1464 
1465 static void
1466 vtnet_npoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
1467 {
1468 	struct vtnet_softc *sc = ifp->if_softc;
1469 
1470 	ASSERT_SERIALIZED(&sc->vtnet_tx_slz);
1471 
1472 	vtnet_txeof(sc);
1473 	if (!ifq_is_empty(&ifp->if_snd))
1474 		if_devstart(ifp);
1475 }
1476 
1477 static void
1478 vtnet_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1479 {
1480 	struct vtnet_softc *sc = ifp->if_softc;
1481 	int i;
1482 
1483 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1484 
1485 	if (info) {
1486 		int cpu;
1487 
1488 		info->ifpi_status.status_func = vtnet_npoll_status;
1489 		info->ifpi_status.serializer = &sc->vtnet_slz;
1490 
1491 		/* Use the same cpu for rx and tx. */
1492 		cpu = device_get_unit(device_get_parent(sc->vtnet_dev));
1493 		/* Shuffle a bit. */
1494 		cpu = (cpu * 61) % netisr_ncpus;
1495 		KKASSERT(cpu < netisr_ncpus);
1496 		info->ifpi_tx[cpu].poll_func = vtnet_npoll_tx;
1497 		info->ifpi_tx[cpu].arg = NULL;
1498 		info->ifpi_tx[cpu].serializer = &sc->vtnet_tx_slz;
1499 		ifq_set_cpuid(&ifp->if_snd, cpu);
1500 
1501 		info->ifpi_rx[cpu].poll_func = vtnet_npoll_rx;
1502 		info->ifpi_rx[cpu].arg = NULL;
1503 		info->ifpi_rx[cpu].serializer = &sc->vtnet_rx_slz;
1504 
1505 		for (i = 0; i < 3; i++)
1506 			lwkt_serialize_handler_disable(sc->serializes[i]);
1507 		vtnet_disable_rx_intr(sc);
1508 		vtnet_disable_tx_intr(sc);
1509 		for (i = 0; i < sc->vtnet_nintr; i++)
1510 			virtio_teardown_intr(sc->vtnet_dev, i);
1511 		if (virtio_with_feature(sc->vtnet_dev, VIRTIO_NET_F_STATUS))
1512 			virtio_unbind_intr(sc->vtnet_dev, -1);
1513 		for (i = 0; i < 2; i++)
1514 			virtio_unbind_intr(sc->vtnet_dev, i);
1515 	} else {
1516 		int error;
1517 
1518 		ifq_set_cpuid(&ifp->if_snd,
1519 		    sc->vtnet_cpus[sc->vtnet_nintr - 1]);
1520 		for (i = 0; i < 3; i++)
1521 			lwkt_serialize_handler_enable(sc->serializes[i]);
1522 		for (i = 0; i < 2; i++) {
1523 			error = virtio_bind_intr(sc->vtnet_dev,
1524 			    sc->vtnet_irqmap[i].irq, i,
1525 			    sc->vtnet_irqmap[i].handler, sc);
1526 			if (error) {
1527 				device_printf(sc->vtnet_dev,
1528 				    "cannot re-bind virtqueue IRQs\n");
1529 			}
1530 		}
1531 		if (virtio_with_feature(sc->vtnet_dev, VIRTIO_NET_F_STATUS)) {
1532 			error = virtio_bind_intr(sc->vtnet_dev, 0, -1,
1533 			    vtnet_config_intr, sc);
1534 			if (error) {
1535 				device_printf(sc->vtnet_dev,
1536 				    "cannot re-bind config_change IRQ\n");
1537 			}
1538 		}
1539 		for (i = 0; i < sc->vtnet_nintr; i++) {
1540 			error = virtio_setup_intr(sc->vtnet_dev, i,
1541 			    sc->vtnet_intr_slz[i]);
1542 			if (error) {
1543 				device_printf(sc->vtnet_dev,
1544 				    "cannot setup virtqueue interrupts\n");
1545 			}
1546 		}
1547 		vtnet_enable_rx_intr(sc);
1548 		vtnet_enable_tx_intr(sc);
1549 	}
1550 }
1551 
1552 #endif	/* IFPOLL_ENABLE */
1553 
1554 static void
1555 vtnet_vlan_tag_remove(struct mbuf *m)
1556 {
1557 	struct ether_vlan_header *evl;
1558 
1559 	evl = mtod(m, struct ether_vlan_header *);
1560 
1561 	m->m_pkthdr.ether_vlantag = ntohs(evl->evl_tag);
1562 	m->m_flags |= M_VLANTAG;
1563 
1564 	/* Strip the 802.1Q header. */
1565 	bcopy((char *) evl, (char *) evl + ETHER_VLAN_ENCAP_LEN,
1566 	    ETHER_HDR_LEN - ETHER_TYPE_LEN);
1567 	m_adj(m, ETHER_VLAN_ENCAP_LEN);
1568 }
1569 
1570 /*
1571  * Alternative method of doing receive checksum offloading. Rather
1572  * than parsing the received frame down to the IP header, use the
1573  * csum_offset to determine which CSUM_* flags are appropriate. We
1574  * can get by with doing this only because the checksum offsets are
1575  * unique for the things we care about.
