xref: /dragonfly/sys/kern/imgact_elf.c (revision 65cc0652)
1 /*-
2  * Copyright (c) 2000 David O'Brien
3  * Copyright (c) 1995-1996 Søren Schmidt
4  * Copyright (c) 1996 Peter Wemm
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/kern/imgact_elf.c,v 1.73.2.13 2002/12/28 19:49:41 dillon Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/exec.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/imgact.h>
38 #include <sys/imgact_elf.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/nlookup.h>
45 #include <sys/pioctl.h>
46 #include <sys/procfs.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/stat.h>
50 #include <sys/syscall.h>
51 #include <sys/sysctl.h>
52 #include <sys/sysent.h>
53 #include <sys/vnode.h>
54 #include <sys/eventhandler.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_param.h>
61 #include <vm/pmap.h>
62 #include <sys/lock.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_extern.h>
66 
67 #include <machine/elf.h>
68 #include <machine/md_var.h>
69 #include <sys/mount.h>
70 #include <sys/ckpt.h>
71 
72 #define OLD_EI_BRAND	8
73 #define truncps(va,ps)	((va) & ~(ps - 1))
74 #define aligned(a,t)	(truncps((u_long)(a), sizeof(t)) == (u_long)(a))
75 
76 static int __elfN(check_header)(const Elf_Ehdr *hdr);
77 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
78     const char *interp, int32_t *osrel);
79 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
80     u_long *entry);
81 static int __elfN(load_section)(struct proc *p,
82     struct vmspace *vmspace, struct vnode *vp,
83     vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
84     vm_prot_t prot);
85 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
86 static boolean_t __elfN(bsd_trans_osrel)(const Elf_Note *note,
87     int32_t *osrel);
88 static boolean_t __elfN(check_note)(struct image_params *imgp,
89     Elf_Brandnote *checknote, int32_t *osrel);
90 static vm_prot_t __elfN(trans_prot)(Elf_Word);
91 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
92 static boolean_t check_PT_NOTE(struct image_params *imgp,
93     Elf_Brandnote *checknote, int32_t *osrel, const Elf_Phdr * pnote);
94 static boolean_t extract_interpreter(struct image_params *imgp,
95     const Elf_Phdr *pinterpreter, char *data);
96 static u_long pie_base_hint(struct proc *p);
97 
98 static int elf_legacy_coredump = 0;
99 static int __elfN(fallback_brand) = -1;
100 static int elf_pie_base_mmap = 0;
101 #if defined(__x86_64__)
102 SYSCTL_NODE(_kern, OID_AUTO, elf64, CTLFLAG_RW, 0, "");
103 SYSCTL_INT(_debug, OID_AUTO, elf64_legacy_coredump, CTLFLAG_RW,
104     &elf_legacy_coredump, 0, "legacy coredump mode");
105 SYSCTL_INT(_kern_elf64, OID_AUTO, fallback_brand, CTLFLAG_RW,
106     &elf64_fallback_brand, 0, "ELF64 brand of last resort");
107 TUNABLE_INT("kern.elf64.fallback_brand", &elf64_fallback_brand);
108 SYSCTL_INT(_kern_elf64, OID_AUTO, pie_base_mmap, CTLFLAG_RW,
109     &elf_pie_base_mmap, 0,
110     "choose a base address for PIE as if it is mapped with mmap()");
111 TUNABLE_INT("kern.elf64.pie_base_mmap", &elf_pie_base_mmap);
112 #else /* i386 assumed */
113 SYSCTL_NODE(_kern, OID_AUTO, elf32, CTLFLAG_RW, 0, "");
114 SYSCTL_INT(_debug, OID_AUTO, elf32_legacy_coredump, CTLFLAG_RW,
115     &elf_legacy_coredump, 0, "legacy coredump mode");
116 SYSCTL_INT(_kern_elf32, OID_AUTO, fallback_brand, CTLFLAG_RW,
117     &elf32_fallback_brand, 0, "ELF32 brand of last resort");
118 TUNABLE_INT("kern.elf32.fallback_brand", &elf32_fallback_brand);
119 SYSCTL_INT(_kern_elf32, OID_AUTO, pie_base_mmap, CTLFLAG_RW,
120     &elf_pie_base_mmap, 0,
121     "choose a base address for PIE as if it is mapped with mmap()");
122 TUNABLE_INT("kern.elf32.pie_base_mmap", &elf_pie_base_mmap);
123 #endif
124 
125 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
126 
127 static const char DRAGONFLY_ABI_VENDOR[] = "DragonFly";
128 static const char FREEBSD_ABI_VENDOR[]   = "FreeBSD";
129 
130 Elf_Brandnote __elfN(dragonfly_brandnote) = {
131 	.hdr.n_namesz	= sizeof(DRAGONFLY_ABI_VENDOR),
132 	.hdr.n_descsz	= sizeof(int32_t),
133 	.hdr.n_type	= 1,
134 	.vendor		= DRAGONFLY_ABI_VENDOR,
135 	.flags		= BN_TRANSLATE_OSREL,
136 	.trans_osrel	= __elfN(bsd_trans_osrel),
137 };
138 
139 Elf_Brandnote __elfN(freebsd_brandnote) = {
140 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
141 	.hdr.n_descsz	= sizeof(int32_t),
142 	.hdr.n_type	= 1,
143 	.vendor		= FREEBSD_ABI_VENDOR,
144 	.flags		= BN_TRANSLATE_OSREL,
145 	.trans_osrel	= __elfN(bsd_trans_osrel),
146 };
147 
148 int
149 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
150 {
151 	int i;
152 
153 	for (i = 0; i < MAX_BRANDS; i++) {
154 		if (elf_brand_list[i] == NULL) {
155 			elf_brand_list[i] = entry;
156 			break;
157 		}
158 	}
159 	if (i == MAX_BRANDS) {
160 		uprintf("WARNING: %s: could not insert brandinfo entry: %p\n",
161 			__func__, entry);
162 		return (-1);
163 	}
164 	return (0);
165 }
166 
167 int
168 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
169 {
170 	int i;
171 
172 	for (i = 0; i < MAX_BRANDS; i++) {
173 		if (elf_brand_list[i] == entry) {
174 			elf_brand_list[i] = NULL;
175 			break;
176 		}
177 	}
178 	if (i == MAX_BRANDS)
179 		return (-1);
180 	return (0);
181 }
182 
183 /*
184  * Check if an elf brand is being used anywhere in the system.
185  *
186  * Used by the linux emulation module unloader.  This isn't safe from
187  * races.
188  */
189 struct elf_brand_inuse_info {
190 	int rval;
191 	Elf_Brandinfo *entry;
192 };
193 
194 static int elf_brand_inuse_callback(struct proc *p, void *data);
195 
196 int
197 __elfN(brand_inuse)(Elf_Brandinfo *entry)
198 {
199 	struct elf_brand_inuse_info info;
200 
201 	info.rval = FALSE;
202 	info.entry = entry;
203 	allproc_scan(elf_brand_inuse_callback, &info, 0);
204 	return (info.rval);
205 }
206 
207 static
208 int
209 elf_brand_inuse_callback(struct proc *p, void *data)
210 {
211 	struct elf_brand_inuse_info *info = data;
212 
213 	if (p->p_sysent == info->entry->sysvec) {
214 		info->rval = TRUE;
215 		return (-1);
216 	}
217 	return (0);
218 }
219 
220 static int
221 __elfN(check_header)(const Elf_Ehdr *hdr)
222 {
223 	Elf_Brandinfo *bi;
224 	int i;
225 
226 	if (!IS_ELF(*hdr) ||
227 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
228 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
229 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
230 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
231 	    hdr->e_ehsize != sizeof(Elf_Ehdr) ||
232 	    hdr->e_version != ELF_TARG_VER)
233 		return (ENOEXEC);
234 
235 	/*
236 	 * Make sure we have at least one brand for this machine.
