xref: /dragonfly/sys/kern/imgact_elf.c (revision 0ca59c34)
1 /*-
2  * Copyright (c) 2000 David O'Brien
3  * Copyright (c) 1995-1996 Søren Schmidt
4  * Copyright (c) 1996 Peter Wemm
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/kern/imgact_elf.c,v 1.73.2.13 2002/12/28 19:49:41 dillon Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/exec.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/imgact.h>
38 #include <sys/imgact_elf.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/nlookup.h>
45 #include <sys/pioctl.h>
46 #include <sys/procfs.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/stat.h>
50 #include <sys/syscall.h>
51 #include <sys/sysctl.h>
52 #include <sys/sysent.h>
53 #include <sys/vnode.h>
54 #include <sys/eventhandler.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_param.h>
61 #include <vm/pmap.h>
62 #include <sys/lock.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_extern.h>
66 
67 #include <machine/elf.h>
68 #include <machine/md_var.h>
69 #include <sys/mount.h>
70 #include <sys/ckpt.h>
71 
72 #define OLD_EI_BRAND	8
73 #define truncps(va,ps)	((va) & ~(ps - 1))
74 #define aligned(a,t)	(truncps((u_long)(a), sizeof(t)) == (u_long)(a))
75 
76 static int __elfN(check_header)(const Elf_Ehdr *hdr);
77 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
78     const char *interp, int32_t *osrel);
79 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
80     u_long *entry);
81 static int __elfN(load_section)(struct proc *p,
82     struct vmspace *vmspace, struct vnode *vp,
83     vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
84     vm_prot_t prot);
85 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
86 static boolean_t __elfN(bsd_trans_osrel)(const Elf_Note *note,
87     int32_t *osrel);
88 static boolean_t __elfN(check_note)(struct image_params *imgp,
89     Elf_Brandnote *checknote, int32_t *osrel);
90 static vm_prot_t __elfN(trans_prot)(Elf_Word);
91 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
92 static boolean_t check_PT_NOTE(struct image_params *imgp,
93     Elf_Brandnote *checknote, int32_t *osrel, const Elf_Phdr * pnote);
94 static boolean_t extract_interpreter(struct image_params *imgp,
95     const Elf_Phdr *pinterpreter, char *data);
96 
97 static int elf_legacy_coredump = 0;
98 static int __elfN(fallback_brand) = -1;
99 #if defined(__x86_64__)
100 SYSCTL_NODE(_kern, OID_AUTO, elf64, CTLFLAG_RW, 0, "");
101 SYSCTL_INT(_debug, OID_AUTO, elf64_legacy_coredump, CTLFLAG_RW,
102     &elf_legacy_coredump, 0, "legacy coredump mode");
103 SYSCTL_INT(_kern_elf64, OID_AUTO, fallback_brand, CTLFLAG_RW,
104     &elf64_fallback_brand, 0, "ELF64 brand of last resort");
105 TUNABLE_INT("kern.elf64.fallback_brand", &elf64_fallback_brand);
106 #else /* i386 assumed */
107 SYSCTL_NODE(_kern, OID_AUTO, elf32, CTLFLAG_RW, 0, "");
108 SYSCTL_INT(_debug, OID_AUTO, elf32_legacy_coredump, CTLFLAG_RW,
109     &elf_legacy_coredump, 0, "legacy coredump mode");
110 SYSCTL_INT(_kern_elf32, OID_AUTO, fallback_brand, CTLFLAG_RW,
111     &elf32_fallback_brand, 0, "ELF32 brand of last resort");
112 TUNABLE_INT("kern.elf32.fallback_brand", &elf32_fallback_brand);
113 #endif
114 
115 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
116 
117 static const char DRAGONFLY_ABI_VENDOR[] = "DragonFly";
118 static const char FREEBSD_ABI_VENDOR[]   = "FreeBSD";
119 
120 Elf_Brandnote __elfN(dragonfly_brandnote) = {
121 	.hdr.n_namesz	= sizeof(DRAGONFLY_ABI_VENDOR),
122 	.hdr.n_descsz	= sizeof(int32_t),
123 	.hdr.n_type	= 1,
124 	.vendor		= DRAGONFLY_ABI_VENDOR,
125 	.flags		= BN_TRANSLATE_OSREL,
126 	.trans_osrel	= __elfN(bsd_trans_osrel),
127 };
128 
129 Elf_Brandnote __elfN(freebsd_brandnote) = {
130 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
131 	.hdr.n_descsz	= sizeof(int32_t),
132 	.hdr.n_type	= 1,
133 	.vendor		= FREEBSD_ABI_VENDOR,
134 	.flags		= BN_TRANSLATE_OSREL,
135 	.trans_osrel	= __elfN(bsd_trans_osrel),
136 };
137 
138 int
139 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
140 {
141 	int i;
142 
143 	for (i = 0; i < MAX_BRANDS; i++) {
144 		if (elf_brand_list[i] == NULL) {
145 			elf_brand_list[i] = entry;
146 			break;
147 		}
148 	}
149 	if (i == MAX_BRANDS) {
150 		uprintf("WARNING: %s: could not insert brandinfo entry: %p\n",
151 			__func__, entry);
152 		return (-1);
153 	}
154 	return (0);
155 }
156 
157 int
158 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
159 {
160 	int i;
161 
162 	for (i = 0; i < MAX_BRANDS; i++) {
163 		if (elf_brand_list[i] == entry) {
164 			elf_brand_list[i] = NULL;
165 			break;
166 		}
167 	}
168 	if (i == MAX_BRANDS)
169 		return (-1);
170 	return (0);
171 }
172 
173 /*
174  * Check if an elf brand is being used anywhere in the system.
175  *
176  * Used by the linux emulation module unloader.  This isn't safe from
177  * races.
178  */
179 struct elf_brand_inuse_info {
180 	int rval;
181 	Elf_Brandinfo *entry;
182 };
183 
184 static int elf_brand_inuse_callback(struct proc *p, void *data);
185 
186 int
187 __elfN(brand_inuse)(Elf_Brandinfo *entry)
188 {
189 	struct elf_brand_inuse_info info;
190 
191 	info.rval = FALSE;
192 	info.entry = entry;
193 	allproc_scan(elf_brand_inuse_callback, &info);
194 	return (info.rval);
195 }
196 
197 static
198 int
199 elf_brand_inuse_callback(struct proc *p, void *data)
200 {
201 	struct elf_brand_inuse_info *info = data;
202 
203 	if (p->p_sysent == info->entry->sysvec) {
204 		info->rval = TRUE;
205 		return (-1);
206 	}
207 	return (0);
208 }
209 
210 static int
211 __elfN(check_header)(const Elf_Ehdr *hdr)
212 {
213 	Elf_Brandinfo *bi;
214 	int i;
215 
216 	if (!IS_ELF(*hdr) ||
217 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
218 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
219 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
220 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
221 	    hdr->e_ehsize != sizeof(Elf_Ehdr) ||
222 	    hdr->e_version != ELF_TARG_VER)
223 		return (ENOEXEC);
224 
225 	/*
226 	 * Make sure we have at least one brand for this machine.
227 	 */
228 
229 	for (i = 0; i < MAX_BRANDS; i++) {
230 		bi = elf_brand_list[i];
231 		if (bi != NULL && bi->machine == hdr->e_machine)
232 			break;
233 	}
234 	if (i == MAX_BRANDS)
235 		return (ENOEXEC);
236 
237 	return (0);
238 }
239 
240 static int
241 __elfN(load_section)(struct proc *p, struct vmspace *vmspace, struct vnode *vp,
242 		 vm_offset_t offset, caddr_t vmaddr, size_t memsz,
243 		 size_t filsz, vm_prot_t prot)
244 {
245 	size_t map_len;
246 	vm_offset_t map_addr;
247 	int error, rv, cow;
248 	int count;
249 	int shared;
250 	size_t copy_len;
251 	vm_object_t object;
252 	vm_offset_t file_addr;
253 
254 	object = vp->v_object;
255 	error = 0;
256 
257 	/*
258 	 * In most cases we will be able to use a shared lock on the
259 	 * object we are inserting into the map.  The lock will be
260 	 * upgraded in situations where new VM pages must be allocated.
261 	 */
262 	vm_object_hold_shared(object);
263 	shared = 1;
264 
265 	/*
266 	 * It's necessary to fail if the filsz + offset taken from the
267 	 * header is greater than the actual file pager object's size.
268 	 * If we were to allow this, then the vm_map_find() below would
269 	 * walk right off the end of the file object and into the ether.
270 	 *
271 	 * While I'm here, might as well check for something else that
272 	 * is invalid: filsz cannot be greater than memsz.
