xref: /dragonfly/sys/dev/virtual/virtio/net/if_vtnet.c (revision b29f78b5)
1 /*-
2  * Copyright (c) 2011, Bryan Venteicher <bryanv@daemoninthecloset.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /* Driver for VirtIO network devices. */
28 
29 #include <sys/cdefs.h>
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/socket.h>
39 #include <sys/sysctl.h>
40 #include <sys/taskqueue.h>
41 #include <sys/random.h>
42 #include <sys/sglist.h>
43 #include <sys/serialize.h>
44 #include <sys/bus.h>
45 #include <sys/rman.h>
46 
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_types.h>
52 #include <net/if_media.h>
53 #include <net/vlan/if_vlan_var.h>
54 #include <net/vlan/if_vlan_ether.h>
55 #include <net/ifq_var.h>
56 
57 #include <net/bpf.h>
58 
59 #include <netinet/in_systm.h>
60 #include <netinet/in.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet/udp.h>
64 #include <netinet/tcp.h>
65 
66 #include <dev/virtual/virtio/virtio/virtio.h>
67 #include <dev/virtual/virtio/virtio/virtqueue.h>
68 
69 #include "virtio_net.h"
70 #include "virtio_if.h"
71 
72 struct vtnet_statistics {
73 	unsigned long		mbuf_alloc_failed;
74 
75 	unsigned long		rx_frame_too_large;
76 	unsigned long		rx_enq_replacement_failed;
77 	unsigned long		rx_mergeable_failed;
78 	unsigned long		rx_csum_bad_ethtype;
79 	unsigned long		rx_csum_bad_start;
80 	unsigned long		rx_csum_bad_ipproto;
81 	unsigned long		rx_csum_bad_offset;
82 	unsigned long		rx_csum_failed;
83 	unsigned long		rx_csum_offloaded;
84 	unsigned long		rx_task_rescheduled;
85 
86 	unsigned long		tx_csum_offloaded;
87 	unsigned long		tx_tso_offloaded;
88 	unsigned long		tx_csum_bad_ethtype;
89 	unsigned long		tx_tso_bad_ethtype;
90 	unsigned long		tx_task_rescheduled;
91 };
92 
93 struct vtnet_softc {
94 	device_t		vtnet_dev;
95 	struct ifnet		*vtnet_ifp;
96 	struct lwkt_serialize	vtnet_slz;
97 
98 	uint32_t		vtnet_flags;
99 #define VTNET_FLAG_LINK		0x0001
100 #define VTNET_FLAG_SUSPENDED	0x0002
101 #define VTNET_FLAG_CTRL_VQ	0x0004
102 #define VTNET_FLAG_CTRL_RX	0x0008
103 #define VTNET_FLAG_VLAN_FILTER	0x0010
104 #define VTNET_FLAG_TSO_ECN	0x0020
105 #define VTNET_FLAG_MRG_RXBUFS	0x0040
106 #define VTNET_FLAG_LRO_NOMRG	0x0080
107 
108 	struct virtqueue	*vtnet_rx_vq;
109 	struct virtqueue	*vtnet_tx_vq;
110 	struct virtqueue	*vtnet_ctrl_vq;
111 
112 	struct vtnet_tx_header	*vtnet_txhdrarea;
113 	uint32_t		vtnet_txhdridx;
114 	struct vtnet_mac_filter *vtnet_macfilter;
115 
116 	int			vtnet_hdr_size;
117 	int			vtnet_tx_size;
118 	int			vtnet_rx_size;
119 	int			vtnet_rx_process_limit;
120 	int			vtnet_rx_mbuf_size;
121 	int			vtnet_rx_mbuf_count;
122 	int			vtnet_if_flags;
123 	int			vtnet_watchdog_timer;
124 	uint64_t		vtnet_features;
125 
126 	struct task		vtnet_cfgchg_task;
127 
128 	struct vtnet_statistics	vtnet_stats;
129 
130 	struct callout		vtnet_tick_ch;
131 
132 	eventhandler_tag	vtnet_vlan_attach;
133 	eventhandler_tag	vtnet_vlan_detach;
134 
135 	struct ifmedia		vtnet_media;
136 	/*
137 	 * Fake media type; the host does not provide us with
138 	 * any real media information.
139 	 */
140 #define VTNET_MEDIATYPE		(IFM_ETHER | IFM_1000_T | IFM_FDX)
141 	char			vtnet_hwaddr[ETHER_ADDR_LEN];
142 
143 	/*
144 	 * During reset, the host's VLAN filtering table is lost. The
145 	 * array below is used to restore all the VLANs configured on
146 	 * this interface after a reset.
147 	 */
148 #define VTNET_VLAN_SHADOW_SIZE	(4096 / 32)
149 	int			vtnet_nvlans;
150 	uint32_t		vtnet_vlan_shadow[VTNET_VLAN_SHADOW_SIZE];
151 
152 	char			vtnet_mtx_name[16];
153 };
154 
155 /*
156  * When mergeable buffers are not negotiated, the vtnet_rx_header structure
157  * below is placed at the beginning of the mbuf data. Use 4 bytes of pad to
158  * both keep the VirtIO header and the data non-contiguous and to keep the
159  * frame's payload 4 byte aligned.
160  *
161  * When mergeable buffers are negotiated, the host puts the VirtIO header in
162  * the beginning of the first mbuf's data.
163  */
164 #define VTNET_RX_HEADER_PAD	4
165 struct vtnet_rx_header {
166 	struct virtio_net_hdr	vrh_hdr;
167 	char			vrh_pad[VTNET_RX_HEADER_PAD];
168 } __packed;
169 
170 /*
171  * For each outgoing frame, the vtnet_tx_header below is allocated from
172  * the vtnet_tx_header_zone.
173  */
174 struct vtnet_tx_header {
175 	union {
176 		struct virtio_net_hdr		hdr;
177 		struct virtio_net_hdr_mrg_rxbuf	mhdr;
178 	} vth_uhdr;
179 
180 	struct mbuf		*vth_mbuf;
181 };
182 
183 MALLOC_DEFINE(M_VTNET, "VTNET_TX", "Outgoing VTNET TX frame header");
184 
185 /*
186  * The VirtIO specification does not place a limit on the number of MAC
187  * addresses the guest driver may request to be filtered. In practice,
188  * the host is constrained by available resources. To simplify this driver,
189  * impose a reasonably high limit of MAC addresses we will filter before
190  * falling back to promiscuous or all-multicast modes.
191  */
192 #define VTNET_MAX_MAC_ENTRIES	128
193 
194 struct vtnet_mac_table {
195 	uint32_t		nentries;
196 	uint8_t			macs[VTNET_MAX_MAC_ENTRIES][ETHER_ADDR_LEN];
197 } __packed;
198 
199 struct vtnet_mac_filter {
200 	struct vtnet_mac_table	vmf_unicast;
201 	uint32_t		vmf_pad; /* Make tables non-contiguous. */
202 	struct vtnet_mac_table	vmf_multicast;
203 };
204 
205 #define VTNET_WATCHDOG_TIMEOUT	5
206 #define VTNET_CSUM_OFFLOAD	(CSUM_TCP | CSUM_UDP)
207 
208 /* Features desired/implemented by this driver. */
209 #define VTNET_FEATURES 		\
210     (VIRTIO_NET_F_MAC		| \
211      VIRTIO_NET_F_STATUS	| \
212      VIRTIO_NET_F_CTRL_VQ	| \
213      VIRTIO_NET_F_CTRL_RX	| \
214      VIRTIO_NET_F_CTRL_VLAN	| \
215      VIRTIO_NET_F_CSUM		| \
216      VIRTIO_NET_F_HOST_TSO4	| \
217      VIRTIO_NET_F_HOST_TSO6	| \
218      VIRTIO_NET_F_HOST_ECN	| \
219      VIRTIO_NET_F_GUEST_CSUM	| \
220      VIRTIO_NET_F_GUEST_TSO4	| \
221      VIRTIO_NET_F_GUEST_TSO6	| \
222      VIRTIO_NET_F_GUEST_ECN	| \
223      VIRTIO_NET_F_MRG_RXBUF)
224 
225 /*
226  * The VIRTIO_NET_F_GUEST_TSO[46] features permit the host to send us
227  * frames larger than 1514 bytes. We do not yet support software LRO
228  * via tcp_lro_rx().
229  */
230 #define VTNET_LRO_FEATURES (VIRTIO_NET_F_GUEST_TSO4 | \
231 			    VIRTIO_NET_F_GUEST_TSO6 | VIRTIO_NET_F_GUEST_ECN)
232 
233 #define VTNET_MAX_MTU		65536
234 #define VTNET_MAX_RX_SIZE	65550
235 
236 /*
237  * Used to preallocate the Vq indirect descriptors. The first segment
238  * is reserved for the header.
239  */
240 #define VTNET_MIN_RX_SEGS	2
241 #define VTNET_MAX_RX_SEGS	34
242 #define VTNET_MAX_TX_SEGS	34
243 
244 #define IFCAP_TSO4              0x00100 /* can do TCP Segmentation Offload */
245 #define IFCAP_TSO6              0x00200 /* can do TCP6 Segmentation Offload */
246 #define IFCAP_LRO               0x00400 /* can do Large Receive Offload */
247 #define IFCAP_VLAN_HWFILTER     0x10000 /* interface hw can filter vlan tag */
248 #define IFCAP_VLAN_HWTSO        0x40000 /* can do IFCAP_TSO on VLANs */
249 
250 
251 /*
252  * Assert we can receive and transmit the maximum with regular
253  * size clusters.
254  */
255 CTASSERT(((VTNET_MAX_RX_SEGS - 1) * MCLBYTES) >= VTNET_MAX_RX_SIZE);
256 CTASSERT(((VTNET_MAX_TX_SEGS - 1) * MCLBYTES) >= VTNET_MAX_MTU);
257 
258 /*
259  * Determine how many mbufs are in each receive buffer. For LRO without
260  * mergeable descriptors, we must allocate an mbuf chain large enough to
261  * hold both the vtnet_rx_header and the maximum receivable data.
