xref: /dragonfly/sys/kern/imgact_elf.c (revision 3170ffd7)
1 /*-
2  * Copyright (c) 2000 David O'Brien
3  * Copyright (c) 1995-1996 Søren Schmidt
4  * Copyright (c) 1996 Peter Wemm
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/kern/imgact_elf.c,v 1.73.2.13 2002/12/28 19:49:41 dillon Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/exec.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/imgact.h>
38 #include <sys/imgact_elf.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/nlookup.h>
45 #include <sys/pioctl.h>
46 #include <sys/procfs.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/stat.h>
50 #include <sys/syscall.h>
51 #include <sys/sysctl.h>
52 #include <sys/sysent.h>
53 #include <sys/vnode.h>
54 #include <sys/eventhandler.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_param.h>
61 #include <vm/pmap.h>
62 #include <sys/lock.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_extern.h>
66 
67 #include <machine/elf.h>
68 #include <machine/md_var.h>
69 #include <sys/mount.h>
70 #include <sys/ckpt.h>
71 
72 #define OLD_EI_BRAND	8
73 #define truncps(va,ps)	((va) & ~(ps - 1))
74 #define aligned(a,t)	(truncps((u_long)(a), sizeof(t)) == (u_long)(a))
75 
76 static int __elfN(check_header)(const Elf_Ehdr *hdr);
77 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
78     const char *interp, int32_t *osrel);
79 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
80     u_long *entry);
81 static int __elfN(load_section)(struct proc *p,
82     struct vmspace *vmspace, struct vnode *vp,
83     vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
84     vm_prot_t prot);
85 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
86 static boolean_t __elfN(bsd_trans_osrel)(const Elf_Note *note,
87     int32_t *osrel);
88 static boolean_t __elfN(check_note)(struct image_params *imgp,
89     Elf_Brandnote *checknote, int32_t *osrel);
90 static vm_prot_t __elfN(trans_prot)(Elf_Word);
91 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
92 static boolean_t check_PT_NOTE(struct image_params *imgp,
93     Elf_Brandnote *checknote, int32_t *osrel, const Elf_Phdr * pnote);
94 static boolean_t extract_interpreter(struct image_params *imgp,
95     const Elf_Phdr *pinterpreter, char *data);
96 
97 static int elf_legacy_coredump = 0;
98 static int __elfN(fallback_brand) = -1;
99 #if defined(__x86_64__)
100 SYSCTL_NODE(_kern, OID_AUTO, elf64, CTLFLAG_RW, 0, "");
101 SYSCTL_INT(_debug, OID_AUTO, elf64_legacy_coredump, CTLFLAG_RW,
102     &elf_legacy_coredump, 0, "legacy coredump mode");
103 SYSCTL_INT(_kern_elf64, OID_AUTO, fallback_brand, CTLFLAG_RW,
104     &elf64_fallback_brand, 0, "ELF64 brand of last resort");
105 TUNABLE_INT("kern.elf64.fallback_brand", &elf64_fallback_brand);
106 #else /* i386 assumed */
107 SYSCTL_NODE(_kern, OID_AUTO, elf32, CTLFLAG_RW, 0, "");
108 SYSCTL_INT(_debug, OID_AUTO, elf32_legacy_coredump, CTLFLAG_RW,
109     &elf_legacy_coredump, 0, "legacy coredump mode");
110 SYSCTL_INT(_kern_elf32, OID_AUTO, fallback_brand, CTLFLAG_RW,
111     &elf32_fallback_brand, 0, "ELF32 brand of last resort");
112 TUNABLE_INT("kern.elf32.fallback_brand", &elf32_fallback_brand);
113 #endif
114 
115 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
116 
117 static const char DRAGONFLY_ABI_VENDOR[] = "DragonFly";
118 static const char FREEBSD_ABI_VENDOR[]   = "FreeBSD";
119 
120 Elf_Brandnote __elfN(dragonfly_brandnote) = {
121 	.hdr.n_namesz	= sizeof(DRAGONFLY_ABI_VENDOR),
122 	.hdr.n_descsz	= sizeof(int32_t),
123 	.hdr.n_type	= 1,
124 	.vendor		= DRAGONFLY_ABI_VENDOR,
125 	.flags		= BN_TRANSLATE_OSREL,
126 	.trans_osrel	= __elfN(bsd_trans_osrel),
127 };
128 
129 Elf_Brandnote __elfN(freebsd_brandnote) = {
130 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
131 	.hdr.n_descsz	= sizeof(int32_t),
132 	.hdr.n_type	= 1,
133 	.vendor		= FREEBSD_ABI_VENDOR,
134 	.flags		= BN_TRANSLATE_OSREL,
135 	.trans_osrel	= __elfN(bsd_trans_osrel),
136 };
137 
138 int
139 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
140 {
141 	int i;
142 
143 	for (i = 0; i < MAX_BRANDS; i++) {
144 		if (elf_brand_list[i] == NULL) {
145 			elf_brand_list[i] = entry;
146 			break;
147 		}
148 	}
149 	if (i == MAX_BRANDS) {
150 		uprintf("WARNING: %s: could not insert brandinfo entry: %p\n",
151 			__func__, entry);
152 		return (-1);
153 	}
154 	return (0);
155 }
156 
157 int
158 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
159 {
160 	int i;
161 
162 	for (i = 0; i < MAX_BRANDS; i++) {
163 		if (elf_brand_list[i] == entry) {
164 			elf_brand_list[i] = NULL;
165 			break;
166 		}
167 	}
168 	if (i == MAX_BRANDS)
169 		return (-1);
170 	return (0);
171 }
172 
173 /*
174  * Check if an elf brand is being used anywhere in the system.
175  *
176  * Used by the linux emulation module unloader.  This isn't safe from
177  * races.
178  */
179 struct elf_brand_inuse_info {
180 	int rval;
181 	Elf_Brandinfo *entry;
182 };
183 
184 static int elf_brand_inuse_callback(struct proc *p, void *data);
185 
186 int
187 __elfN(brand_inuse)(Elf_Brandinfo *entry)
188 {
189 	struct elf_brand_inuse_info info;
190 
191 	info.rval = FALSE;
192 	info.entry = entry;
193 	allproc_scan(elf_brand_inuse_callback, &info);
194 	return (info.rval);
195 }
196 
197 static
198 int
199 elf_brand_inuse_callback(struct proc *p, void *data)
200 {
201 	struct elf_brand_inuse_info *info = data;
202 
203 	if (p->p_sysent == info->entry->sysvec) {
204 		info->rval = TRUE;
205 		return (-1);
206 	}
207 	return (0);
208 }
209 
210 static int
211 __elfN(check_header)(const Elf_Ehdr *hdr)
212 {
213 	Elf_Brandinfo *bi;
214 	int i;
215 
216 	if (!IS_ELF(*hdr) ||
217 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
218 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
219 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
220 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
221 	    hdr->e_ehsize != sizeof(Elf_Ehdr) ||
222 	    hdr->e_version != ELF_TARG_VER)
223 		return (ENOEXEC);
224 
225 	/*
226 	 * Make sure we have at least one brand for this machine.
227 	 */
228 
229 	for (i = 0; i < MAX_BRANDS; i++) {
230 		bi = elf_brand_list[i];
231 		if (bi != NULL && bi->machine == hdr->e_machine)
232 			break;
233 	}
234 	if (i == MAX_BRANDS)
235 		return (ENOEXEC);
236 
237 	return (0);
238 }
239 
240 static int
241 __elfN(load_section)(struct proc *p, struct vmspace *vmspace, struct vnode *vp,
242 		 vm_offset_t offset, caddr_t vmaddr, size_t memsz,
243 		 size_t filsz, vm_prot_t prot)
244 {
245 	size_t map_len;
246 	vm_offset_t map_addr;
247 	int error, rv, cow;
248 	int count;
249 	int shared;
250 	size_t copy_len;
251 	vm_object_t object;
252 	vm_offset_t file_addr;
253 
254 	object = vp->v_object;
255 	error = 0;
256 
257 	/*
258 	 * In most cases we will be able to use a shared lock on the
259 	 * object we are inserting into the map.  The lock will be
260 	 * upgraded in situations where new VM pages must be allocated.
261 	 */
262 	shared = vm_object_hold_maybe_shared(object);
263 
264 	/*
265 	 * It's necessary to fail if the filsz + offset taken from the
266 	 * header is greater than the actual file pager object's size.
267 	 * If we were to allow this, then the vm_map_find() below would
268 	 * walk right off the end of the file object and into the ether.
269 	 *
270 	 * While I'm here, might as well check for something else that
271 	 * is invalid: filsz cannot be greater than memsz.