237 	 */
238 
239 	for (i = 0; i < MAX_BRANDS; i++) {
240 		bi = elf_brand_list[i];
241 		if (bi != NULL && bi->machine == hdr->e_machine)
242 			break;
243 	}
244 	if (i == MAX_BRANDS)
245 		return (ENOEXEC);
246 
247 	return (0);
248 }
249 
250 static int
251 __elfN(load_section)(struct proc *p, struct vmspace *vmspace, struct vnode *vp,
252 		 vm_offset_t offset, caddr_t vmaddr, size_t memsz,
253 		 size_t filsz, vm_prot_t prot)
254 {
255 	size_t map_len;
256 	vm_offset_t map_addr;
257 	int error, rv, cow;
258 	int count;
259 	int shared;
260 	size_t copy_len;
261 	vm_object_t object;
262 	vm_offset_t file_addr;
263 
264 	object = vp->v_object;
265 	error = 0;
266 
267 	/*
268 	 * In most cases we will be able to use a shared lock on the
269 	 * object we are inserting into the map.  The lock will be
270 	 * upgraded in situations where new VM pages must be allocated.
271 	 */
272 	vm_object_hold_shared(object);
273 	shared = 1;
274 
275 	/*
276 	 * It's necessary to fail if the filsz + offset taken from the
277 	 * header is greater than the actual file pager object's size.
278 	 * If we were to allow this, then the vm_map_find() below would
279 	 * walk right off the end of the file object and into the ether.
280 	 *
281 	 * While I'm here, might as well check for something else that
282 	 * is invalid: filsz cannot be greater than memsz.
283 	 */
284 	if ((off_t)filsz + offset > vp->v_filesize || filsz > memsz) {
285 		uprintf("elf_load_section: truncated ELF file\n");
286 		vm_object_drop(object);
287 		return (ENOEXEC);
288 	}
289 
290 	map_addr = trunc_page((vm_offset_t)vmaddr);
291 	file_addr = trunc_page(offset);
292 
293 	/*
294 	 * We have two choices.  We can either clear the data in the last page
295 	 * of an oversized mapping, or we can start the anon mapping a page
296 	 * early and copy the initialized data into that first page.  We
297 	 * choose the second..
298 	 */
299 	if (memsz > filsz)
300 		map_len = trunc_page(offset+filsz) - file_addr;
301 	else
302 		map_len = round_page(offset+filsz) - file_addr;
303 
304 	if (map_len != 0) {
305 		vm_object_reference_locked(object);
306 
307 		/* cow flags: don't dump readonly sections in core */
308 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT;
309 		if ((prot & VM_PROT_WRITE) == 0)
310 			cow |= MAP_DISABLE_COREDUMP;
311 		if (shared == 0)
312 			cow |= MAP_PREFAULT_RELOCK;
313 
314 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
315 		vm_map_lock(&vmspace->vm_map);
316 		rv = vm_map_insert(&vmspace->vm_map, &count,
317 				      object, NULL,
318 				      file_addr,	/* file offset */
319 				      map_addr,		/* virtual start */
320 				      map_addr + map_len,/* virtual end */
321 				      VM_MAPTYPE_NORMAL,
322 				      VM_SUBSYS_IMGACT,
323 				      prot, VM_PROT_ALL, cow);
324 		vm_map_unlock(&vmspace->vm_map);
325 		vm_map_entry_release(count);
326 
327 		/*
328 		 * NOTE: Object must have a hold ref when calling
329 		 * vm_object_deallocate().
330 		 */
331 		if (rv != KERN_SUCCESS) {
332 			vm_object_drop(object);
333 			vm_object_deallocate(object);
334 			return (EINVAL);
335 		}
336 
337 		/* we can stop now if we've covered it all */
338 		if (memsz == filsz) {
339 			vm_object_drop(object);
340 			return (0);
341 		}
342 	}
343 
344 	/*
345 	 * We have to get the remaining bit of the file into the first part
346 	 * of the oversized map segment.  This is normally because the .data
347 	 * segment in the file is extended to provide bss.  It's a neat idea
348 	 * to try and save a page, but it's a pain in the behind to implement.
349 	 */
350 	copy_len = (offset + filsz) - trunc_page(offset + filsz);
351 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
352 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
353 
354 	/* This had damn well better be true! */
355         if (map_len != 0) {
356 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
357 		vm_map_lock(&vmspace->vm_map);
358 		rv = vm_map_insert(&vmspace->vm_map, &count,
359 					NULL, NULL,
360 					0,
361 					map_addr,
362 					map_addr + map_len,
363 					VM_MAPTYPE_NORMAL,
364 					VM_SUBSYS_IMGACT,
365 					VM_PROT_ALL, VM_PROT_ALL, 0);
366 		vm_map_unlock(&vmspace->vm_map);
367 		vm_map_entry_release(count);
368 		if (rv != KERN_SUCCESS) {
369 			vm_object_drop(object);
370 			return (EINVAL);
371 		}
372 	}
373 
374 	if (copy_len != 0) {
375 		struct lwbuf *lwb;
376 		struct lwbuf lwb_cache;
377 		vm_page_t m;
378 
379 		m = vm_fault_object_page(object, trunc_page(offset + filsz),
380 					 VM_PROT_READ, 0, &shared, &error);
381 		vm_object_drop(object);
382 		if (m) {
383 			lwb = lwbuf_alloc(m, &lwb_cache);
384 			error = copyout((caddr_t)lwbuf_kva(lwb),
385 					(caddr_t)map_addr, copy_len);
386 			lwbuf_free(lwb);
387 			vm_page_unhold(m);
388 		}
389 	} else {
390 		vm_object_drop(object);
391 	}
392 
393 	/*
394 	 * set it to the specified protection
395 	 */
396 	if (error == 0) {
397 		vm_map_protect(&vmspace->vm_map,
398 			       map_addr, map_addr + map_len,
399 			       prot, FALSE);
400 	}
401 	return (error);
402 }
403 
404 /*
405  * Load the file "file" into memory.  It may be either a shared object
406  * or an executable.
407  *
408  * The "addr" reference parameter is in/out.  On entry, it specifies
409  * the address where a shared object should be loaded.  If the file is
410  * an executable, this value is ignored.  On exit, "addr" specifies
411  * where the file was actually loaded.
412  *
413  * The "entry" reference parameter is out only.  On exit, it specifies
414  * the entry point for the loaded file.
415  */
416 static int
417 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, u_long *entry)
418 {
419 	struct {
420 		struct nlookupdata nd;
421 		struct vattr attr;
422 		struct image_params image_params;
423 	} *tempdata;
424 	const Elf_Ehdr *hdr = NULL;
425 	const Elf_Phdr *phdr = NULL;
426 	struct nlookupdata *nd;
427 	struct vmspace *vmspace = p->p_vmspace;
428 	struct vattr *attr;
429 	struct image_params *imgp;
430 	struct mount *topmnt;
431 	vm_prot_t prot;
432 	u_long rbase;
433 	u_long base_addr = 0;
434 	int error, i, numsegs;
435 
436 	tempdata = kmalloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
437 	nd = &tempdata->nd;
438 	attr = &tempdata->attr;
439 	imgp = &tempdata->image_params;
440 
441 	/*
442 	 * Initialize part of the common data
443 	 */
444 	imgp->proc = p;
445 	imgp->attr = attr;
446 	imgp->firstpage = NULL;
447 	imgp->image_header = NULL;
448 	imgp->vp = NULL;
449 
450 	error = nlookup_init(nd, file, UIO_SYSSPACE, NLC_FOLLOW);
451 	if (error == 0)
452 		error = nlookup(nd);
453 	if (error == 0)
454 		error = cache_vget(&nd->nl_nch, nd->nl_cred,
455 				   LK_SHARED, &imgp->vp);
456 	topmnt = nd->nl_nch.mount;
457 	nlookup_done(nd);
458 	if (error)
459 		goto fail;
460 
461 	/*
462 	 * Check permissions, modes, uid, etc on the file, and "open" it.
463 	 */
464 	error = exec_check_permissions(imgp, topmnt);
465 	if (error) {
466 		vn_unlock(imgp->vp);
467 		goto fail;
468 	}
469 
470 	error = exec_map_first_page(imgp);
471 	/*
472 	 * Also make certain that the interpreter stays the same, so set
473 	 * its VTEXT flag, too.
