xref: /dragonfly/sys/dev/virtual/virtio/net/if_vtnet.c (revision 7d84b73d)
1 /*-
2  * Copyright (c) 2011, Bryan Venteicher <bryanv@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /* Driver for VirtIO network devices. */
28 
29 #include "opt_ifpoll.h"
30 
31 #include <sys/cdefs.h>
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/sockio.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/taskqueue.h>
43 #include <sys/random.h>
44 #include <sys/sglist.h>
45 #include <sys/serialize.h>
46 #include <sys/bus.h>
47 #include <sys/rman.h>
48 
49 #include <machine/limits.h>
50 
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/if_media.h>
57 #include <net/vlan/if_vlan_var.h>
58 #include <net/vlan/if_vlan_ether.h>
59 #include <net/if_poll.h>
60 #include <net/ifq_var.h>
61 
62 #include <net/bpf.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/ip6.h>
68 #include <netinet/udp.h>
69 #include <netinet/tcp.h>
70 
71 #include <dev/virtual/virtio/virtio/virtio.h>
72 #include <dev/virtual/virtio/virtio/virtqueue.h>
73 #include <dev/virtual/virtio/net/virtio_net.h>
74 #include <dev/virtual/virtio/net/if_vtnetvar.h>
75 
76 MALLOC_DEFINE(M_VTNET, "VTNET_TX", "Outgoing VTNET TX frame header");
77 
78 static int	vtnet_probe(device_t);
79 static int	vtnet_attach(device_t);
80 static int	vtnet_detach(device_t);
81 static int	vtnet_suspend(device_t);
82 static int	vtnet_resume(device_t);
83 static int	vtnet_shutdown(device_t);
84 
85 static void	vtnet_negotiate_features(struct vtnet_softc *);
86 #ifdef IFPOLL_ENABLE
87 static void	vtnet_npoll(struct ifnet *, struct ifpoll_info *);
88 static void	vtnet_npoll_status(struct ifnet *);
89 static void	vtnet_npoll_rx(struct ifnet *, void *, int);
90 static void	vtnet_npoll_tx(struct ifnet *, void *, int);
91 #endif
92 static void	vtnet_serialize(struct ifnet *, enum ifnet_serialize);
93 static void	vtnet_deserialize(struct ifnet *, enum ifnet_serialize);
94 static int	vtnet_tryserialize(struct ifnet *, enum ifnet_serialize);
95 #ifdef INVARIANTS
96 static void	vtnet_serialize_assert(struct ifnet *, enum ifnet_serialize,
97 		    boolean_t);
98 #endif  /* INVARIANTS */
99 static int	vtnet_alloc_intrs(struct vtnet_softc *);
100 static int	vtnet_alloc_virtqueues(struct vtnet_softc *);
101 static int	vtnet_bind_intrs(struct vtnet_softc *);
102 static void	vtnet_get_hwaddr(struct vtnet_softc *);
103 static void	vtnet_set_hwaddr(struct vtnet_softc *);
104 static int	vtnet_is_link_up(struct vtnet_softc *);
105 static void	vtnet_update_link_status(struct vtnet_softc *);
106 static void	vtnet_watchdog(struct ifaltq_subque *);
107 static int	vtnet_setup_interface(struct vtnet_softc *);
108 static int	vtnet_change_mtu(struct vtnet_softc *, int);
109 static int	vtnet_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
110 
111 static int	vtnet_init_rx_vq(struct vtnet_softc *);
112 static void	vtnet_free_rx_mbufs(struct vtnet_softc *);
113 static void	vtnet_free_tx_mbufs(struct vtnet_softc *);
114 static void	vtnet_free_ctrl_vq(struct vtnet_softc *);
115 
116 static struct mbuf * vtnet_alloc_rxbuf(struct vtnet_softc *, int,
117 		    struct mbuf **);
118 static int	vtnet_replace_rxbuf(struct vtnet_softc *,
119 		    struct mbuf *, int);
120 static int	vtnet_newbuf(struct vtnet_softc *);
121 static void	vtnet_discard_merged_rxbuf(struct vtnet_softc *, int);
122 static void	vtnet_discard_rxbuf(struct vtnet_softc *, struct mbuf *);
123 static int	vtnet_enqueue_rxbuf(struct vtnet_softc *, struct mbuf *);
124 static void	vtnet_vlan_tag_remove(struct mbuf *);
125 static int	vtnet_rx_csum(struct vtnet_softc *, struct mbuf *,
126 		    struct virtio_net_hdr *);
127 static int	vtnet_rxeof_merged(struct vtnet_softc *, struct mbuf *, int);
128 static int	vtnet_rxeof(struct vtnet_softc *, int, int *);
129 static void	vtnet_rx_msix_intr(void *);
130 static void	vtnet_rx_vq_intr(void *);
131 
132 static void	vtnet_enqueue_txhdr(struct vtnet_softc *,
133 		    struct vtnet_tx_header *);
134 static void	vtnet_txeof(struct vtnet_softc *);
135 static struct mbuf * vtnet_tx_offload(struct vtnet_softc *, struct mbuf *,
136 		    struct virtio_net_hdr *);
137 static int	vtnet_enqueue_txbuf(struct vtnet_softc *, struct mbuf **,
138 		    struct vtnet_tx_header *);
139 static int	vtnet_encap(struct vtnet_softc *, struct mbuf **);
140 static void	vtnet_start(struct ifnet *, struct ifaltq_subque *);
141 
142 static void	vtnet_config_intr(void *);
143 static void	vtnet_tx_msix_intr(void *);
144 static void	vtnet_tx_vq_intr(void *);
145 
146 static void	vtnet_stop(struct vtnet_softc *);
147 static int	vtnet_virtio_reinit(struct vtnet_softc *);
148 static void	vtnet_init(void *);
149 
150 static void	vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *,
151 		    struct sglist *, int, int);
152 
153 static int	vtnet_ctrl_mac_cmd(struct vtnet_softc *, uint8_t *);
154 static int	vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int);
155 static int	vtnet_set_promisc(struct vtnet_softc *, int);
156 static int	vtnet_set_allmulti(struct vtnet_softc *, int);
157 static void	vtnet_rx_filter(struct vtnet_softc *sc);
158 static void	vtnet_rx_filter_mac(struct vtnet_softc *);
159 
160 static int	vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t);
161 static void	vtnet_rx_filter_vlan(struct vtnet_softc *);
162 static void	vtnet_update_vlan_filter(struct vtnet_softc *, int, uint16_t);
163 static void	vtnet_register_vlan(void *, struct ifnet *, uint16_t);
164 static void	vtnet_unregister_vlan(void *, struct ifnet *, uint16_t);
165 
166 static int	vtnet_ifmedia_upd(struct ifnet *);
167 static void	vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *);
168 
169 static void	vtnet_add_statistics(struct vtnet_softc *);
170 
171 static int	vtnet_enable_rx_intr(struct vtnet_softc *);
172 static int	vtnet_enable_tx_intr(struct vtnet_softc *);
173 static void	vtnet_disable_rx_intr(struct vtnet_softc *);
174 static void	vtnet_disable_tx_intr(struct vtnet_softc *);
175 
176 /* Tunables. */
177 static int vtnet_csum_disable = 0;
178 TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable);
179 static int vtnet_tso_disable = 1;
180 TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable);
181 static int vtnet_lro_disable = 0;
182 TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable);
183 
184 /*
185  * Reducing the number of transmit completed interrupts can
186  * improve performance. To do so, the define below keeps the
187  * Tx vq interrupt disabled and adds calls to vtnet_txeof()
188  * in the start path. The price to pay for this is the m_free'ing
189  * of transmitted mbufs may be delayed.
190  */
191 #define VTNET_TX_INTR_MODERATION
192 
193 static struct virtio_feature_desc vtnet_feature_desc[] = {
194 	{ VIRTIO_NET_F_CSUM,		"TxChecksum"	},
195 	{ VIRTIO_NET_F_GUEST_CSUM,	"RxChecksum"	},
196 	{ VIRTIO_NET_F_CTRL_GUEST_OFFLOADS, "DynOffload"	},
197 	{ VIRTIO_NET_F_MAC,		"MacAddress"	},
198 	{ VIRTIO_NET_F_GSO,		"TxAllGSO"	},
199 	{ VIRTIO_NET_F_GUEST_TSO4,	"RxTSOv4"	},
200 	{ VIRTIO_NET_F_GUEST_TSO6,	"RxTSOv6"	},
201 	{ VIRTIO_NET_F_GUEST_ECN,	"RxECN"		},
202 	{ VIRTIO_NET_F_GUEST_UFO,	"RxUFO"		},
203 	{ VIRTIO_NET_F_HOST_TSO4,	"TxTSOv4"	},
204 	{ VIRTIO_NET_F_HOST_TSO6,	"TxTSOv6"	},
205 	{ VIRTIO_NET_F_HOST_ECN,	"TxTSOECN"	},
206 	{ VIRTIO_NET_F_HOST_UFO,	"TxUFO"		},
207 	{ VIRTIO_NET_F_MRG_RXBUF,	"MrgRxBuf"	},
208 	{ VIRTIO_NET_F_STATUS,		"Status"	},
209 	{ VIRTIO_NET_F_CTRL_VQ,		"ControlVq"	},
210 	{ VIRTIO_NET_F_CTRL_RX,		"RxMode"	},
211 	{ VIRTIO_NET_F_CTRL_VLAN,	"VLanFilter"	},
212 	{ VIRTIO_NET_F_CTRL_RX_EXTRA,	"RxModeExtra"	},
213 	{ VIRTIO_NET_F_GUEST_ANNOUNCE,	"GuestAnnounce"	},
214 	{ VIRTIO_NET_F_MQ,		"Multiqueue"	},
215 	{ VIRTIO_NET_F_CTRL_MAC_ADDR,	"SetMacAddress"	},
216 	{ 0, NULL }
217 };
218 
219 static device_method_t vtnet_methods[] = {
220 	/* Device methods. */
221 	DEVMETHOD(device_probe,		vtnet_probe),
222 	DEVMETHOD(device_attach,	vtnet_attach),
223 	DEVMETHOD(device_detach,	vtnet_detach),
224 	DEVMETHOD(device_suspend,	vtnet_suspend),
225 	DEVMETHOD(device_resume,	vtnet_resume),
226 	DEVMETHOD(device_shutdown,	vtnet_shutdown),
227 
228 	DEVMETHOD_END
229 };
230 
231 static driver_t vtnet_driver = {
232 	"vtnet",
233 	vtnet_methods,
234 	sizeof(struct vtnet_softc)
235 };
236 
237 static devclass_t vtnet_devclass;
238 
239 DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass, NULL, NULL);
240 MODULE_VERSION(vtnet, 1);
241 MODULE_DEPEND(vtnet, virtio, 1, 1, 1);
242 
243 static int
244 vtnet_probe(device_t dev)
245 {
246 	if (virtio_get_device_type(dev) != VIRTIO_ID_NETWORK)
247 		return (ENXIO);
248 
249 	device_set_desc(dev, "VirtIO Networking Adapter");
250 
251 	return (BUS_PROBE_DEFAULT);
252 }
253 
254 static int
255 vtnet_attach(device_t dev)
256 {
257 	struct vtnet_softc *sc;
258 	int i, error;
259 
260 	sc = device_get_softc(dev);
261 	sc->vtnet_dev = dev;
262 
263 	lwkt_serialize_init(&sc->vtnet_slz);
264 	lwkt_serialize_init(&sc->vtnet_rx_slz);
265 	lwkt_serialize_init(&sc->vtnet_tx_slz);
266 	sc->serializes[0] = &sc->vtnet_slz;
267 	sc->serializes[1] = &sc->vtnet_rx_slz;
268 	sc->serializes[2] = &sc->vtnet_tx_slz;
269 
270 	ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd,
271 		     vtnet_ifmedia_sts);
272 	ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL);
273 	ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE);
274 
275 	vtnet_add_statistics(sc);
276 	SLIST_INIT(&sc->vtnet_txhdr_free);
277 
278 	/* Register our feature descriptions. */
279 	virtio_set_feature_desc(dev, vtnet_feature_desc);
280 	vtnet_negotiate_features(sc);
281 
282 	if (virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC))
283 		sc->vtnet_flags |= VTNET_FLAG_INDIRECT;
284 
285 	if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) {
286 		/* This feature should always be negotiated. */
287 		sc->vtnet_flags |= VTNET_FLAG_MAC;
288 	}
289 
290 	if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) {
291 		sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS;
292 		sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf);
293 	} else {
294 		sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr);
295 	}
296 
297 	sc->vtnet_rx_mbuf_size = MCLBYTES;
298 	sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc);
299 
300 	if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) {
301 		sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ;
302 
303 		if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX))
304 			sc->vtnet_flags |= VTNET_FLAG_CTRL_RX;
305 		if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN))
306 			sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER;
307 		if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_MAC_ADDR) &&
308 		    virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX))
309 			sc->vtnet_flags |= VTNET_FLAG_CTRL_MAC;
310 	}
311 
312 	error = vtnet_alloc_intrs(sc);
313 	if (error) {
314 		device_printf(dev, "cannot allocate interrupts\n");
315 		goto fail;
316 	}
317 
318 	error = vtnet_alloc_virtqueues(sc);
319 	if (error) {
320 		device_printf(dev, "cannot allocate virtqueues\n");
321 		goto fail;
322 	}
323 
324 	error = vtnet_bind_intrs(sc);
325 	if (error) {
326 		device_printf(dev, "cannot bind virtqueues to interrupts\n");
327 		goto fail;
328 	}
329 
330 	/* Read (or generate) the MAC address for the adapter. */
331 	vtnet_get_hwaddr(sc);
332 
333 	error = vtnet_setup_interface(sc);
334 	if (error) {
335 		device_printf(dev, "cannot setup interface\n");
336 		goto fail;
337 	}
338 
339 	for (i = 0; i < sc->vtnet_nintr; i++) {
340 		error = virtio_setup_intr(dev, i, sc->vtnet_intr_slz[i]);
341 		if (error) {
342 			device_printf(dev, "cannot setup virtqueue "
343 			    "interrupts\n");
344 			ether_ifdetach(sc->vtnet_ifp);
345 			goto fail;
346 		}
347 	}
348 
349 	if ((sc->vtnet_flags & VTNET_FLAG_MAC) == 0) {
350 		ifnet_serialize_all(sc->vtnet_ifp);
351 		vtnet_set_hwaddr(sc);
352 		ifnet_deserialize_all(sc->vtnet_ifp);
353 	}
354 
355 	/*
356 	 * Device defaults to promiscuous mode for backwards
357 	 * compatibility. Turn it off if possible.