1576  */
1577 static int
1578 vtnet_rx_csum(struct vtnet_softc *sc, struct mbuf *m,
1579     struct virtio_net_hdr *hdr)
1580 {
1581 	struct ether_header *eh;
1582 	struct ether_vlan_header *evh;
1583 	struct udphdr *udp;
1584 	int csum_len;
1585 	uint16_t eth_type;
1586 
1587 	csum_len = hdr->csum_start + hdr->csum_offset;
1588 
1589 	if (csum_len < sizeof(struct ether_header) + sizeof(struct ip))
1590 		return (1);
1591 	if (m->m_len < csum_len)
1592 		return (1);
1593 
1594 	eh = mtod(m, struct ether_header *);
1595 	eth_type = ntohs(eh->ether_type);
1596 	if (eth_type == ETHERTYPE_VLAN) {
1597 		evh = mtod(m, struct ether_vlan_header *);
1598 		eth_type = ntohs(evh->evl_proto);
1599 	}
1600 
1601 	if (eth_type != ETHERTYPE_IP && eth_type != ETHERTYPE_IPV6) {
1602 		sc->vtnet_stats.rx_csum_bad_ethtype++;
1603 		return (1);
1604 	}
1605 
1606 	/* Use the offset to determine the appropriate CSUM_* flags. */
1607 	switch (hdr->csum_offset) {
1608 	case offsetof(struct udphdr, uh_sum):
1609 		if (m->m_len < hdr->csum_start + sizeof(struct udphdr))
1610 			return (1);
1611 		udp = (struct udphdr *)(mtod(m, uint8_t *) + hdr->csum_start);
1612 		if (udp->uh_sum == 0)
1613 			return (0);
1614 
1615 		/* FALLTHROUGH */
1616 
1617 	case offsetof(struct tcphdr, th_sum):
1618 		m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1619 		m->m_pkthdr.csum_data = 0xFFFF;
1620 		break;
1621 
1622 	default:
1623 		sc->vtnet_stats.rx_csum_bad_offset++;
1624 		return (1);
1625 	}
1626 
1627 	sc->vtnet_stats.rx_csum_offloaded++;
1628 
1629 	return (0);
1630 }
1631 
1632 static int
1633 vtnet_rxeof_merged(struct vtnet_softc *sc, struct mbuf *m_head, int nbufs)
1634 {
1635 	struct ifnet *ifp;
1636 	struct virtqueue *vq;
1637 	struct mbuf *m, *m_tail;
1638 	int len;
1639 
1640 	ifp = sc->vtnet_ifp;
1641 	vq = sc->vtnet_rx_vq;
1642 	m_tail = m_head;
1643 
1644 	while (--nbufs > 0) {
1645 		m = virtqueue_dequeue(vq, &len);
1646 		if (m == NULL) {
1647 			ifp->if_ierrors++;
1648 			goto fail;
1649 		}
1650 
1651 		if (vtnet_newbuf(sc) != 0) {
1652 			ifp->if_iqdrops++;
1653 			vtnet_discard_rxbuf(sc, m);
1654 			if (nbufs > 1)
1655 				vtnet_discard_merged_rxbuf(sc, nbufs);
1656 			goto fail;
1657 		}
1658 
1659 		if (m->m_len < len)
1660 			len = m->m_len;
1661 
1662 		m->m_len = len;
1663 		m->m_flags &= ~M_PKTHDR;
1664 
1665 		m_head->m_pkthdr.len += len;
1666 		m_tail->m_next = m;
1667 		m_tail = m;
1668 	}
1669 
1670 	return (0);
1671 
1672 fail:
1673 	sc->vtnet_stats.rx_mergeable_failed++;
1674 	m_freem(m_head);
1675 
1676 	return (1);
1677 }
1678 
1679 static int
1680 vtnet_rxeof(struct vtnet_softc *sc, int count, int *rx_npktsp)
1681 {
1682 	struct virtio_net_hdr lhdr;
1683 	struct ifnet *ifp;
1684 	struct virtqueue *vq;
1685 	struct mbuf *m;
1686 	struct ether_header *eh;
1687 	struct virtio_net_hdr *hdr;
1688 	struct virtio_net_hdr_mrg_rxbuf *mhdr;
1689 	int len, deq, nbufs, adjsz, rx_npkts;
1690 
1691 	ifp = sc->vtnet_ifp;
1692 	vq = sc->vtnet_rx_vq;
1693 	hdr = &lhdr;
1694 	deq = 0;
1695 	rx_npkts = 0;
1696 
1697 	while (--count >= 0) {
1698 		m = virtqueue_dequeue(vq, &len);
1699 		if (m == NULL)
1700 			break;
1701 		deq++;
1702 
1703 		if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) {
1704 			ifp->if_ierrors++;
1705 			vtnet_discard_rxbuf(sc, m);
1706 			continue;
1707 		}
1708 
1709 		if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1710 			nbufs = 1;
1711 			adjsz = sizeof(struct vtnet_rx_header);
1712 			/*
1713 			 * Account for our pad between the header and
1714 			 * the actual start of the frame.
1715 			 */
1716 			len += VTNET_RX_HEADER_PAD;
1717 		} else {
1718 			mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *);
1719 			nbufs = mhdr->num_buffers;
1720 			adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf);
1721 		}
1722 
1723 		if (vtnet_replace_rxbuf(sc, m, len) != 0) {
1724 			ifp->if_iqdrops++;
1725 			vtnet_discard_rxbuf(sc, m);
1726 			if (nbufs > 1)
1727 				vtnet_discard_merged_rxbuf(sc, nbufs);
1728 			continue;
1729 		}
1730 
1731 		m->m_pkthdr.len = len;
1732 		m->m_pkthdr.rcvif = ifp;
1733 		m->m_pkthdr.csum_flags = 0;
1734 
1735 		if (nbufs > 1) {
1736 			if (vtnet_rxeof_merged(sc, m, nbufs) != 0)
1737 				continue;
1738 		}
1739 
1740 		ifp->if_ipackets++;
1741 
1742 		/*
1743 		 * Save copy of header before we strip it. For both mergeable
1744 		 * and non-mergeable, the VirtIO header is placed first in the
1745 		 * mbuf's data. We no longer need num_buffers, so always use a
1746 		 * virtio_net_hdr.
1747 		 */
1748 		memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr));
1749 		m_adj(m, adjsz);
1750 
1751 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1752 			eh = mtod(m, struct ether_header *);
1753 			if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1754 				vtnet_vlan_tag_remove(m);
1755 
1756 				/*
1757 				 * With the 802.1Q header removed, update the
1758 				 * checksum starting location accordingly.
1759 				 */
1760 				if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)
1761 					hdr->csum_start -=
1762 					    ETHER_VLAN_ENCAP_LEN;
1763 			}
1764 		}
1765 
1766 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1767 		    hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1768 			if (vtnet_rx_csum(sc, m, hdr) != 0)
1769 				sc->vtnet_stats.rx_csum_failed++;
1770 		}
1771 
1772 		rx_npkts++;
1773 		ifp->if_input(ifp, m, NULL, mycpuid);
1774 
1775 		/*
1776 		 * The interface may have been stopped while we were
1777 		 * passing the packet up the network stack.