272 	 */
273 	if ((off_t)filsz + offset > vp->v_filesize || filsz > memsz) {
274 		uprintf("elf_load_section: truncated ELF file\n");
275 		vm_object_drop(object);
276 		return (ENOEXEC);
277 	}
278 
279 	map_addr = trunc_page((vm_offset_t)vmaddr);
280 	file_addr = trunc_page(offset);
281 
282 	/*
283 	 * We have two choices.  We can either clear the data in the last page
284 	 * of an oversized mapping, or we can start the anon mapping a page
285 	 * early and copy the initialized data into that first page.  We
286 	 * choose the second..
287 	 */
288 	if (memsz > filsz)
289 		map_len = trunc_page(offset+filsz) - file_addr;
290 	else
291 		map_len = round_page(offset+filsz) - file_addr;
292 
293 	if (map_len != 0) {
294 		vm_object_reference_locked(object);
295 
296 		/* cow flags: don't dump readonly sections in core */
297 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT;
298 		if ((prot & VM_PROT_WRITE) == 0)
299 			cow |= MAP_DISABLE_COREDUMP;
300 		if (shared == 0)
301 			cow |= MAP_PREFAULT_RELOCK;
302 
303 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
304 		vm_map_lock(&vmspace->vm_map);
305 		rv = vm_map_insert(&vmspace->vm_map, &count,
306 				      object,
307 				      file_addr,	/* file offset */
308 				      map_addr,		/* virtual start */
309 				      map_addr + map_len,/* virtual end */
310 				      VM_MAPTYPE_NORMAL,
311 				      prot, VM_PROT_ALL,
312 				      cow);
313 		vm_map_unlock(&vmspace->vm_map);
314 		vm_map_entry_release(count);
315 
316 		/*
317 		 * NOTE: Object must have a hold ref when calling
318 		 * vm_object_deallocate().
319 		 */
320 		if (rv != KERN_SUCCESS) {
321 			vm_object_drop(object);
322 			vm_object_deallocate(object);
323 			return (EINVAL);
324 		}
325 
326 		/* we can stop now if we've covered it all */
327 		if (memsz == filsz) {
328 			vm_object_drop(object);
329 			return (0);
330 		}
331 	}
332 
333 	/*
334 	 * We have to get the remaining bit of the file into the first part
335 	 * of the oversized map segment.  This is normally because the .data
336 	 * segment in the file is extended to provide bss.  It's a neat idea
337 	 * to try and save a page, but it's a pain in the behind to implement.
338 	 */
339 	copy_len = (offset + filsz) - trunc_page(offset + filsz);
340 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
341 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
342 
343 	/* This had damn well better be true! */
344         if (map_len != 0) {
345 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
346 		vm_map_lock(&vmspace->vm_map);
347 		rv = vm_map_insert(&vmspace->vm_map, &count,
348 					NULL, 0,
349 					map_addr, map_addr + map_len,
350 					VM_MAPTYPE_NORMAL,
351 					VM_PROT_ALL, VM_PROT_ALL,
352 					0);
353 		vm_map_unlock(&vmspace->vm_map);
354 		vm_map_entry_release(count);
355 		if (rv != KERN_SUCCESS) {
356 			vm_object_drop(object);
357 			return (EINVAL);
358 		}
359 	}
360 
361 	if (copy_len != 0) {
362 		struct lwbuf *lwb;
363 		struct lwbuf lwb_cache;
364 		vm_page_t m;
365 
366 		m = vm_fault_object_page(object, trunc_page(offset + filsz),
367 					 VM_PROT_READ, 0, shared, &error);
368 		if (m) {
369 			lwb = lwbuf_alloc(m, &lwb_cache);
370 			error = copyout((caddr_t)lwbuf_kva(lwb),
371 					(caddr_t)map_addr, copy_len);
372 			lwbuf_free(lwb);
373 			vm_page_unhold(m);
374 		}
375 		if (error) {
376 			vm_object_drop(object);
377 			return (error);
378 		}
379 	}
380 
381 	vm_object_drop(object);
382 
383 	/*
384 	 * set it to the specified protection
385 	 */
386 	vm_map_protect(&vmspace->vm_map, map_addr, map_addr + map_len,
387 		       prot, FALSE);
388 
389 	return (error);
390 }
391 
392 /*
393  * Load the file "file" into memory.  It may be either a shared object
394  * or an executable.
395  *
396  * The "addr" reference parameter is in/out.  On entry, it specifies
397  * the address where a shared object should be loaded.  If the file is
398  * an executable, this value is ignored.  On exit, "addr" specifies
399  * where the file was actually loaded.
400  *
401  * The "entry" reference parameter is out only.  On exit, it specifies
402  * the entry point for the loaded file.
403  */
404 static int
405 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, u_long *entry)
406 {
407 	struct {
408 		struct nlookupdata nd;
409 		struct vattr attr;
410 		struct image_params image_params;
411 	} *tempdata;
412 	const Elf_Ehdr *hdr = NULL;
413 	const Elf_Phdr *phdr = NULL;
414 	struct nlookupdata *nd;
415 	struct vmspace *vmspace = p->p_vmspace;
416 	struct vattr *attr;
417 	struct image_params *imgp;
418 	struct mount *topmnt;
419 	vm_prot_t prot;
420 	u_long rbase;
421 	u_long base_addr = 0;
422 	int error, i, numsegs;
423 
424 	tempdata = kmalloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
425 	nd = &tempdata->nd;
426 	attr = &tempdata->attr;
427 	imgp = &tempdata->image_params;
428 
429 	/*
430 	 * Initialize part of the common data
431 	 */
432 	imgp->proc = p;
433 	imgp->attr = attr;
434 	imgp->firstpage = NULL;
435 	imgp->image_header = NULL;
436 	imgp->vp = NULL;
437 
438 	error = nlookup_init(nd, file, UIO_SYSSPACE, NLC_FOLLOW);
439 	if (error == 0)
440 		error = nlookup(nd);
441 	if (error == 0)
442 		error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_EXCLUSIVE, &imgp->vp);
443 	topmnt = nd->nl_nch.mount;
444 	nlookup_done(nd);
445 	if (error)
446 		goto fail;
447 
448 	/*
449 	 * Check permissions, modes, uid, etc on the file, and "open" it.
450 	 */
451 	error = exec_check_permissions(imgp, topmnt);
452 	if (error) {
453 		vn_unlock(imgp->vp);
454 		goto fail;
455 	}
456 
457 	error = exec_map_first_page(imgp);
458 	/*
459 	 * Also make certain that the interpreter stays the same, so set
460 	 * its VTEXT flag, too.
461 	 */
462 	if (error == 0)
463 		vsetflags(imgp->vp, VTEXT);
464 	vn_unlock(imgp->vp);
465 	if (error)
466                 goto fail;
467 
468 	hdr = (const Elf_Ehdr *)imgp->image_header;
469 	if ((error = __elfN(check_header)(hdr)) != 0)
470 		goto fail;
471 	if (hdr->e_type == ET_DYN)
472 		rbase = *addr;
473 	else if (hdr->e_type == ET_EXEC)
474 		rbase = 0;
475 	else {
476 		error = ENOEXEC;
477 		goto fail;
478 	}
479 
480 	/* Only support headers that fit within first page for now      */
481 	/*    (multiplication of two Elf_Half fields will not overflow) */
482 	if ((hdr->e_phoff > PAGE_SIZE) ||
483 	    (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) {
484 		error = ENOEXEC;
485 		goto fail;
486 	}
487 
488 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
489 	if (!aligned(phdr, Elf_Addr)) {
490 		error = ENOEXEC;
491 		goto fail;
492 	}
493 
494 	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
495 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
496 			/* Loadable segment */
497 			prot = __elfN(trans_prot)(phdr[i].p_flags);
498 			error = __elfN(load_section)(
499 				    p, vmspace, imgp->vp,
500 				    phdr[i].p_offset,
501 				    (caddr_t)phdr[i].p_vaddr +
502 				    rbase,
503 				    phdr[i].p_memsz,
504 				    phdr[i].p_filesz, prot);
505 			if (error != 0)
506 				goto fail;
507 			/*
508 			 * Establish the base address if this is the
509 			 * first segment.
510 			 */
511 			if (numsegs == 0)
512   				base_addr = trunc_page(phdr[i].p_vaddr + rbase);
513 			numsegs++;
514 		}
515 	}
516 	*addr = base_addr;
517 	*entry = (unsigned long)hdr->e_entry + rbase;
518 
519 fail:
520 	if (imgp->firstpage)
521 		exec_unmap_first_page(imgp);
522 	if (imgp->vp) {
523 		vrele(imgp->vp);
524 		imgp->vp = NULL;
525 	}
526 	kfree(tempdata, M_TEMP);
527 
528 	return (error);
529 }
530 
531 static Elf_Brandinfo *
532 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
533     int32_t *osrel)
534 {
535 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
536 	Elf_Brandinfo *bi;
537 	boolean_t ret;
538 	int i;
539 
540 	/* We support four types of branding -- (1) the ELF EI_OSABI field
541 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
542 	 * branding within the ELF header, (3) path of the `interp_path' field,
543 	 * and (4) the ".note.ABI-tag" ELF section.