358 	 */
359 	if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
360 		ifnet_serialize_all(sc->vtnet_ifp);
361 		if (vtnet_set_promisc(sc, 0) != 0) {
362 			sc->vtnet_ifp->if_flags |= IFF_PROMISC;
363 			device_printf(dev,
364 			    "cannot disable promiscuous mode\n");
365 		}
366 		ifnet_deserialize_all(sc->vtnet_ifp);
367 	} else
368 		sc->vtnet_ifp->if_flags |= IFF_PROMISC;
369 
370 fail:
371 	if (error)
372 		vtnet_detach(dev);
373 
374 	return (error);
375 }
376 
377 static int
378 vtnet_detach(device_t dev)
379 {
380 	struct vtnet_softc *sc;
381 	struct ifnet *ifp;
382 	int i;
383 
384 	sc = device_get_softc(dev);
385 	ifp = sc->vtnet_ifp;
386 
387 	for (i = 0; i < sc->vtnet_nintr; i++)
388 		virtio_teardown_intr(dev, i);
389 
390 	if (device_is_attached(dev)) {
391 		ifnet_serialize_all(ifp);
392 		vtnet_stop(sc);
393 		lwkt_serialize_handler_disable(&sc->vtnet_slz);
394 		lwkt_serialize_handler_disable(&sc->vtnet_rx_slz);
395 		lwkt_serialize_handler_disable(&sc->vtnet_tx_slz);
396 		ifnet_deserialize_all(ifp);
397 
398 		ether_ifdetach(ifp);
399 	}
400 
401 	if (sc->vtnet_vlan_attach != NULL) {
402 		EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach);
403 		sc->vtnet_vlan_attach = NULL;
404 	}
405 	if (sc->vtnet_vlan_detach != NULL) {
406 		EVENTHANDLER_DEREGISTER(vlan_unconfig, sc->vtnet_vlan_detach);
407 		sc->vtnet_vlan_detach = NULL;
408 	}
409 
410 	if (ifp) {
411 		if_free(ifp);
412 		sc->vtnet_ifp = NULL;
413 	}
414 
415 	if (sc->vtnet_rx_vq != NULL)
416 		vtnet_free_rx_mbufs(sc);
417 	if (sc->vtnet_tx_vq != NULL)
418 		vtnet_free_tx_mbufs(sc);
419 	if (sc->vtnet_ctrl_vq != NULL)
420 		vtnet_free_ctrl_vq(sc);
421 
422 	if (sc->vtnet_txhdrarea != NULL) {
423 		contigfree(sc->vtnet_txhdrarea,
424 		    sc->vtnet_txhdrcount * sizeof(struct vtnet_tx_header),
425 		    M_VTNET);
426 		sc->vtnet_txhdrarea = NULL;
427 	}
428 	SLIST_INIT(&sc->vtnet_txhdr_free);
429 	if (sc->vtnet_macfilter != NULL) {
430 		contigfree(sc->vtnet_macfilter,
431 		    sizeof(struct vtnet_mac_filter), M_DEVBUF);
432 		sc->vtnet_macfilter = NULL;
433 	}
434 
435 	ifmedia_removeall(&sc->vtnet_media);
436 
437 	return (0);
438 }
439 
440 static int
441 vtnet_suspend(device_t dev)
442 {
443 	struct vtnet_softc *sc;
444 
445 	sc = device_get_softc(dev);
446 
447 	ifnet_serialize_all(sc->vtnet_ifp);
448 	vtnet_stop(sc);
449 	sc->vtnet_flags |= VTNET_FLAG_SUSPENDED;
450 	ifnet_deserialize_all(sc->vtnet_ifp);
451 
452 	return (0);
453 }
454 
455 static int
456 vtnet_resume(device_t dev)
457 {
458 	struct vtnet_softc *sc;
459 	struct ifnet *ifp;
460 
461 	sc = device_get_softc(dev);
462 	ifp = sc->vtnet_ifp;
463 
464 	ifnet_serialize_all(ifp);
465 	if (ifp->if_flags & IFF_UP)
466 		vtnet_init(sc);
467 	sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED;
468 	ifnet_deserialize_all(ifp);
469 
470 	return (0);
471 }
472 
473 static int
474 vtnet_shutdown(device_t dev)
475 {
476 
477 	/*
478 	 * Suspend already does all of what we need to
479 	 * do here; we just never expect to be resumed.
480 	 */
481 	return (vtnet_suspend(dev));
482 }
483 
484 static void
485 vtnet_negotiate_features(struct vtnet_softc *sc)
486 {
487 	device_t dev;
488 	uint64_t mask, features;
489 
490 	dev = sc->vtnet_dev;
491 	mask = 0;
492 
493 	if (vtnet_csum_disable)
494 		mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM;
495 
496 	/*
497 	 * XXX DragonFly doesn't support receive checksum offload for ipv6 yet,
498 	 *     hence always disable the virtio feature for now.
499 	 * XXX We need to support the DynOffload feature, in order to
500 	 *     dynamically enable/disable this feature.
501 	 */
502 	mask |= VIRTIO_NET_F_GUEST_CSUM;
503 
504 	/*
505 	 * TSO is only available when the tx checksum offload feature is also
506 	 * negotiated.
507 	 */
508 	if (vtnet_csum_disable || vtnet_tso_disable)
509 		mask |= VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
510 		    VIRTIO_NET_F_HOST_ECN;
511 
512 	if (vtnet_lro_disable)
513 		mask |= VTNET_LRO_FEATURES;
514 
515 	features = VTNET_FEATURES & ~mask;
516 	features |= VIRTIO_F_NOTIFY_ON_EMPTY;
517 	features |= VIRTIO_F_ANY_LAYOUT;
518 	sc->vtnet_features = virtio_negotiate_features(dev, features);
519 
520 	if (virtio_with_feature(dev, VTNET_LRO_FEATURES) &&
521 	    virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF) == 0) {
522 		/*
523 		 * LRO without mergeable buffers requires special care. This
524 		 * is not ideal because every receive buffer must be large
525 		 * enough to hold the maximum TCP packet, the Ethernet header,
526 		 * and the header. This requires up to 34 descriptors with
527 		 * MCLBYTES clusters. If we do not have indirect descriptors,
528 		 * LRO is disabled since the virtqueue will not contain very
529 		 * many receive buffers.
530 		 */
531 		if (!virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC)) {
532 			device_printf(dev,
533 			    "LRO disabled due to both mergeable buffers and "
534 			    "indirect descriptors not negotiated\n");
535 
536 			features &= ~VTNET_LRO_FEATURES;
537 			sc->vtnet_features =
538 			    virtio_negotiate_features(dev, features);
539 		} else
540 			sc->vtnet_flags |= VTNET_FLAG_LRO_NOMRG;
541 	}
542 }
543 
544 static void
545 vtnet_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
546 {
547 	struct vtnet_softc *sc = ifp->if_softc;
548 
549 	ifnet_serialize_array_enter(sc->serializes, 3, slz);
550 }
551 
552 static void
553 vtnet_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
554 {
555 	struct vtnet_softc *sc = ifp->if_softc;
556 
557 	ifnet_serialize_array_exit(sc->serializes, 3, slz);
558 }
559 
560 static int
561 vtnet_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
562 {
563 	struct vtnet_softc *sc = ifp->if_softc;
564 
565 	return ifnet_serialize_array_try(sc->serializes, 3, slz);
566 }
567 
568 #ifdef INVARIANTS
569 
570 static void
571 vtnet_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
572     boolean_t serialized)
573 {
574 	struct vtnet_softc *sc = ifp->if_softc;
575 
576 	ifnet_serialize_array_assert(sc->serializes, 3, slz, serialized);
577 }
578 
579 #endif  /* INVARIANTS */
580 
581 static int
582 vtnet_alloc_intrs(struct vtnet_softc *sc)
583 {
584 	int cnt, error;
585 	int intrcount = virtio_intr_count(sc->vtnet_dev);
586 	int i;
587 	int use_config;
588 
589 	if (virtio_with_feature(sc->vtnet_dev, VIRTIO_NET_F_STATUS)) {
590 		use_config = 1;
591 		/* We can use a maximum of 3 interrupt vectors. */
592 		intrcount = imin(intrcount, 3);
593 	} else {
594 		/* We can use a maximum of 2 interrupt vectors. */
595 		intrcount = imin(intrcount, 2);
596 	}
597 
598 	if (intrcount < 1)
599 		return (ENXIO);
600 
601 	for (i = 0; i < intrcount; i++)
602 		sc->vtnet_cpus[i] = -1;
603 
604 	cnt = intrcount;
605 	error = virtio_intr_alloc(sc->vtnet_dev, &cnt, use_config,
606 	    sc->vtnet_cpus);
607 	if (error != 0) {
608 		virtio_intr_release(sc->vtnet_dev);
609 		return (error);
610 	}
611 	sc->vtnet_nintr = cnt;
612 
613 	return (0);
614 }
615 
616 static int
617 vtnet_alloc_virtqueues(struct vtnet_softc *sc)
618 {
619 	device_t dev;
620 	struct vq_alloc_info vq_info[3];
621 	int nvqs;
622 
623 	dev = sc->vtnet_dev;
624 	nvqs = 2;
625 
626 	/*
627 	 * Indirect descriptors are not needed for the Rx
628 	 * virtqueue when mergeable buffers are negotiated.
629 	 * The header is placed inline with the data, not
630 	 * in a separate descriptor, and mbuf clusters are
631 	 * always physically contiguous.
632 	 */
633 	if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
634 		sc->vtnet_rx_nsegs = (sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) ?