1778 		 */
1779 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1780 			break;
1781 	}
1782 
1783 	if (deq > 0)
1784 		virtqueue_notify(vq, NULL);
1785 
1786 	if (rx_npktsp != NULL)
1787 		*rx_npktsp = rx_npkts;
1788 
1789 	return (count > 0 ? 0 : EAGAIN);
1790 }
1791 
1792 static void
1793 vtnet_rx_msix_intr(void *xsc)
1794 {
1795 	struct vtnet_softc *sc;
1796 	struct ifnet *ifp;
1797 	int more;
1798 
1799 	sc = xsc;
1800 	ifp = sc->vtnet_ifp;
1801 
1802 	if (!virtqueue_pending(sc->vtnet_rx_vq))
1803 		return;
1804 
1805 	vtnet_disable_rx_intr(sc);
1806 next:
1807 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1808 		vtnet_enable_rx_intr(sc);
1809 		return;
1810 	}
1811 
1812 	more = vtnet_rxeof(sc, sc->vtnet_rx_process_limit, NULL);
1813 	if (!more && vtnet_enable_rx_intr(sc) != 0) {
1814 		vtnet_disable_rx_intr(sc);
1815 		more = 1;
1816 	}
1817 
1818 	if (more) {
1819 		sc->vtnet_stats.rx_task_rescheduled++;
1820 		goto next;
1821 	}
1822 }
1823 
1824 static void
1825 vtnet_rx_vq_intr(void *xsc)
1826 {
1827 	struct vtnet_softc *sc = xsc;
1828 
1829 	lwkt_serialize_enter(&sc->vtnet_rx_slz);
1830 	vtnet_rx_msix_intr(xsc);
1831 	lwkt_serialize_exit(&sc->vtnet_rx_slz);
1832 }
1833 
1834 static void
1835 vtnet_enqueue_txhdr(struct vtnet_softc *sc, struct vtnet_tx_header *txhdr)
1836 {
1837 	bzero(txhdr, sizeof(*txhdr));
1838 	SLIST_INSERT_HEAD(&sc->vtnet_txhdr_free, txhdr, link);
1839 }
1840 
1841 static void
1842 vtnet_txeof(struct vtnet_softc *sc)
1843 {
1844 	struct virtqueue *vq;
1845 	struct ifnet *ifp;
1846 	struct vtnet_tx_header *txhdr;
1847 	int deq;
1848 
1849 	vq = sc->vtnet_tx_vq;
1850 	ifp = sc->vtnet_ifp;
1851 	deq = 0;
1852 
1853 	while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) {
1854 		deq++;
1855 		ifp->if_opackets++;
1856 		m_freem(txhdr->vth_mbuf);
1857 		vtnet_enqueue_txhdr(sc, txhdr);
1858 	}
1859 
1860 	if (deq > 0) {
1861 		ifq_clr_oactive(&ifp->if_snd);
1862 		if (virtqueue_empty(vq))
1863 			ifsq_watchdog_set_count(&sc->vtnet_tx_watchdog, 0);
1864 		else
1865 			ifsq_watchdog_set_count(&sc->vtnet_tx_watchdog,
1866 						VTNET_WATCHDOG_TIMEOUT);
1867 	}
1868 }
1869 
1870 static struct mbuf *
1871 vtnet_tx_offload(struct vtnet_softc *sc, struct mbuf *m,
1872     struct virtio_net_hdr *hdr)
1873 {
1874 	struct ifnet *ifp;
1875 	struct ether_header *eh;
1876 	struct ether_vlan_header *evh;
1877 	struct ip *ip;
1878 	struct ip6_hdr *ip6;
1879 	struct tcphdr *tcp;
1880 	int ip_offset;
1881 	uint16_t eth_type, csum_start;
1882 	uint8_t ip_proto, gso_type;
1883 
1884 	ifp = sc->vtnet_ifp;
1885 	M_ASSERTPKTHDR(m);
1886 
1887 	ip_offset = sizeof(struct ether_header);
1888 	if (m->m_len < ip_offset) {
1889 		if ((m = m_pullup(m, ip_offset)) == NULL)
1890 			return (NULL);
1891 	}
1892 
1893 	eh = mtod(m, struct ether_header *);
1894 	eth_type = ntohs(eh->ether_type);
1895 	if (eth_type == ETHERTYPE_VLAN) {
1896 		ip_offset = sizeof(struct ether_vlan_header);
1897 		if (m->m_len < ip_offset) {
1898 			if ((m = m_pullup(m, ip_offset)) == NULL)
1899 				return (NULL);
1900 		}
1901 		evh = mtod(m, struct ether_vlan_header *);
1902 		eth_type = ntohs(evh->evl_proto);
1903 	}
1904 
1905 	switch (eth_type) {
1906 	case ETHERTYPE_IP:
1907 		if (m->m_len < ip_offset + sizeof(struct ip)) {
1908 			m = m_pullup(m, ip_offset + sizeof(struct ip));
1909 			if (m == NULL)
1910 				return (NULL);
1911 		}
1912 
1913 		ip = (struct ip *)(mtod(m, uint8_t *) + ip_offset);
1914 		ip_proto = ip->ip_p;
1915 		csum_start = ip_offset + (ip->ip_hl << 2);
1916 		gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
1917 		break;
1918 
1919 	case ETHERTYPE_IPV6:
1920 		if (m->m_len < ip_offset + sizeof(struct ip6_hdr)) {
1921 			m = m_pullup(m, ip_offset + sizeof(struct ip6_hdr));
1922 			if (m == NULL)
1923 				return (NULL);
1924 		}
1925 
1926 		ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + ip_offset);
1927 		/*
1928 		 * XXX Assume no extension headers are present. Presently,
1929 		 * this will always be true in the case of TSO, and FreeBSD
1930 		 * does not perform checksum offloading of IPv6 yet.
1931 		 */
1932 		ip_proto = ip6->ip6_nxt;
1933 		csum_start = ip_offset + sizeof(struct ip6_hdr);
1934 		gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
1935 		break;
1936 
1937 	default:
1938 		return (m);
1939 	}
1940 
1941 	if (m->m_pkthdr.csum_flags & VTNET_CSUM_OFFLOAD) {
1942 		hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM;
1943 		hdr->csum_start = csum_start;
1944 		hdr->csum_offset = m->m_pkthdr.csum_data;
1945 
1946 		sc->vtnet_stats.tx_csum_offloaded++;
1947 	}
1948 
1949 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1950 		if (ip_proto != IPPROTO_TCP)
1951 			return (m);
1952 
1953 		if (m->m_len < csum_start + sizeof(struct tcphdr)) {
1954 			m = m_pullup(m, csum_start + sizeof(struct tcphdr));
1955 			if (m == NULL)
1956 				return (NULL);
1957 		}
1958 
1959 		tcp = (struct tcphdr *)(mtod(m, uint8_t *) + csum_start);
1960 		hdr->gso_type = gso_type;
1961 		hdr->hdr_len = csum_start + (tcp->th_off << 2);
1962 		hdr->gso_size = m->m_pkthdr.tso_segsz;
1963 
1964 		if (tcp->th_flags & TH_CWR) {
1965 			/*
1966 			 * Drop if we did not negotiate VIRTIO_NET_F_HOST_ECN.
1967 			 * ECN support is only configurable globally with the
1968 			 * net.inet.tcp.ecn.enable sysctl knob.