273 	 */
274 	if ((off_t)filsz + offset > vp->v_filesize || filsz > memsz) {
275 		uprintf("elf_load_section: truncated ELF file\n");
276 		vm_object_drop(object);
277 		return (ENOEXEC);
278 	}
279 
280 	map_addr = trunc_page((vm_offset_t)vmaddr);
281 	file_addr = trunc_page(offset);
282 
283 	/*
284 	 * We have two choices.  We can either clear the data in the last page
285 	 * of an oversized mapping, or we can start the anon mapping a page
286 	 * early and copy the initialized data into that first page.  We
287 	 * choose the second..
288 	 */
289 	if (memsz > filsz)
290 		map_len = trunc_page(offset+filsz) - file_addr;
291 	else
292 		map_len = round_page(offset+filsz) - file_addr;
293 
294 	if (map_len != 0) {
295 		vm_object_reference_locked(object);
296 
297 		/* cow flags: don't dump readonly sections in core */
298 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT;
299 		if ((prot & VM_PROT_WRITE) == 0)
300 			cow |= MAP_DISABLE_COREDUMP;
301 		if (shared == 0)
302 			cow |= MAP_PREFAULT_RELOCK;
303 
304 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
305 		vm_map_lock(&vmspace->vm_map);
306 		rv = vm_map_insert(&vmspace->vm_map, &count,
307 				      object, NULL,
308 				      file_addr,	/* file offset */
309 				      map_addr,		/* virtual start */
310 				      map_addr + map_len,/* virtual end */
311 				      VM_MAPTYPE_NORMAL,
312 				      prot, VM_PROT_ALL,
313 				      cow);
314 		vm_map_unlock(&vmspace->vm_map);
315 		vm_map_entry_release(count);
316 
317 		/*
318 		 * NOTE: Object must have a hold ref when calling
319 		 * vm_object_deallocate().
320 		 */
321 		if (rv != KERN_SUCCESS) {
322 			vm_object_drop(object);
323 			vm_object_deallocate(object);
324 			return (EINVAL);
325 		}
326 
327 		/* we can stop now if we've covered it all */
328 		if (memsz == filsz) {
329 			vm_object_drop(object);
330 			return (0);
331 		}
332 	}
333 
334 	/*
335 	 * We have to get the remaining bit of the file into the first part
336 	 * of the oversized map segment.  This is normally because the .data
337 	 * segment in the file is extended to provide bss.  It's a neat idea
338 	 * to try and save a page, but it's a pain in the behind to implement.
339 	 */
340 	copy_len = (offset + filsz) - trunc_page(offset + filsz);
341 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
342 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
343 
344 	/* This had damn well better be true! */
345         if (map_len != 0) {
346 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
347 		vm_map_lock(&vmspace->vm_map);
348 		rv = vm_map_insert(&vmspace->vm_map, &count,
349 					NULL, NULL,
350 					0,
351 					map_addr,
352 					map_addr + map_len,
353 					VM_MAPTYPE_NORMAL,
354 					VM_PROT_ALL, VM_PROT_ALL,
355 					0);
356 		vm_map_unlock(&vmspace->vm_map);
357 		vm_map_entry_release(count);
358 		if (rv != KERN_SUCCESS) {
359 			vm_object_drop(object);
360 			return (EINVAL);
361 		}
362 	}
363 
364 	if (copy_len != 0) {
365 		struct lwbuf *lwb;
366 		struct lwbuf lwb_cache;
367 		vm_page_t m;
368 
369 		m = vm_fault_object_page(object, trunc_page(offset + filsz),
370 					 VM_PROT_READ, 0, &shared, &error);
371 		vm_object_drop(object);
372 		if (m) {
373 			lwb = lwbuf_alloc(m, &lwb_cache);
374 			error = copyout((caddr_t)lwbuf_kva(lwb),
375 					(caddr_t)map_addr, copy_len);
376 			lwbuf_free(lwb);
377 			vm_page_unhold(m);
378 		}
379 	} else {
380 		vm_object_drop(object);
381 	}
382 
383 	/*
384 	 * set it to the specified protection
385 	 */
386 	if (error == 0) {
387 		vm_map_protect(&vmspace->vm_map,
388 			       map_addr, map_addr + map_len,
389 			       prot, FALSE);
390 	}
391 	return (error);
392 }
393 
394 /*
395  * Load the file "file" into memory.  It may be either a shared object
396  * or an executable.
397  *
398  * The "addr" reference parameter is in/out.  On entry, it specifies
399  * the address where a shared object should be loaded.  If the file is
400  * an executable, this value is ignored.  On exit, "addr" specifies
401  * where the file was actually loaded.
402  *
403  * The "entry" reference parameter is out only.  On exit, it specifies
404  * the entry point for the loaded file.
405  */
406 static int
407 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, u_long *entry)
408 {
409 	struct {
410 		struct nlookupdata nd;
411 		struct vattr attr;
412 		struct image_params image_params;
413 	} *tempdata;
414 	const Elf_Ehdr *hdr = NULL;
415 	const Elf_Phdr *phdr = NULL;
416 	struct nlookupdata *nd;
417 	struct vmspace *vmspace = p->p_vmspace;
418 	struct vattr *attr;
419 	struct image_params *imgp;
420 	struct mount *topmnt;
421 	vm_prot_t prot;
422 	u_long rbase;
423 	u_long base_addr = 0;
424 	int error, i, numsegs;
425 
426 	tempdata = kmalloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
427 	nd = &tempdata->nd;
428 	attr = &tempdata->attr;
429 	imgp = &tempdata->image_params;
430 
431 	/*
432 	 * Initialize part of the common data
433 	 */
434 	imgp->proc = p;
435 	imgp->attr = attr;
436 	imgp->firstpage = NULL;
437 	imgp->image_header = NULL;
438 	imgp->vp = NULL;
439 
440 	error = nlookup_init(nd, file, UIO_SYSSPACE, NLC_FOLLOW);
441 	if (error == 0)
442 		error = nlookup(nd);
443 	if (error == 0)
444 		error = cache_vget(&nd->nl_nch, nd->nl_cred,
445 				   LK_SHARED, &imgp->vp);
446 	topmnt = nd->nl_nch.mount;
447 	nlookup_done(nd);
448 	if (error)
449 		goto fail;
450 
451 	/*
452 	 * Check permissions, modes, uid, etc on the file, and "open" it.
453 	 */
454 	error = exec_check_permissions(imgp, topmnt);
455 	if (error) {
456 		vn_unlock(imgp->vp);
457 		goto fail;
458 	}
459 
460 	error = exec_map_first_page(imgp);
461 	/*
462 	 * Also make certain that the interpreter stays the same, so set
463 	 * its VTEXT flag, too.
464 	 */
465 	if (error == 0)
466 		vsetflags(imgp->vp, VTEXT);
467 	vn_unlock(imgp->vp);
468 	if (error)
469                 goto fail;
470 
471 	hdr = (const Elf_Ehdr *)imgp->image_header;
472 	if ((error = __elfN(check_header)(hdr)) != 0)
473 		goto fail;
474 	if (hdr->e_type == ET_DYN)
475 		rbase = *addr;
476 	else if (hdr->e_type == ET_EXEC)
477 		rbase = 0;
478 	else {
479 		error = ENOEXEC;
480 		goto fail;
481 	}
482 
483 	/* Only support headers that fit within first page for now      */
484 	/*    (multiplication of two Elf_Half fields will not overflow) */
485 	if ((hdr->e_phoff > PAGE_SIZE) ||
486 	    (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) {
487 		error = ENOEXEC;
488 		goto fail;
489 	}
490 
491 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
492 	if (!aligned(phdr, Elf_Addr)) {
493 		error = ENOEXEC;
494 		goto fail;
495 	}
496 
497 	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
498 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
499 			/* Loadable segment */
500 			prot = __elfN(trans_prot)(phdr[i].p_flags);
501 			error = __elfN(load_section)(
502 				    p, vmspace, imgp->vp,
503 				    phdr[i].p_offset,
504 				    (caddr_t)phdr[i].p_vaddr +
505 				    rbase,
506 				    phdr[i].p_memsz,
507 				    phdr[i].p_filesz, prot);
508 			if (error != 0)
509 				goto fail;
510 			/*
511 			 * Establish the base address if this is the
512 			 * first segment.