262  */
263 #define VTNET_NEEDED_RX_MBUFS(_sc)					\
264 	((_sc)->vtnet_flags & VTNET_FLAG_LRO_NOMRG) == 0 ? 1 :		\
265 	howmany(sizeof(struct vtnet_rx_header) + VTNET_MAX_RX_SIZE,	\
266 	(_sc)->vtnet_rx_mbuf_size)
267 
268 static int	vtnet_modevent(module_t, int, void *);
269 
270 static int	vtnet_probe(device_t);
271 static int	vtnet_attach(device_t);
272 static int	vtnet_detach(device_t);
273 static int	vtnet_suspend(device_t);
274 static int	vtnet_resume(device_t);
275 static int	vtnet_shutdown(device_t);
276 static int	vtnet_config_change(device_t);
277 
278 static void	vtnet_negotiate_features(struct vtnet_softc *);
279 static int	vtnet_alloc_virtqueues(struct vtnet_softc *);
280 static void	vtnet_get_hwaddr(struct vtnet_softc *);
281 static void	vtnet_set_hwaddr(struct vtnet_softc *);
282 static int	vtnet_is_link_up(struct vtnet_softc *);
283 static void	vtnet_update_link_status(struct vtnet_softc *);
284 #if 0
285 static void	vtnet_watchdog(struct vtnet_softc *);
286 #endif
287 static void	vtnet_config_change_task(void *, int);
288 static int	vtnet_change_mtu(struct vtnet_softc *, int);
289 static int	vtnet_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
290 
291 static int	vtnet_init_rx_vq(struct vtnet_softc *);
292 static void	vtnet_free_rx_mbufs(struct vtnet_softc *);
293 static void	vtnet_free_tx_mbufs(struct vtnet_softc *);
294 static void	vtnet_free_ctrl_vq(struct vtnet_softc *);
295 
296 static struct mbuf * vtnet_alloc_rxbuf(struct vtnet_softc *, int,
297 		    struct mbuf **);
298 static int	vtnet_replace_rxbuf(struct vtnet_softc *,
299 		    struct mbuf *, int);
300 static int	vtnet_newbuf(struct vtnet_softc *);
301 static void	vtnet_discard_merged_rxbuf(struct vtnet_softc *, int);
302 static void	vtnet_discard_rxbuf(struct vtnet_softc *, struct mbuf *);
303 static int	vtnet_enqueue_rxbuf(struct vtnet_softc *, struct mbuf *);
304 static void	vtnet_vlan_tag_remove(struct mbuf *);
305 static int	vtnet_rx_csum(struct vtnet_softc *, struct mbuf *,
306 		    struct virtio_net_hdr *);
307 static int	vtnet_rxeof_merged(struct vtnet_softc *, struct mbuf *, int);
308 static int	vtnet_rxeof(struct vtnet_softc *, int, int *);
309 static void	vtnet_rx_intr_task(void *);
310 static int	vtnet_rx_vq_intr(void *);
311 
312 static void	vtnet_txeof(struct vtnet_softc *);
313 static struct mbuf * vtnet_tx_offload(struct vtnet_softc *, struct mbuf *,
314 		    struct virtio_net_hdr *);
315 static int	vtnet_enqueue_txbuf(struct vtnet_softc *, struct mbuf **,
316 		    struct vtnet_tx_header *);
317 static int	vtnet_encap(struct vtnet_softc *, struct mbuf **);
318 static void	vtnet_start_locked(struct ifnet *, struct ifaltq_subque *);
319 static void	vtnet_start(struct ifnet *, struct ifaltq_subque *);
320 static void	vtnet_tick(void *);
321 static void	vtnet_tx_intr_task(void *);
322 static int	vtnet_tx_vq_intr(void *);
323 
324 static void	vtnet_stop(struct vtnet_softc *);
325 static int	vtnet_reinit(struct vtnet_softc *);
326 static void	vtnet_init_locked(struct vtnet_softc *);
327 static void	vtnet_init(void *);
328 
329 static void	vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *,
330 		    struct sglist *, int, int);
331 
332 static void	vtnet_rx_filter(struct vtnet_softc *sc);
333 static int	vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int);
334 static int	vtnet_set_promisc(struct vtnet_softc *, int);
335 static int	vtnet_set_allmulti(struct vtnet_softc *, int);
336 static void	vtnet_rx_filter_mac(struct vtnet_softc *);
337 
338 static int	vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t);
339 static void	vtnet_rx_filter_vlan(struct vtnet_softc *);
340 static void	vtnet_set_vlan_filter(struct vtnet_softc *, int, uint16_t);
341 static void	vtnet_register_vlan(void *, struct ifnet *, uint16_t);
342 static void	vtnet_unregister_vlan(void *, struct ifnet *, uint16_t);
343 
344 static int	vtnet_ifmedia_upd(struct ifnet *);
345 static void	vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *);
346 
347 static void	vtnet_add_statistics(struct vtnet_softc *);
348 
349 static int	vtnet_enable_rx_intr(struct vtnet_softc *);
350 static int	vtnet_enable_tx_intr(struct vtnet_softc *);
351 static void	vtnet_disable_rx_intr(struct vtnet_softc *);
352 static void	vtnet_disable_tx_intr(struct vtnet_softc *);
353 
354 /* Tunables. */
355 static int vtnet_csum_disable = 0;
356 TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable);
357 static int vtnet_tso_disable = 1;
358 TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable);
359 static int vtnet_lro_disable = 1;
360 TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable);
361 
362 /*
363  * Reducing the number of transmit completed interrupts can
364  * improve performance. To do so, the define below keeps the
365  * Tx vq interrupt disabled and adds calls to vtnet_txeof()
366  * in the start and watchdog paths. The price to pay for this
367  * is the m_free'ing of transmitted mbufs may be delayed until
368  * the watchdog fires.
369  */
370 #define VTNET_TX_INTR_MODERATION
371 
372 static struct virtio_feature_desc vtnet_feature_desc[] = {
373 	{ VIRTIO_NET_F_CSUM,		"TxChecksum"	},
374 	{ VIRTIO_NET_F_GUEST_CSUM,	"RxChecksum"	},
375 	{ VIRTIO_NET_F_MAC,		"MacAddress"	},
376 	{ VIRTIO_NET_F_GSO,		"TxAllGSO"	},
377 	{ VIRTIO_NET_F_GUEST_TSO4,	"RxTSOv4"	},
378 	{ VIRTIO_NET_F_GUEST_TSO6,	"RxTSOv6"	},
379 	{ VIRTIO_NET_F_GUEST_ECN,	"RxECN"		},
380 	{ VIRTIO_NET_F_GUEST_UFO,	"RxUFO"		},
381 	{ VIRTIO_NET_F_HOST_TSO4,	"TxTSOv4"	},
382 	{ VIRTIO_NET_F_HOST_TSO6,	"TxTSOv6"	},
383 	{ VIRTIO_NET_F_HOST_ECN,	"TxTSOECN"	},
384 	{ VIRTIO_NET_F_HOST_UFO,	"TxUFO"		},
385 	{ VIRTIO_NET_F_MRG_RXBUF,	"MrgRxBuf"	},
386 	{ VIRTIO_NET_F_STATUS,		"Status"	},
387 	{ VIRTIO_NET_F_CTRL_VQ,		"ControlVq"	},
388 	{ VIRTIO_NET_F_CTRL_RX,		"RxMode"	},
389 	{ VIRTIO_NET_F_CTRL_VLAN,	"VLanFilter"	},
390 	{ VIRTIO_NET_F_CTRL_RX_EXTRA,	"RxModeExtra"	},
391 	{ VIRTIO_NET_F_MQ,		"RFS"		},
392 	{ 0, NULL }
393 };
394 
395 static device_method_t vtnet_methods[] = {
396 	/* Device methods. */
397 	DEVMETHOD(device_probe,		vtnet_probe),
398 	DEVMETHOD(device_attach,	vtnet_attach),
399 	DEVMETHOD(device_detach,	vtnet_detach),
400 	DEVMETHOD(device_suspend,	vtnet_suspend),
401 	DEVMETHOD(device_resume,	vtnet_resume),
402 	DEVMETHOD(device_shutdown,	vtnet_shutdown),
403 
404 	/* VirtIO methods. */
405 	DEVMETHOD(virtio_config_change, vtnet_config_change),
406 
407 	{ 0, 0 }
408 };
409 
410 static driver_t vtnet_driver = {
411 	"vtnet",
412 	vtnet_methods,
413 	sizeof(struct vtnet_softc)
414 };
415 
416 static devclass_t vtnet_devclass;
417 
418 DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass,
419 	      vtnet_modevent, 0);
420 MODULE_VERSION(vtnet, 1);
421 MODULE_DEPEND(vtnet, virtio, 1, 1, 1);
422 
423 static int
424 vtnet_modevent(module_t mod, int type, void *unused)
425 {
426 	int error;
427 
428 	error = 0;
429 
430 	switch (type) {
431 	case MOD_LOAD:
432 		break;
433 	case MOD_UNLOAD:
434 		break;
435 	case MOD_SHUTDOWN:
436 		break;
437 	default:
438 		error = EOPNOTSUPP;
439 		break;
440 	}
441 
442 	return (error);
443 }
444 
445 static int
446 vtnet_probe(device_t dev)
447 {
448 	if (virtio_get_device_type(dev) != VIRTIO_ID_NETWORK)
449 		return (ENXIO);
450 
451 	device_set_desc(dev, "VirtIO Networking Adapter");
452 
453 	return (BUS_PROBE_DEFAULT);
454 }
455 
456 static int
457 vtnet_attach(device_t dev)
458 {
459 	struct vtnet_softc *sc;
460 	struct ifnet *ifp;
461 	int tx_size, error;
462 
463 	sc = device_get_softc(dev);
464 	sc->vtnet_dev = dev;
465 
466 	lwkt_serialize_init(&sc->vtnet_slz);
467 	callout_init(&sc->vtnet_tick_ch);
468 
469 	ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd,
470 		     vtnet_ifmedia_sts);
471 	ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL);
472 	ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE);
473 
474 	vtnet_add_statistics(sc);
475 
476 	virtio_set_feature_desc(dev, vtnet_feature_desc);
477 	vtnet_negotiate_features(sc);
478 
479 	if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) {
480 		sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS;
481 		sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf);
482 	} else {
483 		sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr);
484 	}
485 
486 	sc->vtnet_rx_mbuf_size = MCLBYTES;
487 	sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc);
488 
489 	if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) {
490 		sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ;
491 
492 		if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX))
493 			sc->vtnet_flags |= VTNET_FLAG_CTRL_RX;
494 		if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN))
495 			sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER;
496 	}
497 
498 	vtnet_get_hwaddr(sc);
499 
500 	error = vtnet_alloc_virtqueues(sc);
501 	if (error) {
502 		device_printf(dev, "cannot allocate virtqueues\n");
503 		goto fail;
504 	}
505 
506 	ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER);
507 	if (ifp == NULL) {
508 		device_printf(dev, "cannot allocate ifnet structure\n");
509 		error = ENOSPC;
510 		goto fail;
511 	}
512 
513 	ifp->if_softc = sc;
514 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
515 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
516 	ifp->if_init = vtnet_init;
517 	ifp->if_start = vtnet_start;
518 	ifp->if_ioctl = vtnet_ioctl;
519 
520 	sc->vtnet_rx_size = virtqueue_size(sc->vtnet_rx_vq);
521 	sc->vtnet_rx_process_limit = sc->vtnet_rx_size;
522 
523 	tx_size = virtqueue_size(sc->vtnet_tx_vq);
524 	sc->vtnet_tx_size = tx_size;
525 	sc->vtnet_txhdridx = 0;
526 	sc->vtnet_txhdrarea = contigmalloc(
527 	    ((sc->vtnet_tx_size / 2) + 1) * sizeof(struct vtnet_tx_header),
528 	    M_VTNET, M_WAITOK, 0, BUS_SPACE_MAXADDR, 4, 0);
529 	if (sc->vtnet_txhdrarea == NULL) {
530 		device_printf(dev, "cannot contigmalloc the tx headers\n");
531 		goto fail;
532 	}
533 	sc->vtnet_macfilter = contigmalloc(
534 	    sizeof(struct vtnet_mac_filter),
535 	    M_DEVBUF, M_WAITOK, 0, BUS_SPACE_MAXADDR, 4, 0);
536 	if (sc->vtnet_macfilter == NULL) {
537 		device_printf(dev,
538 		    "cannot contigmalloc the mac filter table\n");
539 		goto fail;
540 	}
541 	ifq_set_maxlen(&ifp->if_snd, tx_size - 1);
542 	ifq_set_ready(&ifp->if_snd);
543 
544 	ether_ifattach(ifp, sc->vtnet_hwaddr, NULL);
545 
546 	if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS)){
547 		//ifp->if_capabilities |= IFCAP_LINKSTATE;
548 		 kprintf("add dynamic link state\n");
549 	}
550 
551 	/* Tell the upper layer(s) we support long frames. */
552 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
553 	ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU;
554 
555 	if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) {
556 		ifp->if_capabilities |= IFCAP_TXCSUM;
557 
558 		if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4))
559 			ifp->if_capabilities |= IFCAP_TSO4;
560 		if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6))
561 			ifp->if_capabilities |= IFCAP_TSO6;
562 		if (ifp->if_capabilities & IFCAP_TSO)
563 			ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
564 
565 		if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN))
566 			sc->vtnet_flags |= VTNET_FLAG_TSO_ECN;
567 	}
568 
569 	if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM)) {
570 		ifp->if_capabilities |= IFCAP_RXCSUM;
571 
572 		if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) ||
573 		    virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6))
574 			ifp->if_capabilities |= IFCAP_LRO;
575 	}
576 
577 	if (ifp->if_capabilities & IFCAP_HWCSUM) {
578 		/*
579 		 * VirtIO does not support VLAN tagging, but we can fake
580 		 * it by inserting and removing the 802.1Q header during
581 		 * transmit and receive. We are then able to do checksum
582 		 * offloading of VLAN frames.
583 		 */
584 		ifp->if_capabilities |=
585 			IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
586 	}
587 
588 	ifp->if_capenable = ifp->if_capabilities;
589 
590 	/*
591 	 * Capabilities after here are not enabled by default.
592 	 */
593 
594 	if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) {
595 		ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
596 
597 		sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
598 		    vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST);
599 		sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
600 		    vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST);
601 	}
602 
603 	TASK_INIT(&sc->vtnet_cfgchg_task, 0, vtnet_config_change_task, sc);
604 
605 	error = virtio_setup_intr(dev, &sc->vtnet_slz);
606 	if (error) {
607 		device_printf(dev, "cannot setup virtqueue interrupts\n");
608 		ether_ifdetach(ifp);
609 		goto fail;
610 	}
611 
612 	/*
613 	 * Device defaults to promiscuous mode for backwards
614 	 * compatibility. Turn it off if possible.