544 	 */
545 
546 	/* Look for an ".note.ABI-tag" ELF section */
547 	for (i = 0; i < MAX_BRANDS; i++) {
548 		bi = elf_brand_list[i];
549 
550 		if (bi == NULL)
551 			continue;
552 		if (hdr->e_machine == bi->machine && (bi->flags &
553 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
554 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
555 			if (ret)
556 				return (bi);
557 		}
558 	}
559 
560 	/* If the executable has a brand, search for it in the brand list. */
561 	for (i = 0;  i < MAX_BRANDS;  i++) {
562 		bi = elf_brand_list[i];
563 
564                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
565 			continue;
566 		if (hdr->e_machine == bi->machine &&
567 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
568 		    strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
569 		    bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0))
570 			return (bi);
571 	}
572 
573 	/* Lacking a known brand, search for a recognized interpreter. */
574 	if (interp != NULL) {
575 		for (i = 0;  i < MAX_BRANDS;  i++) {
576 			bi = elf_brand_list[i];
577 
578                         if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
579 				continue;
580 			if (hdr->e_machine == bi->machine &&
581 			    strcmp(interp, bi->interp_path) == 0)
582 				return (bi);
583 		}
584 	}
585 
586 	/* Lacking a recognized interpreter, try the default brand */
587 	for (i = 0; i < MAX_BRANDS; i++) {
588 		bi = elf_brand_list[i];
589 
590 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
591 			continue;
592 		if (hdr->e_machine == bi->machine &&
593 		    __elfN(fallback_brand) == bi->brand)
594 			return (bi);
595 	}
596 	return (NULL);
597 }
598 
599 static int
600 __CONCAT(exec_,__elfN(imgact))(struct image_params *imgp)
601 {
602 	const Elf_Ehdr *hdr = (const Elf_Ehdr *) imgp->image_header;
603 	const Elf_Phdr *phdr;
604 	Elf_Auxargs *elf_auxargs;
605 	struct vmspace *vmspace;
606 	vm_prot_t prot;
607 	u_long text_size = 0, data_size = 0, total_size = 0;
608 	u_long text_addr = 0, data_addr = 0;
609 	u_long seg_size, seg_addr;
610 	u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0;
611 	int32_t osrel = 0;
612 	int error = 0, i, n;
613 	boolean_t failure;
614 	char *interp = NULL;
615 	const char *newinterp = NULL;
616 	Elf_Brandinfo *brand_info;
617 	char *path;
618 
619 	/*
620 	 * Do we have a valid ELF header ?
621 	 *
622 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later if a particular
623 	 * brand doesn't support it.  Both DragonFly platforms do by default.
624 	 */
625 	if (__elfN(check_header)(hdr) != 0 ||
626 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
627 		return (-1);
628 
629 	/*
630 	 * From here on down, we return an errno, not -1, as we've
631 	 * detected an ELF file.
632 	 */
633 
634 	if ((hdr->e_phoff > PAGE_SIZE) ||
635 	    (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) {
636 		/* Only support headers in first page for now */
637 		return (ENOEXEC);
638 	}
639 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
640 	if (!aligned(phdr, Elf_Addr))
641 		return (ENOEXEC);
642 	n = 0;
643 	baddr = 0;
644 	for (i = 0; i < hdr->e_phnum; i++) {
645 		if (phdr[i].p_type == PT_LOAD) {
646 			if (n == 0)
647 				baddr = phdr[i].p_vaddr;
648 			n++;
649 			continue;
650 		}
651 		if (phdr[i].p_type == PT_INTERP) {
652 			/*
653 			 * If interp is already defined there are more than
654 			 * one PT_INTERP program headers present.  Take only
655 			 * the first one and ignore the rest.
656 			 */
657 			if (interp != NULL)
658 				continue;
659 
660 			if (phdr[i].p_filesz == 0 ||
661 			    phdr[i].p_filesz > PAGE_SIZE ||
662 			    phdr[i].p_filesz > MAXPATHLEN)
663 				return (ENOEXEC);
664 
665 			interp = kmalloc(phdr[i].p_filesz, M_TEMP, M_WAITOK);
666 			failure = extract_interpreter(imgp, &phdr[i], interp);
667 			if (failure) {
668 				kfree(interp, M_TEMP);
669 				return (ENOEXEC);
670 			}
671 			continue;
672 		}
673 	}
674 
675 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel);
676 	if (brand_info == NULL) {
677 		uprintf("ELF binary type \"%u\" not known.\n",
678 		    hdr->e_ident[EI_OSABI]);
679 		if (interp != NULL)
680 		        kfree(interp, M_TEMP);
681 		return (ENOEXEC);
682 	}
683 	if (hdr->e_type == ET_DYN) {
684 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
685 		        if (interp != NULL)
686 		                kfree(interp, M_TEMP);
687 			return (ENOEXEC);
688                 }
689 		/*
690 		 * Honour the base load address from the dso if it is
691 		 * non-zero for some reason.
692 		 */
693 		if (baddr == 0)
694 			et_dyn_addr = ET_DYN_LOAD_ADDR;
695 		else
696 			et_dyn_addr = 0;
697 	} else
698 		et_dyn_addr = 0;
699 
700 	if (interp != NULL && brand_info->interp_newpath != NULL)
701 		newinterp = brand_info->interp_newpath;
702 
703 	exec_new_vmspace(imgp, NULL);
704 
705 	/*
706 	 * Yeah, I'm paranoid.  There is every reason in the world to get
707 	 * VTEXT now since from here on out, there are places we can have
708 	 * a context switch.  Better safe than sorry; I really don't want
709 	 * the file to change while it's being loaded.
710 	 */
711 	vsetflags(imgp->vp, VTEXT);
712 
713 	vmspace = imgp->proc->p_vmspace;
714 
715 	for (i = 0; i < hdr->e_phnum; i++) {
716 		switch (phdr[i].p_type) {
717 		case PT_LOAD:	/* Loadable segment */
718 			if (phdr[i].p_memsz == 0)
719 				break;
720 			prot = __elfN(trans_prot)(phdr[i].p_flags);
721 
722 			if ((error = __elfN(load_section)(
723 					imgp->proc,
724 					vmspace,
725 					imgp->vp,
726 					phdr[i].p_offset,
727 					(caddr_t)phdr[i].p_vaddr + et_dyn_addr,
728 					phdr[i].p_memsz,
729 					phdr[i].p_filesz,
730 					prot)) != 0) {
731                                 if (interp != NULL)
732                                         kfree (interp, M_TEMP);
733 				return (error);
734                         }
735 
736 			/*
737 			 * If this segment contains the program headers,
738 			 * remember their virtual address for the AT_PHDR
739 			 * aux entry. Static binaries don't usually include
740 			 * a PT_PHDR entry.
741 			 */
742 			if (phdr[i].p_offset == 0 &&
743 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
744 				<= phdr[i].p_filesz)
745 				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
746 				    et_dyn_addr;
747 
748 			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
749 			seg_size = round_page(phdr[i].p_memsz +
750 			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
751 
752 			/*
753 			 * Is this .text or .data?  We can't use
754 			 * VM_PROT_WRITE or VM_PROT_EXEC, it breaks the
755 			 * alpha terribly and possibly does other bad
756 			 * things so we stick to the old way of figuring
757 			 * it out:  If the segment contains the program
758 			 * entry point, it's a text segment, otherwise it
759 			 * is a data segment.
760 			 *
761 			 * Note that obreak() assumes that data_addr +
762 			 * data_size == end of data load area, and the ELF
763 			 * file format expects segments to be sorted by
764 			 * address.  If multiple data segments exist, the
765 			 * last one will be used.
766 			 */
767 			if (hdr->e_entry >= phdr[i].p_vaddr &&
768 			    hdr->e_entry < (phdr[i].p_vaddr +
769 			    phdr[i].p_memsz)) {
770 				text_size = seg_size;
771 				text_addr = seg_addr;
772 				entry = (u_long)hdr->e_entry + et_dyn_addr;
773 			} else {
774 				data_size = seg_size;
775 				data_addr = seg_addr;
776 			}
777 			total_size += seg_size;
778 
779 			/*
780 			 * Check limits.  It should be safe to check the
781 			 * limits after loading the segment since we do
782 			 * not actually fault in all the segment's pages.