513 			 */
514 			if (numsegs == 0)
515   				base_addr = trunc_page(phdr[i].p_vaddr + rbase);
516 			numsegs++;
517 		}
518 	}
519 	*addr = base_addr;
520 	*entry = (unsigned long)hdr->e_entry + rbase;
521 
522 fail:
523 	if (imgp->firstpage)
524 		exec_unmap_first_page(imgp);
525 	if (imgp->vp) {
526 		vrele(imgp->vp);
527 		imgp->vp = NULL;
528 	}
529 	kfree(tempdata, M_TEMP);
530 
531 	return (error);
532 }
533 
534 static Elf_Brandinfo *
535 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
536     int32_t *osrel)
537 {
538 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
539 	Elf_Brandinfo *bi;
540 	boolean_t ret;
541 	int i;
542 
543 	/* We support four types of branding -- (1) the ELF EI_OSABI field
544 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
545 	 * branding within the ELF header, (3) path of the `interp_path' field,
546 	 * and (4) the ".note.ABI-tag" ELF section.
547 	 */
548 
549 	/* Look for an ".note.ABI-tag" ELF section */
550 	for (i = 0; i < MAX_BRANDS; i++) {
551 		bi = elf_brand_list[i];
552 
553 		if (bi == NULL)
554 			continue;
555 		if (hdr->e_machine == bi->machine && (bi->flags &
556 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
557 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
558 			if (ret)
559 				return (bi);
560 		}
561 	}
562 
563 	/* If the executable has a brand, search for it in the brand list. */
564 	for (i = 0;  i < MAX_BRANDS;  i++) {
565 		bi = elf_brand_list[i];
566 
567                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
568 			continue;
569 		if (hdr->e_machine == bi->machine &&
570 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
571 		    strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
572 		    bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0))
573 			return (bi);
574 	}
575 
576 	/* Lacking a known brand, search for a recognized interpreter. */
577 	if (interp != NULL) {
578 		for (i = 0;  i < MAX_BRANDS;  i++) {
579 			bi = elf_brand_list[i];
580 
581                         if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
582 				continue;
583 			if (hdr->e_machine == bi->machine &&
584 			    strcmp(interp, bi->interp_path) == 0)
585 				return (bi);
586 		}
587 	}
588 
589 	/* Lacking a recognized interpreter, try the default brand */
590 	for (i = 0; i < MAX_BRANDS; i++) {
591 		bi = elf_brand_list[i];
592 
593 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
594 			continue;
595 		if (hdr->e_machine == bi->machine &&
596 		    __elfN(fallback_brand) == bi->brand)
597 			return (bi);
598 	}
599 	return (NULL);
600 }
601 
602 static int
603 __CONCAT(exec_,__elfN(imgact))(struct image_params *imgp)
604 {
605 	const Elf_Ehdr *hdr = (const Elf_Ehdr *) imgp->image_header;
606 	const Elf_Phdr *phdr;
607 	Elf_Auxargs *elf_auxargs;
608 	struct vmspace *vmspace;
609 	vm_prot_t prot;
610 	u_long text_size = 0, data_size = 0, total_size = 0;
611 	u_long text_addr = 0, data_addr = 0;
612 	u_long seg_size, seg_addr;
613 	u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0;
614 	int32_t osrel = 0;
615 	int error = 0, i, n;
616 	boolean_t failure;
617 	char *interp = NULL;
618 	const char *newinterp = NULL;
619 	Elf_Brandinfo *brand_info;
620 	char *path;
621 
622 	/*
623 	 * Do we have a valid ELF header ?
624 	 *
625 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later if a particular
626 	 * brand doesn't support it.  Both DragonFly platforms do by default.
627 	 */
628 	if (__elfN(check_header)(hdr) != 0 ||
629 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
630 		return (-1);
631 
632 	/*
633 	 * From here on down, we return an errno, not -1, as we've
634 	 * detected an ELF file.
635 	 */
636 
637 	if ((hdr->e_phoff > PAGE_SIZE) ||
638 	    (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) {
639 		/* Only support headers in first page for now */
640 		return (ENOEXEC);
641 	}
642 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
643 	if (!aligned(phdr, Elf_Addr))
644 		return (ENOEXEC);
645 	n = 0;
646 	baddr = 0;
647 	for (i = 0; i < hdr->e_phnum; i++) {
648 		if (phdr[i].p_type == PT_LOAD) {
649 			if (n == 0)
650 				baddr = phdr[i].p_vaddr;
651 			n++;
652 			continue;
653 		}
654 		if (phdr[i].p_type == PT_INTERP) {
655 			/*
656 			 * If interp is already defined there are more than
657 			 * one PT_INTERP program headers present.  Take only
658 			 * the first one and ignore the rest.
659 			 */
660 			if (interp != NULL)
661 				continue;
662 
663 			if (phdr[i].p_filesz == 0 ||
664 			    phdr[i].p_filesz > PAGE_SIZE ||
665 			    phdr[i].p_filesz > MAXPATHLEN)
666 				return (ENOEXEC);
667 
668 			interp = kmalloc(phdr[i].p_filesz, M_TEMP, M_WAITOK);
669 			failure = extract_interpreter(imgp, &phdr[i], interp);
670 			if (failure) {
671 				kfree(interp, M_TEMP);
672 				return (ENOEXEC);
673 			}
674 			continue;
675 		}
676 	}
677 
678 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel);
679 	if (brand_info == NULL) {
680 		uprintf("ELF binary type \"%u\" not known.\n",
681 		    hdr->e_ident[EI_OSABI]);
682 		if (interp != NULL)
683 		        kfree(interp, M_TEMP);
684 		return (ENOEXEC);
685 	}
686 	if (hdr->e_type == ET_DYN) {
687 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
688 		        if (interp != NULL)
689 		                kfree(interp, M_TEMP);
690 			return (ENOEXEC);
691                 }
692 		/*
693 		 * Honour the base load address from the dso if it is
694 		 * non-zero for some reason.
695 		 */
696 		if (baddr == 0)
697 			et_dyn_addr = ET_DYN_LOAD_ADDR;
698 		else
699 			et_dyn_addr = 0;
700 	} else
701 		et_dyn_addr = 0;
702 
703 	if (interp != NULL && brand_info->interp_newpath != NULL)
704 		newinterp = brand_info->interp_newpath;
705 
706 	exec_new_vmspace(imgp, NULL);
707 
708 	/*
709 	 * Yeah, I'm paranoid.  There is every reason in the world to get
710 	 * VTEXT now since from here on out, there are places we can have
711 	 * a context switch.  Better safe than sorry; I really don't want
712 	 * the file to change while it's being loaded.
713 	 */
714 	vsetflags(imgp->vp, VTEXT);
715 
716 	vmspace = imgp->proc->p_vmspace;
717 
718 	for (i = 0; i < hdr->e_phnum; i++) {
719 		switch (phdr[i].p_type) {
720 		case PT_LOAD:	/* Loadable segment */
721 			if (phdr[i].p_memsz == 0)
722 				break;
723 			prot = __elfN(trans_prot)(phdr[i].p_flags);
724 
725 			if ((error = __elfN(load_section)(
726 					imgp->proc,
727 					vmspace,
728 					imgp->vp,
729 					phdr[i].p_offset,
730 					(caddr_t)phdr[i].p_vaddr + et_dyn_addr,
731 					phdr[i].p_memsz,
732 					phdr[i].p_filesz,
733 					prot)) != 0) {
734                                 if (interp != NULL)
735                                         kfree (interp, M_TEMP);
736 				return (error);
737                         }
738 
739 			/*
740 			 * If this segment contains the program headers,
741 			 * remember their virtual address for the AT_PHDR
742 			 * aux entry. Static binaries don't usually include
743 			 * a PT_PHDR entry.
744 			 */
745 			if (phdr[i].p_offset == 0 &&
746 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
747 				<= phdr[i].p_filesz)
748 				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
749 				    et_dyn_addr;
750 
751 			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
752 			seg_size = round_page(phdr[i].p_memsz +
753 			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
754 
755 			/*
756 			 * Is this .text or .data?  We can't use
757 			 * VM_PROT_WRITE or VM_PROT_EXEC, it breaks the
758 			 * alpha terribly and possibly does other bad
759 			 * things so we stick to the old way of figuring
760 			 * it out:  If the segment contains the program
761 			 * entry point, it's a text segment, otherwise it
762 			 * is a data segment.
763 			 *
764 			 * Note that obreak() assumes that data_addr +
765 			 * data_size == end of data load area, and the ELF
766 			 * file format expects segments to be sorted by
767 			 * address.  If multiple data segments exist, the
768 			 * last one will be used.
769 			 */
770 			if (hdr->e_entry >= phdr[i].p_vaddr &&
771 			    hdr->e_entry < (phdr[i].p_vaddr +
772 			    phdr[i].p_memsz)) {
773 				text_size = seg_size;
774 				text_addr = seg_addr;
775 				entry = (u_long)hdr->e_entry + et_dyn_addr;
776 			} else {
777 				data_size = seg_size;
778 				data_addr = seg_addr;
779 			}
780 			total_size += seg_size;
781 
782 			/*
783 			 * Check limits.  It should be safe to check the
784 			 * limits after loading the segment since we do
785 			 * not actually fault in all the segment's pages.