635 		    VTNET_MAX_RX_SEGS : VTNET_MIN_RX_SEGS;
636 	} else
637 		sc->vtnet_rx_nsegs = VTNET_MRG_RX_SEGS;
638 
639 	if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4) ||
640 	    virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6))
641 		sc->vtnet_tx_nsegs = VTNET_MAX_TX_SEGS;
642 	else
643 		sc->vtnet_tx_nsegs = VTNET_MIN_TX_SEGS;
644 
645 	VQ_ALLOC_INFO_INIT(&vq_info[0], sc->vtnet_rx_nsegs, &sc->vtnet_rx_vq,
646 	    "%s receive", device_get_nameunit(dev));
647 
648 	VQ_ALLOC_INFO_INIT(&vq_info[1], sc->vtnet_tx_nsegs, &sc->vtnet_tx_vq,
649 	    "%s transmit", device_get_nameunit(dev));
650 
651 	if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
652 		nvqs++;
653 
654 		VQ_ALLOC_INFO_INIT(&vq_info[2], 0, &sc->vtnet_ctrl_vq,
655 		    "%s control", device_get_nameunit(dev));
656 	}
657 
658 	return (virtio_alloc_virtqueues(dev, nvqs, vq_info));
659 }
660 
661 static int
662 vtnet_bind_intrs(struct vtnet_softc *sc)
663 {
664 	int error = 0;
665 	int i;
666 
667 	for (i = 0; i < 3; i++)
668 		sc->vtnet_intr_slz[i] = &sc->vtnet_slz;
669 
670 	/* Possible "Virtqueue <-> IRQ" configurations */
671 	switch (sc->vtnet_nintr) {
672 	case 1:
673 		sc->vtnet_irqmap[0] = (struct irqmap){0, vtnet_rx_vq_intr};
674 		sc->vtnet_irqmap[1] = (struct irqmap){0, vtnet_tx_vq_intr};
675 		break;
676 	case 2:
677 		if (virtio_with_feature(sc->vtnet_dev, VIRTIO_NET_F_STATUS)) {
678 			sc->vtnet_irqmap[0] =
679 			    (struct irqmap){1, vtnet_rx_vq_intr};
680 			sc->vtnet_irqmap[1] =
681 			    (struct irqmap){1, vtnet_tx_vq_intr};
682 		} else {
683 			sc->vtnet_irqmap[0] =
684 			    (struct irqmap){0, vtnet_rx_msix_intr};
685 			sc->vtnet_irqmap[1] =
686 			    (struct irqmap){1, vtnet_tx_msix_intr};
687 			sc->vtnet_intr_slz[0] = &sc->vtnet_rx_slz;
688 			sc->vtnet_intr_slz[1] = &sc->vtnet_tx_slz;
689 		}
690 		break;
691 	case 3:
692 		sc->vtnet_irqmap[0] = (struct irqmap){1, vtnet_rx_msix_intr};
693 		sc->vtnet_irqmap[1] = (struct irqmap){2, vtnet_tx_msix_intr};
694 		sc->vtnet_intr_slz[1] = &sc->vtnet_rx_slz;
695 		sc->vtnet_intr_slz[2] = &sc->vtnet_tx_slz;
696 		break;
697 	default:
698 		device_printf(sc->vtnet_dev,
699 		    "Invalid interrupt vector count: %d\n", sc->vtnet_nintr);
700 		error = EINVAL;
701 		goto fail;
702 	}
703 
704 	for (i = 0; i < 2; i++) {
705 		error = virtio_bind_intr(sc->vtnet_dev,
706 		    sc->vtnet_irqmap[i].irq, i, sc->vtnet_irqmap[i].handler,
707 		    sc);
708 		if (error) {
709 			device_printf(sc->vtnet_dev,
710 			    "cannot bind virtqueue IRQs\n");
711 			goto fail;
712 		}
713 	}
714 	if (virtio_with_feature(sc->vtnet_dev, VIRTIO_NET_F_STATUS)) {
715 		error = virtio_bind_intr(sc->vtnet_dev, 0, -1,
716 		    vtnet_config_intr, sc);
717 		if (error) {
718 			device_printf(sc->vtnet_dev,
719 			    "cannot bind config_change IRQ\n");
720 			goto fail;
721 		}
722 	}
723 
724 fail:
725 	return (error);
726 }
727 
728 static int
729 vtnet_setup_interface(struct vtnet_softc *sc)
730 {
731 	device_t dev;
732 	struct ifnet *ifp;
733 	int i;
734 
735 	dev = sc->vtnet_dev;
736 
737 	ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER);
738 	if (ifp == NULL) {
739 		device_printf(dev, "cannot allocate ifnet structure\n");
740 		return (ENOSPC);
741 	}
742 
743 	ifp->if_softc = sc;
744 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
745 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
746 	ifp->if_init = vtnet_init;
747 	ifp->if_start = vtnet_start;
748 #ifdef IFPOLL_ENABLE
749 	ifp->if_npoll = vtnet_npoll;
750 #endif
751 	ifp->if_serialize = vtnet_serialize;
752 	ifp->if_deserialize = vtnet_deserialize;
753 	ifp->if_tryserialize = vtnet_tryserialize;
754 #ifdef INVARIANTS
755 	ifp->if_serialize_assert = vtnet_serialize_assert;
756 #endif
757 	ifp->if_ioctl = vtnet_ioctl;
758 
759 	sc->vtnet_rx_process_limit = virtqueue_size(sc->vtnet_rx_vq);
760 	sc->vtnet_tx_size = virtqueue_size(sc->vtnet_tx_vq);
761 	if (sc->vtnet_flags & VTNET_FLAG_INDIRECT)
762 		sc->vtnet_txhdrcount = sc->vtnet_tx_size;
763 	else
764 		sc->vtnet_txhdrcount = (sc->vtnet_tx_size / 2) + 1;
765 	sc->vtnet_txhdrarea = contigmalloc(
766 	    sc->vtnet_txhdrcount * sizeof(struct vtnet_tx_header),
767 	    M_VTNET, M_WAITOK, 0, BUS_SPACE_MAXADDR, 4, 0);
768 	if (sc->vtnet_txhdrarea == NULL) {
769 		device_printf(dev, "cannot contigmalloc the tx headers\n");
770 		return (ENOMEM);
771 	}
772 	for (i = 0; i < sc->vtnet_txhdrcount; i++)
773 		vtnet_enqueue_txhdr(sc, &sc->vtnet_txhdrarea[i]);
774 	sc->vtnet_macfilter = contigmalloc(
775 	    sizeof(struct vtnet_mac_filter),
776 	    M_DEVBUF, M_WAITOK, 0, BUS_SPACE_MAXADDR, 4, 0);
777 	if (sc->vtnet_macfilter == NULL) {
778 		device_printf(dev,
779 		    "cannot contigmalloc the mac filter table\n");
780 		return (ENOMEM);
781 	}
782 	ifq_set_maxlen(&ifp->if_snd, sc->vtnet_tx_size - 1);
783 	ifq_set_ready(&ifp->if_snd);
784 
785 	ether_ifattach(ifp, sc->vtnet_hwaddr, NULL);
786 
787 	/* The Tx IRQ is currently always the last allocated interrupt. */
788 	ifq_set_cpuid(&ifp->if_snd, sc->vtnet_cpus[sc->vtnet_nintr - 1]);
789 	ifsq_watchdog_init(&sc->vtnet_tx_watchdog,
790 			   ifq_get_subq_default(&ifp->if_snd),
791 			   vtnet_watchdog,
792 			   IF_WDOG_LASTTICK);
793 	ifq_set_hw_serialize(&ifp->if_snd, &sc->vtnet_tx_slz);
794 
795 	/* Tell the upper layer(s) we support long frames. */
796 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
797 	ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU;
798 
799 	if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) {
800 		ifp->if_capabilities |= IFCAP_TXCSUM;
801 
802 		if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4))
803 			ifp->if_capabilities |= IFCAP_TSO4;
804 		if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6))
805 			ifp->if_capabilities |= IFCAP_TSO6;
806 		if (ifp->if_capabilities & IFCAP_TSO)
807 			ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
808 
809 		if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN))
810 			sc->vtnet_flags |= VTNET_FLAG_TSO_ECN;
811 	}
812 
813 	if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM))
814 		ifp->if_capabilities |= IFCAP_RXCSUM;
815 
816 #if 0	/* IFCAP_LRO doesn't exist in DragonFly. */
817 	if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) ||
818 	    virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6))
819 		ifp->if_capabilities |= IFCAP_LRO;
820 #endif
821 
822 	if ((ifp->if_capabilities & IFCAP_HWCSUM) == IFCAP_HWCSUM) {
823 		/*
824 		 * VirtIO does not support VLAN tagging, but we can fake
825 		 * it by inserting and removing the 802.1Q header during
826 		 * transmit and receive. We are then able to do checksum
827 		 * offloading of VLAN frames.
828 		 */
829 		ifp->if_capabilities |=
830 			IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
831 	}
832 
833 	ifp->if_capenable = ifp->if_capabilities;
834 
835 	/*
836 	 * Capabilities after here are not enabled by default.
837 	 */
838 
839 	if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) {
840 		ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
841 
842 		sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
843 		    vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST);
844 		sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
845 		    vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST);
846 	}
847 
848 	return (0);
849 }
850 
851 static void
852 vtnet_set_hwaddr(struct vtnet_softc *sc)
853 {
854 	device_t dev;
855 
856 	dev = sc->vtnet_dev;
857 
858 	if ((sc->vtnet_flags & VTNET_FLAG_CTRL_MAC) &&
859 	    (sc->vtnet_flags & VTNET_FLAG_CTRL_RX)) {
860 		if (vtnet_ctrl_mac_cmd(sc, sc->vtnet_hwaddr) != 0)
861 			device_printf(dev, "unable to set MAC address\n");
862 	} else if (sc->vtnet_flags & VTNET_FLAG_MAC) {
863 		virtio_write_device_config(dev,
864 		    offsetof(struct virtio_net_config, mac),
865 		    sc->vtnet_hwaddr, ETHER_ADDR_LEN);
866 	}
867 }
868 
869 static void
870 vtnet_get_hwaddr(struct vtnet_softc *sc)
871 {
872 	device_t dev;
873 
874 	dev = sc->vtnet_dev;
875 
876 	if ((sc->vtnet_flags & VTNET_FLAG_MAC) == 0) {
877 		/*
878 		 * Generate a random locally administered unicast address.
879 		 *
880 		 * It would be nice to generate the same MAC address across
881 		 * reboots, but it seems all the hosts currently available
882 		 * support the MAC feature, so this isn't too important.
883 		 */
884 		sc->vtnet_hwaddr[0] = 0xB2;
885 		karc4random_buf(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1);
886 		return;
887 	}
888 
889 	virtio_read_device_config(dev,
890 	    offsetof(struct virtio_net_config, mac),
891 	    sc->vtnet_hwaddr, ETHER_ADDR_LEN);
892 }
893 
894 static int
895 vtnet_is_link_up(struct vtnet_softc *sc)
896 {
897 	device_t dev;
898 	struct ifnet *ifp;
899 	uint16_t status;
900 
901 	dev = sc->vtnet_dev;
902 	ifp = sc->vtnet_ifp;
903 
904 	ASSERT_SERIALIZED(&sc->vtnet_slz);
905 
906 	if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS)) {
907 		status = virtio_read_dev_config_2(dev,
908 				offsetof(struct virtio_net_config, status));
909 	} else {
910 		status = VIRTIO_NET_S_LINK_UP;
911 	}
912 
913 	return ((status & VIRTIO_NET_S_LINK_UP) != 0);
914 }
915 
916 static void
917 vtnet_update_link_status(struct vtnet_softc *sc)
918 {
919 	device_t dev;
920 	struct ifnet *ifp;
921 	struct ifaltq_subque *ifsq;
922 	int link;
923 
924 	dev = sc->vtnet_dev;
925 	ifp = sc->vtnet_ifp;
926 	ifsq = ifq_get_subq_default(&ifp->if_snd);
927 
928 	link = vtnet_is_link_up(sc);
929 
930 	if (link && ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0)) {
931 		sc->vtnet_flags |= VTNET_FLAG_LINK;
932 		if (bootverbose)
933 			device_printf(dev, "Link is up\n");
934 		ifp->if_link_state = LINK_STATE_UP;
935 		if_link_state_change(ifp);
936 		if (!ifsq_is_empty(ifsq))
937 			ifsq_devstart_sched(ifsq);
938 	} else if (!link && (sc->vtnet_flags & VTNET_FLAG_LINK)) {
939 		sc->vtnet_flags &= ~VTNET_FLAG_LINK;
940 		if (bootverbose)
941 			device_printf(dev, "Link is down\n");
942 
943 		ifp->if_link_state = LINK_STATE_DOWN;
944 		if_link_state_change(ifp);
945 	}
946 }
947 
948 static void
949 vtnet_watchdog(struct ifaltq_subque *ifsq)
950 {
951 	struct ifnet *ifp;
952 	struct vtnet_softc *sc;
953 
954 	ifp = ifsq_get_ifp(ifsq);
955 	sc = ifp->if_softc;
956 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
957 
958 	/*
959 	 * Clean out expended tx buffers prior to terminal count.
960 	 *
961 	 * NOTE: vtnet_txeof() will set wd_timer to 0 if the virtqueue
962 	 *	 becomes empty, preventing further watchdog callbacks.
963 	 */
964 	if (sc->vtnet_tx_watchdog.wd_timer != 0) {
965 		vtnet_txeof(sc);
966 		if (!ifq_is_empty(&ifp->if_snd))
967 			if_devstart(ifp);
968 		return;
969 	}
970 
971 	/*
972 	 * Check to see if there are any unexpended transmit descriptors.