474 	 */
475 	if (error == 0)
476 		vsetflags(imgp->vp, VTEXT);
477 	vn_unlock(imgp->vp);
478 	if (error)
479                 goto fail;
480 
481 	hdr = (const Elf_Ehdr *)imgp->image_header;
482 	if ((error = __elfN(check_header)(hdr)) != 0)
483 		goto fail;
484 	if (hdr->e_type == ET_DYN)
485 		rbase = *addr;
486 	else if (hdr->e_type == ET_EXEC)
487 		rbase = 0;
488 	else {
489 		error = ENOEXEC;
490 		goto fail;
491 	}
492 
493 	/* Only support headers that fit within first page for now      */
494 	/*    (multiplication of two Elf_Half fields will not overflow) */
495 	if ((hdr->e_phoff > PAGE_SIZE) ||
496 	    (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) {
497 		error = ENOEXEC;
498 		goto fail;
499 	}
500 
501 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
502 	if (!aligned(phdr, Elf_Addr)) {
503 		error = ENOEXEC;
504 		goto fail;
505 	}
506 
507 	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
508 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
509 			/* Loadable segment */
510 			prot = __elfN(trans_prot)(phdr[i].p_flags);
511 			error = __elfN(load_section)(
512 				    p, vmspace, imgp->vp,
513 				    phdr[i].p_offset,
514 				    (caddr_t)phdr[i].p_vaddr +
515 				    rbase,
516 				    phdr[i].p_memsz,
517 				    phdr[i].p_filesz, prot);
518 			if (error != 0)
519 				goto fail;
520 			/*
521 			 * Establish the base address if this is the
522 			 * first segment.
523 			 */
524 			if (numsegs == 0)
525   				base_addr = trunc_page(phdr[i].p_vaddr + rbase);
526 			numsegs++;
527 		}
528 	}
529 	*addr = base_addr;
530 	*entry = (unsigned long)hdr->e_entry + rbase;
531 
532 fail:
533 	if (imgp->firstpage)
534 		exec_unmap_first_page(imgp);
535 	if (imgp->vp) {
536 		vrele(imgp->vp);
537 		imgp->vp = NULL;
538 	}
539 	kfree(tempdata, M_TEMP);
540 
541 	return (error);
542 }
543 
544 static Elf_Brandinfo *
545 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
546     int32_t *osrel)
547 {
548 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
549 	Elf_Brandinfo *bi;
550 	boolean_t ret;
551 	int i;
552 
553 	/* We support four types of branding -- (1) the ELF EI_OSABI field
554 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
555 	 * branding within the ELF header, (3) path of the `interp_path' field,
556 	 * and (4) the ".note.ABI-tag" ELF section.
557 	 */
558 
559 	/* Look for an ".note.ABI-tag" ELF section */
560 	for (i = 0; i < MAX_BRANDS; i++) {
561 		bi = elf_brand_list[i];
562 
563 		if (bi == NULL)
564 			continue;
565 		if (hdr->e_machine == bi->machine && (bi->flags &
566 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
567 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
568 			if (ret)
569 				return (bi);
570 		}
571 	}
572 
573 	/* If the executable has a brand, search for it in the brand list. */
574 	for (i = 0;  i < MAX_BRANDS;  i++) {
575 		bi = elf_brand_list[i];
576 
577                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
578 			continue;
579 		if (hdr->e_machine == bi->machine &&
580 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
581 		    strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
582 		    bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0))
583 			return (bi);
584 	}
585 
586 	/* Lacking a known brand, search for a recognized interpreter. */
587 	if (interp != NULL) {
588 		for (i = 0;  i < MAX_BRANDS;  i++) {
589 			bi = elf_brand_list[i];
590 
591                         if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
592 				continue;
593 			if (hdr->e_machine == bi->machine &&
594 			    strcmp(interp, bi->interp_path) == 0)
595 				return (bi);
596 		}
597 	}
598 
599 	/* Lacking a recognized interpreter, try the default brand */
600 	for (i = 0; i < MAX_BRANDS; i++) {
601 		bi = elf_brand_list[i];
602 
603 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
604 			continue;
605 		if (hdr->e_machine == bi->machine &&
606 		    __elfN(fallback_brand) == bi->brand)
607 			return (bi);
608 	}
609 	return (NULL);
610 }
611 
612 static int
613 __CONCAT(exec_,__elfN(imgact))(struct image_params *imgp)
614 {
615 	const Elf_Ehdr *hdr = (const Elf_Ehdr *) imgp->image_header;
616 	const Elf_Phdr *phdr;
617 	Elf_Auxargs *elf_auxargs;
618 	struct vmspace *vmspace;
619 	vm_prot_t prot;
620 	u_long text_size = 0, data_size = 0, total_size = 0;
621 	u_long text_addr = 0, data_addr = 0;
622 	u_long seg_size, seg_addr;
623 	u_long addr, baddr, et_dyn_addr = 0, entry = 0, proghdr = 0;
624 	int32_t osrel = 0;
625 	int error = 0, i, n;
626 	boolean_t failure;
627 	char *interp = NULL;
628 	const char *newinterp = NULL;
629 	Elf_Brandinfo *brand_info;
630 	char *path;
631 
632 	/*
633 	 * Do we have a valid ELF header ?
634 	 *
635 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later if a particular
636 	 * brand doesn't support it.  Both DragonFly platforms do by default.
637 	 */
638 	if (__elfN(check_header)(hdr) != 0 ||
639 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
640 		return (-1);
641 
642 	/*
643 	 * From here on down, we return an errno, not -1, as we've
644 	 * detected an ELF file.
645 	 */
646 
647 	if ((hdr->e_phoff > PAGE_SIZE) ||
648 	    (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) {
649 		/* Only support headers in first page for now */
650 		return (ENOEXEC);
651 	}
652 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
653 	if (!aligned(phdr, Elf_Addr))
654 		return (ENOEXEC);
655 	n = 0;
656 	baddr = 0;
657 	for (i = 0; i < hdr->e_phnum; i++) {
658 		if (phdr[i].p_type == PT_LOAD) {
659 			if (n == 0)
660 				baddr = phdr[i].p_vaddr;
661 			n++;
662 			continue;
663 		}
664 		if (phdr[i].p_type == PT_INTERP) {
665 			/*
666 			 * If interp is already defined there are more than
667 			 * one PT_INTERP program headers present.  Take only
668 			 * the first one and ignore the rest.
669 			 */
670 			if (interp != NULL)
671 				continue;
672 
673 			if (phdr[i].p_filesz == 0 ||
674 			    phdr[i].p_filesz > PAGE_SIZE ||
675 			    phdr[i].p_filesz > MAXPATHLEN)
676 				return (ENOEXEC);
677 
678 			interp = kmalloc(phdr[i].p_filesz, M_TEMP, M_WAITOK);
679 			failure = extract_interpreter(imgp, &phdr[i], interp);
680 			if (failure) {
681 				kfree(interp, M_TEMP);
682 				return (ENOEXEC);
683 			}
684 			continue;
685 		}
686 	}
687 
688 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel);
689 	if (brand_info == NULL) {
690 		uprintf("ELF binary type \"%u\" not known.\n",
691 		    hdr->e_ident[EI_OSABI]);
692 		if (interp != NULL)
693 			kfree(interp, M_TEMP);
694 		return (ENOEXEC);
695 	}
696 	if (hdr->e_type == ET_DYN) {
697 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
698 			if (interp != NULL)
699 				kfree(interp, M_TEMP);
700 			return (ENOEXEC);
701 		}
702 		/*
703 		 * If p_vaddr field of PT_LOAD program header is zero and type of an
704 		 * executale is ET_DYN, then it must be a position independent
705 		 * executable (PIE). In this case the system needs to pick a base
706 		 * address for us. Set et_dyn_addr to non-zero and choose the actual
707 		 * address when we are ready.