783 			 */
784 			if (data_size >
785 			    imgp->proc->p_rlimit[RLIMIT_DATA].rlim_cur ||
786 			    text_size > maxtsiz ||
787 			    total_size >
788 			    imgp->proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
789 				if (interp != NULL)
790 					kfree(interp, M_TEMP);
791 				error = ENOMEM;
792 				return (error);
793 			}
794 			break;
795 		case PT_PHDR: 	/* Program header table info */
796 			proghdr = phdr[i].p_vaddr + et_dyn_addr;
797 			break;
798 		default:
799 			break;
800 		}
801 	}
802 
803 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
804 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
805 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
806 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
807 
808 	addr = ELF_RTLD_ADDR(vmspace);
809 
810 	imgp->entry_addr = entry;
811 
812 	imgp->proc->p_sysent = brand_info->sysvec;
813 	EVENTHANDLER_INVOKE(process_exec, imgp);
814 
815 	if (interp != NULL) {
816 		int have_interp = FALSE;
817 		if (brand_info->emul_path != NULL &&
818 		    brand_info->emul_path[0] != '\0') {
819 			path = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
820 		        ksnprintf(path, MAXPATHLEN, "%s%s",
821 			    brand_info->emul_path, interp);
822 			error = __elfN(load_file)(imgp->proc, path, &addr,
823 			    &imgp->entry_addr);
824 			kfree(path, M_TEMP);
825 			if (error == 0)
826 				have_interp = TRUE;
827 		}
828 		if (!have_interp && newinterp != NULL) {
829 			error = __elfN(load_file)(imgp->proc, newinterp,
830 			    &addr, &imgp->entry_addr);
831 			if (error == 0)
832 				have_interp = TRUE;
833 		}
834 		if (!have_interp) {
835 			error = __elfN(load_file)(imgp->proc, interp, &addr,
836 			    &imgp->entry_addr);
837 		}
838 		if (error != 0) {
839 			uprintf("ELF interpreter %s not found\n", interp);
840 			kfree(interp, M_TEMP);
841 			return (error);
842 		}
843 		kfree(interp, M_TEMP);
844 	} else
845 		addr = et_dyn_addr;
846 
847 	/*
848 	 * Construct auxargs table (used by the fixup routine)
849 	 */
850 	elf_auxargs = kmalloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
851 	elf_auxargs->execfd = -1;
852 	elf_auxargs->phdr = proghdr;
853 	elf_auxargs->phent = hdr->e_phentsize;
854 	elf_auxargs->phnum = hdr->e_phnum;
855 	elf_auxargs->pagesz = PAGE_SIZE;
856 	elf_auxargs->base = addr;
857 	elf_auxargs->flags = 0;
858 	elf_auxargs->entry = entry;
859 
860 	imgp->auxargs = elf_auxargs;
861 	imgp->interpreted = 0;
862 	imgp->proc->p_osrel = osrel;
863 
864 	return (error);
865 }
866 
867 int
868 __elfN(dragonfly_fixup)(register_t **stack_base, struct image_params *imgp)
869 {
870 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
871 	Elf_Addr *base;
872 	Elf_Addr *pos;
873 
874 	base = (Elf_Addr *)*stack_base;
875 	pos = base + (imgp->args->argc + imgp->args->envc + 2);
876 
877 	if (args->execfd != -1)
878 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
879 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
880 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
881 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
882 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
883 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
884 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
885 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
886 	if (imgp->execpathp != 0)
887 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
888 	AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate);
889 	AUXARGS_ENTRY(pos, AT_NULL, 0);
890 
891 	kfree(imgp->auxargs, M_TEMP);
892 	imgp->auxargs = NULL;
893 
894 	base--;
895 	suword(base, (long)imgp->args->argc);
896 	*stack_base = (register_t *)base;
897 	return (0);
898 }
899 
900 /*
901  * Code for generating ELF core dumps.
902  */
903 
904 typedef int (*segment_callback)(vm_map_entry_t, void *);
905 
906 /* Closure for cb_put_phdr(). */
907 struct phdr_closure {
908 	Elf_Phdr *phdr;		/* Program header to fill in (incremented) */
909 	Elf_Phdr *phdr_max;	/* Pointer bound for error check */
910 	Elf_Off offset;		/* Offset of segment in core file */
911 };
912 
913 /* Closure for cb_size_segment(). */
914 struct sseg_closure {
915 	int count;		/* Count of writable segments. */
916 	size_t vsize;		/* Total size of all writable segments. */
917 };
918 
919 /* Closure for cb_put_fp(). */
920 struct fp_closure {
921 	struct vn_hdr *vnh;
922 	struct vn_hdr *vnh_max;
923 	int count;
924 	struct stat *sb;
925 };
926 
927 typedef struct elf_buf {
928 	char	*buf;
929 	size_t	off;
930 	size_t	off_max;
931 } *elf_buf_t;
932 
933 static void *target_reserve(elf_buf_t target, size_t bytes, int *error);
934 
935 static int cb_put_phdr (vm_map_entry_t, void *);
936 static int cb_size_segment (vm_map_entry_t, void *);
937 static int cb_fpcount_segment(vm_map_entry_t, void *);
938 static int cb_put_fp(vm_map_entry_t, void *);
939 
940 
941 static int each_segment (struct proc *, segment_callback, void *, int);
942 static int __elfN(corehdr)(struct lwp *, int, struct file *, struct ucred *,
943 			int, elf_buf_t);
944 enum putmode { WRITE, DRYRUN };
945 static int __elfN(puthdr)(struct lwp *, elf_buf_t, int sig, enum putmode,
946 			int, struct file *);
947 static int elf_putallnotes(struct lwp *, elf_buf_t, int, enum putmode);
948 static int __elfN(putnote)(elf_buf_t, const char *, int, const void *, size_t);
949 
950 static int elf_putsigs(struct lwp *, elf_buf_t);
951 static int elf_puttextvp(struct proc *, elf_buf_t);
952 static int elf_putfiles(struct proc *, elf_buf_t, struct file *);
953 
954 int
955 __elfN(coredump)(struct lwp *lp, int sig, struct vnode *vp, off_t limit)
956 {
957 	struct file *fp;
958 	int error;
959 
960 	if ((error = falloc(NULL, &fp, NULL)) != 0)
961 		return (error);
962 	fsetcred(fp, lp->lwp_proc->p_ucred);
963 
964 	/*
965 	 * XXX fixme.
966 	 */
967 	fp->f_type = DTYPE_VNODE;
968 	fp->f_flag = O_CREAT|O_WRONLY|O_NOFOLLOW;
969 	fp->f_ops = &vnode_fileops;
970 	fp->f_data = vp;
971 
972 	error = generic_elf_coredump(lp, sig, fp, limit);
973 
974 	fp->f_type = 0;
975 	fp->f_flag = 0;
976 	fp->f_ops = &badfileops;
977 	fp->f_data = NULL;
978 	fdrop(fp);
979 	return (error);
980 }
981 
982 int
983 generic_elf_coredump(struct lwp *lp, int sig, struct file *fp, off_t limit)
984 {
985 	struct proc *p = lp->lwp_proc;
986 	struct ucred *cred = p->p_ucred;
987 	int error = 0;
988 	struct sseg_closure seginfo;
989 	struct elf_buf target;
990 
991 	if (!fp)
992 		kprintf("can't dump core - null fp\n");
993 
994 	/*
995 	 * Size the program segments
996 	 */
997 	seginfo.count = 0;
998 	seginfo.vsize = 0;
999 	each_segment(p, cb_size_segment, &seginfo, 1);
1000 
1001 	/*
1002 	 * Calculate the size of the core file header area by making
1003 	 * a dry run of generating it.  Nothing is written, but the
1004 	 * size is calculated.
1005 	 */
1006 	bzero(&target, sizeof(target));
1007 	__elfN(puthdr)(lp, &target, sig, DRYRUN, seginfo.count, fp);
1008 
1009 	if (target.off + seginfo.vsize >= limit)
1010 		return (EFAULT);
1011 
1012 	/*
1013 	 * Allocate memory for building the header, fill it up,
1014 	 * and write it out.