973 	 */
974 	if (virtqueue_empty(sc->vtnet_tx_vq)) {
975 		if_printf(ifp, "Spurious TX watchdog timeout -- ignoring\n");
976 		ifsq_watchdog_set_count(&sc->vtnet_tx_watchdog, 0);
977 		return;
978 	}
979 
980 	if_printf(ifp, "TX watchdog timeout -- resetting\n");
981 #ifdef VTNET_DEBUG
982 	virtqueue_dump(sc->vtnet_tx_vq);
983 #endif
984 	ifp->if_oerrors++;
985 	ifp->if_flags &= ~IFF_RUNNING;
986 	vtnet_init(sc);
987 	ifsq_devstart_sched(ifsq);
988 }
989 
990 static int
991 vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,struct ucred *cr)
992 {
993 	struct vtnet_softc *sc;
994 	struct ifreq *ifr;
995 	int reinit, mask, error;
996 
997 	sc = ifp->if_softc;
998 	ifr = (struct ifreq *) data;
999 	reinit = 0;
1000 	error = 0;
1001 
1002 	switch (cmd) {
1003 	case SIOCSIFMTU:
1004 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VTNET_MAX_MTU)
1005 			error = EINVAL;
1006 		else if (ifp->if_mtu != ifr->ifr_mtu)
1007 			error = vtnet_change_mtu(sc, ifr->ifr_mtu);
1008 		break;
1009 
1010 	case SIOCSIFFLAGS:
1011 		if ((ifp->if_flags & IFF_UP) == 0) {
1012 			if (ifp->if_flags & IFF_RUNNING)
1013 				vtnet_stop(sc);
1014 		} else if (ifp->if_flags & IFF_RUNNING) {
1015 			if ((ifp->if_flags ^ sc->vtnet_if_flags) &
1016 			    (IFF_PROMISC | IFF_ALLMULTI)) {
1017 				if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX)
1018 					vtnet_rx_filter(sc);
1019 				else
1020 					error = ENOTSUP;
1021 			}
1022 		} else {
1023 			vtnet_init(sc);
1024 		}
1025 
1026 		if (error == 0)
1027 			sc->vtnet_if_flags = ifp->if_flags;
1028 		break;
1029 
1030 	case SIOCADDMULTI:
1031 	case SIOCDELMULTI:
1032 		if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) &&
1033 		    (ifp->if_flags & IFF_RUNNING))
1034 			vtnet_rx_filter_mac(sc);
1035 		break;
1036 
1037 	case SIOCSIFMEDIA:
1038 	case SIOCGIFMEDIA:
1039 		error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd);
1040 		break;
1041 
1042 	case SIOCSIFCAP:
1043 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1044 
1045 
1046 		if (mask & IFCAP_TXCSUM) {
1047 			ifp->if_capenable ^= IFCAP_TXCSUM;
1048 			if (ifp->if_capenable & IFCAP_TXCSUM)
1049 				ifp->if_hwassist |= VTNET_CSUM_OFFLOAD;
1050 			else
1051 				ifp->if_hwassist &= ~VTNET_CSUM_OFFLOAD;
1052 		}
1053 
1054 		if (mask & IFCAP_TSO4) {
1055 			ifp->if_capenable ^= IFCAP_TSO4;
1056 			if (ifp->if_capenable & IFCAP_TSO4)
1057 				ifp->if_hwassist |= CSUM_TSO;
1058 			else
1059 				ifp->if_hwassist &= ~CSUM_TSO;
1060 		}
1061 
1062 		if (mask & IFCAP_RXCSUM) {
1063 			ifp->if_capenable ^= IFCAP_RXCSUM;
1064 			reinit = 1;
1065 		}
1066 
1067 #if 0	/* IFCAP_LRO doesn't exist in DragonFly. */
1068 		if (mask & IFCAP_LRO) {
1069 			ifp->if_capenable ^= IFCAP_LRO;
1070 			reinit = 1;
1071 		}
1072 #endif
1073 
1074 		if (mask & IFCAP_VLAN_HWFILTER) {
1075 			ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
1076 			reinit = 1;
1077 		}
1078 
1079 		if (mask & IFCAP_VLAN_HWTSO)
1080 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1081 
1082 		if (mask & IFCAP_VLAN_HWTAGGING)
1083 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1084 
1085 		if (reinit && (ifp->if_flags & IFF_RUNNING)) {
1086 			ifp->if_flags &= ~IFF_RUNNING;
1087 			vtnet_init(sc);
1088 		}
1089 		//VLAN_CAPABILITIES(ifp);
1090 
1091 		break;
1092 
1093 	default:
1094 		error = ether_ioctl(ifp, cmd, data);
1095 		break;
1096 	}
1097 
1098 	return (error);
1099 }
1100 
1101 static int
1102 vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu)
1103 {
1104 	struct ifnet *ifp;
1105 	int new_frame_size, clsize;
1106 
1107 	ifp = sc->vtnet_ifp;
1108 
1109 	if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1110 		new_frame_size = sizeof(struct vtnet_rx_header) +
1111 		    sizeof(struct ether_vlan_header) + new_mtu;
1112 
1113 		if (new_frame_size > MJUM9BYTES)
1114 			return (EINVAL);
1115 
1116 		if (new_frame_size <= MCLBYTES)
1117 			clsize = MCLBYTES;
1118 		else
1119 			clsize = MJUM9BYTES;
1120 	} else {
1121 		new_frame_size = sizeof(struct virtio_net_hdr_mrg_rxbuf) +
1122 		    sizeof(struct ether_vlan_header) + new_mtu;
1123 
1124 		if (new_frame_size <= MCLBYTES)
1125 			clsize = MCLBYTES;
1126 		else
1127 			clsize = MJUMPAGESIZE;
1128 	}
1129 
1130 	sc->vtnet_rx_mbuf_size = clsize;
1131 	sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc);
1132 	KASSERT(sc->vtnet_rx_mbuf_count < VTNET_MAX_RX_SEGS,
1133 	    ("too many rx mbufs: %d", sc->vtnet_rx_mbuf_count));
1134 
1135 	ifp->if_mtu = new_mtu;
1136 
1137 	if (ifp->if_flags & IFF_RUNNING) {
1138 		ifp->if_flags &= ~IFF_RUNNING;
1139 		vtnet_init(sc);
1140 	}
1141 
1142 	return (0);
1143 }
1144 
1145 static int
1146 vtnet_init_rx_vq(struct vtnet_softc *sc)
1147 {
1148 	struct virtqueue *vq;
1149 	int nbufs, error;
1150 
1151 	vq = sc->vtnet_rx_vq;
1152 	nbufs = 0;
1153 	error = ENOSPC;
1154 
1155 	while (!virtqueue_full(vq)) {
1156 		if ((error = vtnet_newbuf(sc)) != 0)
1157 			break;
1158 		nbufs++;
1159 	}
1160 
1161 	if (nbufs > 0) {
1162 		virtqueue_notify(vq, NULL);
1163 
1164 		/*
1165 		 * EMSGSIZE signifies the virtqueue did not have enough
1166 		 * entries available to hold the last mbuf. This is not
1167 		 * an error. We should not get ENOSPC since we check if
1168 		 * the virtqueue is full before attempting to add a
1169 		 * buffer.
1170 		 */
1171 		if (error == EMSGSIZE)
1172 			error = 0;
1173 	}
1174 
1175 	return (error);
1176 }
1177 
1178 static void
1179 vtnet_free_rx_mbufs(struct vtnet_softc *sc)
1180 {
1181 	struct virtqueue *vq;
1182 	struct mbuf *m;
1183 	int last;
1184 
1185 	vq = sc->vtnet_rx_vq;
1186 	last = 0;
1187 
1188 	while ((m = virtqueue_drain(vq, &last)) != NULL)
1189 		m_freem(m);
1190 
1191 	KASSERT(virtqueue_empty(vq), ("mbufs remaining in Rx Vq"));
1192 }
1193 
1194 static void
1195 vtnet_free_tx_mbufs(struct vtnet_softc *sc)
1196 {
1197 	struct virtqueue *vq;
1198 	struct vtnet_tx_header *txhdr;
1199 	int last;
1200 
1201 	vq = sc->vtnet_tx_vq;
1202 	last = 0;
1203 
1204 	while ((txhdr = virtqueue_drain(vq, &last)) != NULL) {
1205 		m_freem(txhdr->vth_mbuf);
1206 		vtnet_enqueue_txhdr(sc, txhdr);
1207 	}
1208 
1209 	KASSERT(virtqueue_empty(vq), ("mbufs remaining in Tx Vq"));
1210 }
1211 
1212 static void
1213 vtnet_free_ctrl_vq(struct vtnet_softc *sc)
1214 {
1215 	/*
1216 	 * The control virtqueue is only polled, therefore
1217 	 * it should already be empty.
1218 	 */
1219 	KASSERT(virtqueue_empty(sc->vtnet_ctrl_vq),
1220 		("Ctrl Vq not empty"));
1221 }
1222 
1223 static struct mbuf *
1224 vtnet_alloc_rxbuf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp)
1225 {
1226 	struct mbuf *m_head, *m_tail, *m;
1227 	int i, clsize;
1228 
1229 	clsize = sc->vtnet_rx_mbuf_size;
1230 
1231 	/*use getcl instead of getjcl. see  if_mxge.c comment line 2398*/
1232 	if (clsize > MCLBYTES)
1233 		m_head = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, clsize);
1234 	else
1235 		m_head = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR );
1236 	if (m_head == NULL)
1237 		goto fail;
1238 
1239 	m_head->m_len = clsize;
1240 	m_tail = m_head;
1241 
1242 	if (nbufs > 1) {
1243 		KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG,
1244 			("chained Rx mbuf requested without LRO_NOMRG"));
1245 
1246 		for (i = 0; i < nbufs - 1; i++) {
1247 			if (clsize > MCLBYTES)
1248 				m = m_getjcl(M_NOWAIT, MT_DATA, 0, clsize);
1249 			else
1250 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1251 			if (m == NULL)
1252 				goto fail;
1253 
1254 			m->m_len = clsize;
1255 			m_tail->m_next = m;
1256 			m_tail = m;
1257 		}
1258 	}
1259 
1260 	if (m_tailp != NULL)
1261 		*m_tailp = m_tail;
1262 
1263 	return (m_head);
1264 
1265 fail:
1266 	sc->vtnet_stats.mbuf_alloc_failed++;
1267 	m_freem(m_head);
1268 
1269 	return (NULL);
1270 }
1271 
1272 static int
1273 vtnet_replace_rxbuf(struct vtnet_softc *sc, struct mbuf *m0, int len0)
1274 {
1275 	struct mbuf *m, *m_prev;
1276 	struct mbuf *m_new, *m_tail;
1277 	int len, clsize, nreplace, error;
1278 
1279 	m = m0;
1280 	m_prev = NULL;
1281 	len = len0;
1282 
1283 	m_tail = NULL;
1284 	clsize = sc->vtnet_rx_mbuf_size;
1285 	nreplace = 0;
1286 
1287 	if (m->m_next != NULL)
1288 		KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG,
1289 		    ("chained Rx mbuf without LRO_NOMRG"));
1290 
1291 	/*
1292 	 * Since LRO_NOMRG mbuf chains are so large, we want to avoid
1293 	 * allocating an entire chain for each received frame. When
1294 	 * the received frame's length is less than that of the chain,
1295 	 * the unused mbufs are reassigned to the new chain.
1296 	 */
1297 	while (len > 0) {
1298 		/*
1299 		 * Something is seriously wrong if we received
1300 		 * a frame larger than the mbuf chain. Drop it.
1301 		 */
1302 		if (m == NULL) {
1303 			sc->vtnet_stats.rx_frame_too_large++;
1304 			return (EMSGSIZE);
1305 		}
1306 
1307 		KASSERT(m->m_len == clsize,
1308 		    ("mbuf length not expected cluster size: %d",
1309 		    m->m_len));
1310 
1311 		m->m_len = MIN(m->m_len, len);
1312 		len -= m->m_len;
1313 
1314 		m_prev = m;
1315 		m = m->m_next;
1316 		nreplace++;
1317 	}
1318 
1319 	KASSERT(m_prev != NULL, ("m_prev == NULL"));
1320 	KASSERT(nreplace <= sc->vtnet_rx_mbuf_count,
1321 		("too many replacement mbufs: %d/%d", nreplace,
1322 		sc->vtnet_rx_mbuf_count));
1323 
1324 	m_new = vtnet_alloc_rxbuf(sc, nreplace, &m_tail);
1325 	if (m_new == NULL) {
1326 		m_prev->m_len = clsize;
1327 		return (ENOBUFS);
1328 	}
1329 
1330 	/*
1331 	 * Move unused mbufs, if any, from the original chain
1332 	 * onto the end of the new chain.
1333 	 */
1334 	if (m_prev->m_next != NULL) {
1335 		m_tail->m_next = m_prev->m_next;
1336 		m_prev->m_next = NULL;
1337 	}
1338 
1339 	error = vtnet_enqueue_rxbuf(sc, m_new);
1340 	if (error) {
1341 		/*
1342 		 * BAD! We could not enqueue the replacement mbuf chain. We
1343 		 * must restore the m0 chain to the original state if it was
1344 		 * modified so we can subsequently discard it.
1345 		 *
1346 		 * NOTE: The replacement is suppose to be an identical copy
1347 		 * to the one just dequeued so this is an unexpected error.
1348 		 */
1349 		sc->vtnet_stats.rx_enq_replacement_failed++;
1350 
1351 		if (m_tail->m_next != NULL) {
1352 			m_prev->m_next = m_tail->m_next;
1353 			m_tail->m_next = NULL;
1354 		}
1355 
1356 		m_prev->m_len = clsize;
1357 		m_freem(m_new);
1358 	}
1359 
1360 	return (error);
1361 }
1362 
1363 static int
1364 vtnet_newbuf(struct vtnet_softc *sc)
1365 {
1366 	struct mbuf *m;
1367 	int error;
1368 
1369 	m = vtnet_alloc_rxbuf(sc, sc->vtnet_rx_mbuf_count, NULL);
1370 	if (m == NULL)
1371 		return (ENOBUFS);
1372 
1373 	error = vtnet_enqueue_rxbuf(sc, m);
1374 	if (error)
1375 		m_freem(m);
1376 
1377 	return (error);
1378 }
1379 
1380 static void
1381 vtnet_discard_merged_rxbuf(struct vtnet_softc *sc, int nbufs)
1382 {
1383 	struct virtqueue *vq;
1384 	struct mbuf *m;
1385 
1386 	vq = sc->vtnet_rx_vq;
1387 
1388 	while (--nbufs > 0) {
1389 		if ((m = virtqueue_dequeue(vq, NULL)) == NULL)
1390 			break;
1391 		vtnet_discard_rxbuf(sc, m);
1392 	}
1393 }
1394 
1395 static void
1396 vtnet_discard_rxbuf(struct vtnet_softc *sc, struct mbuf *m)
1397 {
1398 	int error;
1399 
1400 	/*
1401 	 * Requeue the discarded mbuf. This should always be
1402 	 * successful since it was just dequeued.