708 		 */
709 		if (baddr == 0)
710 			et_dyn_addr = 1;
711 	}
712 
713 	if (interp != NULL && brand_info->interp_newpath != NULL)
714 		newinterp = brand_info->interp_newpath;
715 
716 	exec_new_vmspace(imgp, NULL);
717 
718 	/*
719 	 * Yeah, I'm paranoid.  There is every reason in the world to get
720 	 * VTEXT now since from here on out, there are places we can have
721 	 * a context switch.  Better safe than sorry; I really don't want
722 	 * the file to change while it's being loaded.
723 	 */
724 	vsetflags(imgp->vp, VTEXT);
725 
726 	vmspace = imgp->proc->p_vmspace;
727 	/* Choose the base address for dynamic executables if we need to. */
728 	if (et_dyn_addr)
729 		et_dyn_addr = pie_base_hint(imgp->proc);
730 
731 	for (i = 0; i < hdr->e_phnum; i++) {
732 		switch (phdr[i].p_type) {
733 		case PT_LOAD:	/* Loadable segment */
734 			if (phdr[i].p_memsz == 0)
735 				break;
736 			prot = __elfN(trans_prot)(phdr[i].p_flags);
737 
738 			if ((error = __elfN(load_section)(
739 					imgp->proc,
740 					vmspace,
741 					imgp->vp,
742 					phdr[i].p_offset,
743 					(caddr_t)phdr[i].p_vaddr + et_dyn_addr,
744 					phdr[i].p_memsz,
745 					phdr[i].p_filesz,
746 					prot)) != 0) {
747                                 if (interp != NULL)
748                                         kfree (interp, M_TEMP);
749 				return (error);
750                         }
751 
752 			/*
753 			 * If this segment contains the program headers,
754 			 * remember their virtual address for the AT_PHDR
755 			 * aux entry. Static binaries don't usually include
756 			 * a PT_PHDR entry.
757 			 */
758 			if (phdr[i].p_offset == 0 &&
759 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
760 				<= phdr[i].p_filesz)
761 				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
762 				    et_dyn_addr;
763 
764 			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
765 			seg_size = round_page(phdr[i].p_memsz +
766 			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
767 
768 			/*
769 			 * Is this .text or .data?  We can't use
770 			 * VM_PROT_WRITE or VM_PROT_EXEC, it breaks the
771 			 * alpha terribly and possibly does other bad
772 			 * things so we stick to the old way of figuring
773 			 * it out:  If the segment contains the program
774 			 * entry point, it's a text segment, otherwise it
775 			 * is a data segment.
776 			 *
777 			 * Note that obreak() assumes that data_addr +
778 			 * data_size == end of data load area, and the ELF
779 			 * file format expects segments to be sorted by
780 			 * address.  If multiple data segments exist, the
781 			 * last one will be used.
782 			 */
783 			if (hdr->e_entry >= phdr[i].p_vaddr &&
784 			    hdr->e_entry < (phdr[i].p_vaddr +
785 			    phdr[i].p_memsz)) {
786 				text_size = seg_size;
787 				text_addr = seg_addr;
788 				entry = (u_long)hdr->e_entry + et_dyn_addr;
789 			} else {
790 				data_size = seg_size;
791 				data_addr = seg_addr;
792 			}
793 			total_size += seg_size;
794 
795 			/*
796 			 * Check limits.  It should be safe to check the
797 			 * limits after loading the segment since we do
798 			 * not actually fault in all the segment's pages.
799 			 */
800 			if (data_size >
801 			    imgp->proc->p_rlimit[RLIMIT_DATA].rlim_cur ||
802 			    text_size > maxtsiz ||
803 			    total_size >
804 			    imgp->proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
805 				if (interp != NULL)
806 					kfree(interp, M_TEMP);
807 				error = ENOMEM;
808 				return (error);
809 			}
810 			break;
811 		case PT_PHDR: 	/* Program header table info */
812 			proghdr = phdr[i].p_vaddr + et_dyn_addr;
813 			break;
814 		default:
815 			break;
816 		}
817 	}
818 
819 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
820 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
821 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
822 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
823 
824 	addr = ELF_RTLD_ADDR(vmspace);
825 
826 	imgp->entry_addr = entry;
827 
828 	imgp->proc->p_sysent = brand_info->sysvec;
829 
830 	if (interp != NULL) {
831 		int have_interp = FALSE;
832 		if (brand_info->emul_path != NULL &&
833 		    brand_info->emul_path[0] != '\0') {
834 			path = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
835 		        ksnprintf(path, MAXPATHLEN, "%s%s",
836 			    brand_info->emul_path, interp);
837 			error = __elfN(load_file)(imgp->proc, path, &addr,
838 			    &imgp->entry_addr);
839 			kfree(path, M_TEMP);
840 			if (error == 0)
841 				have_interp = TRUE;
842 		}
843 		if (!have_interp && newinterp != NULL) {
844 			error = __elfN(load_file)(imgp->proc, newinterp,
845 			    &addr, &imgp->entry_addr);
846 			if (error == 0)
847 				have_interp = TRUE;
848 		}
849 		if (!have_interp) {
850 			error = __elfN(load_file)(imgp->proc, interp, &addr,
851 			    &imgp->entry_addr);
852 		}
853 		if (error != 0) {
854 			uprintf("ELF interpreter %s not found\n", interp);
855 			kfree(interp, M_TEMP);
856 			return (error);
857 		}
858 		kfree(interp, M_TEMP);
859 	} else
860 		addr = et_dyn_addr;
861 
862 	/*
863 	 * Construct auxargs table (used by the fixup routine)
864 	 */
865 	elf_auxargs = kmalloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
866 	elf_auxargs->execfd = -1;
867 	elf_auxargs->phdr = proghdr;
868 	elf_auxargs->phent = hdr->e_phentsize;
869 	elf_auxargs->phnum = hdr->e_phnum;
870 	elf_auxargs->pagesz = PAGE_SIZE;
871 	elf_auxargs->base = addr;
872 	elf_auxargs->flags = 0;
873 	elf_auxargs->entry = entry;
874 
875 	imgp->auxargs = elf_auxargs;
876 	imgp->interpreted = 0;
877 	imgp->proc->p_osrel = osrel;
878 
879 	return (error);
880 }
881 
882 int
883 __elfN(dragonfly_fixup)(register_t **stack_base, struct image_params *imgp)
884 {
885 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
886 	Elf_Addr *base;
887 	Elf_Addr *pos;
888 
889 	base = (Elf_Addr *)*stack_base;
890 	pos = base + (imgp->args->argc + imgp->args->envc + 2);
891 
892 	if (args->execfd != -1)
893 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
894 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
895 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
896 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
897 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
898 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
899 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
900 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
901 	if (imgp->execpathp != 0)
902 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
903 	AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate);
904 	AUXARGS_ENTRY(pos, AT_NULL, 0);
905 
906 	kfree(imgp->auxargs, M_TEMP);
907 	imgp->auxargs = NULL;
908 
909 	base--;
910 	suword64(base, (long)imgp->args->argc);
911 	*stack_base = (register_t *)base;
912 	return (0);
913 }
914 
915 /*
916  * Code for generating ELF core dumps.