1015 	 */
1016 	target.off_max = target.off;
1017 	target.off = 0;
1018 	target.buf = kmalloc(target.off_max, M_TEMP, M_WAITOK|M_ZERO);
1019 
1020 	error = __elfN(corehdr)(lp, sig, fp, cred, seginfo.count, &target);
1021 
1022 	/* Write the contents of all of the writable segments. */
1023 	if (error == 0) {
1024 		Elf_Phdr *php;
1025 		int i;
1026 		ssize_t nbytes;
1027 
1028 		php = (Elf_Phdr *)(target.buf + sizeof(Elf_Ehdr)) + 1;
1029 		for (i = 0; i < seginfo.count; i++) {
1030 			error = fp_write(fp, (caddr_t)php->p_vaddr,
1031 					php->p_filesz, &nbytes, UIO_USERSPACE);
1032 			if (error != 0)
1033 				break;
1034 			php++;
1035 		}
1036 	}
1037 	kfree(target.buf, M_TEMP);
1038 
1039 	return (error);
1040 }
1041 
1042 /*
1043  * A callback for each_segment() to write out the segment's
1044  * program header entry.
1045  */
1046 static int
1047 cb_put_phdr(vm_map_entry_t entry, void *closure)
1048 {
1049 	struct phdr_closure *phc = closure;
1050 	Elf_Phdr *phdr = phc->phdr;
1051 
1052 	if (phc->phdr == phc->phdr_max)
1053 		return (EINVAL);
1054 
1055 	phc->offset = round_page(phc->offset);
1056 
1057 	phdr->p_type = PT_LOAD;
1058 	phdr->p_offset = phc->offset;
1059 	phdr->p_vaddr = entry->start;
1060 	phdr->p_paddr = 0;
1061 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1062 	phdr->p_align = PAGE_SIZE;
1063 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1064 
1065 	phc->offset += phdr->p_filesz;
1066 	++phc->phdr;
1067 	return (0);
1068 }
1069 
1070 /*
1071  * A callback for each_writable_segment() to gather information about
1072  * the number of segments and their total size.
1073  */
1074 static int
1075 cb_size_segment(vm_map_entry_t entry, void *closure)
1076 {
1077 	struct sseg_closure *ssc = closure;
1078 
1079 	++ssc->count;
1080 	ssc->vsize += entry->end - entry->start;
1081 	return (0);
1082 }
1083 
1084 /*
1085  * A callback for each_segment() to gather information about
1086  * the number of text segments.
1087  */
1088 static int
1089 cb_fpcount_segment(vm_map_entry_t entry, void *closure)
1090 {
1091 	int *count = closure;
1092 	struct vnode *vp;
1093 
1094 	if (entry->object.vm_object->type == OBJT_VNODE) {
1095 		vp = (struct vnode *)entry->object.vm_object->handle;
1096 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1097 			return (0);
1098 		++*count;
1099 	}
1100 	return (0);
1101 }
1102 
1103 static int
1104 cb_put_fp(vm_map_entry_t entry, void *closure)
1105 {
1106 	struct fp_closure *fpc = closure;
1107 	struct vn_hdr *vnh = fpc->vnh;
1108 	Elf_Phdr *phdr = &vnh->vnh_phdr;
1109 	struct vnode *vp;
1110 	int error;
1111 
1112 	/*
1113 	 * If an entry represents a vnode then write out a file handle.
1114 	 *
1115 	 * If we are checkpointing a checkpoint-restored program we do
1116 	 * NOT record the filehandle for the old checkpoint vnode (which
1117 	 * is mapped all over the place).  Instead we rely on the fact
1118 	 * that a checkpoint-restored program does not mmap() the checkpt
1119 	 * vnode NOCORE, so its contents will be written out to the
1120 	 * new checkpoint file.  This is necessary because the 'old'
1121 	 * checkpoint file is typically destroyed when a new one is created
1122 	 * and thus cannot be used to restore the new checkpoint.
1123 	 *
1124 	 * Theoretically we could create a chain of checkpoint files and
1125 	 * operate the checkpointing operation kinda like an incremental
1126 	 * checkpoint, but a checkpoint restore would then likely wind up
1127 	 * referencing many prior checkpoint files and that is a bit over
1128 	 * the top for the purpose of the checkpoint API.
1129 	 */
1130 	if (entry->object.vm_object->type == OBJT_VNODE) {
1131 		vp = (struct vnode *)entry->object.vm_object->handle;
1132 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1133 			return (0);
1134 		if (vnh == fpc->vnh_max)
1135 			return (EINVAL);
1136 
1137 		if (vp->v_mount)
1138 			vnh->vnh_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1139 		error = VFS_VPTOFH(vp, &vnh->vnh_fh.fh_fid);
1140 		if (error) {
1141 			char *freepath, *fullpath;
1142 
1143 			if (vn_fullpath(curproc, vp, &fullpath, &freepath, 0)) {
1144 				kprintf("Warning: coredump, error %d: cannot store file handle for vnode %p\n", error, vp);
1145 			} else {
1146 				kprintf("Warning: coredump, error %d: cannot store file handle for %s\n", error, fullpath);
1147 				kfree(freepath, M_TEMP);
1148 			}
1149 			error = 0;
1150 		}
1151 
1152 		phdr->p_type = PT_LOAD;
1153 		phdr->p_offset = 0;        /* not written to core */
1154 		phdr->p_vaddr = entry->start;
1155 		phdr->p_paddr = 0;
1156 		phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1157 		phdr->p_align = PAGE_SIZE;
1158 		phdr->p_flags = 0;
1159 		if (entry->protection & VM_PROT_READ)
1160 			phdr->p_flags |= PF_R;
1161 		if (entry->protection & VM_PROT_WRITE)
1162 			phdr->p_flags |= PF_W;
1163 		if (entry->protection & VM_PROT_EXECUTE)
1164 			phdr->p_flags |= PF_X;
1165 		++fpc->vnh;
1166 		++fpc->count;
1167 	}
1168 	return (0);
1169 }
1170 
1171 /*
1172  * For each writable segment in the process's memory map, call the given
1173  * function with a pointer to the map entry and some arbitrary
1174  * caller-supplied data.
1175  */
1176 static int
1177 each_segment(struct proc *p, segment_callback func, void *closure, int writable)
1178 {
1179 	int error = 0;
1180 	vm_map_t map = &p->p_vmspace->vm_map;
1181 	vm_map_entry_t entry;
1182 
1183 	for (entry = map->header.next; error == 0 && entry != &map->header;
1184 	    entry = entry->next) {
1185 		vm_object_t obj;
1186 		vm_object_t lobj;
1187 		vm_object_t tobj;
1188 
1189 		/*
1190 		 * Don't dump inaccessible mappings, deal with legacy
1191 		 * coredump mode.
1192 		 *
1193 		 * Note that read-only segments related to the elf binary
1194 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1195 		 * need to arbitrarily ignore such segments.
1196 		 */
1197 		if (elf_legacy_coredump) {
1198 			if (writable && (entry->protection & VM_PROT_RW) != VM_PROT_RW)
1199 				continue;
1200 		} else {
1201 			if (writable && (entry->protection & VM_PROT_ALL) == 0)
1202 				continue;
1203 		}
1204 
1205 		/*
1206 		 * Dont include memory segment in the coredump if
1207 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1208 		 * madvise(2).
1209 		 *
1210 		 * Currently we only dump normal VM object maps.  We do
1211 		 * not dump submaps or virtual page tables.
1212 		 */
1213 		if (writable && (entry->eflags & MAP_ENTRY_NOCOREDUMP))
1214 			continue;
1215 		if (entry->maptype != VM_MAPTYPE_NORMAL)
1216 			continue;
1217 		if ((obj = entry->object.vm_object) == NULL)
1218 			continue;
1219 
1220 		/*
1221 		 * Find the bottom-most object, leaving the base object
1222 		 * and the bottom-most object held (but only one hold
1223 		 * if they happen to be the same).
1224 		 */
1225 		vm_object_hold(obj);
1226 
1227 		lobj = obj;
1228 		while (lobj && (tobj = lobj->backing_object) != NULL) {
1229 			KKASSERT(tobj != obj);
1230 			vm_object_hold(tobj);
1231 			if (tobj == lobj->backing_object) {
1232 				if (lobj != obj) {
1233 					vm_object_lock_swap();
1234 					vm_object_drop(lobj);
1235 				}
1236 				lobj = tobj;
1237 			} else {
1238 				vm_object_drop(tobj);
1239 			}
1240 		}
1241 
1242 		/*
1243 		 * The callback only applies to default, swap, or vnode
1244 		 * objects.  Other types of objects such as memory-mapped
1245 		 * devices are ignored.
1246 		 */
1247 		if (lobj->type == OBJT_DEFAULT || lobj->type == OBJT_SWAP ||
1248 		    lobj->type == OBJT_VNODE) {
1249 			error = (*func)(entry, closure);
1250 		}
1251 		if (lobj != obj)
1252 			vm_object_drop(lobj);
1253 		vm_object_drop(obj);
1254 	}
1255 	return (error);
1256 }
1257 
1258 static
1259 void *
1260 target_reserve(elf_buf_t target, size_t bytes, int *error)
1261 {
1262     void *res = NULL;
1263 
1264     if (target->buf) {
1265 	    if (target->off + bytes > target->off_max)
1266 		    *error = EINVAL;
1267 	    else
1268 		    res = target->buf + target->off;
1269     }
1270     target->off += bytes;
1271     return (res);
1272 }
1273 
1274 /*
1275  * Write the core file header to the file, including padding up to
1276  * the page boundary.