615 	 */
616 	if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
617 		lwkt_serialize_enter(&sc->vtnet_slz);
618 		if (vtnet_set_promisc(sc, 0) != 0) {
619 			ifp->if_flags |= IFF_PROMISC;
620 			device_printf(dev,
621 			    "cannot disable promiscuous mode\n");
622 		}
623 		lwkt_serialize_exit(&sc->vtnet_slz);
624 	} else
625 		ifp->if_flags |= IFF_PROMISC;
626 
627 fail:
628 	if (error)
629 		vtnet_detach(dev);
630 
631 	return (error);
632 }
633 
634 static int
635 vtnet_detach(device_t dev)
636 {
637 	struct vtnet_softc *sc;
638 	struct ifnet *ifp;
639 
640 	sc = device_get_softc(dev);
641 	ifp = sc->vtnet_ifp;
642 
643 	if (device_is_attached(dev)) {
644 		lwkt_serialize_enter(&sc->vtnet_slz);
645 		vtnet_stop(sc);
646 		lwkt_serialize_exit(&sc->vtnet_slz);
647 
648 		callout_stop(&sc->vtnet_tick_ch);
649 		taskqueue_drain(taskqueue_swi, &sc->vtnet_cfgchg_task);
650 
651 		ether_ifdetach(ifp);
652 	}
653 
654 	if (sc->vtnet_vlan_attach != NULL) {
655 		EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach);
656 		sc->vtnet_vlan_attach = NULL;
657 	}
658 	if (sc->vtnet_vlan_detach != NULL) {
659 		EVENTHANDLER_DEREGISTER(vlan_unconfg, sc->vtnet_vlan_detach);
660 		sc->vtnet_vlan_detach = NULL;
661 	}
662 
663 	if (ifp) {
664 		if_free(ifp);
665 		sc->vtnet_ifp = NULL;
666 	}
667 
668 	if (sc->vtnet_rx_vq != NULL)
669 		vtnet_free_rx_mbufs(sc);
670 	if (sc->vtnet_tx_vq != NULL)
671 		vtnet_free_tx_mbufs(sc);
672 	if (sc->vtnet_ctrl_vq != NULL)
673 		vtnet_free_ctrl_vq(sc);
674 
675 	if (sc->vtnet_txhdrarea != NULL) {
676 		contigfree(sc->vtnet_txhdrarea,
677 		    ((sc->vtnet_tx_size / 2) + 1) *
678 		    sizeof(struct vtnet_tx_header), M_VTNET);
679 		sc->vtnet_txhdrarea = NULL;
680 	}
681 	if (sc->vtnet_macfilter != NULL) {
682 		contigfree(sc->vtnet_macfilter,
683 		    sizeof(struct vtnet_mac_filter), M_DEVBUF);
684 		sc->vtnet_macfilter = NULL;
685 	}
686 
687 	ifmedia_removeall(&sc->vtnet_media);
688 
689 	return (0);
690 }
691 
692 static int
693 vtnet_suspend(device_t dev)
694 {
695 	struct vtnet_softc *sc;
696 
697 	sc = device_get_softc(dev);
698 
699 	lwkt_serialize_enter(&sc->vtnet_slz);
700 	vtnet_stop(sc);
701 	sc->vtnet_flags |= VTNET_FLAG_SUSPENDED;
702 	lwkt_serialize_exit(&sc->vtnet_slz);
703 
704 	return (0);
705 }
706 
707 static int
708 vtnet_resume(device_t dev)
709 {
710 	struct vtnet_softc *sc;
711 	struct ifnet *ifp;
712 
713 	sc = device_get_softc(dev);
714 	ifp = sc->vtnet_ifp;
715 
716 	lwkt_serialize_enter(&sc->vtnet_slz);
717 	if (ifp->if_flags & IFF_UP)
718 		vtnet_init_locked(sc);
719 	sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED;
720 	lwkt_serialize_exit(&sc->vtnet_slz);
721 
722 	return (0);
723 }
724 
725 static int
726 vtnet_shutdown(device_t dev)
727 {
728 
729 	/*
730 	 * Suspend already does all of what we need to
731 	 * do here; we just never expect to be resumed.
732 	 */
733 	return (vtnet_suspend(dev));
734 }
735 
736 static int
737 vtnet_config_change(device_t dev)
738 {
739 	struct vtnet_softc *sc;
740 
741 	sc = device_get_softc(dev);
742 
743 	taskqueue_enqueue(taskqueue_thread[mycpuid], &sc->vtnet_cfgchg_task);
744 
745 	return (1);
746 }
747 
748 static void
749 vtnet_negotiate_features(struct vtnet_softc *sc)
750 {
751 	device_t dev;
752 	uint64_t mask, features;
753 
754 	dev = sc->vtnet_dev;
755 	mask = 0;
756 
757 	if (vtnet_csum_disable)
758 		mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM;
759 
760 	/*
761 	 * TSO and LRO are only available when their corresponding
762 	 * checksum offload feature is also negotiated.
763 	 */
764 
765 	if (vtnet_csum_disable || vtnet_tso_disable)
766 		mask |= VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
767 		    VIRTIO_NET_F_HOST_ECN;
768 
769 	if (vtnet_csum_disable || vtnet_lro_disable)
770 		mask |= VTNET_LRO_FEATURES;
771 
772 	features = VTNET_FEATURES & ~mask;
773 	features |= VIRTIO_F_NOTIFY_ON_EMPTY;
774 	sc->vtnet_features = virtio_negotiate_features(dev, features);
775 }
776 
777 static int
778 vtnet_alloc_virtqueues(struct vtnet_softc *sc)
779 {
780 	device_t dev;
781 	struct vq_alloc_info vq_info[3];
782 	int nvqs, rxsegs;
783 
784 	dev = sc->vtnet_dev;
785 	nvqs = 2;
786 
787 	/*
788 	 * Indirect descriptors are not needed for the Rx
789 	 * virtqueue when mergeable buffers are negotiated.
790 	 * The header is placed inline with the data, not
791 	 * in a separate descriptor, and mbuf clusters are
792 	 * always physically contiguous.
793 	 */
794 	if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
795 		rxsegs = sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG ?
796 		    VTNET_MAX_RX_SEGS : VTNET_MIN_RX_SEGS;
797 	} else
798 		rxsegs = 0;
799 
800 	VQ_ALLOC_INFO_INIT(&vq_info[0], rxsegs,
801 	    vtnet_rx_vq_intr, sc, &sc->vtnet_rx_vq,
802 	    "%s receive", device_get_nameunit(dev));
803 
804 	VQ_ALLOC_INFO_INIT(&vq_info[1], VTNET_MAX_TX_SEGS,
805 	    vtnet_tx_vq_intr, sc, &sc->vtnet_tx_vq,
806 	    "%s transmit", device_get_nameunit(dev));
807 
808 	if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
809 		nvqs++;
810 
811 		VQ_ALLOC_INFO_INIT(&vq_info[2], 0, NULL, NULL,
812 		    &sc->vtnet_ctrl_vq, "%s control",
813 		    device_get_nameunit(dev));
814 	}
815 
816 	return (virtio_alloc_virtqueues(dev, 0, nvqs, vq_info));
817 }
818 
819 static void
820 vtnet_get_hwaddr(struct vtnet_softc *sc)
821 {
822 	device_t dev;
823 
824 	dev = sc->vtnet_dev;
825 
826 	if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) {
827 		virtio_read_device_config(dev,
828 		    offsetof(struct virtio_net_config, mac),
829 		    sc->vtnet_hwaddr, ETHER_ADDR_LEN);
830 	} else {
831 		/* Generate random locally administered unicast address. */
832 		sc->vtnet_hwaddr[0] = 0xB2;
833 		karc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1);
834 
835 		vtnet_set_hwaddr(sc);
836 	}
837 }
838 
839 static void
840 vtnet_set_hwaddr(struct vtnet_softc *sc)
841 {
842 	device_t dev;
843 
844 	dev = sc->vtnet_dev;
845 
846 	virtio_write_device_config(dev,
847 	    offsetof(struct virtio_net_config, mac),
848 	    sc->vtnet_hwaddr, ETHER_ADDR_LEN);
849 }
850 
851 static int
852 vtnet_is_link_up(struct vtnet_softc *sc)
853 {
854 	device_t dev;
855 	struct ifnet *ifp;
856 	uint16_t status;
857 
858 	dev = sc->vtnet_dev;
859 	ifp = sc->vtnet_ifp;
860 
861 	ASSERT_SERIALIZED(&sc->vtnet_slz);
862 
863 	status = virtio_read_dev_config_2(dev,
864 			offsetof(struct virtio_net_config, status));
865 
866 	return ((status & VIRTIO_NET_S_LINK_UP) != 0);
867 }
868 
869 static void
870 vtnet_update_link_status(struct vtnet_softc *sc)
871 {
872 	device_t dev;
873 	struct ifnet *ifp;
874 	struct ifaltq_subque *ifsq;
875 	int link;
876 
877 	dev = sc->vtnet_dev;
878 	ifp = sc->vtnet_ifp;
879 	ifsq = ifq_get_subq_default(&ifp->if_snd);
880 
881 	link = vtnet_is_link_up(sc);
882 
883 	if (link && ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0)) {
884 		sc->vtnet_flags |= VTNET_FLAG_LINK;
885 		if (bootverbose)
886 			device_printf(dev, "Link is up\n");
887 		ifp->if_link_state = LINK_STATE_UP;
888 		if_link_state_change(ifp);
889 		if (!ifsq_is_empty(ifsq))
890 			vtnet_start_locked(ifp, ifsq);
891 	} else if (!link && (sc->vtnet_flags & VTNET_FLAG_LINK)) {
892 		sc->vtnet_flags &= ~VTNET_FLAG_LINK;
893 		if (bootverbose)
894 			device_printf(dev, "Link is down\n");
895 
896 		ifp->if_link_state = LINK_STATE_DOWN;
897 		if_link_state_change(ifp);
898 	}
899 }
900 
901 #if 0
902 static void
903 vtnet_watchdog(struct vtnet_softc *sc)
904 {
905 	struct ifnet *ifp;
906 
907 	ifp = sc->vtnet_ifp;
908 
909 #ifdef VTNET_TX_INTR_MODERATION
910 	vtnet_txeof(sc);
911 #endif
912 
913 	if (sc->vtnet_watchdog_timer == 0 || --sc->vtnet_watchdog_timer)
914 		return;
915 
916 	if_printf(ifp, "watchdog timeout -- resetting\n");
917 #ifdef VTNET_DEBUG
918 	virtqueue_dump(sc->vtnet_tx_vq);
919 #endif
920 	ifp->if_oerrors++;
921 	ifp->if_flags &= ~IFF_RUNNING;
922 	vtnet_init_locked(sc);
923 }
924 #endif
925 
926 static void
927 vtnet_config_change_task(void *arg, int pending)
928 {
929 	struct vtnet_softc *sc;
930 
931 	sc = arg;
932 
933 	lwkt_serialize_enter(&sc->vtnet_slz);
934 	vtnet_update_link_status(sc);
935 	lwkt_serialize_exit(&sc->vtnet_slz);
936 }
937 
938 static int
939 vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,struct ucred *cr)
940 {
941 	struct vtnet_softc *sc;
942 	struct ifreq *ifr;
943 	int reinit, mask, error;
944 
945 	sc = ifp->if_softc;
946 	ifr = (struct ifreq *) data;
947 	reinit = 0;
948 	error = 0;
949 
950 	switch (cmd) {
951 	case SIOCSIFMTU:
952 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VTNET_MAX_MTU)
953 			error = EINVAL;
954 		else if (ifp->if_mtu != ifr->ifr_mtu) {
955 			lwkt_serialize_enter(&sc->vtnet_slz);
956 			error = vtnet_change_mtu(sc, ifr->ifr_mtu);
957 			lwkt_serialize_exit(&sc->vtnet_slz);
958 		}
959 		break;
960 
961 	case SIOCSIFFLAGS:
962 		lwkt_serialize_enter(&sc->vtnet_slz);
963 		if ((ifp->if_flags & IFF_UP) == 0) {
964 			if (ifp->if_flags & IFF_RUNNING)
965 				vtnet_stop(sc);
966 		} else if (ifp->if_flags & IFF_RUNNING) {
967 			if ((ifp->if_flags ^ sc->vtnet_if_flags) &
968 			    (IFF_PROMISC | IFF_ALLMULTI)) {
969 				if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX)
970 					vtnet_rx_filter(sc);
971 				else
972 					error = ENOTSUP;
973 			}
974 		} else
975 			vtnet_init_locked(sc);
976 
977 		if (error == 0)
978 			sc->vtnet_if_flags = ifp->if_flags;
979 		lwkt_serialize_exit(&sc->vtnet_slz);
980 		break;
981 
982 	case SIOCADDMULTI:
983 	case SIOCDELMULTI:
984 		lwkt_serialize_enter(&sc->vtnet_slz);