1969 			 */
1970 			if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) {
1971 				if_printf(ifp, "TSO with ECN not supported "
1972 				    "by host\n");
1973 				m_freem(m);
1974 				return (NULL);
1975 			}
1976 
1977 			hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN;
1978 		}
1979 
1980 		sc->vtnet_stats.tx_tso_offloaded++;
1981 	}
1982 
1983 	return (m);
1984 }
1985 
1986 static int
1987 vtnet_enqueue_txbuf(struct vtnet_softc *sc, struct mbuf **m_head,
1988     struct vtnet_tx_header *txhdr)
1989 {
1990 	struct sglist sg;
1991 	struct sglist_seg segs[VTNET_MAX_TX_SEGS];
1992 	struct virtqueue *vq;
1993 	struct mbuf *m;
1994 	int error;
1995 
1996 	vq = sc->vtnet_tx_vq;
1997 	m = *m_head;
1998 
1999 	sglist_init(&sg, sc->vtnet_tx_nsegs, segs);
2000 	error = sglist_append(&sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size);
2001 	KASSERT(error == 0 && sg.sg_nseg == 1,
2002 	    ("%s: error %d adding header to sglist", __func__, error));
2003 
2004 	error = sglist_append_mbuf(&sg, m);
2005 	if (error) {
2006 		m = m_defrag(m, M_NOWAIT);
2007 		if (m == NULL)
2008 			goto fail;
2009 
2010 		*m_head = m;
2011 		sc->vtnet_stats.tx_defragged++;
2012 
2013 		error = sglist_append_mbuf(&sg, m);
2014 		if (error)
2015 			goto fail;
2016 	}
2017 
2018 	txhdr->vth_mbuf = m;
2019 	error = virtqueue_enqueue(vq, txhdr, &sg, sg.sg_nseg, 0);
2020 
2021 	return (error);
2022 
2023 fail:
2024 	sc->vtnet_stats.tx_defrag_failed++;
2025 	m_freem(*m_head);
2026 	*m_head = NULL;
2027 
2028 	return (ENOBUFS);
2029 }
2030 
2031 static struct mbuf *
2032 vtnet_vlan_tag_insert(struct mbuf *m)
2033 {
2034 	struct mbuf *n;
2035 	struct ether_vlan_header *evl;
2036 
2037 	if (M_WRITABLE(m) == 0) {
2038 		n = m_dup(m, M_NOWAIT);
2039 		m_freem(m);
2040 		if ((m = n) == NULL)
2041 			return (NULL);
2042 	}
2043 
2044 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
2045 	if (m == NULL)
2046 		return (NULL);
2047 	if (m->m_len < sizeof(struct ether_vlan_header)) {
2048 		m = m_pullup(m, sizeof(struct ether_vlan_header));
2049 		if (m == NULL)
2050 			return (NULL);
2051 	}
2052 
2053 	/* Insert 802.1Q header into the existing Ethernet header. */
2054 	evl = mtod(m, struct ether_vlan_header *);
2055 	bcopy((char *) evl + ETHER_VLAN_ENCAP_LEN,
2056 	      (char *) evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
2057 	evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
2058 	evl->evl_tag = htons(m->m_pkthdr.ether_vlantag);
2059 	m->m_flags &= ~M_VLANTAG;
2060 
2061 	return (m);
2062 }
2063 
2064 static int
2065 vtnet_encap(struct vtnet_softc *sc, struct mbuf **m_head)
2066 {
2067 	struct vtnet_tx_header *txhdr;
2068 	struct virtio_net_hdr *hdr;
2069 	struct mbuf *m;
2070 	int error;
2071 
2072 	txhdr = SLIST_FIRST(&sc->vtnet_txhdr_free);
2073 	if (txhdr == NULL)
2074 		return (ENOBUFS);
2075 	SLIST_REMOVE_HEAD(&sc->vtnet_txhdr_free, link);
2076 
2077 	/*
2078 	 * Always use the non-mergeable header to simplify things. When
2079 	 * the mergeable feature is negotiated, the num_buffers field
2080 	 * must be set to zero. We use vtnet_hdr_size later to enqueue
2081 	 * the correct header size to the host.
2082 	 */
2083 	hdr = &txhdr->vth_uhdr.hdr;
2084 	m = *m_head;
2085 
2086 	error = ENOBUFS;
2087 
2088 	if (m->m_flags & M_VLANTAG) {
2089 		//m = ether_vlanencap(m, m->m_pkthdr.ether_vtag);
2090 		m = vtnet_vlan_tag_insert(m);
2091 		if ((*m_head = m) == NULL)
2092 			goto fail;
2093 		m->m_flags &= ~M_VLANTAG;
2094 	}
2095 
2096 	if (m->m_pkthdr.csum_flags != 0) {
2097 		m = vtnet_tx_offload(sc, m, hdr);
2098 		if ((*m_head = m) == NULL)
2099 			goto fail;
2100 	}
2101 
2102 	error = vtnet_enqueue_txbuf(sc, m_head, txhdr);
2103 fail:
2104 	if (error != 0)
2105 		vtnet_enqueue_txhdr(sc, txhdr);
2106 	return (error);
2107 }
2108 
2109 static void
2110 vtnet_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2111 {
2112 	struct vtnet_softc *sc;
2113 	struct virtqueue *vq;
2114 	struct mbuf *m0;
2115 	int enq;
2116 
2117 	sc = ifp->if_softc;
2118 	vq = sc->vtnet_tx_vq;
2119 	enq = 0;
2120 
2121 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2122 	ASSERT_SERIALIZED(&sc->vtnet_tx_slz);
2123 
2124 	if ((ifp->if_flags & (IFF_RUNNING)) !=
2125 	    IFF_RUNNING || ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0))
2126 		return;
2127 
2128 #ifdef VTNET_TX_INTR_MODERATION
2129 	if (virtqueue_nused(vq) >= sc->vtnet_tx_size / 2)
2130 		vtnet_txeof(sc);
2131 #endif
2132 
2133 	while (!ifsq_is_empty(ifsq)) {
2134 		if (virtqueue_full(vq)) {
2135 			ifsq_set_oactive(ifsq);
2136 			break;
2137 		}
2138 
2139 		m0 = ifsq_dequeue(ifsq);
2140 		if (m0 == NULL)
2141 			break;
2142 
2143 		if (vtnet_encap(sc, &m0) != 0) {
2144 			if (m0 == NULL)
2145 				break;
2146 			ifsq_prepend(ifsq, m0);
2147 			ifsq_set_oactive(ifsq);
2148 			break;
2149 		}
2150 
2151 		enq++;
2152 		ETHER_BPF_MTAP(ifp, m0);
2153 	}
2154 
2155 	if (enq > 0) {
2156 		virtqueue_notify(vq, NULL);
2157 		ifsq_watchdog_set_count(&sc->vtnet_tx_watchdog,
2158 					VTNET_WATCHDOG_TIMEOUT);
2159 	}
2160 }
2161 
2162 static void
2163 vtnet_tx_msix_intr(void *xsc)
2164 {
2165 	struct vtnet_softc *sc;
2166 	struct ifnet *ifp;
2167 	struct ifaltq_subque *ifsq;
2168 
2169 	sc = xsc;
2170 	ifp = sc->vtnet_ifp;
2171 	ifsq = ifq_get_subq_default(&ifp->if_snd);
2172 
2173 	if (!virtqueue_pending(sc->vtnet_tx_vq))
2174 		return;
2175 
2176 	vtnet_disable_tx_intr(sc);
2177 next:
2178 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2179 		vtnet_enable_tx_intr(sc);
2180 		return;