1403 	 */
1404 	error = vtnet_enqueue_rxbuf(sc, m);
1405 	KASSERT(error == 0, ("cannot requeue discarded mbuf"));
1406 }
1407 
1408 static int
1409 vtnet_enqueue_rxbuf(struct vtnet_softc *sc, struct mbuf *m)
1410 {
1411 	struct sglist sg;
1412 	struct sglist_seg segs[VTNET_MAX_RX_SEGS];
1413 	struct vtnet_rx_header *rxhdr;
1414 	struct virtio_net_hdr *hdr;
1415 	uint8_t *mdata;
1416 	int offset, error;
1417 
1418 	ASSERT_SERIALIZED(&sc->vtnet_rx_slz);
1419 	if ((sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) == 0)
1420 		KASSERT(m->m_next == NULL, ("chained Rx mbuf"));
1421 
1422 	sglist_init(&sg, sc->vtnet_rx_nsegs, segs);
1423 
1424 	mdata = mtod(m, uint8_t *);
1425 	offset = 0;
1426 
1427 	if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1428 		rxhdr = (struct vtnet_rx_header *) mdata;
1429 		hdr = &rxhdr->vrh_hdr;
1430 		offset += sizeof(struct vtnet_rx_header);
1431 
1432 		error = sglist_append(&sg, hdr, sc->vtnet_hdr_size);
1433 		KASSERT(error == 0, ("cannot add header to sglist"));
1434 	}
1435 
1436 	error = sglist_append(&sg, mdata + offset, m->m_len - offset);
1437 	if (error)
1438 		return (error);
1439 
1440 	if (m->m_next != NULL) {
1441 		error = sglist_append_mbuf(&sg, m->m_next);
1442 		if (error)
1443 			return (error);
1444 	}
1445 
1446 	return (virtqueue_enqueue(sc->vtnet_rx_vq, m, &sg, 0, sg.sg_nseg));
1447 }
1448 
1449 #ifdef IFPOLL_ENABLE
1450 
1451 static void
1452 vtnet_npoll_status(struct ifnet *ifp)
1453 {
1454 	struct vtnet_softc *sc = ifp->if_softc;
1455 
1456 	ASSERT_SERIALIZED(&sc->vtnet_slz);
1457 
1458 	vtnet_update_link_status(sc);
1459 }
1460 
1461 static void
1462 vtnet_npoll_rx(struct ifnet *ifp, void *arg __unused, int cycle)
1463 {
1464 	struct vtnet_softc *sc = ifp->if_softc;
1465 
1466 	vtnet_rxeof(sc, cycle, NULL);
1467 }
1468 
1469 static void
1470 vtnet_npoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
1471 {
1472 	struct vtnet_softc *sc = ifp->if_softc;
1473 
1474 	ASSERT_SERIALIZED(&sc->vtnet_tx_slz);
1475 
1476 	vtnet_txeof(sc);
1477 	if (!ifq_is_empty(&ifp->if_snd))
1478 		if_devstart(ifp);
1479 }
1480 
1481 static void
1482 vtnet_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1483 {
1484 	struct vtnet_softc *sc = ifp->if_softc;
1485 	int i;
1486 
1487 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1488 
1489 	if (info) {
1490 		int cpu;
1491 
1492 		info->ifpi_status.status_func = vtnet_npoll_status;
1493 		info->ifpi_status.serializer = &sc->vtnet_slz;
1494 
1495 		/* Use the same cpu for rx and tx. */
1496 		cpu = device_get_unit(device_get_parent(sc->vtnet_dev));
1497 		/* Shuffle a bit. */
1498 		cpu = (cpu * 61) % netisr_ncpus;
1499 		KKASSERT(cpu < netisr_ncpus);
1500 		info->ifpi_tx[cpu].poll_func = vtnet_npoll_tx;
1501 		info->ifpi_tx[cpu].arg = NULL;
1502 		info->ifpi_tx[cpu].serializer = &sc->vtnet_tx_slz;
1503 		ifq_set_cpuid(&ifp->if_snd, cpu);
1504 
1505 		info->ifpi_rx[cpu].poll_func = vtnet_npoll_rx;
1506 		info->ifpi_rx[cpu].arg = NULL;
1507 		info->ifpi_rx[cpu].serializer = &sc->vtnet_rx_slz;
1508 
1509 		for (i = 0; i < 3; i++)
1510 			lwkt_serialize_handler_disable(sc->serializes[i]);
1511 		vtnet_disable_rx_intr(sc);
1512 		vtnet_disable_tx_intr(sc);
1513 		for (i = 0; i < sc->vtnet_nintr; i++)
1514 			virtio_teardown_intr(sc->vtnet_dev, i);
1515 		if (virtio_with_feature(sc->vtnet_dev, VIRTIO_NET_F_STATUS))
1516 			virtio_unbind_intr(sc->vtnet_dev, -1);
1517 		for (i = 0; i < 2; i++)
1518 			virtio_unbind_intr(sc->vtnet_dev, i);
1519 	} else {
1520 		int error;
1521 
1522 		ifq_set_cpuid(&ifp->if_snd,
1523 		    sc->vtnet_cpus[sc->vtnet_nintr - 1]);
1524 		for (i = 0; i < 3; i++)
1525 			lwkt_serialize_handler_enable(sc->serializes[i]);
1526 		for (i = 0; i < 2; i++) {
1527 			error = virtio_bind_intr(sc->vtnet_dev,
1528 			    sc->vtnet_irqmap[i].irq, i,
1529 			    sc->vtnet_irqmap[i].handler, sc);
1530 			if (error) {
1531 				device_printf(sc->vtnet_dev,
1532 				    "cannot re-bind virtqueue IRQs\n");
1533 			}
1534 		}
1535 		if (virtio_with_feature(sc->vtnet_dev, VIRTIO_NET_F_STATUS)) {
1536 			error = virtio_bind_intr(sc->vtnet_dev, 0, -1,
1537 			    vtnet_config_intr, sc);
1538 			if (error) {
1539 				device_printf(sc->vtnet_dev,
1540 				    "cannot re-bind config_change IRQ\n");
1541 			}
1542 		}
1543 		for (i = 0; i < sc->vtnet_nintr; i++) {
1544 			error = virtio_setup_intr(sc->vtnet_dev, i,
1545 			    sc->vtnet_intr_slz[i]);
1546 			if (error) {
1547 				device_printf(sc->vtnet_dev,
1548 				    "cannot setup virtqueue interrupts\n");
1549 			}
1550 		}
1551 		vtnet_enable_rx_intr(sc);
1552 		vtnet_enable_tx_intr(sc);
1553 	}
1554 }
1555 
1556 #endif	/* IFPOLL_ENABLE */
1557 
1558 static void
1559 vtnet_vlan_tag_remove(struct mbuf *m)
1560 {
1561 	struct ether_vlan_header *evl;
1562 
1563 	evl = mtod(m, struct ether_vlan_header *);
1564 
1565 	m->m_pkthdr.ether_vlantag = ntohs(evl->evl_tag);
1566 	m->m_flags |= M_VLANTAG;
1567 
1568 	/* Strip the 802.1Q header. */
1569 	bcopy((char *) evl, (char *) evl + ETHER_VLAN_ENCAP_LEN,
1570 	    ETHER_HDR_LEN - ETHER_TYPE_LEN);
1571 	m_adj(m, ETHER_VLAN_ENCAP_LEN);
1572 }
1573 
1574 /*
1575  * Alternative method of doing receive checksum offloading. Rather
1576  * than parsing the received frame down to the IP header, use the
1577  * csum_offset to determine which CSUM_* flags are appropriate. We
1578  * can get by with doing this only because the checksum offsets are
1579  * unique for the things we care about.
1580  */
1581 static int
1582 vtnet_rx_csum(struct vtnet_softc *sc, struct mbuf *m,
1583     struct virtio_net_hdr *hdr)
1584 {
1585 	struct ether_header *eh;
1586 	struct ether_vlan_header *evh;
1587 	struct udphdr *udp;
1588 	int csum_len;
1589 	uint16_t eth_type;
1590 
1591 	csum_len = hdr->csum_start + hdr->csum_offset;
1592 
1593 	if (csum_len < sizeof(struct ether_header) + sizeof(struct ip))
1594 		return (1);
1595 	if (m->m_len < csum_len)
1596 		return (1);
1597 
1598 	eh = mtod(m, struct ether_header *);
1599 	eth_type = ntohs(eh->ether_type);
1600 	if (eth_type == ETHERTYPE_VLAN) {
1601 		evh = mtod(m, struct ether_vlan_header *);
1602 		eth_type = ntohs(evh->evl_proto);
1603 	}
1604 
1605 	if (eth_type != ETHERTYPE_IP && eth_type != ETHERTYPE_IPV6) {
1606 		sc->vtnet_stats.rx_csum_bad_ethtype++;
1607 		return (1);
1608 	}
1609 
1610 	/* Use the offset to determine the appropriate CSUM_* flags. */
1611 	switch (hdr->csum_offset) {
1612 	case offsetof(struct udphdr, uh_sum):
1613 		if (m->m_len < hdr->csum_start + sizeof(struct udphdr))
1614 			return (1);
1615 		udp = (struct udphdr *)(mtod(m, uint8_t *) + hdr->csum_start);
1616 		if (udp->uh_sum == 0)
1617 			return (0);
1618 
1619 		/* FALLTHROUGH */
1620 
1621 	case offsetof(struct tcphdr, th_sum):
1622 		m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1623 		m->m_pkthdr.csum_data = 0xFFFF;
1624 		break;
1625 
1626 	default:
1627 		sc->vtnet_stats.rx_csum_bad_offset++;
1628 		return (1);
1629 	}
1630 
1631 	sc->vtnet_stats.rx_csum_offloaded++;
1632 
1633 	return (0);
1634 }
1635 
1636 static int
1637 vtnet_rxeof_merged(struct vtnet_softc *sc, struct mbuf *m_head, int nbufs)
1638 {
1639 	struct ifnet *ifp;
1640 	struct virtqueue *vq;
1641 	struct mbuf *m, *m_tail;
1642 	int len;
1643 
1644 	ifp = sc->vtnet_ifp;
1645 	vq = sc->vtnet_rx_vq;
1646 	m_tail = m_head;
1647 
1648 	while (--nbufs > 0) {
1649 		m = virtqueue_dequeue(vq, &len);
1650 		if (m == NULL) {
1651 			ifp->if_ierrors++;
1652 			goto fail;
1653 		}
1654 
1655 		if (vtnet_newbuf(sc) != 0) {
1656 			ifp->if_iqdrops++;
1657 			vtnet_discard_rxbuf(sc, m);
1658 			if (nbufs > 1)
1659 				vtnet_discard_merged_rxbuf(sc, nbufs);
1660 			goto fail;
1661 		}
1662 
1663 		if (m->m_len < len)
1664 			len = m->m_len;
1665 
1666 		m->m_len = len;
1667 		m->m_flags &= ~M_PKTHDR;
1668 
1669 		m_head->m_pkthdr.len += len;
1670 		m_tail->m_next = m;
1671 		m_tail = m;
1672 	}
1673 
1674 	return (0);
1675 
1676 fail:
1677 	sc->vtnet_stats.rx_mergeable_failed++;
1678 	m_freem(m_head);
1679 
1680 	return (1);
1681 }
1682 
1683 static int
1684 vtnet_rxeof(struct vtnet_softc *sc, int count, int *rx_npktsp)
1685 {
1686 	struct virtio_net_hdr lhdr;
1687 	struct ifnet *ifp;
1688 	struct virtqueue *vq;
1689 	struct mbuf *m;
1690 	struct ether_header *eh;
1691 	struct virtio_net_hdr *hdr;
1692 	struct virtio_net_hdr_mrg_rxbuf *mhdr;
1693 	int len, deq, nbufs, adjsz, rx_npkts;
1694 
1695 	ifp = sc->vtnet_ifp;
1696 	vq = sc->vtnet_rx_vq;
1697 	hdr = &lhdr;
1698 	deq = 0;
1699 	rx_npkts = 0;
1700 
1701 	while (--count >= 0) {
1702 		m = virtqueue_dequeue(vq, &len);
1703 		if (m == NULL)
1704 			break;
1705 		deq++;
1706 
1707 		if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) {
1708 			ifp->if_ierrors++;
1709 			vtnet_discard_rxbuf(sc, m);
1710 			continue;
1711 		}
1712 
1713 		if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1714 			nbufs = 1;
1715 			adjsz = sizeof(struct vtnet_rx_header);
1716 			/*
1717 			 * Account for our pad between the header and
1718 			 * the actual start of the frame.
1719 			 */
1720 			len += VTNET_RX_HEADER_PAD;
1721 		} else {
1722 			mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *);
1723 			nbufs = mhdr->num_buffers;
1724 			adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf);
1725 		}
1726 
1727 		if (vtnet_replace_rxbuf(sc, m, len) != 0) {
1728 			ifp->if_iqdrops++;
1729 			vtnet_discard_rxbuf(sc, m);
1730 			if (nbufs > 1)
1731 				vtnet_discard_merged_rxbuf(sc, nbufs);
1732 			continue;
1733 		}
1734 
1735 		m->m_pkthdr.len = len;
1736 		m->m_pkthdr.rcvif = ifp;
1737 		m->m_pkthdr.csum_flags = 0;
1738 
1739 		if (nbufs > 1) {
1740 			if (vtnet_rxeof_merged(sc, m, nbufs) != 0)
1741 				continue;
1742 		}
1743 
1744 		ifp->if_ipackets++;
1745 
1746 		/*
1747 		 * Save copy of header before we strip it. For both mergeable
1748 		 * and non-mergeable, the VirtIO header is placed first in the
1749 		 * mbuf's data. We no longer need num_buffers, so always use a
1750 		 * virtio_net_hdr.
1751 		 */
1752 		memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr));
1753 		m_adj(m, adjsz);
1754 
1755 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1756 			eh = mtod(m, struct ether_header *);
1757 			if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1758 				vtnet_vlan_tag_remove(m);
1759 
1760 				/*
1761 				 * With the 802.1Q header removed, update the
1762 				 * checksum starting location accordingly.
1763 				 */
1764 				if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)
1765 					hdr->csum_start -=
1766 					    ETHER_VLAN_ENCAP_LEN;
1767 			}
1768 		}
1769 
1770 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1771 		    hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1772 			if (vtnet_rx_csum(sc, m, hdr) != 0)
1773 				sc->vtnet_stats.rx_csum_failed++;
1774 		}
1775 
1776 		rx_npkts++;
1777 		ifp->if_input(ifp, m, NULL, mycpuid);
1778 
1779 		/*
1780 		 * The interface may have been stopped while we were
1781 		 * passing the packet up the network stack.