985 		if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) &&
986 		    (ifp->if_flags & IFF_RUNNING))
987 			vtnet_rx_filter_mac(sc);
988 		lwkt_serialize_exit(&sc->vtnet_slz);
989 		break;
990 
991 	case SIOCSIFMEDIA:
992 	case SIOCGIFMEDIA:
993 		error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd);
994 		break;
995 
996 	case SIOCSIFCAP:
997 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
998 
999 		lwkt_serialize_enter(&sc->vtnet_slz);
1000 
1001 		if (mask & IFCAP_TXCSUM) {
1002 			ifp->if_capenable ^= IFCAP_TXCSUM;
1003 			if (ifp->if_capenable & IFCAP_TXCSUM)
1004 				ifp->if_hwassist |= VTNET_CSUM_OFFLOAD;
1005 			else
1006 				ifp->if_hwassist &= ~VTNET_CSUM_OFFLOAD;
1007 		}
1008 
1009 		if (mask & IFCAP_TSO4) {
1010 			ifp->if_capenable ^= IFCAP_TSO4;
1011 			if (ifp->if_capenable & IFCAP_TSO4)
1012 				ifp->if_hwassist |= CSUM_TSO;
1013 			else
1014 				ifp->if_hwassist &= ~CSUM_TSO;
1015 		}
1016 
1017 		if (mask & IFCAP_RXCSUM) {
1018 			ifp->if_capenable ^= IFCAP_RXCSUM;
1019 			reinit = 1;
1020 		}
1021 
1022 		if (mask & IFCAP_LRO) {
1023 			ifp->if_capenable ^= IFCAP_LRO;
1024 			reinit = 1;
1025 		}
1026 
1027 		if (mask & IFCAP_VLAN_HWFILTER) {
1028 			ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
1029 			reinit = 1;
1030 		}
1031 
1032 		if (mask & IFCAP_VLAN_HWTSO)
1033 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1034 
1035 		if (mask & IFCAP_VLAN_HWTAGGING)
1036 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1037 
1038 		if (reinit && (ifp->if_flags & IFF_RUNNING)) {
1039 			ifp->if_flags &= ~IFF_RUNNING;
1040 			vtnet_init_locked(sc);
1041 		}
1042 		//VLAN_CAPABILITIES(ifp);
1043 
1044 		lwkt_serialize_exit(&sc->vtnet_slz);
1045 		break;
1046 
1047 	default:
1048 		error = ether_ioctl(ifp, cmd, data);
1049 		break;
1050 	}
1051 
1052 	return (error);
1053 }
1054 
1055 static int
1056 vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu)
1057 {
1058 	struct ifnet *ifp;
1059 	int new_frame_size, clsize;
1060 
1061 	ifp = sc->vtnet_ifp;
1062 
1063 	if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1064 		new_frame_size = sizeof(struct vtnet_rx_header) +
1065 		    sizeof(struct ether_vlan_header) + new_mtu;
1066 
1067 		if (new_frame_size > MJUM9BYTES)
1068 			return (EINVAL);
1069 
1070 		if (new_frame_size <= MCLBYTES)
1071 			clsize = MCLBYTES;
1072 		else
1073 			clsize = MJUM9BYTES;
1074 	} else {
1075 		new_frame_size = sizeof(struct virtio_net_hdr_mrg_rxbuf) +
1076 		    sizeof(struct ether_vlan_header) + new_mtu;
1077 
1078 		if (new_frame_size <= MCLBYTES)
1079 			clsize = MCLBYTES;
1080 		else
1081 			clsize = MJUMPAGESIZE;
1082 	}
1083 
1084 	sc->vtnet_rx_mbuf_size = clsize;
1085 	sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc);
1086 	KASSERT(sc->vtnet_rx_mbuf_count < VTNET_MAX_RX_SEGS,
1087 	    ("too many rx mbufs: %d", sc->vtnet_rx_mbuf_count));
1088 
1089 	ifp->if_mtu = new_mtu;
1090 
1091 	if (ifp->if_flags & IFF_RUNNING) {
1092 		ifp->if_flags &= ~IFF_RUNNING;
1093 		vtnet_init_locked(sc);
1094 	}
1095 
1096 	return (0);
1097 }
1098 
1099 static int
1100 vtnet_init_rx_vq(struct vtnet_softc *sc)
1101 {
1102 	struct virtqueue *vq;
1103 	int nbufs, error;
1104 
1105 	vq = sc->vtnet_rx_vq;
1106 	nbufs = 0;
1107 	error = ENOSPC;
1108 
1109 	while (!virtqueue_full(vq)) {
1110 		if ((error = vtnet_newbuf(sc)) != 0)
1111 			break;
1112 		nbufs++;
1113 	}
1114 
1115 	if (nbufs > 0) {
1116 		virtqueue_notify(vq, &sc->vtnet_slz);
1117 
1118 		/*
1119 		 * EMSGSIZE signifies the virtqueue did not have enough
1120 		 * entries available to hold the last mbuf. This is not
1121 		 * an error. We should not get ENOSPC since we check if
1122 		 * the virtqueue is full before attempting to add a
1123 		 * buffer.
1124 		 */
1125 		if (error == EMSGSIZE)
1126 			error = 0;
1127 	}
1128 
1129 	return (error);
1130 }
1131 
1132 static void
1133 vtnet_free_rx_mbufs(struct vtnet_softc *sc)
1134 {
1135 	struct virtqueue *vq;
1136 	struct mbuf *m;
1137 	int last;
1138 
1139 	vq = sc->vtnet_rx_vq;
1140 	last = 0;
1141 
1142 	while ((m = virtqueue_drain(vq, &last)) != NULL)
1143 		m_freem(m);
1144 
1145 	KASSERT(virtqueue_empty(vq), ("mbufs remaining in Rx Vq"));
1146 }
1147 
1148 static void
1149 vtnet_free_tx_mbufs(struct vtnet_softc *sc)
1150 {
1151 	struct virtqueue *vq;
1152 	struct vtnet_tx_header *txhdr;
1153 	int last;
1154 
1155 	vq = sc->vtnet_tx_vq;
1156 	last = 0;
1157 
1158 	while ((txhdr = virtqueue_drain(vq, &last)) != NULL) {
1159 		m_freem(txhdr->vth_mbuf);
1160 	}
1161 
1162 	KASSERT(virtqueue_empty(vq), ("mbufs remaining in Tx Vq"));
1163 }
1164 
1165 static void
1166 vtnet_free_ctrl_vq(struct vtnet_softc *sc)
1167 {
1168 	/*
1169 	 * The control virtqueue is only polled, therefore
1170 	 * it should already be empty.
1171 	 */
1172 	KASSERT(virtqueue_empty(sc->vtnet_ctrl_vq),
1173 		("Ctrl Vq not empty"));
1174 }
1175 
1176 static struct mbuf *
1177 vtnet_alloc_rxbuf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp)
1178 {
1179 	struct mbuf *m_head, *m_tail, *m;
1180 	int i, clsize;
1181 
1182 	clsize = sc->vtnet_rx_mbuf_size;
1183 
1184 	/*use getcl instead of getjcl. see  if_mxge.c comment line 2398*/
1185 	//m_head = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, clsize);
1186 	m_head = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR );
1187 	if (m_head == NULL)
1188 		goto fail;
1189 
1190 	m_head->m_len = clsize;
1191 	m_tail = m_head;
1192 
1193 	if (nbufs > 1) {
1194 		KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG,
1195 			("chained Rx mbuf requested without LRO_NOMRG"));
1196 
1197 		for (i = 0; i < nbufs - 1; i++) {
1198 			//m = m_getjcl(M_DONTWAIT, MT_DATA, 0, clsize);
1199 			m = m_getcl(M_NOWAIT, MT_DATA, 0);
1200 			if (m == NULL)
1201 				goto fail;
1202 
1203 			m->m_len = clsize;
1204 			m_tail->m_next = m;
1205 			m_tail = m;
1206 		}
1207 	}
1208 
1209 	if (m_tailp != NULL)
1210 		*m_tailp = m_tail;
1211 
1212 	return (m_head);
1213 
1214 fail:
1215 	sc->vtnet_stats.mbuf_alloc_failed++;
1216 	m_freem(m_head);
1217 
1218 	return (NULL);
1219 }
1220 
1221 static int
1222 vtnet_replace_rxbuf(struct vtnet_softc *sc, struct mbuf *m0, int len0)
1223 {
1224 	struct mbuf *m, *m_prev;
1225 	struct mbuf *m_new, *m_tail;
1226 	int len, clsize, nreplace, error;
1227 
1228 	m = m0;
1229 	m_prev = NULL;
1230 	len = len0;
1231 
1232 	m_tail = NULL;
1233 	clsize = sc->vtnet_rx_mbuf_size;
1234 	nreplace = 0;
1235 
1236 	if (m->m_next != NULL)
1237 		KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG,
1238 		    ("chained Rx mbuf without LRO_NOMRG"));
1239 
1240 	/*
1241 	 * Since LRO_NOMRG mbuf chains are so large, we want to avoid
1242 	 * allocating an entire chain for each received frame. When
1243 	 * the received frame's length is less than that of the chain,
1244 	 * the unused mbufs are reassigned to the new chain.
1245 	 */
1246 	while (len > 0) {
1247 		/*
1248 		 * Something is seriously wrong if we received
1249 		 * a frame larger than the mbuf chain. Drop it.
1250 		 */
1251 		if (m == NULL) {
1252 			sc->vtnet_stats.rx_frame_too_large++;
1253 			return (EMSGSIZE);
1254 		}
1255 
1256 		KASSERT(m->m_len == clsize,
1257 		    ("mbuf length not expected cluster size: %d",
1258 		    m->m_len));
1259 
1260 		m->m_len = MIN(m->m_len, len);
1261 		len -= m->m_len;
1262 
1263 		m_prev = m;
1264 		m = m->m_next;
1265 		nreplace++;
1266 	}
1267 
1268 	KASSERT(m_prev != NULL, ("m_prev == NULL"));
1269 	KASSERT(nreplace <= sc->vtnet_rx_mbuf_count,
1270 		("too many replacement mbufs: %d/%d", nreplace,
1271 		sc->vtnet_rx_mbuf_count));
1272 
1273 	m_new = vtnet_alloc_rxbuf(sc, nreplace, &m_tail);
1274 	if (m_new == NULL) {
1275 		m_prev->m_len = clsize;
1276 		return (ENOBUFS);
1277 	}
1278 
1279 	/*
1280 	 * Move unused mbufs, if any, from the original chain
1281 	 * onto the end of the new chain.
1282 	 */
1283 	if (m_prev->m_next != NULL) {
1284 		m_tail->m_next = m_prev->m_next;
1285 		m_prev->m_next = NULL;
1286 	}
1287 
1288 	error = vtnet_enqueue_rxbuf(sc, m_new);
1289 	if (error) {
1290 		/*
1291 		 * BAD! We could not enqueue the replacement mbuf chain. We
1292 		 * must restore the m0 chain to the original state if it was
1293 		 * modified so we can subsequently discard it.
1294 		 *
1295 		 * NOTE: The replacement is suppose to be an identical copy
1296 		 * to the one just dequeued so this is an unexpected error.
1297 		 */
1298 		sc->vtnet_stats.rx_enq_replacement_failed++;
1299 
1300 		if (m_tail->m_next != NULL) {
1301 			m_prev->m_next = m_tail->m_next;
1302 			m_tail->m_next = NULL;
1303 		}
1304 
1305 		m_prev->m_len = clsize;
1306 		m_freem(m_new);
1307 	}
1308 
1309 	return (error);
1310 }
1311 
1312 static int
1313 vtnet_newbuf(struct vtnet_softc *sc)
1314 {
1315 	struct mbuf *m;
1316 	int error;
1317 
1318 	m = vtnet_alloc_rxbuf(sc, sc->vtnet_rx_mbuf_count, NULL);
1319 	if (m == NULL)
1320 		return (ENOBUFS);
1321 
1322 	error = vtnet_enqueue_rxbuf(sc, m);
1323 	if (error)
1324 		m_freem(m);
1325 
1326 	return (error);
1327 }
1328 
1329 static void
1330 vtnet_discard_merged_rxbuf(struct vtnet_softc *sc, int nbufs)
1331 {
1332 	struct virtqueue *vq;
1333 	struct mbuf *m;
1334 
1335 	vq = sc->vtnet_rx_vq;
1336 
1337 	while (--nbufs > 0) {
1338 		if ((m = virtqueue_dequeue(vq, NULL)) == NULL)
1339 			break;
1340 		vtnet_discard_rxbuf(sc, m);
1341 	}
1342 }
1343 
1344 static void
1345 vtnet_discard_rxbuf(struct vtnet_softc *sc, struct mbuf *m)
1346 {
1347 	int error;
1348 
1349 	/*
1350 	 * Requeue the discarded mbuf. This should always be
1351 	 * successful since it was just dequeued.