917  */
918 
919 typedef int (*segment_callback)(vm_map_entry_t, void *);
920 
921 /* Closure for cb_put_phdr(). */
922 struct phdr_closure {
923 	Elf_Phdr *phdr;		/* Program header to fill in (incremented) */
924 	Elf_Phdr *phdr_max;	/* Pointer bound for error check */
925 	Elf_Off offset;		/* Offset of segment in core file */
926 };
927 
928 /* Closure for cb_size_segment(). */
929 struct sseg_closure {
930 	int count;		/* Count of writable segments. */
931 	size_t vsize;		/* Total size of all writable segments. */
932 };
933 
934 /* Closure for cb_put_fp(). */
935 struct fp_closure {
936 	struct vn_hdr *vnh;
937 	struct vn_hdr *vnh_max;
938 	int count;
939 	struct stat *sb;
940 };
941 
942 typedef struct elf_buf {
943 	char	*buf;
944 	size_t	off;
945 	size_t	off_max;
946 } *elf_buf_t;
947 
948 static void *target_reserve(elf_buf_t target, size_t bytes, int *error);
949 
950 static int cb_put_phdr (vm_map_entry_t, void *);
951 static int cb_size_segment (vm_map_entry_t, void *);
952 static int cb_fpcount_segment(vm_map_entry_t, void *);
953 static int cb_put_fp(vm_map_entry_t, void *);
954 
955 
956 static int each_segment (struct proc *, segment_callback, void *, int);
957 static int __elfN(corehdr)(struct lwp *, int, struct file *, struct ucred *,
958 			int, elf_buf_t);
959 enum putmode { WRITE, DRYRUN };
960 static int __elfN(puthdr)(struct lwp *, elf_buf_t, int sig, enum putmode,
961 			int, struct file *);
962 static int elf_putallnotes(struct lwp *, elf_buf_t, int, enum putmode);
963 static int __elfN(putnote)(elf_buf_t, const char *, int, const void *, size_t);
964 
965 static int elf_putsigs(struct lwp *, elf_buf_t);
966 static int elf_puttextvp(struct proc *, elf_buf_t);
967 static int elf_putfiles(struct proc *, elf_buf_t, struct file *);
968 
969 int
970 __elfN(coredump)(struct lwp *lp, int sig, struct vnode *vp, off_t limit)
971 {
972 	struct file *fp;
973 	int error;
974 
975 	if ((error = falloc(NULL, &fp, NULL)) != 0)
976 		return (error);
977 	fsetcred(fp, lp->lwp_proc->p_ucred);
978 
979 	/*
980 	 * XXX fixme.
981 	 */
982 	fp->f_type = DTYPE_VNODE;
983 	fp->f_flag = O_CREAT|O_WRONLY|O_NOFOLLOW;
984 	fp->f_ops = &vnode_fileops;
985 	fp->f_data = vp;
986 
987 	error = generic_elf_coredump(lp, sig, fp, limit);
988 
989 	fp->f_type = 0;
990 	fp->f_flag = 0;
991 	fp->f_ops = &badfileops;
992 	fp->f_data = NULL;
993 	fdrop(fp);
994 	return (error);
995 }
996 
997 int
998 generic_elf_coredump(struct lwp *lp, int sig, struct file *fp, off_t limit)
999 {
1000 	struct proc *p = lp->lwp_proc;
1001 	struct ucred *cred = p->p_ucred;
1002 	int error = 0;
1003 	struct sseg_closure seginfo;
1004 	struct elf_buf target;
1005 
1006 	if (!fp)
1007 		kprintf("can't dump core - null fp\n");
1008 
1009 	/*
1010 	 * Size the program segments
1011 	 */
1012 	seginfo.count = 0;
1013 	seginfo.vsize = 0;
1014 	each_segment(p, cb_size_segment, &seginfo, 1);
1015 
1016 	/*
1017 	 * Calculate the size of the core file header area by making
1018 	 * a dry run of generating it.  Nothing is written, but the
1019 	 * size is calculated.
1020 	 */
1021 	bzero(&target, sizeof(target));
1022 	__elfN(puthdr)(lp, &target, sig, DRYRUN, seginfo.count, fp);
1023 
1024 	if (target.off + seginfo.vsize >= limit)
1025 		return (EFAULT);
1026 
1027 	/*
1028 	 * Allocate memory for building the header, fill it up,
1029 	 * and write it out.
1030 	 */
1031 	target.off_max = target.off;
1032 	target.off = 0;
1033 	target.buf = kmalloc(target.off_max, M_TEMP, M_WAITOK|M_ZERO);
1034 
1035 	error = __elfN(corehdr)(lp, sig, fp, cred, seginfo.count, &target);
1036 
1037 	/* Write the contents of all of the writable segments. */
1038 	if (error == 0) {
1039 		Elf_Phdr *php;
1040 		int i;
1041 		ssize_t nbytes;
1042 
1043 		php = (Elf_Phdr *)(target.buf + sizeof(Elf_Ehdr)) + 1;
1044 		for (i = 0; i < seginfo.count; i++) {
1045 			error = fp_write(fp, (caddr_t)php->p_vaddr,
1046 					php->p_filesz, &nbytes, UIO_USERSPACE);
1047 			if (error != 0)
1048 				break;
1049 			php++;
1050 		}
1051 	}
1052 	kfree(target.buf, M_TEMP);
1053 
1054 	return (error);
1055 }
1056 
1057 /*
1058  * A callback for each_segment() to write out the segment's
1059  * program header entry.
1060  */
1061 static int
1062 cb_put_phdr(vm_map_entry_t entry, void *closure)
1063 {
1064 	struct phdr_closure *phc = closure;
1065 	Elf_Phdr *phdr = phc->phdr;
1066 
1067 	if (phc->phdr == phc->phdr_max)
1068 		return (EINVAL);
1069 
1070 	phc->offset = round_page(phc->offset);
1071 
1072 	phdr->p_type = PT_LOAD;
1073 	phdr->p_offset = phc->offset;
1074 	phdr->p_vaddr = entry->start;
1075 	phdr->p_paddr = 0;
1076 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1077 	phdr->p_align = PAGE_SIZE;
1078 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1079 
1080 	phc->offset += phdr->p_filesz;
1081 	++phc->phdr;
1082 	return (0);
1083 }
1084 
1085 /*
1086  * A callback for each_writable_segment() to gather information about
1087  * the number of segments and their total size.
1088  */
1089 static int
1090 cb_size_segment(vm_map_entry_t entry, void *closure)
1091 {
1092 	struct sseg_closure *ssc = closure;
1093 
1094 	++ssc->count;
1095 	ssc->vsize += entry->end - entry->start;
1096 	return (0);
1097 }
1098 
1099 /*
1100  * A callback for each_segment() to gather information about
1101  * the number of text segments.
1102  */
1103 static int
1104 cb_fpcount_segment(vm_map_entry_t entry, void *closure)
1105 {
1106 	int *count = closure;
1107 	struct vnode *vp;
1108 
1109 	if (entry->object.vm_object->type == OBJT_VNODE) {
1110 		vp = (struct vnode *)entry->object.vm_object->handle;
1111 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1112 			return (0);
1113 		++*count;
1114 	}
1115 	return (0);
1116 }
1117 
1118 static int
1119 cb_put_fp(vm_map_entry_t entry, void *closure)
1120 {
1121 	struct fp_closure *fpc = closure;
1122 	struct vn_hdr *vnh = fpc->vnh;
1123 	Elf_Phdr *phdr = &vnh->vnh_phdr;
1124 	struct vnode *vp;
1125 	int error;
1126 
1127 	/*
1128 	 * If an entry represents a vnode then write out a file handle.
1129 	 *
1130 	 * If we are checkpointing a checkpoint-restored program we do
1131 	 * NOT record the filehandle for the old checkpoint vnode (which
1132 	 * is mapped all over the place).  Instead we rely on the fact
1133 	 * that a checkpoint-restored program does not mmap() the checkpt
1134 	 * vnode NOCORE, so its contents will be written out to the
1135 	 * new checkpoint file.  This is necessary because the 'old'
1136 	 * checkpoint file is typically destroyed when a new one is created
1137 	 * and thus cannot be used to restore the new checkpoint.
1138 	 *
1139 	 * Theoretically we could create a chain of checkpoint files and
1140 	 * operate the checkpointing operation kinda like an incremental
1141 	 * checkpoint, but a checkpoint restore would then likely wind up
1142 	 * referencing many prior checkpoint files and that is a bit over
1143 	 * the top for the purpose of the checkpoint API.
1144 	 */
1145 	if (entry->object.vm_object->type == OBJT_VNODE) {
1146 		vp = (struct vnode *)entry->object.vm_object->handle;
1147 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1148 			return (0);
1149 		if (vnh == fpc->vnh_max)
1150 			return (EINVAL);
1151 
1152 		if (vp->v_mount)
1153 			vnh->vnh_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1154 		error = VFS_VPTOFH(vp, &vnh->vnh_fh.fh_fid);
1155 		if (error) {
1156 			char *freepath, *fullpath;
1157 
1158 			/*
1159 			 * This is actually a relatively common occurance,
1160 			 * so don't spew on the console by default.