786 			 */
787 			if (data_size >
788 			    imgp->proc->p_rlimit[RLIMIT_DATA].rlim_cur ||
789 			    text_size > maxtsiz ||
790 			    total_size >
791 			    imgp->proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
792 				if (interp != NULL)
793 					kfree(interp, M_TEMP);
794 				error = ENOMEM;
795 				return (error);
796 			}
797 			break;
798 		case PT_PHDR: 	/* Program header table info */
799 			proghdr = phdr[i].p_vaddr + et_dyn_addr;
800 			break;
801 		default:
802 			break;
803 		}
804 	}
805 
806 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
807 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
808 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
809 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
810 
811 	addr = ELF_RTLD_ADDR(vmspace);
812 
813 	imgp->entry_addr = entry;
814 
815 	imgp->proc->p_sysent = brand_info->sysvec;
816 	EVENTHANDLER_INVOKE(process_exec, imgp);
817 
818 	if (interp != NULL) {
819 		int have_interp = FALSE;
820 		if (brand_info->emul_path != NULL &&
821 		    brand_info->emul_path[0] != '\0') {
822 			path = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
823 		        ksnprintf(path, MAXPATHLEN, "%s%s",
824 			    brand_info->emul_path, interp);
825 			error = __elfN(load_file)(imgp->proc, path, &addr,
826 			    &imgp->entry_addr);
827 			kfree(path, M_TEMP);
828 			if (error == 0)
829 				have_interp = TRUE;
830 		}
831 		if (!have_interp && newinterp != NULL) {
832 			error = __elfN(load_file)(imgp->proc, newinterp,
833 			    &addr, &imgp->entry_addr);
834 			if (error == 0)
835 				have_interp = TRUE;
836 		}
837 		if (!have_interp) {
838 			error = __elfN(load_file)(imgp->proc, interp, &addr,
839 			    &imgp->entry_addr);
840 		}
841 		if (error != 0) {
842 			uprintf("ELF interpreter %s not found\n", interp);
843 			kfree(interp, M_TEMP);
844 			return (error);
845 		}
846 		kfree(interp, M_TEMP);
847 	} else
848 		addr = et_dyn_addr;
849 
850 	/*
851 	 * Construct auxargs table (used by the fixup routine)
852 	 */
853 	elf_auxargs = kmalloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
854 	elf_auxargs->execfd = -1;
855 	elf_auxargs->phdr = proghdr;
856 	elf_auxargs->phent = hdr->e_phentsize;
857 	elf_auxargs->phnum = hdr->e_phnum;
858 	elf_auxargs->pagesz = PAGE_SIZE;
859 	elf_auxargs->base = addr;
860 	elf_auxargs->flags = 0;
861 	elf_auxargs->entry = entry;
862 
863 	imgp->auxargs = elf_auxargs;
864 	imgp->interpreted = 0;
865 	imgp->proc->p_osrel = osrel;
866 
867 	return (error);
868 }
869 
870 int
871 __elfN(dragonfly_fixup)(register_t **stack_base, struct image_params *imgp)
872 {
873 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
874 	Elf_Addr *base;
875 	Elf_Addr *pos;
876 
877 	base = (Elf_Addr *)*stack_base;
878 	pos = base + (imgp->args->argc + imgp->args->envc + 2);
879 
880 	if (args->execfd != -1)
881 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
882 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
883 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
884 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
885 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
886 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
887 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
888 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
889 	if (imgp->execpathp != 0)
890 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
891 	AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate);
892 	AUXARGS_ENTRY(pos, AT_NULL, 0);
893 
894 	kfree(imgp->auxargs, M_TEMP);
895 	imgp->auxargs = NULL;
896 
897 	base--;
898 	suword(base, (long)imgp->args->argc);
899 	*stack_base = (register_t *)base;
900 	return (0);
901 }
902 
903 /*
904  * Code for generating ELF core dumps.
905  */
906 
907 typedef int (*segment_callback)(vm_map_entry_t, void *);
908 
909 /* Closure for cb_put_phdr(). */
910 struct phdr_closure {
911 	Elf_Phdr *phdr;		/* Program header to fill in (incremented) */
912 	Elf_Phdr *phdr_max;	/* Pointer bound for error check */
913 	Elf_Off offset;		/* Offset of segment in core file */
914 };
915 
916 /* Closure for cb_size_segment(). */
917 struct sseg_closure {
918 	int count;		/* Count of writable segments. */
919 	size_t vsize;		/* Total size of all writable segments. */
920 };
921 
922 /* Closure for cb_put_fp(). */
923 struct fp_closure {
924 	struct vn_hdr *vnh;
925 	struct vn_hdr *vnh_max;
926 	int count;
927 	struct stat *sb;
928 };
929 
930 typedef struct elf_buf {
931 	char	*buf;
932 	size_t	off;
933 	size_t	off_max;
934 } *elf_buf_t;
935 
936 static void *target_reserve(elf_buf_t target, size_t bytes, int *error);
937 
938 static int cb_put_phdr (vm_map_entry_t, void *);
939 static int cb_size_segment (vm_map_entry_t, void *);
940 static int cb_fpcount_segment(vm_map_entry_t, void *);
941 static int cb_put_fp(vm_map_entry_t, void *);
942 
943 
944 static int each_segment (struct proc *, segment_callback, void *, int);
945 static int __elfN(corehdr)(struct lwp *, int, struct file *, struct ucred *,
946 			int, elf_buf_t);
947 enum putmode { WRITE, DRYRUN };
948 static int __elfN(puthdr)(struct lwp *, elf_buf_t, int sig, enum putmode,
949 			int, struct file *);
950 static int elf_putallnotes(struct lwp *, elf_buf_t, int, enum putmode);
951 static int __elfN(putnote)(elf_buf_t, const char *, int, const void *, size_t);
952 
953 static int elf_putsigs(struct lwp *, elf_buf_t);
954 static int elf_puttextvp(struct proc *, elf_buf_t);
955 static int elf_putfiles(struct proc *, elf_buf_t, struct file *);
956 
957 int
958 __elfN(coredump)(struct lwp *lp, int sig, struct vnode *vp, off_t limit)
959 {
960 	struct file *fp;
961 	int error;
962 
963 	if ((error = falloc(NULL, &fp, NULL)) != 0)
964 		return (error);
965 	fsetcred(fp, lp->lwp_proc->p_ucred);
966 
967 	/*
968 	 * XXX fixme.
969 	 */
970 	fp->f_type = DTYPE_VNODE;
971 	fp->f_flag = O_CREAT|O_WRONLY|O_NOFOLLOW;
972 	fp->f_ops = &vnode_fileops;
973 	fp->f_data = vp;
974 
975 	error = generic_elf_coredump(lp, sig, fp, limit);
976 
977 	fp->f_type = 0;
978 	fp->f_flag = 0;
979 	fp->f_ops = &badfileops;
980 	fp->f_data = NULL;
981 	fdrop(fp);
982 	return (error);
983 }
984 
985 int
986 generic_elf_coredump(struct lwp *lp, int sig, struct file *fp, off_t limit)
987 {
988 	struct proc *p = lp->lwp_proc;
989 	struct ucred *cred = p->p_ucred;
990 	int error = 0;
991 	struct sseg_closure seginfo;
992 	struct elf_buf target;
993 
994 	if (!fp)
995 		kprintf("can't dump core - null fp\n");
996 
997 	/*
998 	 * Size the program segments
999 	 */
1000 	seginfo.count = 0;
1001 	seginfo.vsize = 0;
1002 	each_segment(p, cb_size_segment, &seginfo, 1);
1003 
1004 	/*
1005 	 * Calculate the size of the core file header area by making
1006 	 * a dry run of generating it.  Nothing is written, but the
1007 	 * size is calculated.
1008 	 */
1009 	bzero(&target, sizeof(target));
1010 	__elfN(puthdr)(lp, &target, sig, DRYRUN, seginfo.count, fp);
1011 
1012 	if (target.off + seginfo.vsize >= limit)
1013 		return (EFAULT);
1014 
1015 	/*
1016 	 * Allocate memory for building the header, fill it up,
1017 	 * and write it out.