1352 	 */
1353 	error = vtnet_enqueue_rxbuf(sc, m);
1354 	KASSERT(error == 0, ("cannot requeue discarded mbuf"));
1355 }
1356 
1357 static int
1358 vtnet_enqueue_rxbuf(struct vtnet_softc *sc, struct mbuf *m)
1359 {
1360 	struct sglist sg;
1361 	struct sglist_seg segs[VTNET_MAX_RX_SEGS];
1362 	struct vtnet_rx_header *rxhdr;
1363 	struct virtio_net_hdr *hdr;
1364 	uint8_t *mdata;
1365 	int offset, error;
1366 
1367 	ASSERT_SERIALIZED(&sc->vtnet_slz);
1368 	if ((sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) == 0)
1369 		KASSERT(m->m_next == NULL, ("chained Rx mbuf"));
1370 
1371 	sglist_init(&sg, VTNET_MAX_RX_SEGS, segs);
1372 
1373 	mdata = mtod(m, uint8_t *);
1374 	offset = 0;
1375 
1376 	if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1377 		rxhdr = (struct vtnet_rx_header *) mdata;
1378 		hdr = &rxhdr->vrh_hdr;
1379 		offset += sizeof(struct vtnet_rx_header);
1380 
1381 		error = sglist_append(&sg, hdr, sc->vtnet_hdr_size);
1382 		KASSERT(error == 0, ("cannot add header to sglist"));
1383 	}
1384 
1385 	error = sglist_append(&sg, mdata + offset, m->m_len - offset);
1386 	if (error)
1387 		return (error);
1388 
1389 	if (m->m_next != NULL) {
1390 		error = sglist_append_mbuf(&sg, m->m_next);
1391 		if (error)
1392 			return (error);
1393 	}
1394 
1395 	return (virtqueue_enqueue(sc->vtnet_rx_vq, m, &sg, 0, sg.sg_nseg));
1396 }
1397 
1398 static void
1399 vtnet_vlan_tag_remove(struct mbuf *m)
1400 {
1401 	struct ether_vlan_header *evl;
1402 
1403 	evl = mtod(m, struct ether_vlan_header *);
1404 
1405 	m->m_pkthdr.ether_vlantag = ntohs(evl->evl_tag);
1406 	m->m_flags |= M_VLANTAG;
1407 
1408 	/* Strip the 802.1Q header. */
1409 	bcopy((char *) evl, (char *) evl + ETHER_VLAN_ENCAP_LEN,
1410 	    ETHER_HDR_LEN - ETHER_TYPE_LEN);
1411 	m_adj(m, ETHER_VLAN_ENCAP_LEN);
1412 }
1413 
1414 /*
1415  * Alternative method of doing receive checksum offloading. Rather
1416  * than parsing the received frame down to the IP header, use the
1417  * csum_offset to determine which CSUM_* flags are appropriate. We
1418  * can get by with doing this only because the checksum offsets are
1419  * unique for the things we care about.
1420  */
1421 static int
1422 vtnet_rx_csum(struct vtnet_softc *sc, struct mbuf *m,
1423     struct virtio_net_hdr *hdr)
1424 {
1425 	struct ether_header *eh;
1426 	struct ether_vlan_header *evh;
1427 	struct udphdr *udp;
1428 	int csum_len;
1429 	uint16_t eth_type;
1430 
1431 	csum_len = hdr->csum_start + hdr->csum_offset;
1432 
1433 	if (csum_len < sizeof(struct ether_header) + sizeof(struct ip))
1434 		return (1);
1435 	if (m->m_len < csum_len)
1436 		return (1);
1437 
1438 	eh = mtod(m, struct ether_header *);
1439 	eth_type = ntohs(eh->ether_type);
1440 	if (eth_type == ETHERTYPE_VLAN) {
1441 		evh = mtod(m, struct ether_vlan_header *);
1442 		eth_type = ntohs(evh->evl_proto);
1443 	}
1444 
1445 	if (eth_type != ETHERTYPE_IP && eth_type != ETHERTYPE_IPV6) {
1446 		sc->vtnet_stats.rx_csum_bad_ethtype++;
1447 		return (1);
1448 	}
1449 
1450 	/* Use the offset to determine the appropriate CSUM_* flags. */
1451 	switch (hdr->csum_offset) {
1452 	case offsetof(struct udphdr, uh_sum):
1453 		if (m->m_len < hdr->csum_start + sizeof(struct udphdr))
1454 			return (1);
1455 		udp = (struct udphdr *)(mtod(m, uint8_t *) + hdr->csum_start);
1456 		if (udp->uh_sum == 0)
1457 			return (0);
1458 
1459 		/* FALLTHROUGH */
1460 
1461 	case offsetof(struct tcphdr, th_sum):
1462 		m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1463 		m->m_pkthdr.csum_data = 0xFFFF;
1464 		break;
1465 
1466 	default:
1467 		sc->vtnet_stats.rx_csum_bad_offset++;
1468 		return (1);
1469 	}
1470 
1471 	sc->vtnet_stats.rx_csum_offloaded++;
1472 
1473 	return (0);
1474 }
1475 
1476 static int
1477 vtnet_rxeof_merged(struct vtnet_softc *sc, struct mbuf *m_head, int nbufs)
1478 {
1479 	struct ifnet *ifp;
1480 	struct virtqueue *vq;
1481 	struct mbuf *m, *m_tail;
1482 	int len;
1483 
1484 	ifp = sc->vtnet_ifp;
1485 	vq = sc->vtnet_rx_vq;
1486 	m_tail = m_head;
1487 
1488 	while (--nbufs > 0) {
1489 		m = virtqueue_dequeue(vq, &len);
1490 		if (m == NULL) {
1491 			ifp->if_ierrors++;
1492 			goto fail;
1493 		}
1494 
1495 		if (vtnet_newbuf(sc) != 0) {
1496 			ifp->if_iqdrops++;
1497 			vtnet_discard_rxbuf(sc, m);
1498 			if (nbufs > 1)
1499 				vtnet_discard_merged_rxbuf(sc, nbufs);
1500 			goto fail;
1501 		}
1502 
1503 		if (m->m_len < len)
1504 			len = m->m_len;
1505 
1506 		m->m_len = len;
1507 		m->m_flags &= ~M_PKTHDR;
1508 
1509 		m_head->m_pkthdr.len += len;
1510 		m_tail->m_next = m;
1511 		m_tail = m;
1512 	}
1513 
1514 	return (0);
1515 
1516 fail:
1517 	sc->vtnet_stats.rx_mergeable_failed++;
1518 	m_freem(m_head);
1519 
1520 	return (1);
1521 }
1522 
1523 static int
1524 vtnet_rxeof(struct vtnet_softc *sc, int count, int *rx_npktsp)
1525 {
1526 	struct virtio_net_hdr lhdr;
1527 	struct ifnet *ifp;
1528 	struct virtqueue *vq;
1529 	struct mbuf *m;
1530 	struct ether_header *eh;
1531 	struct virtio_net_hdr *hdr;
1532 	struct virtio_net_hdr_mrg_rxbuf *mhdr;
1533 	int len, deq, nbufs, adjsz, rx_npkts;
1534 
1535 	ifp = sc->vtnet_ifp;
1536 	vq = sc->vtnet_rx_vq;
1537 	hdr = &lhdr;
1538 	deq = 0;
1539 	rx_npkts = 0;
1540 
1541 	ASSERT_SERIALIZED(&sc->vtnet_slz);
1542 
1543 	while (--count >= 0) {
1544 		m = virtqueue_dequeue(vq, &len);
1545 		if (m == NULL)
1546 			break;
1547 		deq++;
1548 
1549 		if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) {
1550 			ifp->if_ierrors++;
1551 			vtnet_discard_rxbuf(sc, m);
1552 			continue;
1553 		}
1554 
1555 		if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1556 			nbufs = 1;
1557 			adjsz = sizeof(struct vtnet_rx_header);
1558 			/*
1559 			 * Account for our pad between the header and
1560 			 * the actual start of the frame.
1561 			 */
1562 			len += VTNET_RX_HEADER_PAD;
1563 		} else {
1564 			mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *);
1565 			nbufs = mhdr->num_buffers;
1566 			adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf);
1567 		}
1568 
1569 		if (vtnet_replace_rxbuf(sc, m, len) != 0) {
1570 			ifp->if_iqdrops++;
1571 			vtnet_discard_rxbuf(sc, m);
1572 			if (nbufs > 1)
1573 				vtnet_discard_merged_rxbuf(sc, nbufs);
1574 			continue;
1575 		}
1576 
1577 		m->m_pkthdr.len = len;
1578 		m->m_pkthdr.rcvif = ifp;
1579 		m->m_pkthdr.csum_flags = 0;
1580 
1581 		if (nbufs > 1) {
1582 			if (vtnet_rxeof_merged(sc, m, nbufs) != 0)
1583 				continue;
1584 		}
1585 
1586 		ifp->if_ipackets++;
1587 
1588 		/*
1589 		 * Save copy of header before we strip it. For both mergeable
1590 		 * and non-mergeable, the VirtIO header is placed first in the
1591 		 * mbuf's data. We no longer need num_buffers, so always use a
1592 		 * virtio_net_hdr.
1593 		 */
1594 		memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr));
1595 		m_adj(m, adjsz);
1596 
1597 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1598 			eh = mtod(m, struct ether_header *);
1599 			if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1600 				vtnet_vlan_tag_remove(m);
1601 
1602 				/*
1603 				 * With the 802.1Q header removed, update the
1604 				 * checksum starting location accordingly.
1605 				 */
1606 				if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)
1607 					hdr->csum_start -=
1608 					    ETHER_VLAN_ENCAP_LEN;
1609 			}
1610 		}
1611 
1612 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1613 		    hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1614 			if (vtnet_rx_csum(sc, m, hdr) != 0)
1615 				sc->vtnet_stats.rx_csum_failed++;
1616 		}
1617 
1618 		lwkt_serialize_exit(&sc->vtnet_slz);
1619 		rx_npkts++;
1620 		ifp->if_input(ifp, m, NULL, -1);
1621 		lwkt_serialize_enter(&sc->vtnet_slz);
1622 
1623 		/*
1624 		 * The interface may have been stopped while we were
1625 		 * passing the packet up the network stack.