1782 		 */
1783 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1784 			break;
1785 	}
1786 
1787 	if (deq > 0)
1788 		virtqueue_notify(vq, NULL);
1789 
1790 	if (rx_npktsp != NULL)
1791 		*rx_npktsp = rx_npkts;
1792 
1793 	return (count > 0 ? 0 : EAGAIN);
1794 }
1795 
1796 static void
1797 vtnet_rx_msix_intr(void *xsc)
1798 {
1799 	struct vtnet_softc *sc;
1800 	struct ifnet *ifp;
1801 	int more;
1802 
1803 	sc = xsc;
1804 	ifp = sc->vtnet_ifp;
1805 
1806 	if (!virtqueue_pending(sc->vtnet_rx_vq))
1807 		return;
1808 
1809 	vtnet_disable_rx_intr(sc);
1810 next:
1811 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1812 		vtnet_enable_rx_intr(sc);
1813 		return;
1814 	}
1815 
1816 	more = vtnet_rxeof(sc, sc->vtnet_rx_process_limit, NULL);
1817 	if (!more && vtnet_enable_rx_intr(sc) != 0) {
1818 		vtnet_disable_rx_intr(sc);
1819 		more = 1;
1820 	}
1821 
1822 	if (more) {
1823 		sc->vtnet_stats.rx_task_rescheduled++;
1824 		goto next;
1825 	}
1826 }
1827 
1828 static void
1829 vtnet_rx_vq_intr(void *xsc)
1830 {
1831 	struct vtnet_softc *sc = xsc;
1832 
1833 	lwkt_serialize_enter(&sc->vtnet_rx_slz);
1834 	vtnet_rx_msix_intr(xsc);
1835 	lwkt_serialize_exit(&sc->vtnet_rx_slz);
1836 }
1837 
1838 static void
1839 vtnet_enqueue_txhdr(struct vtnet_softc *sc, struct vtnet_tx_header *txhdr)
1840 {
1841 	bzero(txhdr, sizeof(*txhdr));
1842 	SLIST_INSERT_HEAD(&sc->vtnet_txhdr_free, txhdr, link);
1843 }
1844 
1845 static void
1846 vtnet_txeof(struct vtnet_softc *sc)
1847 {
1848 	struct virtqueue *vq;
1849 	struct ifnet *ifp;
1850 	struct vtnet_tx_header *txhdr;
1851 	int deq;
1852 
1853 	vq = sc->vtnet_tx_vq;
1854 	ifp = sc->vtnet_ifp;
1855 	deq = 0;
1856 
1857 	while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) {
1858 		deq++;
1859 		ifp->if_opackets++;
1860 		m_freem(txhdr->vth_mbuf);
1861 		vtnet_enqueue_txhdr(sc, txhdr);
1862 	}
1863 
1864 	if (deq > 0) {
1865 		ifq_clr_oactive(&ifp->if_snd);
1866 		if (virtqueue_empty(vq))
1867 			ifsq_watchdog_set_count(&sc->vtnet_tx_watchdog, 0);
1868 		else
1869 			ifsq_watchdog_set_count(&sc->vtnet_tx_watchdog,
1870 						VTNET_WATCHDOG_TIMEOUT);
1871 	}
1872 }
1873 
1874 static struct mbuf *
1875 vtnet_tx_offload(struct vtnet_softc *sc, struct mbuf *m,
1876     struct virtio_net_hdr *hdr)
1877 {
1878 	struct ifnet *ifp;
1879 	struct ether_header *eh;
1880 	struct ether_vlan_header *evh;
1881 	struct ip *ip;
1882 	struct ip6_hdr *ip6;
1883 	struct tcphdr *tcp;
1884 	int ip_offset;
1885 	uint16_t eth_type, csum_start;
1886 	uint8_t ip_proto, gso_type;
1887 
1888 	ifp = sc->vtnet_ifp;
1889 	M_ASSERTPKTHDR(m);
1890 
1891 	ip_offset = sizeof(struct ether_header);
1892 	if (m->m_len < ip_offset) {
1893 		if ((m = m_pullup(m, ip_offset)) == NULL)
1894 			return (NULL);
1895 	}
1896 
1897 	eh = mtod(m, struct ether_header *);
1898 	eth_type = ntohs(eh->ether_type);
1899 	if (eth_type == ETHERTYPE_VLAN) {
1900 		ip_offset = sizeof(struct ether_vlan_header);
1901 		if (m->m_len < ip_offset) {
1902 			if ((m = m_pullup(m, ip_offset)) == NULL)
1903 				return (NULL);
1904 		}
1905 		evh = mtod(m, struct ether_vlan_header *);
1906 		eth_type = ntohs(evh->evl_proto);
1907 	}
1908 
1909 	switch (eth_type) {
1910 	case ETHERTYPE_IP:
1911 		if (m->m_len < ip_offset + sizeof(struct ip)) {
1912 			m = m_pullup(m, ip_offset + sizeof(struct ip));
1913 			if (m == NULL)
1914 				return (NULL);
1915 		}
1916 
1917 		ip = (struct ip *)(mtod(m, uint8_t *) + ip_offset);
1918 		ip_proto = ip->ip_p;
1919 		csum_start = ip_offset + (ip->ip_hl << 2);
1920 		gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
1921 		break;
1922 
1923 	case ETHERTYPE_IPV6:
1924 		if (m->m_len < ip_offset + sizeof(struct ip6_hdr)) {
1925 			m = m_pullup(m, ip_offset + sizeof(struct ip6_hdr));
1926 			if (m == NULL)
1927 				return (NULL);
1928 		}
1929 
1930 		ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + ip_offset);
1931 		/*
1932 		 * XXX Assume no extension headers are present. Presently,
1933 		 * this will always be true in the case of TSO, and FreeBSD
1934 		 * does not perform checksum offloading of IPv6 yet.
1935 		 */
1936 		ip_proto = ip6->ip6_nxt;
1937 		csum_start = ip_offset + sizeof(struct ip6_hdr);
1938 		gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
1939 		break;
1940 
1941 	default:
1942 		return (m);
1943 	}
1944 
1945 	if (m->m_pkthdr.csum_flags & VTNET_CSUM_OFFLOAD) {
1946 		hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM;
1947 		hdr->csum_start = csum_start;
1948 		hdr->csum_offset = m->m_pkthdr.csum_data;
1949 
1950 		sc->vtnet_stats.tx_csum_offloaded++;
1951 	}
1952 
1953 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1954 		if (ip_proto != IPPROTO_TCP)
1955 			return (m);
1956 
1957 		if (m->m_len < csum_start + sizeof(struct tcphdr)) {
1958 			m = m_pullup(m, csum_start + sizeof(struct tcphdr));
1959 			if (m == NULL)
1960 				return (NULL);
1961 		}
1962 
1963 		tcp = (struct tcphdr *)(mtod(m, uint8_t *) + csum_start);
1964 		hdr->gso_type = gso_type;
1965 		hdr->hdr_len = csum_start + (tcp->th_off << 2);
1966 		hdr->gso_size = m->m_pkthdr.tso_segsz;
1967 
1968 		if (tcp->th_flags & TH_CWR) {
1969 			/*
1970 			 * Drop if we did not negotiate VIRTIO_NET_F_HOST_ECN.
1971 			 * ECN support is only configurable globally with the
1972 			 * net.inet.tcp.ecn.enable sysctl knob.
1973 			 */
1974 			if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) {
1975 				if_printf(ifp, "TSO with ECN not supported "
1976 				    "by host\n");
1977 				m_freem(m);
1978 				return (NULL);
1979 			}
1980 
1981 			hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN;
1982 		}
1983 
1984 		sc->vtnet_stats.tx_tso_offloaded++;
1985 	}
1986 
1987 	return (m);
1988 }
1989 
1990 static int
1991 vtnet_enqueue_txbuf(struct vtnet_softc *sc, struct mbuf **m_head,
1992     struct vtnet_tx_header *txhdr)
1993 {
1994 	struct sglist sg;
1995 	struct sglist_seg segs[VTNET_MAX_TX_SEGS];
1996 	struct virtqueue *vq;
1997 	struct mbuf *m;
1998 	int error;
1999 
2000 	vq = sc->vtnet_tx_vq;
2001 	m = *m_head;
2002 
2003 	sglist_init(&sg, sc->vtnet_tx_nsegs, segs);
2004 	error = sglist_append(&sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size);
2005 	KASSERT(error == 0 && sg.sg_nseg == 1,
2006 	    ("%s: error %d adding header to sglist", __func__, error));
2007 
2008 	error = sglist_append_mbuf(&sg, m);
2009 	if (error) {
2010 		m = m_defrag(m, M_NOWAIT);
2011 		if (m == NULL)
2012 			goto fail;
2013 
2014 		*m_head = m;
2015 		sc->vtnet_stats.tx_defragged++;
2016 
2017 		error = sglist_append_mbuf(&sg, m);
2018 		if (error)
2019 			goto fail;
2020 	}
2021 
2022 	txhdr->vth_mbuf = m;
2023 	error = virtqueue_enqueue(vq, txhdr, &sg, sg.sg_nseg, 0);
2024 
2025 	return (error);
2026 
2027 fail:
2028 	sc->vtnet_stats.tx_defrag_failed++;
2029 	m_freem(*m_head);
2030 	*m_head = NULL;
2031 
2032 	return (ENOBUFS);
2033 }
2034 
2035 static struct mbuf *
2036 vtnet_vlan_tag_insert(struct mbuf *m)
2037 {
2038 	struct mbuf *n;
2039 	struct ether_vlan_header *evl;
2040 
2041 	if (M_WRITABLE(m) == 0) {
2042 		n = m_dup(m, M_NOWAIT);
2043 		m_freem(m);
2044 		if ((m = n) == NULL)
2045 			return (NULL);
2046 	}
2047 
2048 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
2049 	if (m == NULL)
2050 		return (NULL);
2051 	if (m->m_len < sizeof(struct ether_vlan_header)) {
2052 		m = m_pullup(m, sizeof(struct ether_vlan_header));
2053 		if (m == NULL)
2054 			return (NULL);
2055 	}
2056 
2057 	/* Insert 802.1Q header into the existing Ethernet header. */
2058 	evl = mtod(m, struct ether_vlan_header *);
2059 	bcopy((char *) evl + ETHER_VLAN_ENCAP_LEN,
2060 	      (char *) evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
2061 	evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
2062 	evl->evl_tag = htons(m->m_pkthdr.ether_vlantag);
2063 	m->m_flags &= ~M_VLANTAG;
2064 
2065 	return (m);
2066 }
2067 
2068 static int
2069 vtnet_encap(struct vtnet_softc *sc, struct mbuf **m_head)
2070 {
2071 	struct vtnet_tx_header *txhdr;
2072 	struct virtio_net_hdr *hdr;
2073 	struct mbuf *m;
2074 	int error;
2075 
2076 	txhdr = SLIST_FIRST(&sc->vtnet_txhdr_free);
2077 	if (txhdr == NULL)
2078 		return (ENOBUFS);
2079 	SLIST_REMOVE_HEAD(&sc->vtnet_txhdr_free, link);
2080 
2081 	/*
2082 	 * Always use the non-mergeable header to simplify things. When
2083 	 * the mergeable feature is negotiated, the num_buffers field
2084 	 * must be set to zero. We use vtnet_hdr_size later to enqueue
2085 	 * the correct header size to the host.