1161 			 */
1162 			if (vn_fullpath(curproc, vp, &fullpath, &freepath, 0)) {
1163 				if (bootverbose)
1164 					kprintf("Warning: coredump, error %d: cannot store file handle for vnode %p\n", error, vp);
1165 			} else {
1166 				if (bootverbose)
1167 					kprintf("Warning: coredump, error %d: cannot store file handle for %s\n", error, fullpath);
1168 				kfree(freepath, M_TEMP);
1169 			}
1170 			error = 0;
1171 		}
1172 
1173 		phdr->p_type = PT_LOAD;
1174 		phdr->p_offset = 0;        /* not written to core */
1175 		phdr->p_vaddr = entry->start;
1176 		phdr->p_paddr = 0;
1177 		phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1178 		phdr->p_align = PAGE_SIZE;
1179 		phdr->p_flags = 0;
1180 		if (entry->protection & VM_PROT_READ)
1181 			phdr->p_flags |= PF_R;
1182 		if (entry->protection & VM_PROT_WRITE)
1183 			phdr->p_flags |= PF_W;
1184 		if (entry->protection & VM_PROT_EXECUTE)
1185 			phdr->p_flags |= PF_X;
1186 		++fpc->vnh;
1187 		++fpc->count;
1188 	}
1189 	return (0);
1190 }
1191 
1192 /*
1193  * For each writable segment in the process's memory map, call the given
1194  * function with a pointer to the map entry and some arbitrary
1195  * caller-supplied data.
1196  */
1197 static int
1198 each_segment(struct proc *p, segment_callback func, void *closure, int writable)
1199 {
1200 	int error = 0;
1201 	vm_map_t map = &p->p_vmspace->vm_map;
1202 	vm_map_entry_t entry;
1203 
1204 	for (entry = map->header.next; error == 0 && entry != &map->header;
1205 	    entry = entry->next) {
1206 		vm_object_t obj;
1207 		vm_object_t lobj;
1208 		vm_object_t tobj;
1209 
1210 		/*
1211 		 * Don't dump inaccessible mappings, deal with legacy
1212 		 * coredump mode.
1213 		 *
1214 		 * Note that read-only segments related to the elf binary
1215 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1216 		 * need to arbitrarily ignore such segments.
1217 		 */
1218 		if (elf_legacy_coredump) {
1219 			if (writable && (entry->protection & VM_PROT_RW) != VM_PROT_RW)
1220 				continue;
1221 		} else {
1222 			if (writable && (entry->protection & VM_PROT_ALL) == 0)
1223 				continue;
1224 		}
1225 
1226 		/*
1227 		 * Dont include memory segment in the coredump if
1228 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1229 		 * madvise(2).
1230 		 *
1231 		 * Currently we only dump normal VM object maps.  We do
1232 		 * not dump submaps or virtual page tables.
1233 		 */
1234 		if (writable && (entry->eflags & MAP_ENTRY_NOCOREDUMP))
1235 			continue;
1236 		if (entry->maptype != VM_MAPTYPE_NORMAL)
1237 			continue;
1238 		if ((obj = entry->object.vm_object) == NULL)
1239 			continue;
1240 
1241 		/*
1242 		 * Find the bottom-most object, leaving the base object
1243 		 * and the bottom-most object held (but only one hold
1244 		 * if they happen to be the same).
1245 		 */
1246 		vm_object_hold_shared(obj);
1247 
1248 		lobj = obj;
1249 		while (lobj && (tobj = lobj->backing_object) != NULL) {
1250 			KKASSERT(tobj != obj);
1251 			vm_object_hold_shared(tobj);
1252 			if (tobj == lobj->backing_object) {
1253 				if (lobj != obj) {
1254 					vm_object_lock_swap();
1255 					vm_object_drop(lobj);
1256 				}
1257 				lobj = tobj;
1258 			} else {
1259 				vm_object_drop(tobj);
1260 			}
1261 		}
1262 
1263 		/*
1264 		 * The callback only applies to default, swap, or vnode
1265 		 * objects.  Other types of objects such as memory-mapped
1266 		 * devices are ignored.
1267 		 */
1268 		if (lobj->type == OBJT_DEFAULT || lobj->type == OBJT_SWAP ||
1269 		    lobj->type == OBJT_VNODE) {
1270 			error = (*func)(entry, closure);
1271 		}
1272 		if (lobj != obj)
1273 			vm_object_drop(lobj);
1274 		vm_object_drop(obj);
1275 	}
1276 	return (error);
1277 }
1278 
1279 static
1280 void *
1281 target_reserve(elf_buf_t target, size_t bytes, int *error)
1282 {
1283     void *res = NULL;
1284 
1285     if (target->buf) {
1286 	    if (target->off + bytes > target->off_max)
1287 		    *error = EINVAL;
1288 	    else
1289 		    res = target->buf + target->off;
1290     }
1291     target->off += bytes;
1292     return (res);
1293 }
1294 
1295 /*
1296  * Write the core file header to the file, including padding up to
1297  * the page boundary.
1298  */
1299 static int
1300 __elfN(corehdr)(struct lwp *lp, int sig, struct file *fp, struct ucred *cred,
1301 	    int numsegs, elf_buf_t target)
1302 {
1303 	int error;
1304 	ssize_t nbytes;
1305 
1306 	/*
1307 	 * Fill in the header.  The fp is passed so we can detect and flag
1308 	 * a checkpoint file pointer within the core file itself, because
1309 	 * it may not be restored from the same file handle.
1310 	 */
1311 	error = __elfN(puthdr)(lp, target, sig, WRITE, numsegs, fp);
1312 
1313 	/* Write it to the core file. */
1314 	if (error == 0) {
1315 		error = fp_write(fp, target->buf, target->off, &nbytes,
1316 				 UIO_SYSSPACE);
1317 	}
1318 	return (error);
1319 }
1320 
1321 static int
1322 __elfN(puthdr)(struct lwp *lp, elf_buf_t target, int sig, enum putmode mode,
1323     int numsegs, struct file *fp)
1324 {
1325 	struct proc *p = lp->lwp_proc;
1326 	int error = 0;
1327 	size_t phoff;
1328 	size_t noteoff;
1329 	size_t notesz;
1330 	Elf_Ehdr *ehdr;
1331 	Elf_Phdr *phdr;
1332 
1333 	ehdr = target_reserve(target, sizeof(Elf_Ehdr), &error);
1334 
1335 	phoff = target->off;
1336 	phdr = target_reserve(target, (numsegs + 1) * sizeof(Elf_Phdr), &error);
1337 
1338 	noteoff = target->off;
1339 	if (error == 0)
1340 		elf_putallnotes(lp, target, sig, mode);
1341 	notesz = target->off - noteoff;
1342 
1343 	/*
1344 	 * put extra cruft for dumping process state here
1345 	 *  - we really want it be before all the program
1346 	 *    mappings
1347 	 *  - we just need to update the offset accordingly
1348 	 *    and GDB will be none the wiser.
1349 	 */
1350 	if (error == 0)
1351 		error = elf_puttextvp(p, target);
1352 	if (error == 0)
1353 		error = elf_putsigs(lp, target);
1354 	if (error == 0)
1355 		error = elf_putfiles(p, target, fp);
1356 
1357 	/*
1358 	 * Align up to a page boundary for the program segments.  The
1359 	 * actual data will be written to the outptu file, not to elf_buf_t,
1360 	 * so we do not have to do any further bounds checking.
1361 	 */
1362 	target->off = round_page(target->off);
1363 	if (error == 0 && ehdr != NULL) {
1364 		/*
1365 		 * Fill in the ELF header.