1626 		 */
1627 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1628 			break;
1629 	}
1630 
1631 	virtqueue_notify(vq, &sc->vtnet_slz);
1632 
1633 	if (rx_npktsp != NULL)
1634 		*rx_npktsp = rx_npkts;
1635 
1636 	return (count > 0 ? 0 : EAGAIN);
1637 }
1638 
1639 static void
1640 vtnet_rx_intr_task(void *arg)
1641 {
1642 	struct vtnet_softc *sc;
1643 	struct ifnet *ifp;
1644 	int more;
1645 
1646 	sc = arg;
1647 	ifp = sc->vtnet_ifp;
1648 
1649 next:
1650 //	lwkt_serialize_enter(&sc->vtnet_slz);
1651 
1652 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1653 		vtnet_enable_rx_intr(sc);
1654 //		lwkt_serialize_exit(&sc->vtnet_slz);
1655 		return;
1656 	}
1657 
1658 	more = vtnet_rxeof(sc, sc->vtnet_rx_process_limit, NULL);
1659 	if (!more && vtnet_enable_rx_intr(sc) != 0) {
1660 		vtnet_disable_rx_intr(sc);
1661 		more = 1;
1662 	}
1663 
1664 //	lwkt_serialize_exit(&sc->vtnet_slz);
1665 
1666 	if (more) {
1667 		sc->vtnet_stats.rx_task_rescheduled++;
1668 		goto next;
1669 	}
1670 }
1671 
1672 static int
1673 vtnet_rx_vq_intr(void *xsc)
1674 {
1675 	struct vtnet_softc *sc;
1676 
1677 	sc = xsc;
1678 
1679 	vtnet_disable_rx_intr(sc);
1680 	vtnet_rx_intr_task(sc);
1681 
1682 	return (1);
1683 }
1684 
1685 static void
1686 vtnet_txeof(struct vtnet_softc *sc)
1687 {
1688 	struct virtqueue *vq;
1689 	struct ifnet *ifp;
1690 	struct vtnet_tx_header *txhdr;
1691 	int deq;
1692 
1693 	vq = sc->vtnet_tx_vq;
1694 	ifp = sc->vtnet_ifp;
1695 	deq = 0;
1696 
1697 	ASSERT_SERIALIZED(&sc->vtnet_slz);
1698 
1699 	while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) {
1700 		deq++;
1701 		ifp->if_opackets++;
1702 		m_freem(txhdr->vth_mbuf);
1703 	}
1704 
1705 	if (deq > 0) {
1706 		ifq_clr_oactive(&ifp->if_snd);
1707 		if (virtqueue_empty(vq))
1708 			sc->vtnet_watchdog_timer = 0;
1709 	}
1710 }
1711 
1712 static struct mbuf *
1713 vtnet_tx_offload(struct vtnet_softc *sc, struct mbuf *m,
1714     struct virtio_net_hdr *hdr)
1715 {
1716 	struct ifnet *ifp;
1717 	struct ether_header *eh;
1718 	struct ether_vlan_header *evh;
1719 	struct ip *ip;
1720 	struct ip6_hdr *ip6;
1721 	struct tcphdr *tcp;
1722 	int ip_offset;
1723 	uint16_t eth_type, csum_start;
1724 	uint8_t ip_proto, gso_type;
1725 
1726 	ifp = sc->vtnet_ifp;
1727 	M_ASSERTPKTHDR(m);
1728 
1729 	ip_offset = sizeof(struct ether_header);
1730 	if (m->m_len < ip_offset) {
1731 		if ((m = m_pullup(m, ip_offset)) == NULL)
1732 			return (NULL);
1733 	}
1734 
1735 	eh = mtod(m, struct ether_header *);
1736 	eth_type = ntohs(eh->ether_type);
1737 	if (eth_type == ETHERTYPE_VLAN) {
1738 		ip_offset = sizeof(struct ether_vlan_header);
1739 		if (m->m_len < ip_offset) {
1740 			if ((m = m_pullup(m, ip_offset)) == NULL)
1741 				return (NULL);
1742 		}
1743 		evh = mtod(m, struct ether_vlan_header *);
1744 		eth_type = ntohs(evh->evl_proto);
1745 	}
1746 
1747 	switch (eth_type) {
1748 	case ETHERTYPE_IP:
1749 		if (m->m_len < ip_offset + sizeof(struct ip)) {
1750 			m = m_pullup(m, ip_offset + sizeof(struct ip));
1751 			if (m == NULL)
1752 				return (NULL);
1753 		}
1754 
1755 		ip = (struct ip *)(mtod(m, uint8_t *) + ip_offset);
1756 		ip_proto = ip->ip_p;
1757 		csum_start = ip_offset + (ip->ip_hl << 2);
1758 		gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
1759 		break;
1760 
1761 	case ETHERTYPE_IPV6:
1762 		if (m->m_len < ip_offset + sizeof(struct ip6_hdr)) {
1763 			m = m_pullup(m, ip_offset + sizeof(struct ip6_hdr));
1764 			if (m == NULL)
1765 				return (NULL);
1766 		}
1767 
1768 		ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + ip_offset);
1769 		/*
1770 		 * XXX Assume no extension headers are present. Presently,
1771 		 * this will always be true in the case of TSO, and FreeBSD
1772 		 * does not perform checksum offloading of IPv6 yet.
1773 		 */
1774 		ip_proto = ip6->ip6_nxt;
1775 		csum_start = ip_offset + sizeof(struct ip6_hdr);
1776 		gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
1777 		break;
1778 
1779 	default:
1780 		return (m);
1781 	}
1782 
1783 	if (m->m_pkthdr.csum_flags & VTNET_CSUM_OFFLOAD) {
1784 		hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM;
1785 		hdr->csum_start = csum_start;
1786 		hdr->csum_offset = m->m_pkthdr.csum_data;
1787 
1788 		sc->vtnet_stats.tx_csum_offloaded++;
1789 	}
1790 
1791 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1792 		if (ip_proto != IPPROTO_TCP)
1793 			return (m);
1794 
1795 		if (m->m_len < csum_start + sizeof(struct tcphdr)) {
1796 			m = m_pullup(m, csum_start + sizeof(struct tcphdr));
1797 			if (m == NULL)
1798 				return (NULL);
1799 		}
1800 
1801 		tcp = (struct tcphdr *)(mtod(m, uint8_t *) + csum_start);
1802 		hdr->gso_type = gso_type;
1803 		hdr->hdr_len = csum_start + (tcp->th_off << 2);
1804 		hdr->gso_size = m->m_pkthdr.tso_segsz;
1805 
1806 		if (tcp->th_flags & TH_CWR) {
1807 			/*
1808 			 * Drop if we did not negotiate VIRTIO_NET_F_HOST_ECN.
1809 			 * ECN support is only configurable globally with the
1810 			 * net.inet.tcp.ecn.enable sysctl knob.
1811 			 */
1812 			if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) {
1813 				if_printf(ifp, "TSO with ECN not supported "
1814 				    "by host\n");
1815 				m_freem(m);
1816 				return (NULL);
1817 			}
1818 
1819 			hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN;
1820 		}
1821 
1822 		sc->vtnet_stats.tx_tso_offloaded++;
1823 	}
1824 
1825 	return (m);
1826 }
1827 
1828 static int
1829 vtnet_enqueue_txbuf(struct vtnet_softc *sc, struct mbuf **m_head,
1830     struct vtnet_tx_header *txhdr)
1831 {
1832 	struct sglist sg;
1833 	struct sglist_seg segs[VTNET_MAX_TX_SEGS];
1834 	struct virtqueue *vq;
1835 	struct mbuf *m;
1836 	int collapsed, error;
1837 
1838 	vq = sc->vtnet_tx_vq;
1839 	m = *m_head;
1840 	collapsed = 0;
1841 
1842 	sglist_init(&sg, VTNET_MAX_TX_SEGS, segs);
1843 	error = sglist_append(&sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size);
1844 	KASSERT(error == 0 && sg.sg_nseg == 1,
1845 	    ("cannot add header to sglist"));
1846 
1847 again:
1848 	error = sglist_append_mbuf(&sg, m);
1849 	if (error) {
1850 		if (collapsed)
1851 			goto fail;
1852 
1853 		//m = m_collapse(m, M_NOWAIT, VTNET_MAX_TX_SEGS - 1);
1854 		m = m_defrag(m, M_NOWAIT);
1855 		if (m == NULL)
1856 			goto fail;
1857 
1858 		*m_head = m;
1859 		collapsed = 1;
1860 		goto again;
1861 	}
1862 
1863 	txhdr->vth_mbuf = m;
1864 
1865 	return (virtqueue_enqueue(vq, txhdr, &sg, sg.sg_nseg, 0));
1866 
1867 fail:
1868 	m_freem(*m_head);
1869 	*m_head = NULL;
1870 
1871 	return (ENOBUFS);
1872 }
1873 
1874 static struct mbuf *
1875 vtnet_vlan_tag_insert(struct mbuf *m)
1876 {
1877 	struct mbuf *n;
1878 	struct ether_vlan_header *evl;
1879 
1880 	if (M_WRITABLE(m) == 0) {
1881 		n = m_dup(m, M_NOWAIT);
1882 		m_freem(m);
1883 		if ((m = n) == NULL)
1884 			return (NULL);
1885 	}
1886 
1887 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1888 	if (m == NULL)
1889 		return (NULL);
1890 	if (m->m_len < sizeof(struct ether_vlan_header)) {
1891 		m = m_pullup(m, sizeof(struct ether_vlan_header));
1892 		if (m == NULL)
1893 			return (NULL);
1894 	}
1895 
1896 	/* Insert 802.1Q header into the existing Ethernet header. */
1897 	evl = mtod(m, struct ether_vlan_header *);
1898 	bcopy((char *) evl + ETHER_VLAN_ENCAP_LEN,
1899 	      (char *) evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1900 	evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1901 	evl->evl_tag = htons(m->m_pkthdr.ether_vlantag);
1902 	m->m_flags &= ~M_VLANTAG;
1903 
1904 	return (m);
1905 }
1906 
1907 static int
1908 vtnet_encap(struct vtnet_softc *sc, struct mbuf **m_head)
1909 {
1910 	struct vtnet_tx_header *txhdr;
1911 	struct virtio_net_hdr *hdr;
1912 	struct mbuf *m;
1913 	int error;
1914 
1915 	txhdr = &sc->vtnet_txhdrarea[sc->vtnet_txhdridx];
1916 	memset(txhdr, 0, sizeof(struct vtnet_tx_header));
1917 
1918 	/*
1919 	 * Always use the non-mergeable header to simplify things. When
1920 	 * the mergeable feature is negotiated, the num_buffers field
1921 	 * must be set to zero. We use vtnet_hdr_size later to enqueue
1922 	 * the correct header size to the host.
1923 	 */
1924 	hdr = &txhdr->vth_uhdr.hdr;
1925 	m = *m_head;
1926 
1927 	error = ENOBUFS;
1928 
1929 	if (m->m_flags & M_VLANTAG) {
1930 		//m = ether_vlanencap(m, m->m_pkthdr.ether_vtag);
1931 		m = vtnet_vlan_tag_insert(m);
1932 		if ((*m_head = m) == NULL)
1933 			goto fail;
1934 		m->m_flags &= ~M_VLANTAG;
1935 	}
1936 
1937 	if (m->m_pkthdr.csum_flags != 0) {
1938 		m = vtnet_tx_offload(sc, m, hdr);
1939 		if ((*m_head = m) == NULL)
1940 			goto fail;
1941 	}
1942 
1943 	error = vtnet_enqueue_txbuf(sc, m_head, txhdr);
1944 	if (error == 0)
1945 		sc->vtnet_txhdridx =
1946 		    (sc->vtnet_txhdridx + 1) % ((sc->vtnet_tx_size / 2) + 1);
1947 fail:
1948 	return (error);
1949 }
1950 
1951 static void
1952 vtnet_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1953 {
1954 	struct vtnet_softc *sc;
1955 
1956 	sc = ifp->if_softc;
1957 
1958 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1959 	lwkt_serialize_enter(&sc->vtnet_slz);
1960 	vtnet_start_locked(ifp, ifsq);
1961 	lwkt_serialize_exit(&sc->vtnet_slz);
1962 }
1963 
1964 static void
1965 vtnet_start_locked(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1966 {
1967 	struct vtnet_softc *sc;
1968 	struct virtqueue *vq;
1969 	struct mbuf *m0;
1970 	int enq;
1971 
1972 	sc = ifp->if_softc;
1973 	vq = sc->vtnet_tx_vq;
1974 	enq = 0;
1975 
1976 	ASSERT_SERIALIZED(&sc->vtnet_slz);
1977 
1978 	if ((ifp->if_flags & (IFF_RUNNING)) !=
1979 	    IFF_RUNNING || ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0))
1980 		return;
1981 
1982 #ifdef VTNET_TX_INTR_MODERATION
1983 	if (virtqueue_nused(vq) >= sc->vtnet_tx_size / 2)
1984 		vtnet_txeof(sc);
1985 #endif
1986 
1987 	while (!ifsq_is_empty(ifsq)) {
1988 		if (virtqueue_full(vq)) {
1989 			ifq_set_oactive(&ifp->if_snd);
1990 			break;
1991 		}
1992 
1993 		m0 = ifq_dequeue(&ifp->if_snd);
1994 		if (m0 == NULL)
1995 			break;
1996 
1997 		if (vtnet_encap(sc, &m0) != 0) {
1998 			if (m0 == NULL)
1999 				break;
2000 			ifq_prepend(&ifp->if_snd, m0);
2001 			ifq_set_oactive(&ifp->if_snd);
2002 			break;
2003 		}
2004 
2005 		enq++;
2006 		ETHER_BPF_MTAP(ifp, m0);
2007 	}
2008 
2009 	if (enq > 0) {
2010 		virtqueue_notify(vq, &sc->vtnet_slz);
2011 		sc->vtnet_watchdog_timer = VTNET_WATCHDOG_TIMEOUT;
2012 	}
2013 }
2014 
2015 static void
2016 vtnet_tick(void *xsc)
2017 {
2018 	struct vtnet_softc *sc;
2019 
2020 	sc = xsc;
2021 
2022 #if 0
2023 	ASSERT_SERIALIZED(&sc->vtnet_slz);
2024 #ifdef VTNET_DEBUG
2025 	virtqueue_dump(sc->vtnet_rx_vq);
2026 	virtqueue_dump(sc->vtnet_tx_vq);
2027 #endif
2028 
2029 	vtnet_watchdog(sc);
2030 	callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc);
2031 #endif
2032 }
2033 
2034 static void
2035 vtnet_tx_intr_task(void *arg)
2036 {
2037 	struct vtnet_softc *sc;
2038 	struct ifnet *ifp;
2039 	struct ifaltq_subque *ifsq;
2040 
2041 	sc = arg;
2042 	ifp = sc->vtnet_ifp;
2043 	ifsq = ifq_get_subq_default(&ifp->if_snd);
2044 
2045 next:
2046 //	lwkt_serialize_enter(&sc->vtnet_slz);
2047 
2048 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2049 		vtnet_enable_tx_intr(sc);
2050 //		lwkt_serialize_exit(&sc->vtnet_slz);
2051 		return;
2052 	}
2053 
2054 	vtnet_txeof(sc);
2055 
2056 	if (!ifsq_is_empty(ifsq))
2057 		vtnet_start_locked(ifp, ifsq);
2058 
2059 	if (vtnet_enable_tx_intr(sc) != 0) {
2060 		vtnet_disable_tx_intr(sc);
2061 		sc->vtnet_stats.tx_task_rescheduled++;
2062 //		lwkt_serialize_exit(&sc->vtnet_slz);
2063 		goto next;
2064 	}
2065 
2066 //	lwkt_serialize_exit(&sc->vtnet_slz);
2067 }
2068 
2069 static int
2070 vtnet_tx_vq_intr(void *xsc)
2071 {
2072 	struct vtnet_softc *sc;
2073 
2074 	sc = xsc;
2075 
2076 	vtnet_disable_tx_intr(sc);
2077 	vtnet_tx_intr_task(sc);
2078 
2079 	return (1);
2080 }
2081 
2082 static void
2083 vtnet_stop(struct vtnet_softc *sc)
2084 {
2085 	device_t dev;
2086 	struct ifnet *ifp;
2087 
2088 	dev = sc->vtnet_dev;
2089 	ifp = sc->vtnet_ifp;
2090 
2091 	ASSERT_SERIALIZED(&sc->vtnet_slz);
2092 
2093 	sc->vtnet_watchdog_timer = 0;
2094 	callout_stop(&sc->vtnet_tick_ch);
2095 	ifq_clr_oactive(&ifp->if_snd);
2096 	ifp->if_flags &= ~(IFF_RUNNING);
2097 
2098 	vtnet_disable_rx_intr(sc);
2099 	vtnet_disable_tx_intr(sc);
2100 
2101 	/*
2102 	 * Stop the host VirtIO adapter. Note this will reset the host
2103 	 * adapter's state back to the pre-initialized state, so in
2104 	 * order to make the device usable again, we must drive it
2105 	 * through virtio_reinit() and virtio_reinit_complete().