2181 	}
2182 
2183 	vtnet_txeof(sc);
2184 
2185 	if (!ifsq_is_empty(ifsq))
2186 		ifsq_devstart(ifsq);
2187 
2188 	if (vtnet_enable_tx_intr(sc) != 0) {
2189 		vtnet_disable_tx_intr(sc);
2190 		sc->vtnet_stats.tx_task_rescheduled++;
2191 		goto next;
2192 	}
2193 }
2194 
2195 static void
2196 vtnet_tx_vq_intr(void *xsc)
2197 {
2198 	struct vtnet_softc *sc = xsc;
2199 
2200 	lwkt_serialize_enter(&sc->vtnet_tx_slz);
2201 	vtnet_tx_msix_intr(xsc);
2202 	lwkt_serialize_exit(&sc->vtnet_tx_slz);
2203 }
2204 
2205 static void
2206 vtnet_config_intr(void *arg)
2207 {
2208 	struct vtnet_softc *sc;
2209 
2210 	sc = arg;
2211 
2212 	vtnet_update_link_status(sc);
2213 }
2214 
2215 static void
2216 vtnet_stop(struct vtnet_softc *sc)
2217 {
2218 	device_t dev;
2219 	struct ifnet *ifp;
2220 
2221 	dev = sc->vtnet_dev;
2222 	ifp = sc->vtnet_ifp;
2223 
2224 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2225 
2226 	ifq_clr_oactive(&ifp->if_snd);
2227 	ifsq_watchdog_stop(&sc->vtnet_tx_watchdog);
2228 	ifp->if_flags &= ~(IFF_RUNNING);
2229 
2230 	vtnet_disable_rx_intr(sc);
2231 	vtnet_disable_tx_intr(sc);
2232 
2233 	/*
2234 	 * Stop the host VirtIO adapter. Note this will reset the host
2235 	 * adapter's state back to the pre-initialized state, so in
2236 	 * order to make the device usable again, we must drive it
2237 	 * through virtio_reinit() and virtio_reinit_complete().
2238 	 */
2239 	virtio_stop(dev);
2240 
2241 	sc->vtnet_flags &= ~VTNET_FLAG_LINK;
2242 
2243 	vtnet_free_rx_mbufs(sc);
2244 	vtnet_free_tx_mbufs(sc);
2245 }
2246 
2247 static int
2248 vtnet_virtio_reinit(struct vtnet_softc *sc)
2249 {
2250 	device_t dev;
2251 	struct ifnet *ifp;
2252 	uint64_t features;
2253 	int error;
2254 
2255 	dev = sc->vtnet_dev;
2256 	ifp = sc->vtnet_ifp;
2257 	features = sc->vtnet_features;
2258 
2259 	/*
2260 	 * Re-negotiate with the host, removing any disabled receive
2261 	 * features. Transmit features are disabled only on our side
2262 	 * via if_capenable and if_hwassist.
2263 	 */
2264 
2265 	if (ifp->if_capabilities & IFCAP_RXCSUM) {
2266 		if ((ifp->if_capenable & IFCAP_RXCSUM) == 0)
2267 			features &= ~VIRTIO_NET_F_GUEST_CSUM;
2268 	}
2269 
2270 #if 0	/* IFCAP_LRO doesn't exist in DragonFly. */
2271 	if (ifp->if_capabilities & IFCAP_LRO) {
2272 		if ((ifp->if_capenable & IFCAP_LRO) == 0)
2273 			features &= ~VTNET_LRO_FEATURES;
2274 	}
2275 #endif
2276 
2277 	if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) {
2278 		if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0)
2279 			features &= ~VIRTIO_NET_F_CTRL_VLAN;
2280 	}
2281 
2282 	error = virtio_reinit(dev, features);
2283 	if (error)
2284 		device_printf(dev, "virtio reinit error %d\n", error);
2285 
2286 	return (error);
2287 }
2288 
2289 static void
2290 vtnet_init(void *xsc)
2291 {
2292 	struct vtnet_softc *sc;
2293 	device_t dev;
2294 	struct ifnet *ifp;
2295 	int error;
2296 
2297 	sc = xsc;
2298 	dev = sc->vtnet_dev;
2299 	ifp = sc->vtnet_ifp;
2300 
2301 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2302 
2303 	if (ifp->if_flags & IFF_RUNNING)
2304 		return;
2305 
2306 	/* Stop host's adapter, cancel any pending I/O. */
2307 	vtnet_stop(sc);
2308 
2309 	/* Reinitialize the host device. */
2310 	error = vtnet_virtio_reinit(sc);
2311 	if (error) {
2312 		device_printf(dev,
2313 		    "reinitialization failed, stopping device...\n");
2314 		vtnet_stop(sc);
2315 		return;
2316 	}
2317 
2318 	/* Update host with assigned MAC address. */
2319 	bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN);
2320 	vtnet_set_hwaddr(sc);
2321 
2322 	ifp->if_hwassist = 0;
2323 	if (ifp->if_capenable & IFCAP_TXCSUM)
2324 		ifp->if_hwassist |= VTNET_CSUM_OFFLOAD;
2325 	if (ifp->if_capenable & IFCAP_TSO4)
2326 		ifp->if_hwassist |= CSUM_TSO;
2327 
2328 	error = vtnet_init_rx_vq(sc);
2329 	if (error) {
2330 		device_printf(dev,
2331 		    "cannot allocate mbufs for Rx virtqueue\n");
2332 		vtnet_stop(sc);
2333 		return;
2334 	}
2335 
2336 	if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
2337 		if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
2338 			/* Restore promiscuous and all-multicast modes. */
2339 			vtnet_rx_filter(sc);
2340 
2341 			/* Restore filtered MAC addresses. */
2342 			vtnet_rx_filter_mac(sc);
2343 		}
2344 
2345 		/* Restore VLAN filters. */
2346 		if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
2347 			vtnet_rx_filter_vlan(sc);
2348 	}
2349 
2350 #ifdef IFPOLL_ENABLE
2351 	if (!(ifp->if_flags & IFF_NPOLLING))
2352 #endif
2353 	{
2354 		vtnet_enable_rx_intr(sc);
2355 		vtnet_enable_tx_intr(sc);
2356 	}
2357 
2358 	ifp->if_flags |= IFF_RUNNING;
2359 	ifq_clr_oactive(&ifp->if_snd);
2360 	ifsq_watchdog_start(&sc->vtnet_tx_watchdog);
2361 
2362 	virtio_reinit_complete(dev);
2363 
2364 	vtnet_update_link_status(sc);
2365 }
2366 
2367 static void
2368 vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie,
2369     struct sglist *sg, int readable, int writable)
2370 {
2371 	struct virtqueue *vq;
2372 	void *c;
2373 
2374 	vq = sc->vtnet_ctrl_vq;
2375 
2376 	ASSERT_IFNET_SERIALIZED_ALL(sc->vtnet_ifp);
2377 	KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ,
2378 	    ("no control virtqueue"));
2379 	KASSERT(virtqueue_empty(vq),
2380 	    ("control command already enqueued"));
2381 
2382 	if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0)
2383 		return;
2384 
2385 	/*
2386 	 * XXX We can safely drop the serializer between here, and the end of
2387 	 *     the function, when we can correctly sleep for this command to
2388 	 *     be finished.