1018 	 */
1019 	target.off_max = target.off;
1020 	target.off = 0;
1021 	target.buf = kmalloc(target.off_max, M_TEMP, M_WAITOK|M_ZERO);
1022 
1023 	error = __elfN(corehdr)(lp, sig, fp, cred, seginfo.count, &target);
1024 
1025 	/* Write the contents of all of the writable segments. */
1026 	if (error == 0) {
1027 		Elf_Phdr *php;
1028 		int i;
1029 		ssize_t nbytes;
1030 
1031 		php = (Elf_Phdr *)(target.buf + sizeof(Elf_Ehdr)) + 1;
1032 		for (i = 0; i < seginfo.count; i++) {
1033 			error = fp_write(fp, (caddr_t)php->p_vaddr,
1034 					php->p_filesz, &nbytes, UIO_USERSPACE);
1035 			if (error != 0)
1036 				break;
1037 			php++;
1038 		}
1039 	}
1040 	kfree(target.buf, M_TEMP);
1041 
1042 	return (error);
1043 }
1044 
1045 /*
1046  * A callback for each_segment() to write out the segment's
1047  * program header entry.
1048  */
1049 static int
1050 cb_put_phdr(vm_map_entry_t entry, void *closure)
1051 {
1052 	struct phdr_closure *phc = closure;
1053 	Elf_Phdr *phdr = phc->phdr;
1054 
1055 	if (phc->phdr == phc->phdr_max)
1056 		return (EINVAL);
1057 
1058 	phc->offset = round_page(phc->offset);
1059 
1060 	phdr->p_type = PT_LOAD;
1061 	phdr->p_offset = phc->offset;
1062 	phdr->p_vaddr = entry->start;
1063 	phdr->p_paddr = 0;
1064 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1065 	phdr->p_align = PAGE_SIZE;
1066 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1067 
1068 	phc->offset += phdr->p_filesz;
1069 	++phc->phdr;
1070 	return (0);
1071 }
1072 
1073 /*
1074  * A callback for each_writable_segment() to gather information about
1075  * the number of segments and their total size.
1076  */
1077 static int
1078 cb_size_segment(vm_map_entry_t entry, void *closure)
1079 {
1080 	struct sseg_closure *ssc = closure;
1081 
1082 	++ssc->count;
1083 	ssc->vsize += entry->end - entry->start;
1084 	return (0);
1085 }
1086 
1087 /*
1088  * A callback for each_segment() to gather information about
1089  * the number of text segments.
1090  */
1091 static int
1092 cb_fpcount_segment(vm_map_entry_t entry, void *closure)
1093 {
1094 	int *count = closure;
1095 	struct vnode *vp;
1096 
1097 	if (entry->object.vm_object->type == OBJT_VNODE) {
1098 		vp = (struct vnode *)entry->object.vm_object->handle;
1099 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1100 			return (0);
1101 		++*count;
1102 	}
1103 	return (0);
1104 }
1105 
1106 static int
1107 cb_put_fp(vm_map_entry_t entry, void *closure)
1108 {
1109 	struct fp_closure *fpc = closure;
1110 	struct vn_hdr *vnh = fpc->vnh;
1111 	Elf_Phdr *phdr = &vnh->vnh_phdr;
1112 	struct vnode *vp;
1113 	int error;
1114 
1115 	/*
1116 	 * If an entry represents a vnode then write out a file handle.
1117 	 *
1118 	 * If we are checkpointing a checkpoint-restored program we do
1119 	 * NOT record the filehandle for the old checkpoint vnode (which
1120 	 * is mapped all over the place).  Instead we rely on the fact
1121 	 * that a checkpoint-restored program does not mmap() the checkpt
1122 	 * vnode NOCORE, so its contents will be written out to the
1123 	 * new checkpoint file.  This is necessary because the 'old'
1124 	 * checkpoint file is typically destroyed when a new one is created
1125 	 * and thus cannot be used to restore the new checkpoint.
1126 	 *
1127 	 * Theoretically we could create a chain of checkpoint files and
1128 	 * operate the checkpointing operation kinda like an incremental
1129 	 * checkpoint, but a checkpoint restore would then likely wind up
1130 	 * referencing many prior checkpoint files and that is a bit over
1131 	 * the top for the purpose of the checkpoint API.
1132 	 */
1133 	if (entry->object.vm_object->type == OBJT_VNODE) {
1134 		vp = (struct vnode *)entry->object.vm_object->handle;
1135 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1136 			return (0);
1137 		if (vnh == fpc->vnh_max)
1138 			return (EINVAL);
1139 
1140 		if (vp->v_mount)
1141 			vnh->vnh_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1142 		error = VFS_VPTOFH(vp, &vnh->vnh_fh.fh_fid);
1143 		if (error) {
1144 			char *freepath, *fullpath;
1145 
1146 			if (vn_fullpath(curproc, vp, &fullpath, &freepath, 0)) {
1147 				kprintf("Warning: coredump, error %d: cannot store file handle for vnode %p\n", error, vp);
1148 			} else {
1149 				kprintf("Warning: coredump, error %d: cannot store file handle for %s\n", error, fullpath);
1150 				kfree(freepath, M_TEMP);
1151 			}
1152 			error = 0;
1153 		}
1154 
1155 		phdr->p_type = PT_LOAD;
1156 		phdr->p_offset = 0;        /* not written to core */
1157 		phdr->p_vaddr = entry->start;
1158 		phdr->p_paddr = 0;
1159 		phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1160 		phdr->p_align = PAGE_SIZE;
1161 		phdr->p_flags = 0;
1162 		if (entry->protection & VM_PROT_READ)
1163 			phdr->p_flags |= PF_R;
1164 		if (entry->protection & VM_PROT_WRITE)
1165 			phdr->p_flags |= PF_W;
1166 		if (entry->protection & VM_PROT_EXECUTE)
1167 			phdr->p_flags |= PF_X;
1168 		++fpc->vnh;
1169 		++fpc->count;
1170 	}
1171 	return (0);
1172 }
1173 
1174 /*
1175  * For each writable segment in the process's memory map, call the given
1176  * function with a pointer to the map entry and some arbitrary
1177  * caller-supplied data.
1178  */
1179 static int
1180 each_segment(struct proc *p, segment_callback func, void *closure, int writable)
1181 {
1182 	int error = 0;
1183 	vm_map_t map = &p->p_vmspace->vm_map;
1184 	vm_map_entry_t entry;
1185 
1186 	for (entry = map->header.next; error == 0 && entry != &map->header;
1187 	    entry = entry->next) {
1188 		vm_object_t obj;
1189 		vm_object_t lobj;
1190 		vm_object_t tobj;
1191 
1192 		/*
1193 		 * Don't dump inaccessible mappings, deal with legacy
1194 		 * coredump mode.
1195 		 *
1196 		 * Note that read-only segments related to the elf binary
1197 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1198 		 * need to arbitrarily ignore such segments.
1199 		 */
1200 		if (elf_legacy_coredump) {
1201 			if (writable && (entry->protection & VM_PROT_RW) != VM_PROT_RW)
1202 				continue;
1203 		} else {
1204 			if (writable && (entry->protection & VM_PROT_ALL) == 0)
1205 				continue;
1206 		}
1207 
1208 		/*
1209 		 * Dont include memory segment in the coredump if
1210 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1211 		 * madvise(2).
1212 		 *
1213 		 * Currently we only dump normal VM object maps.  We do
1214 		 * not dump submaps or virtual page tables.
1215 		 */
1216 		if (writable && (entry->eflags & MAP_ENTRY_NOCOREDUMP))
1217 			continue;
1218 		if (entry->maptype != VM_MAPTYPE_NORMAL)
1219 			continue;
1220 		if ((obj = entry->object.vm_object) == NULL)
1221 			continue;
1222 
1223 		/*
1224 		 * Find the bottom-most object, leaving the base object
1225 		 * and the bottom-most object held (but only one hold
1226 		 * if they happen to be the same).
1227 		 */
1228 		vm_object_hold_shared(obj);
1229 
1230 		lobj = obj;
1231 		while (lobj && (tobj = lobj->backing_object) != NULL) {
1232 			KKASSERT(tobj != obj);
1233 			vm_object_hold_shared(tobj);
1234 			if (tobj == lobj->backing_object) {
1235 				if (lobj != obj) {
1236 					vm_object_lock_swap();
1237 					vm_object_drop(lobj);
1238 				}
1239 				lobj = tobj;
1240 			} else {
1241 				vm_object_drop(tobj);
1242 			}
1243 		}
1244 
1245 		/*
1246 		 * The callback only applies to default, swap, or vnode
1247 		 * objects.  Other types of objects such as memory-mapped
1248 		 * devices are ignored.
1249 		 */
1250 		if (lobj->type == OBJT_DEFAULT || lobj->type == OBJT_SWAP ||
1251 		    lobj->type == OBJT_VNODE) {
1252 			error = (*func)(entry, closure);
1253 		}
1254 		if (lobj != obj)
1255 			vm_object_drop(lobj);
1256 		vm_object_drop(obj);
1257 	}
1258 	return (error);
1259 }
1260 
1261 static
1262 void *
1263 target_reserve(elf_buf_t target, size_t bytes, int *error)
1264 {
1265     void *res = NULL;
1266 
1267     if (target->buf) {
1268 	    if (target->off + bytes > target->off_max)
1269 		    *error = EINVAL;
1270 	    else
1271 		    res = target->buf + target->off;
1272     }
1273     target->off += bytes;
1274     return (res);
1275 }
1276 
1277 /*
1278  * Write the core file header to the file, including padding up to
1279  * the page boundary.