2086 	 */
2087 	hdr = &txhdr->vth_uhdr.hdr;
2088 	m = *m_head;
2089 
2090 	error = ENOBUFS;
2091 
2092 	if (m->m_flags & M_VLANTAG) {
2093 		//m = ether_vlanencap(m, m->m_pkthdr.ether_vtag);
2094 		m = vtnet_vlan_tag_insert(m);
2095 		if ((*m_head = m) == NULL)
2096 			goto fail;
2097 		m->m_flags &= ~M_VLANTAG;
2098 	}
2099 
2100 	if (m->m_pkthdr.csum_flags != 0) {
2101 		m = vtnet_tx_offload(sc, m, hdr);
2102 		if ((*m_head = m) == NULL)
2103 			goto fail;
2104 	}
2105 
2106 	error = vtnet_enqueue_txbuf(sc, m_head, txhdr);
2107 fail:
2108 	if (error != 0)
2109 		vtnet_enqueue_txhdr(sc, txhdr);
2110 	return (error);
2111 }
2112 
2113 static void
2114 vtnet_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2115 {
2116 	struct vtnet_softc *sc;
2117 	struct virtqueue *vq;
2118 	struct mbuf *m0;
2119 	int enq;
2120 
2121 	sc = ifp->if_softc;
2122 	vq = sc->vtnet_tx_vq;
2123 	enq = 0;
2124 
2125 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2126 	ASSERT_SERIALIZED(&sc->vtnet_tx_slz);
2127 
2128 	if ((ifp->if_flags & (IFF_RUNNING)) !=
2129 	    IFF_RUNNING || ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0))
2130 		return;
2131 
2132 #ifdef VTNET_TX_INTR_MODERATION
2133 	if (virtqueue_nused(vq) >= sc->vtnet_tx_size / 2)
2134 		vtnet_txeof(sc);
2135 #endif
2136 
2137 	while (!ifsq_is_empty(ifsq)) {
2138 		if (virtqueue_full(vq)) {
2139 			ifsq_set_oactive(ifsq);
2140 			break;
2141 		}
2142 
2143 		m0 = ifsq_dequeue(ifsq);
2144 		if (m0 == NULL)
2145 			break;
2146 
2147 		if (vtnet_encap(sc, &m0) != 0) {
2148 			if (m0 == NULL)
2149 				break;
2150 			ifsq_prepend(ifsq, m0);
2151 			ifsq_set_oactive(ifsq);
2152 			break;
2153 		}
2154 
2155 		enq++;
2156 		ETHER_BPF_MTAP(ifp, m0);
2157 	}
2158 
2159 	if (enq > 0) {
2160 		virtqueue_notify(vq, NULL);
2161 		ifsq_watchdog_set_count(&sc->vtnet_tx_watchdog,
2162 					VTNET_WATCHDOG_TIMEOUT);
2163 	}
2164 }
2165 
2166 static void
2167 vtnet_tx_msix_intr(void *xsc)
2168 {
2169 	struct vtnet_softc *sc;
2170 	struct ifnet *ifp;
2171 	struct ifaltq_subque *ifsq;
2172 
2173 	sc = xsc;
2174 	ifp = sc->vtnet_ifp;
2175 	ifsq = ifq_get_subq_default(&ifp->if_snd);
2176 
2177 	if (!virtqueue_pending(sc->vtnet_tx_vq))
2178 		return;
2179 
2180 	vtnet_disable_tx_intr(sc);
2181 next:
2182 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2183 		vtnet_enable_tx_intr(sc);
2184 		return;
2185 	}
2186 
2187 	vtnet_txeof(sc);
2188 
2189 	if (!ifsq_is_empty(ifsq))
2190 		ifsq_devstart(ifsq);
2191 
2192 	if (vtnet_enable_tx_intr(sc) != 0) {
2193 		vtnet_disable_tx_intr(sc);
2194 		sc->vtnet_stats.tx_task_rescheduled++;
2195 		goto next;
2196 	}
2197 }
2198 
2199 static void
2200 vtnet_tx_vq_intr(void *xsc)
2201 {
2202 	struct vtnet_softc *sc = xsc;
2203 
2204 	lwkt_serialize_enter(&sc->vtnet_tx_slz);
2205 	vtnet_tx_msix_intr(xsc);
2206 	lwkt_serialize_exit(&sc->vtnet_tx_slz);
2207 }
2208 
2209 static void
2210 vtnet_config_intr(void *arg)
2211 {
2212 	struct vtnet_softc *sc;
2213 
2214 	sc = arg;
2215 
2216 	vtnet_update_link_status(sc);
2217 }
2218 
2219 static void
2220 vtnet_stop(struct vtnet_softc *sc)
2221 {
2222 	device_t dev;
2223 	struct ifnet *ifp;
2224 
2225 	dev = sc->vtnet_dev;
2226 	ifp = sc->vtnet_ifp;
2227 
2228 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2229 
2230 	ifq_clr_oactive(&ifp->if_snd);
2231 	ifsq_watchdog_stop(&sc->vtnet_tx_watchdog);
2232 	ifp->if_flags &= ~(IFF_RUNNING);
2233 
2234 	vtnet_disable_rx_intr(sc);
2235 	vtnet_disable_tx_intr(sc);
2236 
2237 	/*
2238 	 * Stop the host VirtIO adapter. Note this will reset the host
2239 	 * adapter's state back to the pre-initialized state, so in
2240 	 * order to make the device usable again, we must drive it
2241 	 * through virtio_reinit() and virtio_reinit_complete().
2242 	 */
2243 	virtio_stop(dev);
2244 
2245 	sc->vtnet_flags &= ~VTNET_FLAG_LINK;
2246 
2247 	vtnet_free_rx_mbufs(sc);
2248 	vtnet_free_tx_mbufs(sc);
2249 }
2250 
2251 static int
2252 vtnet_virtio_reinit(struct vtnet_softc *sc)
2253 {
2254 	device_t dev;
2255 	struct ifnet *ifp;
2256 	uint64_t features;
2257 	int error;
2258 
2259 	dev = sc->vtnet_dev;
2260 	ifp = sc->vtnet_ifp;
2261 	features = sc->vtnet_features;
2262 
2263 	/*
2264 	 * Re-negotiate with the host, removing any disabled receive
2265 	 * features. Transmit features are disabled only on our side
2266 	 * via if_capenable and if_hwassist.
2267 	 */
2268 
2269 	if (ifp->if_capabilities & IFCAP_RXCSUM) {
2270 		if ((ifp->if_capenable & IFCAP_RXCSUM) == 0)
2271 			features &= ~VIRTIO_NET_F_GUEST_CSUM;
2272 	}
2273 
2274 #if 0	/* IFCAP_LRO doesn't exist in DragonFly. */
2275 	if (ifp->if_capabilities & IFCAP_LRO) {
2276 		if ((ifp->if_capenable & IFCAP_LRO) == 0)
2277 			features &= ~VTNET_LRO_FEATURES;
2278 	}
2279 #endif
2280 
2281 	if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) {
2282 		if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0)
2283 			features &= ~VIRTIO_NET_F_CTRL_VLAN;
2284 	}
2285 
2286 	error = virtio_reinit(dev, features);
2287 	if (error)
2288 		device_printf(dev, "virtio reinit error %d\n", error);
2289 
2290 	return (error);
2291 }
2292 
2293 static void
2294 vtnet_init(void *xsc)
2295 {
2296 	struct vtnet_softc *sc;
2297 	device_t dev;
2298 	struct ifnet *ifp;
2299 	int error;
2300 
2301 	sc = xsc;
2302 	dev = sc->vtnet_dev;
2303 	ifp = sc->vtnet_ifp;
2304 
2305 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2306 
2307 	if (ifp->if_flags & IFF_RUNNING)
2308 		return;
2309 
2310 	/* Stop host's adapter, cancel any pending I/O. */
2311 	vtnet_stop(sc);
2312 
2313 	/* Reinitialize the host device. */
2314 	error = vtnet_virtio_reinit(sc);
2315 	if (error) {
2316 		device_printf(dev,
2317 		    "reinitialization failed, stopping device...\n");
2318 		vtnet_stop(sc);
2319 		return;
2320 	}
2321 
2322 	/* Update host with assigned MAC address. */
2323 	bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN);
2324 	vtnet_set_hwaddr(sc);
2325 
2326 	ifp->if_hwassist = 0;
2327 	if (ifp->if_capenable & IFCAP_TXCSUM)
2328 		ifp->if_hwassist |= VTNET_CSUM_OFFLOAD;
2329 	if (ifp->if_capenable & IFCAP_TSO4)
2330 		ifp->if_hwassist |= CSUM_TSO;
2331 
2332 	error = vtnet_init_rx_vq(sc);
2333 	if (error) {
2334 		device_printf(dev,
2335 		    "cannot allocate mbufs for Rx virtqueue\n");
2336 		vtnet_stop(sc);
2337 		return;
2338 	}
2339 
2340 	if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
2341 		if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
2342 			/* Restore promiscuous and all-multicast modes. */
2343 			vtnet_rx_filter(sc);
2344 
2345 			/* Restore filtered MAC addresses. */
2346 			vtnet_rx_filter_mac(sc);
2347 		}
2348 
2349 		/* Restore VLAN filters. */
2350 		if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
2351 			vtnet_rx_filter_vlan(sc);
2352 	}
2353 
2354 #ifdef IFPOLL_ENABLE
2355 	if (!(ifp->if_flags & IFF_NPOLLING))
2356 #endif
2357 	{
2358 		vtnet_enable_rx_intr(sc);
2359 		vtnet_enable_tx_intr(sc);
2360 	}
2361 
2362 	ifp->if_flags |= IFF_RUNNING;
2363 	ifq_clr_oactive(&ifp->if_snd);
2364 	ifsq_watchdog_start(&sc->vtnet_tx_watchdog);
2365 
2366 	virtio_reinit_complete(dev);
2367 
2368 	vtnet_update_link_status(sc);
2369 }
2370 
2371 static void
2372 vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie,
2373     struct sglist *sg, int readable, int writable)
2374 {
2375 	struct virtqueue *vq;
2376 	void *c;
2377 
2378 	vq = sc->vtnet_ctrl_vq;
2379 
2380 	ASSERT_IFNET_SERIALIZED_ALL(sc->vtnet_ifp);
2381 	KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ,
2382 	    ("no control virtqueue"));
2383 	KASSERT(virtqueue_empty(vq),
2384 	    ("control command already enqueued"));
2385 
2386 	if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0)
2387 		return;
2388 
2389 	/*
2390 	 * XXX We can safely drop the serializer between here, and the end of
2391 	 *     the function, when we can correctly sleep for this command to
2392 	 *     be finished.
2393 	 */
2394 	virtqueue_notify(vq, NULL);
2395 
2396 	/*
2397 	 * Poll until the command is complete. Previously, we would
2398 	 * sleep until the control virtqueue interrupt handler woke
2399 	 * us up, but dropping the VTNET_MTX leads to serialization
2400 	 * difficulties.
2401 	 *
2402 	 * Furthermore, it appears QEMU/KVM only allocates three MSIX
2403 	 * vectors. Two of those vectors are needed for the Rx and Tx
2404 	 * virtqueues. We do not support sharing both a Vq and config
2405 	 * changed notification on the same MSIX vector.
2406 	 */
2407 	c = virtqueue_poll(vq, NULL);
2408 	KASSERT(c == cookie, ("unexpected control command response"));
2409 }
2410 
2411 static int
2412 vtnet_ctrl_mac_cmd(struct vtnet_softc *sc, uint8_t *hwaddr)
2413 {
2414 	struct {
2415 		struct virtio_net_ctrl_hdr hdr __aligned(2);
2416 		uint8_t pad1;
2417 		char aligned_hwaddr[ETHER_ADDR_LEN] __aligned(8);
2418 		uint8_t pad2;
2419 		uint8_t ack;
2420 	} s;
2421 	struct sglist_seg segs[3];
2422 	struct sglist sg;
2423 	int error;
2424 
2425 	s.hdr.class = VIRTIO_NET_CTRL_MAC;
2426 	s.hdr.cmd = VIRTIO_NET_CTRL_MAC_ADDR_SET;
2427 	s.ack = VIRTIO_NET_ERR;
2428 
2429 	/* Copy the mac address into physically contiguous memory */
2430 	memcpy(s.aligned_hwaddr, hwaddr, ETHER_ADDR_LEN);
2431 
2432 	sglist_init(&sg, 3, segs);
2433 	error = 0;
2434 	error |= sglist_append(&sg, &s.hdr,
2435 	    sizeof(struct virtio_net_ctrl_hdr));
2436 	error |= sglist_append(&sg, s.aligned_hwaddr, ETHER_ADDR_LEN);
2437 	error |= sglist_append(&sg, &s.ack, sizeof(uint8_t));
2438 	KASSERT(error == 0 && sg.sg_nseg == 3,
2439 	    ("%s: error %d adding set MAC msg to sglist", __func__, error));
2440 
2441 	vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1);
2442 
2443 	return (s.ack == VIRTIO_NET_OK ? 0 : EIO);
2444 }
2445 
2446 static void
2447 vtnet_rx_filter(struct vtnet_softc *sc)
2448 {
2449 	device_t dev;
2450 	struct ifnet *ifp;
2451 
2452 	dev = sc->vtnet_dev;
2453 	ifp = sc->vtnet_ifp;
2454 
2455 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2456 	KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
2457 	    ("CTRL_RX feature not negotiated"));
2458 
2459 	if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0)
2460 		device_printf(dev, "cannot %s promiscuous mode\n",
2461 		    (ifp->if_flags & IFF_PROMISC) ? "enable" : "disable");
2462 
2463 	if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0)
2464 		device_printf(dev, "cannot %s all-multicast mode\n",
2465 		    (ifp->if_flags & IFF_ALLMULTI) ? "enable" : "disable");
2466 }
2467 
2468 static int
2469 vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on)
2470 {
2471 	struct sglist_seg segs[3];
2472 	struct sglist sg;
2473 	struct {
2474 		struct virtio_net_ctrl_hdr hdr __aligned(2);
2475 		uint8_t pad1;
2476 		uint8_t onoff;
2477 		uint8_t pad2;
2478 		uint8_t ack;
2479 	} s;
2480 	int error;
2481 
2482 	KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
2483 	    ("%s: CTRL_RX feature not negotiated", __func__));
2484 
2485 	s.hdr.class = VIRTIO_NET_CTRL_RX;
2486 	s.hdr.cmd = cmd;
2487 	s.onoff = !!on;
2488 	s.ack = VIRTIO_NET_ERR;
2489 
2490 	sglist_init(&sg, 3, segs);
2491 	error = 0;
2492 	error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr));
2493 	error |= sglist_append(&sg, &s.onoff, sizeof(uint8_t));
2494 	error |= sglist_append(&sg, &s.ack, sizeof(uint8_t));
2495 	KASSERT(error == 0 && sg.sg_nseg == 3,
2496 	    ("%s: error %d adding Rx message to sglist", __func__, error));
2497 
2498 	vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1);
2499 
2500 	return (s.ack == VIRTIO_NET_OK ? 0 : EIO);
2501 }
2502 
2503 static int
2504 vtnet_set_promisc(struct vtnet_softc *sc, int on)
2505 {
2506 
2507 	return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on));
2508 }
2509 
2510 static int
2511 vtnet_set_allmulti(struct vtnet_softc *sc, int on)
2512 {
2513 
2514 	return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on));
2515 }
2516 
2517 static void
2518 vtnet_rx_filter_mac(struct vtnet_softc *sc)