2389 	 */
2390 	virtqueue_notify(vq, NULL);
2391 
2392 	/*
2393 	 * Poll until the command is complete. Previously, we would
2394 	 * sleep until the control virtqueue interrupt handler woke
2395 	 * us up, but dropping the VTNET_MTX leads to serialization
2396 	 * difficulties.
2397 	 *
2398 	 * Furthermore, it appears QEMU/KVM only allocates three MSIX
2399 	 * vectors. Two of those vectors are needed for the Rx and Tx
2400 	 * virtqueues. We do not support sharing both a Vq and config
2401 	 * changed notification on the same MSIX vector.
2402 	 */
2403 	c = virtqueue_poll(vq, NULL);
2404 	KASSERT(c == cookie, ("unexpected control command response"));
2405 }
2406 
2407 static int
2408 vtnet_ctrl_mac_cmd(struct vtnet_softc *sc, uint8_t *hwaddr)
2409 {
2410 	struct {
2411 		struct virtio_net_ctrl_hdr hdr __aligned(2);
2412 		uint8_t pad1;
2413 		char aligned_hwaddr[ETHER_ADDR_LEN] __aligned(8);
2414 		uint8_t pad2;
2415 		uint8_t ack;
2416 	} s;
2417 	struct sglist_seg segs[3];
2418 	struct sglist sg;
2419 	int error;
2420 
2421 	s.hdr.class = VIRTIO_NET_CTRL_MAC;
2422 	s.hdr.cmd = VIRTIO_NET_CTRL_MAC_ADDR_SET;
2423 	s.ack = VIRTIO_NET_ERR;
2424 
2425 	/* Copy the mac address into physically contiguous memory */
2426 	memcpy(s.aligned_hwaddr, hwaddr, ETHER_ADDR_LEN);
2427 
2428 	sglist_init(&sg, 3, segs);
2429 	error = 0;
2430 	error |= sglist_append(&sg, &s.hdr,
2431 	    sizeof(struct virtio_net_ctrl_hdr));
2432 	error |= sglist_append(&sg, s.aligned_hwaddr, ETHER_ADDR_LEN);
2433 	error |= sglist_append(&sg, &s.ack, sizeof(uint8_t));
2434 	KASSERT(error == 0 && sg.sg_nseg == 3,
2435 	    ("%s: error %d adding set MAC msg to sglist", __func__, error));
2436 
2437 	vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1);
2438 
2439 	return (s.ack == VIRTIO_NET_OK ? 0 : EIO);
2440 }
2441 
2442 static void
2443 vtnet_rx_filter(struct vtnet_softc *sc)
2444 {
2445 	device_t dev;
2446 	struct ifnet *ifp;
2447 
2448 	dev = sc->vtnet_dev;
2449 	ifp = sc->vtnet_ifp;
2450 
2451 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2452 	KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
2453 	    ("CTRL_RX feature not negotiated"));
2454 
2455 	if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0)
2456 		device_printf(dev, "cannot %s promiscuous mode\n",
2457 		    (ifp->if_flags & IFF_PROMISC) ? "enable" : "disable");
2458 
2459 	if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0)
2460 		device_printf(dev, "cannot %s all-multicast mode\n",
2461 		    (ifp->if_flags & IFF_ALLMULTI) ? "enable" : "disable");
2462 }
2463 
2464 static int
2465 vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on)
2466 {
2467 	struct sglist_seg segs[3];
2468 	struct sglist sg;
2469 	struct {
2470 		struct virtio_net_ctrl_hdr hdr __aligned(2);
2471 		uint8_t pad1;
2472 		uint8_t onoff;
2473 		uint8_t pad2;
2474 		uint8_t ack;
2475 	} s;
2476 	int error;
2477 
2478 	KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
2479 	    ("%s: CTRL_RX feature not negotiated", __func__));
2480 
2481 	s.hdr.class = VIRTIO_NET_CTRL_RX;
2482 	s.hdr.cmd = cmd;
2483 	s.onoff = !!on;
2484 	s.ack = VIRTIO_NET_ERR;
2485 
2486 	sglist_init(&sg, 3, segs);
2487 	error = 0;
2488 	error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr));
2489 	error |= sglist_append(&sg, &s.onoff, sizeof(uint8_t));
2490 	error |= sglist_append(&sg, &s.ack, sizeof(uint8_t));
2491 	KASSERT(error == 0 && sg.sg_nseg == 3,
2492 	    ("%s: error %d adding Rx message to sglist", __func__, error));
2493 
2494 	vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1);
2495 
2496 	return (s.ack == VIRTIO_NET_OK ? 0 : EIO);
2497 }
2498 
2499 static int
2500 vtnet_set_promisc(struct vtnet_softc *sc, int on)
2501 {
2502 
2503 	return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on));
2504 }
2505 
2506 static int
2507 vtnet_set_allmulti(struct vtnet_softc *sc, int on)
2508 {
2509 
2510 	return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on));
2511 }
2512 
2513 static void
2514 vtnet_rx_filter_mac(struct vtnet_softc *sc)
2515 {
2516 	struct virtio_net_ctrl_hdr hdr __aligned(2);
2517 	struct vtnet_mac_filter *filter;
2518 	struct sglist_seg segs[4];
2519 	struct sglist sg;
2520 	struct ifnet *ifp;
2521 	struct ifaddr *ifa;
2522 	struct ifaddr_container *ifac;
2523 	struct ifmultiaddr *ifma;
2524 	int ucnt, mcnt, promisc, allmulti, error;
2525 	uint8_t ack;
2526 
2527 	ifp = sc->vtnet_ifp;
2528 	ucnt = 0;
2529 	mcnt = 0;
2530 	promisc = 0;
2531 	allmulti = 0;
2532 
2533 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2534 	KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
2535 	    ("%s: CTRL_RX feature not negotiated", __func__));
2536 
2537 	/* Use the MAC filtering table allocated in vtnet_attach. */
2538 	filter = sc->vtnet_macfilter;
2539 	memset(filter, 0, sizeof(struct vtnet_mac_filter));
2540 
2541 	/* Unicast MAC addresses: */
2542 	//if_addr_rlock(ifp);
2543 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2544 		ifa = ifac->ifa;
2545 		if (ifa->ifa_addr->sa_family != AF_LINK)
2546 			continue;
2547 		else if (memcmp(LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
2548 		    sc->vtnet_hwaddr, ETHER_ADDR_LEN) == 0)
2549 			continue;
2550 		else if (ucnt == VTNET_MAX_MAC_ENTRIES) {
2551 			promisc = 1;
2552 			break;
2553 		}
2554 