1280  */
1281 static int
1282 __elfN(corehdr)(struct lwp *lp, int sig, struct file *fp, struct ucred *cred,
1283 	    int numsegs, elf_buf_t target)
1284 {
1285 	int error;
1286 	ssize_t nbytes;
1287 
1288 	/*
1289 	 * Fill in the header.  The fp is passed so we can detect and flag
1290 	 * a checkpoint file pointer within the core file itself, because
1291 	 * it may not be restored from the same file handle.
1292 	 */
1293 	error = __elfN(puthdr)(lp, target, sig, WRITE, numsegs, fp);
1294 
1295 	/* Write it to the core file. */
1296 	if (error == 0) {
1297 		error = fp_write(fp, target->buf, target->off, &nbytes,
1298 				 UIO_SYSSPACE);
1299 	}
1300 	return (error);
1301 }
1302 
1303 static int
1304 __elfN(puthdr)(struct lwp *lp, elf_buf_t target, int sig, enum putmode mode,
1305     int numsegs, struct file *fp)
1306 {
1307 	struct proc *p = lp->lwp_proc;
1308 	int error = 0;
1309 	size_t phoff;
1310 	size_t noteoff;
1311 	size_t notesz;
1312 	Elf_Ehdr *ehdr;
1313 	Elf_Phdr *phdr;
1314 
1315 	ehdr = target_reserve(target, sizeof(Elf_Ehdr), &error);
1316 
1317 	phoff = target->off;
1318 	phdr = target_reserve(target, (numsegs + 1) * sizeof(Elf_Phdr), &error);
1319 
1320 	noteoff = target->off;
1321 	if (error == 0)
1322 		elf_putallnotes(lp, target, sig, mode);
1323 	notesz = target->off - noteoff;
1324 
1325 	/*
1326 	 * put extra cruft for dumping process state here
1327 	 *  - we really want it be before all the program
1328 	 *    mappings
1329 	 *  - we just need to update the offset accordingly
1330 	 *    and GDB will be none the wiser.
1331 	 */
1332 	if (error == 0)
1333 		error = elf_puttextvp(p, target);
1334 	if (error == 0)
1335 		error = elf_putsigs(lp, target);
1336 	if (error == 0)
1337 		error = elf_putfiles(p, target, fp);
1338 
1339 	/*
1340 	 * Align up to a page boundary for the program segments.  The
1341 	 * actual data will be written to the outptu file, not to elf_buf_t,
1342 	 * so we do not have to do any further bounds checking.
1343 	 */
1344 	target->off = round_page(target->off);
1345 	if (error == 0 && ehdr != NULL) {
1346 		/*
1347 		 * Fill in the ELF header.
1348 		 */
1349 		ehdr->e_ident[EI_MAG0] = ELFMAG0;
1350 		ehdr->e_ident[EI_MAG1] = ELFMAG1;
1351 		ehdr->e_ident[EI_MAG2] = ELFMAG2;
1352 		ehdr->e_ident[EI_MAG3] = ELFMAG3;
1353 		ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1354 		ehdr->e_ident[EI_DATA] = ELF_DATA;
1355 		ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1356 		ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1357 		ehdr->e_ident[EI_ABIVERSION] = 0;
1358 		ehdr->e_ident[EI_PAD] = 0;
1359 		ehdr->e_type = ET_CORE;
1360 		ehdr->e_machine = ELF_ARCH;
1361 		ehdr->e_version = EV_CURRENT;
1362 		ehdr->e_entry = 0;
1363 		ehdr->e_phoff = phoff;
1364 		ehdr->e_flags = 0;
1365 		ehdr->e_ehsize = sizeof(Elf_Ehdr);
1366 		ehdr->e_phentsize = sizeof(Elf_Phdr);
1367 		ehdr->e_phnum = numsegs + 1;
1368 		ehdr->e_shentsize = sizeof(Elf_Shdr);
1369 		ehdr->e_shnum = 0;
1370 		ehdr->e_shstrndx = SHN_UNDEF;
1371 	}
1372 	if (error == 0 && phdr != NULL) {
1373 		/*
1374 		 * Fill in the program header entries.
1375 		 */
1376 		struct phdr_closure phc;
1377 
1378 		/* The note segement. */
1379 		phdr->p_type = PT_NOTE;
1380 		phdr->p_offset = noteoff;
1381 		phdr->p_vaddr = 0;
1382 		phdr->p_paddr = 0;
1383 		phdr->p_filesz = notesz;
1384 		phdr->p_memsz = 0;
1385 		phdr->p_flags = 0;
1386 		phdr->p_align = 0;
1387 		++phdr;
1388 
1389 		/* All the writable segments from the program. */
1390 		phc.phdr = phdr;
1391 		phc.phdr_max = phdr + numsegs;
1392 		phc.offset = target->off;
1393 		each_segment(p, cb_put_phdr, &phc, 1);
1394 	}
1395 	return (error);
1396 }
1397 
1398 /*
1399  * Append core dump notes to target ELF buffer or simply update target size
1400  * if dryrun selected.
1401  */
1402 static int
1403 elf_putallnotes(struct lwp *corelp, elf_buf_t target, int sig,
1404     enum putmode mode)
1405 {
1406 	struct proc *p = corelp->lwp_proc;
1407 	int error;
1408 	struct {
1409 		prstatus_t status;
1410 		prfpregset_t fpregs;
1411 		prpsinfo_t psinfo;
1412 	} *tmpdata;
1413 	prstatus_t *status;
1414 	prfpregset_t *fpregs;
1415 	prpsinfo_t *psinfo;
1416 	struct lwp *lp;
1417 
1418 	/*
1419 	 * Allocate temporary storage for notes on heap to avoid stack overflow.
1420 	 */
1421 	if (mode != DRYRUN) {
1422 		tmpdata = kmalloc(sizeof(*tmpdata), M_TEMP, M_ZERO | M_WAITOK);
1423 		status = &tmpdata->status;
1424 		fpregs = &tmpdata->fpregs;
1425 		psinfo = &tmpdata->psinfo;
1426 	} else {
1427 		tmpdata = NULL;
1428 		status = NULL;
1429 		fpregs = NULL;
1430 		psinfo = NULL;
1431 	}
1432 
1433 	/*
1434 	 * Append LWP-agnostic note.
1435 	 */
1436 	if (mode != DRYRUN) {
1437 		psinfo->pr_version = PRPSINFO_VERSION;
1438 		psinfo->pr_psinfosz = sizeof(prpsinfo_t);
1439 		strlcpy(psinfo->pr_fname, p->p_comm,
1440 			sizeof(psinfo->pr_fname));
1441 		/*
1442 		 * XXX - We don't fill in the command line arguments
1443 		 * properly yet.
1444 		 */
1445 		strlcpy(psinfo->pr_psargs, p->p_comm,
1446 			sizeof(psinfo->pr_psargs));
1447 	}
1448 	error =
1449 	    __elfN(putnote)(target, "CORE", NT_PRPSINFO, psinfo, sizeof *psinfo);
1450 	if (error)
1451 		goto exit;
1452 
1453 	/*
1454 	 * Append first note for LWP that triggered core so that it is
1455 	 * the selected one when the debugger starts.
1456 	 */
1457 	if (mode != DRYRUN) {
1458 		status->pr_version = PRSTATUS_VERSION;
1459 		status->pr_statussz = sizeof(prstatus_t);
1460 		status->pr_gregsetsz = sizeof(gregset_t);
1461 		status->pr_fpregsetsz = sizeof(fpregset_t);
1462 		status->pr_osreldate = osreldate;
1463 		status->pr_cursig = sig;
1464 		/*
1465 		 * XXX GDB needs unique pr_pid for each LWP and does not
1466 		 * not support pr_pid==0 but lwp_tid can be 0, so hack unique
1467 		 * value.
1468 		 */
1469 		status->pr_pid = corelp->lwp_tid;
1470 		fill_regs(corelp, &status->pr_reg);
1471 		fill_fpregs(corelp, fpregs);
1472 	}
1473 	error =
1474 	    __elfN(putnote)(target, "CORE", NT_PRSTATUS, status, sizeof *status);
1475 	if (error)
1476 		goto exit;
1477 	error =
1478 	    __elfN(putnote)(target, "CORE", NT_FPREGSET, fpregs, sizeof *fpregs);
1479 	if (error)
1480 		goto exit;
1481 
1482 	/*
1483 	 * Then append notes for other LWPs.