1277  */
1278 static int
1279 __elfN(corehdr)(struct lwp *lp, int sig, struct file *fp, struct ucred *cred,
1280 	    int numsegs, elf_buf_t target)
1281 {
1282 	int error;
1283 	ssize_t nbytes;
1284 
1285 	/*
1286 	 * Fill in the header.  The fp is passed so we can detect and flag
1287 	 * a checkpoint file pointer within the core file itself, because
1288 	 * it may not be restored from the same file handle.
1289 	 */
1290 	error = __elfN(puthdr)(lp, target, sig, WRITE, numsegs, fp);
1291 
1292 	/* Write it to the core file. */
1293 	if (error == 0) {
1294 		error = fp_write(fp, target->buf, target->off, &nbytes,
1295 				 UIO_SYSSPACE);
1296 	}
1297 	return (error);
1298 }
1299 
1300 static int
1301 __elfN(puthdr)(struct lwp *lp, elf_buf_t target, int sig, enum putmode mode,
1302     int numsegs, struct file *fp)
1303 {
1304 	struct proc *p = lp->lwp_proc;
1305 	int error = 0;
1306 	size_t phoff;
1307 	size_t noteoff;
1308 	size_t notesz;
1309 	Elf_Ehdr *ehdr;
1310 	Elf_Phdr *phdr;
1311 
1312 	ehdr = target_reserve(target, sizeof(Elf_Ehdr), &error);
1313 
1314 	phoff = target->off;
1315 	phdr = target_reserve(target, (numsegs + 1) * sizeof(Elf_Phdr), &error);
1316 
1317 	noteoff = target->off;
1318 	if (error == 0)
1319 		elf_putallnotes(lp, target, sig, mode);
1320 	notesz = target->off - noteoff;
1321 
1322 	/*
1323 	 * put extra cruft for dumping process state here
1324 	 *  - we really want it be before all the program
1325 	 *    mappings
1326 	 *  - we just need to update the offset accordingly
1327 	 *    and GDB will be none the wiser.
1328 	 */
1329 	if (error == 0)
1330 		error = elf_puttextvp(p, target);
1331 	if (error == 0)
1332 		error = elf_putsigs(lp, target);
1333 	if (error == 0)
1334 		error = elf_putfiles(p, target, fp);
1335 
1336 	/*
1337 	 * Align up to a page boundary for the program segments.  The
1338 	 * actual data will be written to the outptu file, not to elf_buf_t,
1339 	 * so we do not have to do any further bounds checking.
1340 	 */
1341 	target->off = round_page(target->off);
1342 	if (error == 0 && ehdr != NULL) {
1343 		/*
1344 		 * Fill in the ELF header.
1345 		 */
1346 		ehdr->e_ident[EI_MAG0] = ELFMAG0;
1347 		ehdr->e_ident[EI_MAG1] = ELFMAG1;
1348 		ehdr->e_ident[EI_MAG2] = ELFMAG2;
1349 		ehdr->e_ident[EI_MAG3] = ELFMAG3;
1350 		ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1351 		ehdr->e_ident[EI_DATA] = ELF_DATA;
1352 		ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1353 		ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1354 		ehdr->e_ident[EI_ABIVERSION] = 0;
1355 		ehdr->e_ident[EI_PAD] = 0;
1356 		ehdr->e_type = ET_CORE;
1357 		ehdr->e_machine = ELF_ARCH;
1358 		ehdr->e_version = EV_CURRENT;
1359 		ehdr->e_entry = 0;
1360 		ehdr->e_phoff = phoff;
1361 		ehdr->e_flags = 0;
1362 		ehdr->e_ehsize = sizeof(Elf_Ehdr);
1363 		ehdr->e_phentsize = sizeof(Elf_Phdr);
1364 		ehdr->e_phnum = numsegs + 1;
1365 		ehdr->e_shentsize = sizeof(Elf_Shdr);
1366 		ehdr->e_shnum = 0;
1367 		ehdr->e_shstrndx = SHN_UNDEF;
1368 	}
1369 	if (error == 0 && phdr != NULL) {
1370 		/*
1371 		 * Fill in the program header entries.
1372 		 */
1373 		struct phdr_closure phc;
1374 
1375 		/* The note segement. */
1376 		phdr->p_type = PT_NOTE;
1377 		phdr->p_offset = noteoff;
1378 		phdr->p_vaddr = 0;
1379 		phdr->p_paddr = 0;
1380 		phdr->p_filesz = notesz;
1381 		phdr->p_memsz = 0;
1382 		phdr->p_flags = 0;
1383 		phdr->p_align = 0;
1384 		++phdr;
1385 
1386 		/* All the writable segments from the program. */
1387 		phc.phdr = phdr;
1388 		phc.phdr_max = phdr + numsegs;
1389 		phc.offset = target->off;
1390 		each_segment(p, cb_put_phdr, &phc, 1);
1391 	}
1392 	return (error);
1393 }
1394 
1395 /*
1396  * Append core dump notes to target ELF buffer or simply update target size
1397  * if dryrun selected.
1398  */
1399 static int
1400 elf_putallnotes(struct lwp *corelp, elf_buf_t target, int sig,
1401     enum putmode mode)
1402 {
1403 	struct proc *p = corelp->lwp_proc;
1404 	int error;
1405 	struct {
1406 		prstatus_t status;
1407 		prfpregset_t fpregs;
1408 		prpsinfo_t psinfo;
1409 	} *tmpdata;
1410 	prstatus_t *status;
1411 	prfpregset_t *fpregs;
1412 	prpsinfo_t *psinfo;
1413 	struct lwp *lp;
1414 
1415 	/*
1416 	 * Allocate temporary storage for notes on heap to avoid stack overflow.
1417 	 */
1418 	if (mode != DRYRUN) {
1419 		tmpdata = kmalloc(sizeof(*tmpdata), M_TEMP, M_ZERO | M_WAITOK);
1420 		status = &tmpdata->status;
1421 		fpregs = &tmpdata->fpregs;
1422 		psinfo = &tmpdata->psinfo;
1423 	} else {
1424 		tmpdata = NULL;
1425 		status = NULL;
1426 		fpregs = NULL;
1427 		psinfo = NULL;
1428 	}
1429 
1430 	/*
1431 	 * Append LWP-agnostic note.
1432 	 */
1433 	if (mode != DRYRUN) {
1434 		psinfo->pr_version = PRPSINFO_VERSION;
1435 		psinfo->pr_psinfosz = sizeof(prpsinfo_t);
1436 		strlcpy(psinfo->pr_fname, p->p_comm,
1437 			sizeof(psinfo->pr_fname));
1438 		/*
1439 		 * XXX - We don't fill in the command line arguments
1440 		 * properly yet.
1441 		 */
1442 		strlcpy(psinfo->pr_psargs, p->p_comm,
1443 			sizeof(psinfo->pr_psargs));
1444 	}
1445 	error =
1446 	    __elfN(putnote)(target, "CORE", NT_PRPSINFO, psinfo, sizeof *psinfo);
1447 	if (error)
1448 		goto exit;
1449 
1450 	/*
1451 	 * Append first note for LWP that triggered core so that it is
1452 	 * the selected one when the debugger starts.
1453 	 */
1454 	if (mode != DRYRUN) {
1455 		status->pr_version = PRSTATUS_VERSION;
1456 		status->pr_statussz = sizeof(prstatus_t);
1457 		status->pr_gregsetsz = sizeof(gregset_t);
1458 		status->pr_fpregsetsz = sizeof(fpregset_t);
1459 		status->pr_osreldate = osreldate;
1460 		status->pr_cursig = sig;
1461 		/*
1462 		 * XXX GDB needs unique pr_pid for each LWP and does not
1463 		 * not support pr_pid==0 but lwp_tid can be 0, so hack unique
1464 		 * value.
1465 		 */
1466 		status->pr_pid = corelp->lwp_tid;
1467 		fill_regs(corelp, &status->pr_reg);
1468 		fill_fpregs(corelp, fpregs);
1469 	}
1470 	error =
1471 	    __elfN(putnote)(target, "CORE", NT_PRSTATUS, status, sizeof *status);
1472 	if (error)
1473 		goto exit;
1474 	error =
1475 	    __elfN(putnote)(target, "CORE", NT_FPREGSET, fpregs, sizeof *fpregs);
1476 	if (error)
1477 		goto exit;
1478 
1479 	/*
1480 	 * Then append notes for other LWPs.