2555 		bcopy(LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
2556 		    &filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN);
2557 		ucnt++;
2558 	}
2559 	//if_addr_runlock(ifp);
2560 
2561 	if (promisc != 0) {
2562 		filter->vmf_unicast.nentries = 0;
2563 		if_printf(ifp, "more than %d MAC addresses assigned, "
2564 		    "falling back to promiscuous mode\n",
2565 		    VTNET_MAX_MAC_ENTRIES);
2566 	} else
2567 		filter->vmf_unicast.nentries = ucnt;
2568 
2569 	/* Multicast MAC addresses: */
2570 	//if_maddr_rlock(ifp);
2571 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2572 		if (ifma->ifma_addr->sa_family != AF_LINK)
2573 			continue;
2574 		else if (mcnt == VTNET_MAX_MAC_ENTRIES) {
2575 			allmulti = 1;
2576 			break;
2577 		}
2578 
2579 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2580 		    &filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN);
2581 		mcnt++;
2582 	}
2583 	//if_maddr_runlock(ifp);
2584 
2585 	if (allmulti != 0) {
2586 		filter->vmf_multicast.nentries = 0;
2587 		if_printf(ifp, "more than %d multicast MAC addresses "
2588 		    "assigned, falling back to all-multicast mode\n",
2589 		    VTNET_MAX_MAC_ENTRIES);
2590 	} else
2591 		filter->vmf_multicast.nentries = mcnt;
2592 
2593 	if (promisc != 0 && allmulti != 0)
2594 		goto out;
2595 
2596 	hdr.class = VIRTIO_NET_CTRL_MAC;
2597 	hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET;
2598 	ack = VIRTIO_NET_ERR;
2599 
2600 	sglist_init(&sg, 4, segs);
2601 	error = 0;
2602 	error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
2603 	error |= sglist_append(&sg, &filter->vmf_unicast,
2604 	    sizeof(uint32_t) + filter->vmf_unicast.nentries * ETHER_ADDR_LEN);
2605 	error |= sglist_append(&sg, &filter->vmf_multicast,
2606 	    sizeof(uint32_t) + filter->vmf_multicast.nentries * ETHER_ADDR_LEN);
2607 	error |= sglist_append(&sg, &ack, sizeof(uint8_t));
2608 	KASSERT(error == 0 && sg.sg_nseg == 4,
2609 	    ("%s: error %d adding MAC filter msg to sglist", __func__, error));
2610 
2611 	vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
2612 
2613 	if (ack != VIRTIO_NET_OK)
2614 		if_printf(ifp, "error setting host MAC filter table\n");
2615 
2616 out:
2617 	if (promisc != 0 && vtnet_set_promisc(sc, 1) != 0)
2618 		if_printf(ifp, "cannot enable promiscuous mode\n");
2619 	if (allmulti != 0 && vtnet_set_allmulti(sc, 1) != 0)
2620 		if_printf(ifp, "cannot enable all-multicast mode\n");
2621 }
2622 
2623 static int
2624 vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
2625 {
2626 	struct sglist_seg segs[3];
2627 	struct sglist sg;
2628 	struct {
2629 		struct virtio_net_ctrl_hdr hdr __aligned(2);
2630 		uint8_t pad1;
2631 		uint16_t tag;
2632 		uint8_t pad2;
2633 		uint8_t ack;
2634 	} s;
2635 	int error;
2636 
2637 	s.hdr.class = VIRTIO_NET_CTRL_VLAN;
2638 	s.hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL;
2639 	s.tag = tag;
2640 	s.ack = VIRTIO_NET_ERR;
2641 
2642 	sglist_init(&sg, 3, segs);
2643 	error = 0;
2644 	error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr));
2645 	error |= sglist_append(&sg, &s.tag, sizeof(uint16_t));
2646 	error |= sglist_append(&sg, &s.ack, sizeof(uint8_t));
2647 	KASSERT(error == 0 && sg.sg_nseg == 3,
2648 	    ("%s: error %d adding VLAN message to sglist", __func__, error));
2649 
2650 	vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1);
2651 
2652 	return (s.ack == VIRTIO_NET_OK ? 0 : EIO);
2653 }
2654 
2655 static void
2656 vtnet_rx_filter_vlan(struct vtnet_softc *sc)
2657 {
2658 	uint32_t w;
2659 	uint16_t tag;
2660 	int i, bit, nvlans;
2661 
2662 	ASSERT_IFNET_SERIALIZED_ALL(sc->vtnet_ifp);
2663 	KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER,
2664 	    ("%s: VLAN_FILTER feature not negotiated", __func__));
2665 
2666 	nvlans = sc->vtnet_nvlans;
2667 
2668 	/* Enable the filter for each configured VLAN. */
2669 	for (i = 0; i < VTNET_VLAN_SHADOW_SIZE && nvlans > 0; i++) {
2670 		w = sc->vtnet_vlan_shadow[i];
2671 		while ((bit = ffs(w) - 1) != -1) {
2672 			w &= ~(1 << bit);
2673 			tag = sizeof(w) * CHAR_BIT * i + bit;
2674 			nvlans--;
2675 
2676 			if (vtnet_exec_vlan_filter(sc, 1, tag) != 0) {
2677 				device_printf(sc->vtnet_dev,
2678 				    "cannot enable VLAN %d filter\n", tag);
2679 			}
2680 		}
2681 	}
2682 
2683 	KASSERT(nvlans == 0, ("VLAN count incorrect"));
2684 }
2685 
2686 static void
2687 vtnet_update_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
2688 {
2689 	struct ifnet *ifp;
2690 	int idx, bit;
2691 
2692 	ifp = sc->vtnet_ifp;
2693 	idx = (tag >> 5) & 0x7F;
2694 	bit = tag & 0x1F;
2695 
2696 	if (tag == 0 || tag > 4095)
2697 		return;
2698 
2699 	ifnet_serialize_all(ifp);
2700 
2701 	/* Update shadow VLAN table. */
2702 	if (add) {
2703 		sc->vtnet_nvlans++;
2704 		sc->vtnet_vlan_shadow[idx] |= (1 << bit);
2705 	} else {
2706 		sc->vtnet_nvlans--;
2707 		sc->vtnet_vlan_shadow[idx] &= ~(1 << bit);
2708 	}
2709 
2710 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER &&
2711 	    vtnet_exec_vlan_filter(sc, add, tag) != 0) {
2712 		device_printf(sc->vtnet_dev,
2713 		    "cannot %s VLAN %d %s the host filter table\n",
2714 		    add ? "add" : "remove", tag, add ? "to" : "from");
2715 	}
2716 
2717 	ifnet_deserialize_all(ifp);
2718 }
2719 
2720 static void
2721 vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
2722 {
2723 
2724 	if (ifp->if_softc != arg)