1484 	 */
1485 	FOREACH_LWP_IN_PROC(lp, p) {
1486 		if (lp == corelp)
1487 			continue;
1488 		/* skip lwps being created */
1489 		if (lp->lwp_thread == NULL)
1490 			continue;
1491 		if (mode != DRYRUN) {
1492 			status->pr_pid = lp->lwp_tid;
1493 			fill_regs(lp, &status->pr_reg);
1494 			fill_fpregs(lp, fpregs);
1495 		}
1496 		error = __elfN(putnote)(target, "CORE", NT_PRSTATUS,
1497 					status, sizeof *status);
1498 		if (error)
1499 			goto exit;
1500 		error = __elfN(putnote)(target, "CORE", NT_FPREGSET,
1501 					fpregs, sizeof *fpregs);
1502 		if (error)
1503 			goto exit;
1504 	}
1505 
1506 exit:
1507 	if (tmpdata != NULL)
1508 		kfree(tmpdata, M_TEMP);
1509 	return (error);
1510 }
1511 
1512 /*
1513  * Generate a note sub-structure.
1514  *
1515  * NOTE: 4-byte alignment.
1516  */
1517 static int
1518 __elfN(putnote)(elf_buf_t target, const char *name, int type,
1519 	    const void *desc, size_t descsz)
1520 {
1521 	int error = 0;
1522 	char *dst;
1523 	Elf_Note note;
1524 
1525 	note.n_namesz = strlen(name) + 1;
1526 	note.n_descsz = descsz;
1527 	note.n_type = type;
1528 	dst = target_reserve(target, sizeof(note), &error);
1529 	if (dst != NULL)
1530 		bcopy(&note, dst, sizeof note);
1531 	dst = target_reserve(target, note.n_namesz, &error);
1532 	if (dst != NULL)
1533 		bcopy(name, dst, note.n_namesz);
1534 	target->off = roundup2(target->off, sizeof(Elf_Word));
1535 	dst = target_reserve(target, note.n_descsz, &error);
1536 	if (dst != NULL)
1537 		bcopy(desc, dst, note.n_descsz);
1538 	target->off = roundup2(target->off, sizeof(Elf_Word));
1539 	return (error);
1540 }
1541 
1542 
1543 static int
1544 elf_putsigs(struct lwp *lp, elf_buf_t target)
1545 {
1546 	/* XXX lwp handle more than one lwp */
1547 	struct proc *p = lp->lwp_proc;
1548 	int error = 0;
1549 	struct ckpt_siginfo *csi;
1550 
1551 	csi = target_reserve(target, sizeof(struct ckpt_siginfo), &error);
1552 	if (csi) {
1553 		csi->csi_ckptpisz = sizeof(struct ckpt_siginfo);
1554 		bcopy(p->p_sigacts, &csi->csi_sigacts, sizeof(*p->p_sigacts));
1555 		bcopy(&p->p_realtimer, &csi->csi_itimerval, sizeof(struct itimerval));
1556 		bcopy(&lp->lwp_sigmask, &csi->csi_sigmask,
1557 			sizeof(sigset_t));
1558 		csi->csi_sigparent = p->p_sigparent;
1559 	}
1560 	return (error);
1561 }
1562 
1563 static int
1564 elf_putfiles(struct proc *p, elf_buf_t target, struct file *ckfp)
1565 {
1566 	int error = 0;
1567 	int i;
1568 	struct ckpt_filehdr *cfh = NULL;
1569 	struct ckpt_fileinfo *cfi;
1570 	struct file *fp;
1571 	struct vnode *vp;
1572 	/*
1573 	 * the duplicated loop is gross, but it was the only way
1574 	 * to eliminate uninitialized variable warnings
1575 	 */
1576 	cfh = target_reserve(target, sizeof(struct ckpt_filehdr), &error);
1577 	if (cfh) {
1578 		cfh->cfh_nfiles = 0;
1579 	}
1580 
1581 	/*
1582 	 * ignore STDIN/STDERR/STDOUT.
1583 	 */
1584 	for (i = 3; error == 0 && i < p->p_fd->fd_nfiles; i++) {
1585 		fp = holdfp(p->p_fd, i, -1);
1586 		if (fp == NULL)
1587 			continue;
1588 		/*
1589 		 * XXX Only checkpoint vnodes for now.
1590 		 */
1591 		if (fp->f_type != DTYPE_VNODE) {
1592 			fdrop(fp);
1593 			continue;
1594 		}
1595 		cfi = target_reserve(target, sizeof(struct ckpt_fileinfo),
1596 					&error);
1597 		if (cfi == NULL) {
1598 			fdrop(fp);
1599 			continue;
1600 		}
1601 		cfi->cfi_index = -1;
1602 		cfi->cfi_type = fp->f_type;
1603 		cfi->cfi_flags = fp->f_flag;
1604 		cfi->cfi_offset = fp->f_offset;
1605 		cfi->cfi_ckflags = 0;
1606 
1607 		if (fp == ckfp)
1608 			cfi->cfi_ckflags |= CKFIF_ISCKPTFD;
1609 		/* f_count and f_msgcount should not be saved/restored */
1610 		/* XXX save cred info */
1611 
1612 		switch(fp->f_type) {
1613 		case DTYPE_VNODE:
1614 			vp = (struct vnode *)fp->f_data;
1615 			/*
1616 			 * it looks like a bug in ptrace is marking
1617 			 * a non-vnode as a vnode - until we find the
1618 			 * root cause this will at least prevent
1619 			 * further panics from truss
1620 			 */
1621 			if (vp == NULL || vp->v_mount == NULL)
1622 				break;
1623 			cfh->cfh_nfiles++;
1624 			cfi->cfi_index = i;
1625 			cfi->cfi_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1626 			error = VFS_VPTOFH(vp, &cfi->cfi_fh.fh_fid);
1627 			break;
1628 		default:
1629 			break;
1630 		}
1631 		fdrop(fp);
1632 	}
1633 	return (error);
1634 }
1635 
1636 static int
1637 elf_puttextvp(struct proc *p, elf_buf_t target)
1638 {
1639 	int error = 0;
1640 	int *vn_count;
1641 	struct fp_closure fpc;
1642 	struct ckpt_vminfo *vminfo;
1643 
1644 	vminfo = target_reserve(target, sizeof(struct ckpt_vminfo), &error);
1645 	if (vminfo != NULL) {
1646 		vminfo->cvm_dsize = p->p_vmspace->vm_dsize;
1647 		vminfo->cvm_tsize = p->p_vmspace->vm_tsize;
1648 		vminfo->cvm_daddr = p->p_vmspace->vm_daddr;
1649 		vminfo->cvm_taddr = p->p_vmspace->vm_taddr;
1650 	}
1651 
1652 	fpc.count = 0;
1653 	vn_count = target_reserve(target, sizeof(int), &error);
1654 	if (target->buf != NULL) {
1655 		fpc.vnh = (struct vn_hdr *)(target->buf + target->off);
1656 		fpc.vnh_max = fpc.vnh +
1657 			(target->off_max - target->off) / sizeof(struct vn_hdr);
1658 		error = each_segment(p, cb_put_fp, &fpc, 0);
1659 		if (vn_count)
1660 			*vn_count = fpc.count;
1661 	} else {
1662 		error = each_segment(p, cb_fpcount_segment, &fpc.count, 0);
1663 	}
1664 	target->off += fpc.count * sizeof(struct vn_hdr);
1665 	return (error);
1666 }
1667 
1668 /*
1669  * Try to find the appropriate ABI-note section for checknote,
1670  * The entire image is searched if necessary, not only the first page.
1671  */
1672 static boolean_t
1673 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
1674     int32_t *osrel)
1675 {
1676 	boolean_t valid_note_found;
1677 	const Elf_Phdr *phdr, *pnote;
1678 	const Elf_Ehdr *hdr;
1679 	int i;
1680 
1681 	valid_note_found = FALSE;
1682 	hdr = (const Elf_Ehdr *)imgp->image_header;
1683 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1684 
1685 	for (i = 0; i < hdr->e_phnum; i++) {
1686 		if (phdr[i].p_type == PT_NOTE) {
1687 			pnote = &phdr[i];
1688 			valid_note_found = check_PT_NOTE (imgp, checknote,
1689 				osrel, pnote);
1690 			if (valid_note_found)
1691 				break;
1692 		}
1693 	}
1694 	return valid_note_found;
1695 }
1696 
1697 /*
1698  * Be careful not to create new overflow conditions when checking
1699  * for overflow.