1481 	 */
1482 	FOREACH_LWP_IN_PROC(lp, p) {
1483 		if (lp == corelp)
1484 			continue;
1485 		/* skip lwps being created */
1486 		if (lp->lwp_thread == NULL)
1487 			continue;
1488 		if (mode != DRYRUN) {
1489 			status->pr_pid = lp->lwp_tid;
1490 			fill_regs(lp, &status->pr_reg);
1491 			fill_fpregs(lp, fpregs);
1492 		}
1493 		error = __elfN(putnote)(target, "CORE", NT_PRSTATUS,
1494 					status, sizeof *status);
1495 		if (error)
1496 			goto exit;
1497 		error = __elfN(putnote)(target, "CORE", NT_FPREGSET,
1498 					fpregs, sizeof *fpregs);
1499 		if (error)
1500 			goto exit;
1501 	}
1502 
1503 exit:
1504 	if (tmpdata != NULL)
1505 		kfree(tmpdata, M_TEMP);
1506 	return (error);
1507 }
1508 
1509 /*
1510  * Generate a note sub-structure.
1511  *
1512  * NOTE: 4-byte alignment.
1513  */
1514 static int
1515 __elfN(putnote)(elf_buf_t target, const char *name, int type,
1516 	    const void *desc, size_t descsz)
1517 {
1518 	int error = 0;
1519 	char *dst;
1520 	Elf_Note note;
1521 
1522 	note.n_namesz = strlen(name) + 1;
1523 	note.n_descsz = descsz;
1524 	note.n_type = type;
1525 	dst = target_reserve(target, sizeof(note), &error);
1526 	if (dst != NULL)
1527 		bcopy(&note, dst, sizeof note);
1528 	dst = target_reserve(target, note.n_namesz, &error);
1529 	if (dst != NULL)
1530 		bcopy(name, dst, note.n_namesz);
1531 	target->off = roundup2(target->off, sizeof(Elf_Word));
1532 	dst = target_reserve(target, note.n_descsz, &error);
1533 	if (dst != NULL)
1534 		bcopy(desc, dst, note.n_descsz);
1535 	target->off = roundup2(target->off, sizeof(Elf_Word));
1536 	return (error);
1537 }
1538 
1539 
1540 static int
1541 elf_putsigs(struct lwp *lp, elf_buf_t target)
1542 {
1543 	/* XXX lwp handle more than one lwp */
1544 	struct proc *p = lp->lwp_proc;
1545 	int error = 0;
1546 	struct ckpt_siginfo *csi;
1547 
1548 	csi = target_reserve(target, sizeof(struct ckpt_siginfo), &error);
1549 	if (csi) {
1550 		csi->csi_ckptpisz = sizeof(struct ckpt_siginfo);
1551 		bcopy(p->p_sigacts, &csi->csi_sigacts, sizeof(*p->p_sigacts));
1552 		bcopy(&p->p_realtimer, &csi->csi_itimerval, sizeof(struct itimerval));
1553 		bcopy(&lp->lwp_sigmask, &csi->csi_sigmask,
1554 			sizeof(sigset_t));
1555 		csi->csi_sigparent = p->p_sigparent;
1556 	}
1557 	return (error);
1558 }
1559 
1560 static int
1561 elf_putfiles(struct proc *p, elf_buf_t target, struct file *ckfp)
1562 {
1563 	int error = 0;
1564 	int i;
1565 	struct ckpt_filehdr *cfh = NULL;
1566 	struct ckpt_fileinfo *cfi;
1567 	struct file *fp;
1568 	struct vnode *vp;
1569 	/*
1570 	 * the duplicated loop is gross, but it was the only way
1571 	 * to eliminate uninitialized variable warnings
1572 	 */
1573 	cfh = target_reserve(target, sizeof(struct ckpt_filehdr), &error);
1574 	if (cfh) {
1575 		cfh->cfh_nfiles = 0;
1576 	}
1577 
1578 	/*
1579 	 * ignore STDIN/STDERR/STDOUT.
1580 	 */
1581 	for (i = 3; error == 0 && i < p->p_fd->fd_nfiles; i++) {
1582 		fp = holdfp(p->p_fd, i, -1);
1583 		if (fp == NULL)
1584 			continue;
1585 		/*
1586 		 * XXX Only checkpoint vnodes for now.
1587 		 */
1588 		if (fp->f_type != DTYPE_VNODE) {
1589 			fdrop(fp);
1590 			continue;
1591 		}
1592 		cfi = target_reserve(target, sizeof(struct ckpt_fileinfo),
1593 					&error);
1594 		if (cfi == NULL) {
1595 			fdrop(fp);
1596 			continue;
1597 		}
1598 		cfi->cfi_index = -1;
1599 		cfi->cfi_type = fp->f_type;
1600 		cfi->cfi_flags = fp->f_flag;
1601 		cfi->cfi_offset = fp->f_offset;
1602 		cfi->cfi_ckflags = 0;
1603 
1604 		if (fp == ckfp)
1605 			cfi->cfi_ckflags |= CKFIF_ISCKPTFD;
1606 		/* f_count and f_msgcount should not be saved/restored */
1607 		/* XXX save cred info */
1608 
1609 		switch(fp->f_type) {
1610 		case DTYPE_VNODE:
1611 			vp = (struct vnode *)fp->f_data;
1612 			/*
1613 			 * it looks like a bug in ptrace is marking
1614 			 * a non-vnode as a vnode - until we find the
1615 			 * root cause this will at least prevent
1616 			 * further panics from truss
1617 			 */
1618 			if (vp == NULL || vp->v_mount == NULL)
1619 				break;
1620 			cfh->cfh_nfiles++;
1621 			cfi->cfi_index = i;
1622 			cfi->cfi_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1623 			error = VFS_VPTOFH(vp, &cfi->cfi_fh.fh_fid);
1624 			break;
1625 		default:
1626 			break;
1627 		}
1628 		fdrop(fp);
1629 	}
1630 	return (error);
1631 }
1632 
1633 static int
1634 elf_puttextvp(struct proc *p, elf_buf_t target)
1635 {
1636 	int error = 0;
1637 	int *vn_count;
1638 	struct fp_closure fpc;
1639 	struct ckpt_vminfo *vminfo;
1640 
1641 	vminfo = target_reserve(target, sizeof(struct ckpt_vminfo), &error);
1642 	if (vminfo != NULL) {
1643 		vminfo->cvm_dsize = p->p_vmspace->vm_dsize;
1644 		vminfo->cvm_tsize = p->p_vmspace->vm_tsize;
1645 		vminfo->cvm_daddr = p->p_vmspace->vm_daddr;
1646 		vminfo->cvm_taddr = p->p_vmspace->vm_taddr;
1647 	}
1648 
1649 	fpc.count = 0;
1650 	vn_count = target_reserve(target, sizeof(int), &error);
1651 	if (target->buf != NULL) {
1652 		fpc.vnh = (struct vn_hdr *)(target->buf + target->off);
1653 		fpc.vnh_max = fpc.vnh +
1654 			(target->off_max - target->off) / sizeof(struct vn_hdr);
1655 		error = each_segment(p, cb_put_fp, &fpc, 0);
1656 		if (vn_count)
1657 			*vn_count = fpc.count;
1658 	} else {
1659 		error = each_segment(p, cb_fpcount_segment, &fpc.count, 0);
1660 	}
1661 	target->off += fpc.count * sizeof(struct vn_hdr);
1662 	return (error);
1663 }
1664 
1665 /*
1666  * Try to find the appropriate ABI-note section for checknote,
1667  * The entire image is searched if necessary, not only the first page.
1668  */
1669 static boolean_t
1670 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
1671     int32_t *osrel)
1672 {
1673 	boolean_t valid_note_found;
1674 	const Elf_Phdr *phdr, *pnote;
1675 	const Elf_Ehdr *hdr;
1676 	int i;
1677 
1678 	valid_note_found = FALSE;
1679 	hdr = (const Elf_Ehdr *)imgp->image_header;
1680 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1681 
1682 	for (i = 0; i < hdr->e_phnum; i++) {
1683 		if (phdr[i].p_type == PT_NOTE) {
1684 			pnote = &phdr[i];
1685 			valid_note_found = check_PT_NOTE (imgp, checknote,
1686 				osrel, pnote);
1687 			if (valid_note_found)
1688 				break;
1689 		}
1690 	}
1691 	return valid_note_found;
1692 }
1693 
1694 /*
1695  * Be careful not to create new overflow conditions when checking
1696  * for overflow.