2106 	 */
2107 	virtio_stop(dev);
2108 
2109 	sc->vtnet_flags &= ~VTNET_FLAG_LINK;
2110 
2111 	vtnet_free_rx_mbufs(sc);
2112 	vtnet_free_tx_mbufs(sc);
2113 }
2114 
2115 static int
2116 vtnet_reinit(struct vtnet_softc *sc)
2117 {
2118 	struct ifnet *ifp;
2119 	uint64_t features;
2120 
2121 	ifp = sc->vtnet_ifp;
2122 	features = sc->vtnet_features;
2123 
2124 	/*
2125 	 * Re-negotiate with the host, removing any disabled receive
2126 	 * features. Transmit features are disabled only on our side
2127 	 * via if_capenable and if_hwassist.
2128 	 */
2129 
2130 	if (ifp->if_capabilities & IFCAP_RXCSUM) {
2131 		if ((ifp->if_capenable & IFCAP_RXCSUM) == 0)
2132 			features &= ~VIRTIO_NET_F_GUEST_CSUM;
2133 	}
2134 
2135 	if (ifp->if_capabilities & IFCAP_LRO) {
2136 		if ((ifp->if_capenable & IFCAP_LRO) == 0)
2137 			features &= ~VTNET_LRO_FEATURES;
2138 	}
2139 
2140 	if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) {
2141 		if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0)
2142 			features &= ~VIRTIO_NET_F_CTRL_VLAN;
2143 	}
2144 
2145 	return (virtio_reinit(sc->vtnet_dev, features));
2146 }
2147 
2148 static void
2149 vtnet_init_locked(struct vtnet_softc *sc)
2150 {
2151 	device_t dev;
2152 	struct ifnet *ifp;
2153 	int error;
2154 
2155 	dev = sc->vtnet_dev;
2156 	ifp = sc->vtnet_ifp;
2157 
2158 	ASSERT_SERIALIZED(&sc->vtnet_slz);
2159 
2160 	if (ifp->if_flags & IFF_RUNNING)
2161 		return;
2162 
2163 	/* Stop host's adapter, cancel any pending I/O. */
2164 	vtnet_stop(sc);
2165 
2166 	/* Reinitialize the host device. */
2167 	error = vtnet_reinit(sc);
2168 	if (error) {
2169 		device_printf(dev,
2170 		    "reinitialization failed, stopping device...\n");
2171 		vtnet_stop(sc);
2172 		return;
2173 	}
2174 
2175 	/* Update host with assigned MAC address. */
2176 	bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN);
2177 	vtnet_set_hwaddr(sc);
2178 
2179 	ifp->if_hwassist = 0;
2180 	if (ifp->if_capenable & IFCAP_TXCSUM)
2181 		ifp->if_hwassist |= VTNET_CSUM_OFFLOAD;
2182 	if (ifp->if_capenable & IFCAP_TSO4)
2183 		ifp->if_hwassist |= CSUM_TSO;
2184 
2185 	error = vtnet_init_rx_vq(sc);
2186 	if (error) {
2187 		device_printf(dev,
2188 		    "cannot allocate mbufs for Rx virtqueue\n");
2189 		vtnet_stop(sc);
2190 		return;
2191 	}
2192 
2193 	if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
2194 		if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
2195 			/* Restore promiscuous and all-multicast modes. */
2196 			vtnet_rx_filter(sc);
2197 
2198 			/* Restore filtered MAC addresses. */
2199 			vtnet_rx_filter_mac(sc);
2200 		}
2201 
2202 		/* Restore VLAN filters. */
2203 		if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
2204 			vtnet_rx_filter_vlan(sc);
2205 	}
2206 
2207 	{
2208 		vtnet_enable_rx_intr(sc);
2209 		vtnet_enable_tx_intr(sc);
2210 	}
2211 
2212 	ifp->if_flags |= IFF_RUNNING;
2213 	ifq_clr_oactive(&ifp->if_snd);
2214 
2215 	virtio_reinit_complete(dev);
2216 
2217 	vtnet_update_link_status(sc);
2218 	callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc);
2219 }
2220 
2221 static void
2222 vtnet_init(void *xsc)
2223 {
2224 	struct vtnet_softc *sc;
2225 
2226 	sc = xsc;
2227 
2228 	lwkt_serialize_enter(&sc->vtnet_slz);
2229 	vtnet_init_locked(sc);
2230 	lwkt_serialize_exit(&sc->vtnet_slz);
2231 }
2232 
2233 static void
2234 vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie,
2235     struct sglist *sg, int readable, int writable)
2236 {
2237 	struct virtqueue *vq;
2238 	void *c;
2239 
2240 	vq = sc->vtnet_ctrl_vq;
2241 
2242 	ASSERT_SERIALIZED(&sc->vtnet_slz);
2243 	KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ,
2244 	    ("no control virtqueue"));
2245 	KASSERT(virtqueue_empty(vq),
2246 	    ("control command already enqueued"));
2247 
2248 	if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0)
2249 		return;
2250 
2251 	virtqueue_notify(vq, &sc->vtnet_slz);
2252 
2253 	/*
2254 	 * Poll until the command is complete. Previously, we would
2255 	 * sleep until the control virtqueue interrupt handler woke
2256 	 * us up, but dropping the VTNET_MTX leads to serialization
2257 	 * difficulties.
2258 	 *
2259 	 * Furthermore, it appears QEMU/KVM only allocates three MSIX
2260 	 * vectors. Two of those vectors are needed for the Rx and Tx
2261 	 * virtqueues. We do not support sharing both a Vq and config
2262 	 * changed notification on the same MSIX vector.
2263 	 */
2264 	c = virtqueue_poll(vq, NULL);
2265 	KASSERT(c == cookie, ("unexpected control command response"));
2266 }
2267 
2268 static void
2269 vtnet_rx_filter(struct vtnet_softc *sc)
2270 {
2271 	device_t dev;
2272 	struct ifnet *ifp;
2273 
2274 	dev = sc->vtnet_dev;
2275 	ifp = sc->vtnet_ifp;
2276 
2277 	ASSERT_SERIALIZED(&sc->vtnet_slz);
2278 	KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
2279 	    ("CTRL_RX feature not negotiated"));
2280 
2281 	if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0)
2282 		device_printf(dev, "cannot %s promiscuous mode\n",
2283 		    ifp->if_flags & IFF_PROMISC ? "enable" : "disable");
2284 
2285 	if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0)
2286 		device_printf(dev, "cannot %s all-multicast mode\n",
2287 		    ifp->if_flags & IFF_ALLMULTI ? "enable" : "disable");
2288 }
2289 
2290 static int
2291 vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on)
2292 {
2293 	struct virtio_net_ctrl_hdr hdr __aligned(2);
2294 	struct sglist_seg segs[3];
2295 	struct sglist sg;
2296 	uint8_t onoff, ack;
2297 	int error;
2298 
2299 	if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0)
2300 		return (ENOTSUP);
2301 
2302 	error = 0;
2303 
2304 	hdr.class = VIRTIO_NET_CTRL_RX;
2305 	hdr.cmd = cmd;
2306 	onoff = !!on;
2307 	ack = VIRTIO_NET_ERR;
2308 
2309 	sglist_init(&sg, 3, segs);
2310 	error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
2311 	error |= sglist_append(&sg, &onoff, sizeof(uint8_t));
2312 	error |= sglist_append(&sg, &ack, sizeof(uint8_t));
2313 	KASSERT(error == 0 && sg.sg_nseg == 3,
2314 	    ("error adding Rx filter message to sglist"));
2315 
2316 	vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
2317 
2318 	return (ack == VIRTIO_NET_OK ? 0 : EIO);
2319 }
2320 
2321 static int
2322 vtnet_set_promisc(struct vtnet_softc *sc, int on)
2323 {
2324 
2325 	return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on));
2326 }
2327 
2328 static int
2329 vtnet_set_allmulti(struct vtnet_softc *sc, int on)
2330 {
2331 
2332 	return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on));
2333 }
2334 
2335 static void
2336 vtnet_rx_filter_mac(struct vtnet_softc *sc)
2337 {
2338 	struct virtio_net_ctrl_hdr hdr __aligned(2);
2339 	struct vtnet_mac_filter *filter;
2340 	struct sglist_seg segs[4];
2341 	struct sglist sg;
2342 	struct ifnet *ifp;
2343 	struct ifaddr *ifa;
2344         struct ifaddr_container *ifac;
2345 	struct ifmultiaddr *ifma;
2346 	int ucnt, mcnt, promisc, allmulti, error;
2347 	uint8_t ack;
2348 
2349 	ifp = sc->vtnet_ifp;
2350 	ucnt = 0;
2351 	mcnt = 0;
2352 	promisc = 0;
2353 	allmulti = 0;
2354 	error = 0;
2355 
2356 	ASSERT_SERIALIZED(&sc->vtnet_slz);
2357 	KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
2358 	    ("CTRL_RX feature not negotiated"));
2359 
2360 	/* Use the MAC filtering table allocated in vtnet_attach. */
2361 	filter = sc->vtnet_macfilter;
2362 	memset(filter, 0, sizeof(struct vtnet_mac_filter));
2363 
2364 	/* Unicast MAC addresses: */
2365 	//if_addr_rlock(ifp);
2366 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2367 		ifa = ifac->ifa;
2368 		if (ifa->ifa_addr->sa_family != AF_LINK)
2369 			continue;
2370 		else if (ucnt == VTNET_MAX_MAC_ENTRIES)
2371 			break;
2372 
2373 		bcopy(LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
2374 		    &filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN);
2375 		ucnt++;
2376 	}
2377 	//if_addr_runlock(ifp);
2378 
2379 	if (ucnt >= VTNET_MAX_MAC_ENTRIES) {
2380 		promisc = 1;
2381 		filter->vmf_unicast.nentries = 0;
2382 
2383 		if_printf(ifp, "more than %d MAC addresses assigned, "
2384 		    "falling back to promiscuous mode\n",
2385 		    VTNET_MAX_MAC_ENTRIES);
2386 	} else
2387 		filter->vmf_unicast.nentries = ucnt;
2388 
2389 	/* Multicast MAC addresses: */
2390 	//if_maddr_rlock(ifp);
2391 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2392 		if (ifma->ifma_addr->sa_family != AF_LINK)
2393 			continue;
2394 		else if (mcnt == VTNET_MAX_MAC_ENTRIES)
2395 			break;
2396 
2397 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2398 		    &filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN);
2399 		mcnt++;
2400 	}
2401 	//if_maddr_runlock(ifp);
2402 
2403 	if (mcnt >= VTNET_MAX_MAC_ENTRIES) {
2404 		allmulti = 1;
2405 		filter->vmf_multicast.nentries = 0;
2406 
2407 		if_printf(ifp, "more than %d multicast MAC addresses "
2408 		    "assigned, falling back to all-multicast mode\n",
2409 		    VTNET_MAX_MAC_ENTRIES);
2410 	} else
2411 		filter->vmf_multicast.nentries = mcnt;
2412 
2413 	if (promisc && allmulti)
2414 		goto out;
2415 
2416 	hdr.class = VIRTIO_NET_CTRL_MAC;
2417 	hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET;
2418 	ack = VIRTIO_NET_ERR;