1366 		 */
1367 		ehdr->e_ident[EI_MAG0] = ELFMAG0;
1368 		ehdr->e_ident[EI_MAG1] = ELFMAG1;
1369 		ehdr->e_ident[EI_MAG2] = ELFMAG2;
1370 		ehdr->e_ident[EI_MAG3] = ELFMAG3;
1371 		ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1372 		ehdr->e_ident[EI_DATA] = ELF_DATA;
1373 		ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1374 		ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1375 		ehdr->e_ident[EI_ABIVERSION] = 0;
1376 		ehdr->e_ident[EI_PAD] = 0;
1377 		ehdr->e_type = ET_CORE;
1378 		ehdr->e_machine = ELF_ARCH;
1379 		ehdr->e_version = EV_CURRENT;
1380 		ehdr->e_entry = 0;
1381 		ehdr->e_phoff = phoff;
1382 		ehdr->e_flags = 0;
1383 		ehdr->e_ehsize = sizeof(Elf_Ehdr);
1384 		ehdr->e_phentsize = sizeof(Elf_Phdr);
1385 		ehdr->e_phnum = numsegs + 1;
1386 		ehdr->e_shentsize = sizeof(Elf_Shdr);
1387 		ehdr->e_shnum = 0;
1388 		ehdr->e_shstrndx = SHN_UNDEF;
1389 	}
1390 	if (error == 0 && phdr != NULL) {
1391 		/*
1392 		 * Fill in the program header entries.
1393 		 */
1394 		struct phdr_closure phc;
1395 
1396 		/* The note segement. */
1397 		phdr->p_type = PT_NOTE;
1398 		phdr->p_offset = noteoff;
1399 		phdr->p_vaddr = 0;
1400 		phdr->p_paddr = 0;
1401 		phdr->p_filesz = notesz;
1402 		phdr->p_memsz = 0;
1403 		phdr->p_flags = 0;
1404 		phdr->p_align = 0;
1405 		++phdr;
1406 
1407 		/* All the writable segments from the program. */
1408 		phc.phdr = phdr;
1409 		phc.phdr_max = phdr + numsegs;
1410 		phc.offset = target->off;
1411 		each_segment(p, cb_put_phdr, &phc, 1);
1412 	}
1413 	return (error);
1414 }
1415 
1416 /*
1417  * Append core dump notes to target ELF buffer or simply update target size
1418  * if dryrun selected.
1419  */
1420 static int
1421 elf_putallnotes(struct lwp *corelp, elf_buf_t target, int sig,
1422     enum putmode mode)
1423 {
1424 	struct proc *p = corelp->lwp_proc;
1425 	int error;
1426 	struct {
1427 		prstatus_t status;
1428 		prfpregset_t fpregs;
1429 		prpsinfo_t psinfo;
1430 	} *tmpdata;
1431 	prstatus_t *status;
1432 	prfpregset_t *fpregs;
1433 	prpsinfo_t *psinfo;
1434 	struct lwp *lp;
1435 
1436 	/*
1437 	 * Allocate temporary storage for notes on heap to avoid stack overflow.
1438 	 */
1439 	if (mode != DRYRUN) {
1440 		tmpdata = kmalloc(sizeof(*tmpdata), M_TEMP, M_ZERO | M_WAITOK);
1441 		status = &tmpdata->status;
1442 		fpregs = &tmpdata->fpregs;
1443 		psinfo = &tmpdata->psinfo;
1444 	} else {
1445 		tmpdata = NULL;
1446 		status = NULL;
1447 		fpregs = NULL;
1448 		psinfo = NULL;
1449 	}
1450 
1451 	/*
1452 	 * Append LWP-agnostic note.
1453 	 */
1454 	if (mode != DRYRUN) {
1455 		psinfo->pr_version = PRPSINFO_VERSION;
1456 		psinfo->pr_psinfosz = sizeof(prpsinfo_t);
1457 		strlcpy(psinfo->pr_fname, p->p_comm,
1458 			sizeof(psinfo->pr_fname));
1459 		/*
1460 		 * XXX - We don't fill in the command line arguments
1461 		 * properly yet.
1462 		 */
1463 		strlcpy(psinfo->pr_psargs, p->p_comm,
1464 			sizeof(psinfo->pr_psargs));
1465 	}
1466 	error =
1467 	    __elfN(putnote)(target, "CORE", NT_PRPSINFO, psinfo, sizeof *psinfo);
1468 	if (error)
1469 		goto exit;
1470 
1471 	/*
1472 	 * Append first note for LWP that triggered core so that it is
1473 	 * the selected one when the debugger starts.
1474 	 */
1475 	if (mode != DRYRUN) {
1476 		status->pr_version = PRSTATUS_VERSION;
1477 		status->pr_statussz = sizeof(prstatus_t);
1478 		status->pr_gregsetsz = sizeof(gregset_t);
1479 		status->pr_fpregsetsz = sizeof(fpregset_t);
1480 		status->pr_osreldate = osreldate;
1481 		status->pr_cursig = sig;
1482 		status->pr_pid = corelp->lwp_tid;
1483 		fill_regs(corelp, &status->pr_reg);
1484 		fill_fpregs(corelp, fpregs);
1485 	}
1486 	error =
1487 	    __elfN(putnote)(target, "CORE", NT_PRSTATUS, status, sizeof *status);
1488 	if (error)
1489 		goto exit;
1490 	error =
1491 	    __elfN(putnote)(target, "CORE", NT_FPREGSET, fpregs, sizeof *fpregs);
1492 	if (error)
1493 		goto exit;
1494 
1495 	/*
1496 	 * Then append notes for other LWPs.
1497 	 */
1498 	FOREACH_LWP_IN_PROC(lp, p) {
1499 		if (lp == corelp)
1500 			continue;
1501 		/* skip lwps being created */
1502 		if (lp->lwp_thread == NULL)
1503 			continue;
1504 		if (mode != DRYRUN) {
1505 			status->pr_pid = lp->lwp_tid;
1506 			fill_regs(lp, &status->pr_reg);
1507 			fill_fpregs(lp, fpregs);
1508 		}
1509 		error = __elfN(putnote)(target, "CORE", NT_PRSTATUS,
1510 					status, sizeof *status);
1511 		if (error)
1512 			goto exit;
1513 		error = __elfN(putnote)(target, "CORE", NT_FPREGSET,
1514 					fpregs, sizeof *fpregs);
1515 		if (error)
1516 			goto exit;
1517 	}
1518 
1519 exit:
1520 	if (tmpdata != NULL)
1521 		kfree(tmpdata, M_TEMP);
1522 	return (error);
1523 }
1524 
1525 /*
1526  * Generate a note sub-structure.
1527  *
1528  * NOTE: 4-byte alignment.
1529  */
1530 static int
1531 __elfN(putnote)(elf_buf_t target, const char *name, int type,
1532 	    const void *desc, size_t descsz)
1533 {
1534 	int error = 0;
1535 	char *dst;
1536 	Elf_Note note;
1537 
1538 	note.n_namesz = strlen(name) + 1;
1539 	note.n_descsz = descsz;
1540 	note.n_type = type;
1541 	dst = target_reserve(target, sizeof(note), &error);
1542 	if (dst != NULL)
1543 		bcopy(&note, dst, sizeof note);
1544 	dst = target_reserve(target, note.n_namesz, &error);
1545 	if (dst != NULL)
1546 		bcopy(name, dst, note.n_namesz);
1547 	target->off = roundup2(target->off, sizeof(Elf_Word));
1548 	dst = target_reserve(target, note.n_descsz, &error);
1549 	if (dst != NULL)
1550 		bcopy(desc, dst, note.n_descsz);
1551 	target->off = roundup2(target->off, sizeof(Elf_Word));
1552 	return (error);
1553 }
1554 
1555 
1556 static int
1557 elf_putsigs(struct lwp *lp, elf_buf_t target)
1558 {
1559 	/* XXX lwp handle more than one lwp */
1560 	struct proc *p = lp->lwp_proc;
1561 	int error = 0;
1562 	struct ckpt_siginfo *csi;
1563 
1564 	csi = target_reserve(target, sizeof(struct ckpt_siginfo), &error);
1565 	if (csi) {
1566 		csi->csi_ckptpisz = sizeof(struct ckpt_siginfo);
1567 		bcopy(p->p_sigacts, &csi->csi_sigacts, sizeof(*p->p_sigacts));
1568 		bcopy(&p->p_realtimer, &csi->csi_itimerval, sizeof(struct itimerval));
1569 		bcopy(&lp->lwp_sigmask, &csi->csi_sigmask,
1570 			sizeof(sigset_t));
1571 		csi->csi_sigparent = p->p_sigparent;
1572 	}
1573 	return (error);
1574 }
1575 
1576 static int
1577 elf_putfiles(struct proc *p, elf_buf_t target, struct file *ckfp)
1578 {
1579 	int error = 0;
1580 	int i;
1581 	struct ckpt_filehdr *cfh = NULL;
1582 	struct ckpt_fileinfo *cfi;
1583 	struct file *fp;
1584 	struct vnode *vp;
1585 	/*
1586 	 * the duplicated loop is gross, but it was the only way
1587 	 * to eliminate uninitialized variable warnings
1588 	 */
1589 	cfh = target_reserve(target, sizeof(struct ckpt_filehdr), &error);
1590 	if (cfh) {
1591 		cfh->cfh_nfiles = 0;
1592 	}
1593 
1594 	/*
1595 	 * ignore STDIN/STDERR/STDOUT.