1697  */
1698 static boolean_t
1699 note_overflow(const Elf_Note *note, size_t maxsize)
1700 {
1701 	if (sizeof(*note) > maxsize)
1702 		return TRUE;
1703 	if (note->n_namesz > maxsize - sizeof(*note))
1704 		return TRUE;
1705 	return FALSE;
1706 }
1707 
1708 static boolean_t
1709 hdr_overflow(__ElfN(Off) off_beg, __ElfN(Size) size)
1710 {
1711 	__ElfN(Off) off_end;
1712 
1713 	off_end = off_beg + size;
1714 	if (off_end < off_beg)
1715 		return TRUE;
1716 	return FALSE;
1717 }
1718 
1719 static boolean_t
1720 check_PT_NOTE(struct image_params *imgp, Elf_Brandnote *checknote,
1721 	      int32_t *osrel, const Elf_Phdr * pnote)
1722 {
1723 	boolean_t limited_to_first_page;
1724 	boolean_t found = FALSE;
1725 	const Elf_Note *note, *note0, *note_end;
1726 	const char *note_name;
1727 	__ElfN(Off) noteloc, firstloc;
1728 	__ElfN(Size) notesz, firstlen, endbyte;
1729 	struct lwbuf *lwb;
1730 	struct lwbuf lwb_cache;
1731 	const char *page;
1732 	char *data = NULL;
1733 	int n;
1734 
1735 	if (hdr_overflow(pnote->p_offset, pnote->p_filesz))
1736 		return (FALSE);
1737 	notesz = pnote->p_filesz;
1738 	noteloc = pnote->p_offset;
1739 	endbyte = noteloc + notesz;
1740 	limited_to_first_page = noteloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1741 
1742 	if (limited_to_first_page) {
1743 		note = (const Elf_Note *)(imgp->image_header + noteloc);
1744 		note_end = (const Elf_Note *)(imgp->image_header + endbyte);
1745 		note0 = note;
1746 	} else {
1747 		firstloc = noteloc & PAGE_MASK;
1748 		firstlen = PAGE_SIZE - firstloc;
1749 		if (notesz < sizeof(Elf_Note) || notesz > PAGE_SIZE)
1750 			return (FALSE);
1751 
1752 		lwb = &lwb_cache;
1753 		if (exec_map_page(imgp, noteloc >> PAGE_SHIFT, &lwb, &page))
1754 			return (FALSE);
1755 		if (firstlen < notesz) {         /* crosses page boundary */
1756 			data = kmalloc(notesz, M_TEMP, M_WAITOK);
1757 			bcopy(page + firstloc, data, firstlen);
1758 
1759 			exec_unmap_page(lwb);
1760 			lwb = &lwb_cache;
1761 			if (exec_map_page(imgp, (noteloc >> PAGE_SHIFT) + 1,
1762 				&lwb, &page)) {
1763 				kfree(data, M_TEMP);
1764 				return (FALSE);
1765 			}
1766 			bcopy(page, data + firstlen, notesz - firstlen);
1767 			note = note0 = (const Elf_Note *)(data);
1768 			note_end = (const Elf_Note *)(data + notesz);
1769 		} else {
1770 			note = note0 = (const Elf_Note *)(page + firstloc);
1771 			note_end = (const Elf_Note *)(page + firstloc +
1772 				firstlen);
1773 		}
1774 	}
1775 
1776 	for (n = 0; n < 100 && note >= note0 && note < note_end; n++) {
1777 		if (!aligned(note, Elf32_Addr))
1778 			break;
1779 		if (note_overflow(note, (const char *)note_end -
1780 					(const char *)note)) {
1781 			break;
1782 		}
1783 		note_name = (const char *)(note + 1);
1784 
1785 		if (note->n_namesz == checknote->hdr.n_namesz
1786 		    && note->n_descsz == checknote->hdr.n_descsz
1787 		    && note->n_type == checknote->hdr.n_type
1788 		    && (strncmp(checknote->vendor, note_name,
1789 			checknote->hdr.n_namesz) == 0)) {
1790 			/* Fetch osreldata from ABI.note-tag */
1791 			if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
1792 			    checknote->trans_osrel != NULL)
1793 				checknote->trans_osrel(note, osrel);
1794 			found = TRUE;
1795 			break;
1796 		}
1797 		note = (const Elf_Note *)((const char *)(note + 1) +
1798 		    roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1799 		    roundup2(note->n_descsz, sizeof(Elf32_Addr)));
1800 	}
1801 
1802 	if (!limited_to_first_page) {
1803 		if (data != NULL)
1804 			kfree(data, M_TEMP);
1805 		exec_unmap_page(lwb);
1806 	}
1807 	return (found);
1808 }
1809 
1810 /*
1811  * The interpreter program header may be located beyond the first page, so
1812  * regardless of its location, a copy of the interpreter path is created so
1813  * that it may be safely referenced by the calling function in all case.  The
1814  * memory is allocated by calling function, and the copying is done here.
1815  */
1816 static boolean_t
1817 extract_interpreter(struct image_params *imgp, const Elf_Phdr *pinterpreter,
1818 		    char *data)
1819 {
1820 	boolean_t limited_to_first_page;
1821 	const boolean_t result_success = FALSE;
1822 	const boolean_t result_failure = TRUE;
1823 	__ElfN(Off) pathloc, firstloc;
1824 	__ElfN(Size) pathsz, firstlen, endbyte;
1825 	struct lwbuf *lwb;
1826 	struct lwbuf lwb_cache;
1827 	const char *page;
1828 
1829 	if (hdr_overflow(pinterpreter->p_offset, pinterpreter->p_filesz))
1830 		return (result_failure);
1831 	pathsz  = pinterpreter->p_filesz;
1832 	pathloc = pinterpreter->p_offset;
1833 	endbyte = pathloc + pathsz;
1834 
1835 	limited_to_first_page = pathloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1836 	if (limited_to_first_page) {
1837 	        bcopy(imgp->image_header + pathloc, data, pathsz);
1838 	        return (result_success);
1839 	}
1840 
1841 	firstloc = pathloc & PAGE_MASK;
1842 	firstlen = PAGE_SIZE - firstloc;
1843 
1844 	lwb = &lwb_cache;
1845 	if (exec_map_page(imgp, pathloc >> PAGE_SHIFT, &lwb, &page))
1846 		return (result_failure);
1847 
1848 	if (firstlen < pathsz) {         /* crosses page boundary */
1849 		bcopy(page + firstloc, data, firstlen);
1850 
1851 		exec_unmap_page(lwb);
1852 		lwb = &lwb_cache;
1853 		if (exec_map_page(imgp, (pathloc >> PAGE_SHIFT) + 1, &lwb,
1854 			&page))
1855 			return (result_failure);
1856 		bcopy(page, data + firstlen, pathsz - firstlen);
1857 	} else
1858 		bcopy(page + firstloc, data, pathsz);
1859 
1860 	exec_unmap_page(lwb);
1861 	return (result_success);
1862 }
1863 
1864 static boolean_t
1865 __elfN(bsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
1866 {
1867 	uintptr_t p;
1868 
1869 	p = (uintptr_t)(note + 1);
1870 	p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1871 	*osrel = *(const int32_t *)(p);
1872 
1873 	return (TRUE);
1874 }
1875 
1876 /*
1877  * Tell kern_execve.c about it, with a little help from the linker.
1878  */
1879 #if defined(__x86_64__)
1880 static struct execsw elf_execsw = {exec_elf64_imgact, "ELF64"};
1881 EXEC_SET_ORDERED(elf64, elf_execsw, SI_ORDER_FIRST);
1882 #else /* i386 assumed */
1883 static struct execsw elf_execsw = {exec_elf32_imgact, "ELF32"};
1884 EXEC_SET_ORDERED(elf32, elf_execsw, SI_ORDER_FIRST);
1885 #endif
1886 
1887 static vm_prot_t
1888 __elfN(trans_prot)(Elf_Word flags)
1889 {
1890 	vm_prot_t prot;
1891 
1892 	prot = 0;
1893 	if (flags & PF_X)
1894 		prot |= VM_PROT_EXECUTE;
1895 	if (flags & PF_W)
1896 		prot |= VM_PROT_WRITE;
1897 	if (flags & PF_R)
1898 		prot |= VM_PROT_READ;
1899 	return (prot);
1900 }
1901 
1902 static Elf_Word
1903 __elfN(untrans_prot)(vm_prot_t prot)
1904 {
1905 	Elf_Word flags;
1906 
1907 	flags = 0;
1908 	if (prot & VM_PROT_EXECUTE)
1909 		flags |= PF_X;
1910 	if (prot & VM_PROT_READ)
1911 		flags |= PF_R;
1912 	if (prot & VM_PROT_WRITE)
1913 		flags |= PF_W;
1914 	return (flags);
1915 }
1916