1700  */
1701 static boolean_t
1702 note_overflow(const Elf_Note *note, size_t maxsize)
1703 {
1704 	if (sizeof(*note) > maxsize)
1705 		return TRUE;
1706 	if (note->n_namesz > maxsize - sizeof(*note))
1707 		return TRUE;
1708 	return FALSE;
1709 }
1710 
1711 static boolean_t
1712 hdr_overflow(__ElfN(Off) off_beg, __ElfN(Size) size)
1713 {
1714 	__ElfN(Off) off_end;
1715 
1716 	off_end = off_beg + size;
1717 	if (off_end < off_beg)
1718 		return TRUE;
1719 	return FALSE;
1720 }
1721 
1722 static boolean_t
1723 check_PT_NOTE(struct image_params *imgp, Elf_Brandnote *checknote,
1724 	      int32_t *osrel, const Elf_Phdr * pnote)
1725 {
1726 	boolean_t limited_to_first_page;
1727 	boolean_t found = FALSE;
1728 	const Elf_Note *note, *note0, *note_end;
1729 	const char *note_name;
1730 	__ElfN(Off) noteloc, firstloc;
1731 	__ElfN(Size) notesz, firstlen, endbyte;
1732 	struct lwbuf *lwb;
1733 	struct lwbuf lwb_cache;
1734 	const char *page;
1735 	char *data = NULL;
1736 	int n;
1737 
1738 	if (hdr_overflow(pnote->p_offset, pnote->p_filesz))
1739 		return (FALSE);
1740 	notesz = pnote->p_filesz;
1741 	noteloc = pnote->p_offset;
1742 	endbyte = noteloc + notesz;
1743 	limited_to_first_page = noteloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1744 
1745 	if (limited_to_first_page) {
1746 		note = (const Elf_Note *)(imgp->image_header + noteloc);
1747 		note_end = (const Elf_Note *)(imgp->image_header + endbyte);
1748 		note0 = note;
1749 	} else {
1750 		firstloc = noteloc & PAGE_MASK;
1751 		firstlen = PAGE_SIZE - firstloc;
1752 		if (notesz < sizeof(Elf_Note) || notesz > PAGE_SIZE)
1753 			return (FALSE);
1754 
1755 		lwb = &lwb_cache;
1756 		if (exec_map_page(imgp, noteloc >> PAGE_SHIFT, &lwb, &page))
1757 			return (FALSE);
1758 		if (firstlen < notesz) {         /* crosses page boundary */
1759 			data = kmalloc(notesz, M_TEMP, M_WAITOK);
1760 			bcopy(page + firstloc, data, firstlen);
1761 
1762 			exec_unmap_page(lwb);
1763 			lwb = &lwb_cache;
1764 			if (exec_map_page(imgp, (noteloc >> PAGE_SHIFT) + 1,
1765 				&lwb, &page)) {
1766 				kfree(data, M_TEMP);
1767 				return (FALSE);
1768 			}
1769 			bcopy(page, data + firstlen, notesz - firstlen);
1770 			note = note0 = (const Elf_Note *)(data);
1771 			note_end = (const Elf_Note *)(data + notesz);
1772 		} else {
1773 			note = note0 = (const Elf_Note *)(page + firstloc);
1774 			note_end = (const Elf_Note *)(page + firstloc +
1775 				firstlen);
1776 		}
1777 	}
1778 
1779 	for (n = 0; n < 100 && note >= note0 && note < note_end; n++) {
1780 		if (!aligned(note, Elf32_Addr))
1781 			break;
1782 		if (note_overflow(note, (const char *)note_end -
1783 					(const char *)note)) {
1784 			break;
1785 		}
1786 		note_name = (const char *)(note + 1);
1787 
1788 		if (note->n_namesz == checknote->hdr.n_namesz
1789 		    && note->n_descsz == checknote->hdr.n_descsz
1790 		    && note->n_type == checknote->hdr.n_type
1791 		    && (strncmp(checknote->vendor, note_name,
1792 			checknote->hdr.n_namesz) == 0)) {
1793 			/* Fetch osreldata from ABI.note-tag */
1794 			if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
1795 			    checknote->trans_osrel != NULL)
1796 				checknote->trans_osrel(note, osrel);
1797 			found = TRUE;
1798 			break;
1799 		}
1800 		note = (const Elf_Note *)((const char *)(note + 1) +
1801 		    roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1802 		    roundup2(note->n_descsz, sizeof(Elf32_Addr)));
1803 	}
1804 
1805 	if (!limited_to_first_page) {
1806 		if (data != NULL)
1807 			kfree(data, M_TEMP);
1808 		exec_unmap_page(lwb);
1809 	}
1810 	return (found);
1811 }
1812 
1813 /*
1814  * The interpreter program header may be located beyond the first page, so
1815  * regardless of its location, a copy of the interpreter path is created so
1816  * that it may be safely referenced by the calling function in all case.  The
1817  * memory is allocated by calling function, and the copying is done here.
1818  */
1819 static boolean_t
1820 extract_interpreter(struct image_params *imgp, const Elf_Phdr *pinterpreter,
1821 		    char *data)
1822 {
1823 	boolean_t limited_to_first_page;
1824 	const boolean_t result_success = FALSE;
1825 	const boolean_t result_failure = TRUE;
1826 	__ElfN(Off) pathloc, firstloc;
1827 	__ElfN(Size) pathsz, firstlen, endbyte;
1828 	struct lwbuf *lwb;
1829 	struct lwbuf lwb_cache;
1830 	const char *page;
1831 
1832 	if (hdr_overflow(pinterpreter->p_offset, pinterpreter->p_filesz))
1833 		return (result_failure);
1834 	pathsz  = pinterpreter->p_filesz;
1835 	pathloc = pinterpreter->p_offset;
1836 	endbyte = pathloc + pathsz;
1837 
1838 	limited_to_first_page = pathloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1839 	if (limited_to_first_page) {
1840 	        bcopy(imgp->image_header + pathloc, data, pathsz);
1841 	        return (result_success);
1842 	}
1843 
1844 	firstloc = pathloc & PAGE_MASK;
1845 	firstlen = PAGE_SIZE - firstloc;
1846 
1847 	lwb = &lwb_cache;
1848 	if (exec_map_page(imgp, pathloc >> PAGE_SHIFT, &lwb, &page))
1849 		return (result_failure);
1850 
1851 	if (firstlen < pathsz) {         /* crosses page boundary */
1852 		bcopy(page + firstloc, data, firstlen);
1853 
1854 		exec_unmap_page(lwb);
1855 		lwb = &lwb_cache;
1856 		if (exec_map_page(imgp, (pathloc >> PAGE_SHIFT) + 1, &lwb,
1857 			&page))
1858 			return (result_failure);
1859 		bcopy(page, data + firstlen, pathsz - firstlen);
1860 	} else
1861 		bcopy(page + firstloc, data, pathsz);
1862 
1863 	exec_unmap_page(lwb);
1864 	return (result_success);
1865 }
1866 
1867 static boolean_t
1868 __elfN(bsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
1869 {
1870 	uintptr_t p;
1871 
1872 	p = (uintptr_t)(note + 1);
1873 	p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1874 	*osrel = *(const int32_t *)(p);
1875 
1876 	return (TRUE);
1877 }
1878 
1879 /*
1880  * Tell kern_execve.c about it, with a little help from the linker.
1881  */
1882 #if defined(__x86_64__)
1883 static struct execsw elf_execsw = {exec_elf64_imgact, "ELF64"};
1884 EXEC_SET_ORDERED(elf64, elf_execsw, SI_ORDER_FIRST);
1885 #else /* i386 assumed */
1886 static struct execsw elf_execsw = {exec_elf32_imgact, "ELF32"};
1887 EXEC_SET_ORDERED(elf32, elf_execsw, SI_ORDER_FIRST);
1888 #endif
1889 
1890 static vm_prot_t
1891 __elfN(trans_prot)(Elf_Word flags)
1892 {
1893 	vm_prot_t prot;
1894 
1895 	prot = 0;
1896 	if (flags & PF_X)
1897 		prot |= VM_PROT_EXECUTE;
1898 	if (flags & PF_W)
1899 		prot |= VM_PROT_WRITE;
1900 	if (flags & PF_R)
1901 		prot |= VM_PROT_READ;
1902 	return (prot);
1903 }
1904 
1905 static Elf_Word
1906 __elfN(untrans_prot)(vm_prot_t prot)
1907 {
1908 	Elf_Word flags;
1909 
1910 	flags = 0;
1911 	if (prot & VM_PROT_EXECUTE)
1912 		flags |= PF_X;
1913 	if (prot & VM_PROT_READ)
1914 		flags |= PF_R;
1915 	if (prot & VM_PROT_WRITE)
1916 		flags |= PF_W;
1917 	return (flags);
1918 }
1919