2419 
2420 	sglist_init(&sg, 4, segs);
2421 	error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
2422 	error |= sglist_append(&sg, &filter->vmf_unicast,
2423 	    sizeof(struct vtnet_mac_table));
2424 	error |= sglist_append(&sg, &filter->vmf_multicast,
2425 	    sizeof(struct vtnet_mac_table));
2426 	error |= sglist_append(&sg, &ack, sizeof(uint8_t));
2427 	KASSERT(error == 0 && sg.sg_nseg == 4,
2428 	    ("error adding MAC filtering message to sglist"));
2429 
2430 	vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
2431 
2432 	if (ack != VIRTIO_NET_OK)
2433 		if_printf(ifp, "error setting host MAC filter table\n");
2434 
2435 out:
2436 	if (promisc)
2437 		if (vtnet_set_promisc(sc, 1) != 0)
2438 			if_printf(ifp, "cannot enable promiscuous mode\n");
2439 	if (allmulti)
2440 		if (vtnet_set_allmulti(sc, 1) != 0)
2441 			if_printf(ifp, "cannot enable all-multicast mode\n");
2442 }
2443 
2444 static int
2445 vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
2446 {
2447 	struct virtio_net_ctrl_hdr hdr __aligned(2);
2448 	struct sglist_seg segs[3];
2449 	struct sglist sg;
2450 	uint8_t ack;
2451 	int error;
2452 
2453 	hdr.class = VIRTIO_NET_CTRL_VLAN;
2454 	hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL;
2455 	ack = VIRTIO_NET_ERR;
2456 	error = 0;
2457 
2458 	sglist_init(&sg, 3, segs);
2459 	error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
2460 	error |= sglist_append(&sg, &tag, sizeof(uint16_t));
2461 	error |= sglist_append(&sg, &ack, sizeof(uint8_t));
2462 	KASSERT(error == 0 && sg.sg_nseg == 3,
2463 	    ("error adding VLAN control message to sglist"));
2464 
2465 	vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
2466 
2467 	return (ack == VIRTIO_NET_OK ? 0 : EIO);
2468 }
2469 
2470 static void
2471 vtnet_rx_filter_vlan(struct vtnet_softc *sc)
2472 {
2473 	device_t dev;
2474 	uint32_t w, mask;
2475 	uint16_t tag;
2476 	int i, nvlans, error;
2477 
2478 	ASSERT_SERIALIZED(&sc->vtnet_slz);
2479 	KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER,
2480 	    ("VLAN_FILTER feature not negotiated"));
2481 
2482 	dev = sc->vtnet_dev;
2483 	nvlans = sc->vtnet_nvlans;
2484 	error = 0;
2485 
2486 	/* Enable filtering for each configured VLAN. */
2487 	for (i = 0; i < VTNET_VLAN_SHADOW_SIZE && nvlans > 0; i++) {
2488 		w = sc->vtnet_vlan_shadow[i];
2489 		for (mask = 1, tag = i * 32; w != 0; mask <<= 1, tag++) {
2490 			if ((w & mask) != 0) {
2491 				w &= ~mask;
2492 				nvlans--;
2493 				if (vtnet_exec_vlan_filter(sc, 1, tag) != 0)
2494 					error++;
2495 			}
2496 		}
2497 	}
2498 
2499 	KASSERT(nvlans == 0, ("VLAN count incorrect"));
2500 	if (error)
2501 		device_printf(dev, "cannot restore VLAN filter table\n");
2502 }
2503 
2504 static void
2505 vtnet_set_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
2506 {
2507 	struct ifnet *ifp;
2508 	int idx, bit;
2509 
2510 	KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER,
2511 	    ("VLAN_FILTER feature not negotiated"));
2512 
2513 	if ((tag == 0) || (tag > 4095))
2514 		return;
2515 
2516 	ifp = sc->vtnet_ifp;
2517 	idx = (tag >> 5) & 0x7F;
2518 	bit = tag & 0x1F;
2519 
2520 	lwkt_serialize_enter(&sc->vtnet_slz);
2521 
2522 	/* Update shadow VLAN table. */
2523 	if (add) {
2524 		sc->vtnet_nvlans++;
2525 		sc->vtnet_vlan_shadow[idx] |= (1 << bit);
2526 	} else {
2527 		sc->vtnet_nvlans--;
2528 		sc->vtnet_vlan_shadow[idx] &= ~(1 << bit);
2529 	}
2530 
2531 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2532 		if (vtnet_exec_vlan_filter(sc, add, tag) != 0) {
2533 			device_printf(sc->vtnet_dev,
2534 			    "cannot %s VLAN %d %s the host filter table\n",
2535 			    add ? "add" : "remove", tag,
2536 			    add ? "to" : "from");
2537 		}
2538 	}
2539 
2540 	lwkt_serialize_exit(&sc->vtnet_slz);
2541 }
2542 
2543 static void
2544 vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
2545 {
2546 
2547 	if (ifp->if_softc != arg)
2548 		return;
2549 
2550 	vtnet_set_vlan_filter(arg, 1, tag);
2551 }
2552 
2553 static void
2554 vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
2555 {
2556 
2557 	if (ifp->if_softc != arg)
2558 		return;
2559 
2560 	vtnet_set_vlan_filter(arg, 0, tag);
2561 }
2562 
2563 static int
2564 vtnet_ifmedia_upd(struct ifnet *ifp)
2565 {
2566 	struct vtnet_softc *sc;
2567 	struct ifmedia *ifm;
2568 
2569 	sc = ifp->if_softc;
2570 	ifm = &sc->vtnet_media;
2571 
2572 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2573 		return (EINVAL);
2574 
2575 	return (0);
2576 }
2577 
2578 static void
2579 vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2580 {
2581 	struct vtnet_softc *sc;
2582 
2583 	sc = ifp->if_softc;
2584 
2585 	ifmr->ifm_status = IFM_AVALID;
2586 	ifmr->ifm_active = IFM_ETHER;
2587 
2588 	lwkt_serialize_enter(&sc->vtnet_slz);
2589 	if (vtnet_is_link_up(sc) != 0) {
2590 		ifmr->ifm_status |= IFM_ACTIVE;
2591 		ifmr->ifm_active |= VTNET_MEDIATYPE;
2592 	} else
2593 		ifmr->ifm_active |= IFM_NONE;
2594 	lwkt_serialize_exit(&sc->vtnet_slz);
2595 }
2596 
2597 static void
2598 vtnet_add_statistics(struct vtnet_softc *sc)
2599 {
2600 	device_t dev;
2601 	struct vtnet_statistics *stats;
2602 	struct sysctl_ctx_list *ctx;
2603 	struct sysctl_oid *tree;
2604 	struct sysctl_oid_list *child;
2605 
2606 	dev = sc->vtnet_dev;
2607 	stats = &sc->vtnet_stats;
2608 	ctx = device_get_sysctl_ctx(dev);
2609 	tree = device_get_sysctl_tree(dev);
2610 	child = SYSCTL_CHILDREN(tree);
2611 
2612 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_alloc_failed",
2613 	    CTLFLAG_RD, &stats->mbuf_alloc_failed,
2614 	    "Mbuf cluster allocation failures");
2615 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_frame_too_large",
2616 	    CTLFLAG_RD, &stats->rx_frame_too_large,
2617 	    "Received frame larger than the mbuf chain");
2618 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_enq_replacement_failed",
2619 	    CTLFLAG_RD, &stats->rx_enq_replacement_failed,
2620 	    "Enqueuing the replacement receive mbuf failed");
2621 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_mergeable_failed",
2622 	    CTLFLAG_RD, &stats->rx_mergeable_failed,
2623 	    "Mergeable buffers receive failures");
2624 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_ethtype",
2625 	    CTLFLAG_RD, &stats->rx_csum_bad_ethtype,
2626 	    "Received checksum offloaded buffer with unsupported "
2627 	    "Ethernet type");
2628 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_start",
2629 	    CTLFLAG_RD, &stats->rx_csum_bad_start,
2630 	    "Received checksum offloaded buffer with incorrect start offset");
2631 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_ipproto",
2632 	    CTLFLAG_RD, &stats->rx_csum_bad_ipproto,
2633 	    "Received checksum offloaded buffer with incorrect IP protocol");
2634 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_offset",
2635 	    CTLFLAG_RD, &stats->rx_csum_bad_offset,
2636 	    "Received checksum offloaded buffer with incorrect offset");
2637 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_failed",
2638 	    CTLFLAG_RD, &stats->rx_csum_failed,
2639 	    "Received buffer checksum offload failed");
2640 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_offloaded",
2641 	    CTLFLAG_RD, &stats->rx_csum_offloaded,
2642 	    "Received buffer checksum offload succeeded");
2643 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_task_rescheduled",
2644 	    CTLFLAG_RD, &stats->rx_task_rescheduled,
2645 	    "Times the receive interrupt task rescheduled itself");
2646 
2647 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_csum_offloaded",
2648 	    CTLFLAG_RD, &stats->tx_csum_offloaded,
2649 	    "Offloaded checksum of transmitted buffer");
2650 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_tso_offloaded",
2651 	    CTLFLAG_RD, &stats->tx_tso_offloaded,
2652 	    "Segmentation offload of transmitted buffer");
2653 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_csum_bad_ethtype",
2654 	    CTLFLAG_RD, &stats->tx_csum_bad_ethtype,
2655 	    "Aborted transmit of checksum offloaded buffer with unknown "
2656 	    "Ethernet type");
2657 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_tso_bad_ethtype",
2658 	    CTLFLAG_RD, &stats->tx_tso_bad_ethtype,
2659 	    "Aborted transmit of TSO buffer with unknown Ethernet type");
2660 	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_task_rescheduled",
2661 	    CTLFLAG_RD, &stats->tx_task_rescheduled,
2662 	    "Times the transmit interrupt task rescheduled itself");
2663 }
2664 
2665 static int
2666 vtnet_enable_rx_intr(struct vtnet_softc *sc)
2667 {
2668 
2669 	return (virtqueue_enable_intr(sc->vtnet_rx_vq));
2670 }
2671 
2672 static void
2673 vtnet_disable_rx_intr(struct vtnet_softc *sc)
2674 {
2675 
2676 	virtqueue_disable_intr(sc->vtnet_rx_vq);
2677 }
2678 
2679 static int
2680 vtnet_enable_tx_intr(struct vtnet_softc *sc)
2681 {
2682 
2683 #ifdef VTNET_TX_INTR_MODERATION
2684 	return (0);
2685 #else
2686 	return (virtqueue_enable_intr(sc->vtnet_tx_vq));
2687 #endif
2688 }
2689 
2690 static void
2691 vtnet_disable_tx_intr(struct vtnet_softc *sc)
2692 {
2693 
2694 	virtqueue_disable_intr(sc->vtnet_tx_vq);
2695 }
2696