2519 {
2520 	struct virtio_net_ctrl_hdr hdr __aligned(2);
2521 	struct vtnet_mac_filter *filter;
2522 	struct sglist_seg segs[4];
2523 	struct sglist sg;
2524 	struct ifnet *ifp;
2525 	struct ifaddr *ifa;
2526 	struct ifaddr_container *ifac;
2527 	struct ifmultiaddr *ifma;
2528 	int ucnt, mcnt, promisc, allmulti, error;
2529 	uint8_t ack;
2530 
2531 	ifp = sc->vtnet_ifp;
2532 	ucnt = 0;
2533 	mcnt = 0;
2534 	promisc = 0;
2535 	allmulti = 0;
2536 
2537 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2538 	KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
2539 	    ("%s: CTRL_RX feature not negotiated", __func__));
2540 
2541 	/* Use the MAC filtering table allocated in vtnet_attach. */
2542 	filter = sc->vtnet_macfilter;
2543 	memset(filter, 0, sizeof(struct vtnet_mac_filter));
2544 
2545 	/* Unicast MAC addresses: */
2546 	//if_addr_rlock(ifp);
2547 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2548 		ifa = ifac->ifa;
2549 		if (ifa->ifa_addr->sa_family != AF_LINK)
2550 			continue;
2551 		else if (memcmp(LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
2552 		    sc->vtnet_hwaddr, ETHER_ADDR_LEN) == 0)
2553 			continue;
2554 		else if (ucnt == VTNET_MAX_MAC_ENTRIES) {
2555 			promisc = 1;
2556 			break;
2557 		}
2558 
2559 		bcopy(LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
2560 		    &filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN);
2561 		ucnt++;
2562 	}
2563 	//if_addr_runlock(ifp);
2564 
2565 	if (promisc != 0) {
2566 		filter->vmf_unicast.nentries = 0;
2567 		if_printf(ifp, "more than %d MAC addresses assigned, "
2568 		    "falling back to promiscuous mode\n",
2569 		    VTNET_MAX_MAC_ENTRIES);
2570 	} else
2571 		filter->vmf_unicast.nentries = ucnt;
2572 
2573 	/* Multicast MAC addresses: */
2574 	//if_maddr_rlock(ifp);
2575 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2576 		if (ifma->ifma_addr->sa_family != AF_LINK)
2577 			continue;
2578 		else if (mcnt == VTNET_MAX_MAC_ENTRIES) {
2579 			allmulti = 1;
2580 			break;
2581 		}
2582 
2583 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2584 		    &filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN);
2585 		mcnt++;
2586 	}
2587 	//if_maddr_runlock(ifp);
2588 
2589 	if (allmulti != 0) {
2590 		filter->vmf_multicast.nentries = 0;
2591 		if_printf(ifp, "more than %d multicast MAC addresses "
2592 		    "assigned, falling back to all-multicast mode\n",
2593 		    VTNET_MAX_MAC_ENTRIES);
2594 	} else
2595 		filter->vmf_multicast.nentries = mcnt;
2596 
2597 	if (promisc != 0 && allmulti != 0)
2598 		goto out;
2599 
2600 	hdr.class = VIRTIO_NET_CTRL_MAC;
2601 	hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET;
2602 	ack = VIRTIO_NET_ERR;
2603 
2604 	sglist_init(&sg, 4, segs);
2605 	error = 0;
2606 	error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
2607 	error |= sglist_append(&sg, &filter->vmf_unicast,
2608 	    sizeof(uint32_t) + filter->vmf_unicast.nentries * ETHER_ADDR_LEN);
2609 	error |= sglist_append(&sg, &filter->vmf_multicast,
2610 	    sizeof(uint32_t) + filter->vmf_multicast.nentries * ETHER_ADDR_LEN);
2611 	error |= sglist_append(&sg, &ack, sizeof(uint8_t));
2612 	KASSERT(error == 0 && sg.sg_nseg == 4,
2613 	    ("%s: error %d adding MAC filter msg to sglist", __func__, error));
2614 
2615 	vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
2616 
2617 	if (ack != VIRTIO_NET_OK)
2618 		if_printf(ifp, "error setting host MAC filter table\n");
2619 
2620 out:
2621 	if (promisc != 0 && vtnet_set_promisc(sc, 1) != 0)
2622 		if_printf(ifp, "cannot enable promiscuous mode\n");
2623 	if (allmulti != 0 && vtnet_set_allmulti(sc, 1) != 0)
2624 		if_printf(ifp, "cannot enable all-multicast mode\n");
2625 }
2626 
2627 static int
2628 vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
2629 {
2630 	struct sglist_seg segs[3];
2631 	struct sglist sg;
2632 	struct {
2633 		struct virtio_net_ctrl_hdr hdr __aligned(2);
2634 		uint8_t pad1;
2635 		uint16_t tag;
2636 		uint8_t pad2;
2637 		uint8_t ack;
2638 	} s;
2639 	int error;
2640 
2641 	s.hdr.class = VIRTIO_NET_CTRL_VLAN;
2642 	s.hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL;
2643 	s.tag = tag;
2644 	s.ack = VIRTIO_NET_ERR;
2645 
2646 	sglist_init(&sg, 3, segs);
2647 	error = 0;
2648 	error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr));
2649 	error |= sglist_append(&sg, &s.tag, sizeof(uint16_t));
2650 	error |= sglist_append(&sg, &s.ack, sizeof(uint8_t));
2651 	KASSERT(error == 0 && sg.sg_nseg == 3,
2652 	    ("%s: error %d adding VLAN message to sglist", __func__, error));
2653 
2654 	vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1);
2655 
2656 	return (s.ack == VIRTIO_NET_OK ? 0 : EIO);
2657 }
2658 
2659 static void
2660 vtnet_rx_filter_vlan(struct vtnet_softc *sc)
2661 {
2662 	uint32_t w;
2663 	uint16_t tag;
2664 	int i, bit, nvlans;
2665 
2666 	ASSERT_IFNET_SERIALIZED_ALL(sc->vtnet_ifp);
2667 	KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER,
2668 	    ("%s: VLAN_FILTER feature not negotiated", __func__));
2669 
2670 	nvlans = sc->vtnet_nvlans;
2671 
2672 	/* Enable the filter for each configured VLAN. */
2673 	for (i = 0; i < VTNET_VLAN_SHADOW_SIZE && nvlans > 0; i++) {
2674 		w = sc->vtnet_vlan_shadow[i];
2675 		while ((bit = ffs(w) - 1) != -1) {
2676 			w &= ~(1 << bit);
2677 			tag = sizeof(w) * CHAR_BIT * i + bit;
2678 			nvlans--;
2679 
2680 			if (vtnet_exec_vlan_filter(sc, 1, tag) != 0) {
2681 				device_printf(sc->vtnet_dev,
2682 				    "cannot enable VLAN %d filter\n", tag);
2683 			}
2684 		}
2685 	}
2686 
2687 	KASSERT(nvlans == 0, ("VLAN count incorrect"));
2688 }
2689 
2690 static void
2691 vtnet_update_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
2692 {
2693 	struct ifnet *ifp;
2694 	int idx, bit;
2695 
2696 	ifp = sc->vtnet_ifp;
2697 	idx = (tag >> 5) & 0x7F;
2698 	bit = tag & 0x1F;
2699 
2700 	if (tag == 0 || tag > 4095)
2701 		return;
2702 
2703 	ifnet_serialize_all(ifp);
2704 
2705 	/* Update shadow VLAN table. */
2706 	if (add) {
2707 		sc->vtnet_nvlans++;
2708 		sc->vtnet_vlan_shadow[idx] |= (1 << bit);
2709 	} else {
2710 		sc->vtnet_nvlans--;
2711 		sc->vtnet_vlan_shadow[idx] &= ~(1 << bit);
2712 	}
2713 
2714 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER &&
2715 	    vtnet_exec_vlan_filter(sc, add, tag) != 0) {
2716 		device_printf(sc->vtnet_dev,
2717 		    "cannot %s VLAN %d %s the host filter table\n",
2718 		    add ? "add" : "remove", tag, add ? "to" : "from");
2719 	}
2720 
2721 	ifnet_deserialize_all(ifp);
2722 }
2723 
2724 static void
2725 vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
2726 {
2727 
2728 	if (ifp->if_softc != arg)
2729 		return;
2730 
2731 	vtnet_update_vlan_filter(arg, 1, tag);
2732 }
2733 
2734 static void
2735 vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
2736 {
2737 
2738 	if (ifp->if_softc != arg)
2739 		return;
2740 
2741 	vtnet_update_vlan_filter(arg, 0, tag);
2742 }
2743 
2744 static int
2745 vtnet_ifmedia_upd(struct ifnet *ifp)
2746 {
2747 	struct vtnet_softc *sc;
2748 	struct ifmedia *ifm;
2749 
2750 	sc = ifp->if_softc;
2751 	ifm = &sc->vtnet_media;
2752 
2753 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2754 		return (EINVAL);
2755 
2756 	return (0);
2757 }
2758 
2759 static void
2760 vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2761 {
2762 	struct vtnet_softc *sc;
2763 
2764 	sc = ifp->if_softc;
2765 
2766 	ifmr->ifm_status = IFM_AVALID;
2767 	ifmr->ifm_active = IFM_ETHER;
2768 
2769 	if (vtnet_is_link_up(sc) != 0) {
2770 		ifmr->ifm_status |= IFM_ACTIVE;
2771 		ifmr->ifm_active |= VTNET_MEDIATYPE;
2772 	} else
2773 		ifmr->ifm_active |= IFM_NONE;
2774 }
2775 
2776 static void
2777 vtnet_add_statistics(struct vtnet_softc *sc)
2778 {
2779 	device_t dev;
2780 	struct vtnet_statistics *stats;
2781 	struct sysctl_ctx_list *ctx;
2782 	struct sysctl_oid *tree;
2783 	struct sysctl_oid_list *child;
2784 
2785 	dev = sc->vtnet_dev;
2786 	stats = &sc->vtnet_stats;
2787 	ctx = device_get_sysctl_ctx(dev);
2788 	tree = device_get_sysctl_tree(dev);
2789 	child = SYSCTL_CHILDREN(tree);
2790 
2791 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "mbuf_alloc_failed",
2792 	    CTLFLAG_RD, &stats->mbuf_alloc_failed, 0,
2793 	    "Mbuf cluster allocation failures");
2794 
2795 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_frame_too_large",
2796 	    CTLFLAG_RD, &stats->rx_frame_too_large, 0,
2797 	    "Received frame larger than the mbuf chain");
2798 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_enq_replacement_failed",
2799 	    CTLFLAG_RD, &stats->rx_enq_replacement_failed, 0,
2800 	    "Enqueuing the replacement receive mbuf failed");
2801 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_mergeable_failed",
2802 	    CTLFLAG_RD, &stats->rx_mergeable_failed, 0,
2803 	    "Mergeable buffers receive failures");
2804 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ethtype",
2805 	    CTLFLAG_RD, &stats->rx_csum_bad_ethtype, 0,
2806 	    "Received checksum offloaded buffer with unsupported "
2807 	    "Ethernet type");
2808 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ipproto",
2809 	    CTLFLAG_RD, &stats->rx_csum_bad_ipproto, 0,
2810 	    "Received checksum offloaded buffer with incorrect IP protocol");
2811 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_offset",
2812 	    CTLFLAG_RD, &stats->rx_csum_bad_offset, 0,
2813 	    "Received checksum offloaded buffer with incorrect offset");
2814 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_failed",
2815 	    CTLFLAG_RD, &stats->rx_csum_failed, 0,
2816 	    "Received buffer checksum offload failed");
2817 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_offloaded",
2818 	    CTLFLAG_RD, &stats->rx_csum_offloaded, 0,
2819 	    "Received buffer checksum offload succeeded");
2820 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_task_rescheduled",
2821 	    CTLFLAG_RD, &stats->rx_task_rescheduled, 0,
2822 	    "Times the receive interrupt task rescheduled itself");
2823 
2824 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_bad_ethtype",
2825 	    CTLFLAG_RD, &stats->tx_csum_bad_ethtype, 0,
2826 	    "Aborted transmit of checksum offloaded buffer with unknown "
2827 	    "Ethernet type");
2828 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_bad_ethtype",
2829 	    CTLFLAG_RD, &stats->tx_tso_bad_ethtype, 0,
2830 	    "Aborted transmit of TSO buffer with unknown Ethernet type");
2831 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defragged",
2832 	    CTLFLAG_RD, &stats->tx_defragged, 0,
2833 	    "Transmit mbufs defragged");
2834 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_defrag_failed",
2835 	    CTLFLAG_RD, &stats->tx_defrag_failed, 0,
2836 	    "Aborted transmit of buffer because defrag failed");
2837 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_offloaded",
2838 	    CTLFLAG_RD, &stats->tx_csum_offloaded, 0,
2839 	    "Offloaded checksum of transmitted buffer");
2840 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_offloaded",
2841 	    CTLFLAG_RD, &stats->tx_tso_offloaded, 0,
2842 	    "Segmentation offload of transmitted buffer");
2843 	SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_task_rescheduled",
2844 	    CTLFLAG_RD, &stats->tx_task_rescheduled, 0,
2845 	    "Times the transmit interrupt task rescheduled itself");
2846 }
2847 
2848 static int
2849 vtnet_enable_rx_intr(struct vtnet_softc *sc)
2850 {
2851 
2852 	return (virtqueue_enable_intr(sc->vtnet_rx_vq));
2853 }
2854 
2855 static void
2856 vtnet_disable_rx_intr(struct vtnet_softc *sc)
2857 {
2858 
2859 	virtqueue_disable_intr(sc->vtnet_rx_vq);
2860 }
2861 
2862 static int
2863 vtnet_enable_tx_intr(struct vtnet_softc *sc)
2864 {
2865 
2866 #ifdef VTNET_TX_INTR_MODERATION
2867 	return (0);
2868 #else
2869 	return (virtqueue_enable_intr(sc->vtnet_tx_vq));
2870 #endif
2871 }
2872 
2873 static void
2874 vtnet_disable_tx_intr(struct vtnet_softc *sc)
2875 {
2876 
2877 	virtqueue_disable_intr(sc->vtnet_tx_vq);
2878 }
2879