2725 		return;
2726 
2727 	vtnet_update_vlan_filter(arg, 1, tag);
2728 }
2729 
2730 static void
2731 vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
2732 {
2733 
2734 	if (ifp->if_softc != arg)
2735 		return;
2736 
2737 	vtnet_update_vlan_filter(arg, 0, tag);
2738 }
2739 
2740 static int
2741 vtnet_ifmedia_upd(struct ifnet *ifp)
2742 {
2743 	struct vtnet_softc *sc;
2744 	struct ifmedia *ifm;
2745 
2746 	sc = ifp->if_softc;
2747 	ifm = &sc->vtnet_media;
2748 
2749 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2750 		return (EINVAL);
2751 
2752 	return (0);
2753 }
2754 
2755 static void
2756 vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2757 {
2758 	struct vtnet_softc *sc;
2759 
2760 	sc = ifp->if_softc;
2761 
2762 	ifmr->ifm_status = IFM_AVALID;
2763 	ifmr->ifm_active = IFM_ETHER;
2764 
2765 	if (vtnet_is_link_up(sc) != 0) {
2766 		ifmr->ifm_status |= IFM_ACTIVE;
2767 		ifmr->ifm_active |= VTNET_MEDIATYPE;
2768 	} else
2769 		ifmr->ifm_active |= IFM_NONE;
2770 }
2771 
2772 static void
2773 vtnet_add_statistics(struct vtnet_softc *sc)
2774 {
2775 	device_t dev;
2776 	struct vtnet_statistics *stats;
2777 	struct sysctl_ctx_list *ctx;
2778 	struct sysctl_oid *tree;
2779 	struct sysctl_oid_list *child;
2780 
2781 	dev = sc->vtnet_dev;
2782 	stats = &sc->vtnet_stats;
2783 	ctx = device_get_sysctl_ctx(dev);
2784 	tree = device_get_sysctl_tree(dev);
2785 	child = SYSCTL_CHILDREN(tree);
2786 
2787 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "mbuf_alloc_failed",
2788 	    CTLFLAG_RD, &stats->mbuf_alloc_failed, 0,
2789 	    "Mbuf cluster allocation failures");
2790 
2791 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_frame_too_large",
2792 	    CTLFLAG_RD, &stats->rx_frame_too_large, 0,
2793 	    "Received frame larger than the mbuf chain");
2794 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_enq_replacement_failed",
2795 	    CTLFLAG_RD, &stats->rx_enq_replacement_failed, 0,
2796 	    "Enqueuing the replacement receive mbuf failed");
2797 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_mergeable_failed",
2798 	    CTLFLAG_RD, &stats->rx_mergeable_failed, 0,
2799 	    "Mergeable buffers receive failures");
2800 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ethtype",
2801 	    CTLFLAG_RD, &stats->rx_csum_bad_ethtype, 0,
2802 	    "Received checksum offloaded buffer with unsupported "
2803 	    "Ethernet type");
2804 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ipproto",
2805 	    CTLFLAG_RD, &stats->rx_csum_bad_ipproto, 0,
2806 	    "Received checksum offloaded buffer with incorrect IP protocol");
2807 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_offset",
2808 	    CTLFLAG_RD, &stats->rx_csum_bad_offset, 0,
2809 	    "Received checksum offloaded buffer with incorrect offset");
2810 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_failed",
2811 	    CTLFLAG_RD, &stats->rx_csum_failed, 0,
2812 	    "Received buffer checksum offload failed");
2813 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_offloaded",
2814 	    CTLFLAG_RD, &stats->rx_csum_offloaded, 0,
2815 	    "Received buffer checksum offload succeeded");
2816 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_task_rescheduled",
2817 	    CTLFLAG_RD, &stats->rx_task_rescheduled, 0,
2818 	    "Times the receive interrupt task rescheduled itself");
2819 
2820 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_bad_ethtype",
2821 	    CTLFLAG_RD, &stats->tx_csum_bad_ethtype, 0,
2822 	    "Aborted transmit of checksum offloaded buffer with unknown "
2823 	    "Ethernet type");
2824 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_bad_ethtype",
2825 	    CTLFLAG_RD, &stats->tx_tso_bad_ethtype, 0,
2826 	    "Aborted transmit of TSO buffer with unknown Ethernet type");
2827 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defragged",
2828 	    CTLFLAG_RD, &stats->tx_defragged, 0,
2829 	    "Transmit mbufs defragged");
2830 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defrag_failed",
2831 	    CTLFLAG_RD, &stats->tx_defrag_failed, 0,
2832 	    "Aborted transmit of buffer because defrag failed");
2833 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_offloaded",
2834 	    CTLFLAG_RD, &stats->tx_csum_offloaded, 0,
2835 	    "Offloaded checksum of transmitted buffer");
2836 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_offloaded",
2837 	    CTLFLAG_RD, &stats->tx_tso_offloaded, 0,
2838 	    "Segmentation offload of transmitted buffer");
2839 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_task_rescheduled",
2840 	    CTLFLAG_RD, &stats->tx_task_rescheduled, 0,
2841 	    "Times the transmit interrupt task rescheduled itself");
2842 }
2843 
2844 static int
2845 vtnet_enable_rx_intr(struct vtnet_softc *sc)
2846 {
2847 
2848 	return (virtqueue_enable_intr(sc->vtnet_rx_vq));
2849 }
2850 
2851 static void
2852 vtnet_disable_rx_intr(struct vtnet_softc *sc)
2853 {
2854 
2855 	virtqueue_disable_intr(sc->vtnet_rx_vq);
2856 }
2857 
2858 static int
2859 vtnet_enable_tx_intr(struct vtnet_softc *sc)
2860 {
2861 
2862 #ifdef VTNET_TX_INTR_MODERATION
2863 	return (0);
2864 #else
2865 	return (virtqueue_enable_intr(sc->vtnet_tx_vq));
2866 #endif
2867 }
2868 
2869 static void
2870 vtnet_disable_tx_intr(struct vtnet_softc *sc)
2871 {
2872 
2873 	virtqueue_disable_intr(sc->vtnet_tx_vq);
2874 }
2875