1596 	 */
1597 	for (i = 3; error == 0 && i < p->p_fd->fd_nfiles; i++) {
1598 		fp = holdfp(p->p_fd, i, -1);
1599 		if (fp == NULL)
1600 			continue;
1601 		/*
1602 		 * XXX Only checkpoint vnodes for now.
1603 		 */
1604 		if (fp->f_type != DTYPE_VNODE) {
1605 			fdrop(fp);
1606 			continue;
1607 		}
1608 		cfi = target_reserve(target, sizeof(struct ckpt_fileinfo),
1609 					&error);
1610 		if (cfi == NULL) {
1611 			fdrop(fp);
1612 			continue;
1613 		}
1614 		cfi->cfi_index = -1;
1615 		cfi->cfi_type = fp->f_type;
1616 		cfi->cfi_flags = fp->f_flag;
1617 		cfi->cfi_offset = fp->f_offset;
1618 		cfi->cfi_ckflags = 0;
1619 
1620 		if (fp == ckfp)
1621 			cfi->cfi_ckflags |= CKFIF_ISCKPTFD;
1622 		/* f_count and f_msgcount should not be saved/restored */
1623 		/* XXX save cred info */
1624 
1625 		switch(fp->f_type) {
1626 		case DTYPE_VNODE:
1627 			vp = (struct vnode *)fp->f_data;
1628 			/*
1629 			 * it looks like a bug in ptrace is marking
1630 			 * a non-vnode as a vnode - until we find the
1631 			 * root cause this will at least prevent
1632 			 * further panics from truss
1633 			 */
1634 			if (vp == NULL || vp->v_mount == NULL)
1635 				break;
1636 			cfh->cfh_nfiles++;
1637 			cfi->cfi_index = i;
1638 			cfi->cfi_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1639 			error = VFS_VPTOFH(vp, &cfi->cfi_fh.fh_fid);
1640 			break;
1641 		default:
1642 			break;
1643 		}
1644 		fdrop(fp);
1645 	}
1646 	return (error);
1647 }
1648 
1649 static int
1650 elf_puttextvp(struct proc *p, elf_buf_t target)
1651 {
1652 	int error = 0;
1653 	int *vn_count;
1654 	struct fp_closure fpc;
1655 	struct ckpt_vminfo *vminfo;
1656 
1657 	vminfo = target_reserve(target, sizeof(struct ckpt_vminfo), &error);
1658 	if (vminfo != NULL) {
1659 		vminfo->cvm_dsize = p->p_vmspace->vm_dsize;
1660 		vminfo->cvm_tsize = p->p_vmspace->vm_tsize;
1661 		vminfo->cvm_daddr = p->p_vmspace->vm_daddr;
1662 		vminfo->cvm_taddr = p->p_vmspace->vm_taddr;
1663 	}
1664 
1665 	fpc.count = 0;
1666 	vn_count = target_reserve(target, sizeof(int), &error);
1667 	if (target->buf != NULL) {
1668 		fpc.vnh = (struct vn_hdr *)(target->buf + target->off);
1669 		fpc.vnh_max = fpc.vnh +
1670 			(target->off_max - target->off) / sizeof(struct vn_hdr);
1671 		error = each_segment(p, cb_put_fp, &fpc, 0);
1672 		if (vn_count)
1673 			*vn_count = fpc.count;
1674 	} else {
1675 		error = each_segment(p, cb_fpcount_segment, &fpc.count, 0);
1676 	}
1677 	target->off += fpc.count * sizeof(struct vn_hdr);
1678 	return (error);
1679 }
1680 
1681 /*
1682  * Try to find the appropriate ABI-note section for checknote,
1683  * The entire image is searched if necessary, not only the first page.
1684  */
1685 static boolean_t
1686 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
1687     int32_t *osrel)
1688 {
1689 	boolean_t valid_note_found;
1690 	const Elf_Phdr *phdr, *pnote;
1691 	const Elf_Ehdr *hdr;
1692 	int i;
1693 
1694 	valid_note_found = FALSE;
1695 	hdr = (const Elf_Ehdr *)imgp->image_header;
1696 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1697 
1698 	for (i = 0; i < hdr->e_phnum; i++) {
1699 		if (phdr[i].p_type == PT_NOTE) {
1700 			pnote = &phdr[i];
1701 			valid_note_found = check_PT_NOTE (imgp, checknote,
1702 				osrel, pnote);
1703 			if (valid_note_found)
1704 				break;
1705 		}
1706 	}
1707 	return valid_note_found;
1708 }
1709 
1710 /*
1711  * Be careful not to create new overflow conditions when checking
1712  * for overflow.
1713  */
1714 static boolean_t
1715 note_overflow(const Elf_Note *note, size_t maxsize)
1716 {
1717 	if (sizeof(*note) > maxsize)
1718 		return TRUE;
1719 	if (note->n_namesz > maxsize - sizeof(*note))
1720 		return TRUE;
1721 	return FALSE;
1722 }
1723 
1724 static boolean_t
1725 hdr_overflow(__ElfN(Off) off_beg, __ElfN(Size) size)
1726 {
1727 	__ElfN(Off) off_end;
1728 
1729 	off_end = off_beg + size;
1730 	if (off_end < off_beg)
1731 		return TRUE;
1732 	return FALSE;
1733 }
1734 
1735 static boolean_t
1736 check_PT_NOTE(struct image_params *imgp, Elf_Brandnote *checknote,
1737 	      int32_t *osrel, const Elf_Phdr * pnote)
1738 {
1739 	boolean_t limited_to_first_page;
1740 	boolean_t found = FALSE;
1741 	const Elf_Note *note, *note0, *note_end;
1742 	const char *note_name;
1743 	__ElfN(Off) noteloc, firstloc;
1744 	__ElfN(Size) notesz, firstlen, endbyte;
1745 	struct lwbuf *lwb;
1746 	struct lwbuf lwb_cache;
1747 	const char *page;
1748 	char *data = NULL;
1749 	int n;
1750 
1751 	if (hdr_overflow(pnote->p_offset, pnote->p_filesz))
1752 		return (FALSE);
1753 	notesz = pnote->p_filesz;
1754 	noteloc = pnote->p_offset;
1755 	endbyte = noteloc + notesz;
1756 	limited_to_first_page = noteloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1757 
1758 	if (limited_to_first_page) {
1759 		note = (const Elf_Note *)(imgp->image_header + noteloc);
1760 		note_end = (const Elf_Note *)(imgp->image_header + endbyte);
1761 		note0 = note;
1762 	} else {
1763 		firstloc = noteloc & PAGE_MASK;
1764 		firstlen = PAGE_SIZE - firstloc;
1765 		if (notesz < sizeof(Elf_Note) || notesz > PAGE_SIZE)
1766 			return (FALSE);
1767 
1768 		lwb = &lwb_cache;
1769 		if (exec_map_page(imgp, noteloc >> PAGE_SHIFT, &lwb, &page))
1770 			return (FALSE);
1771 		if (firstlen < notesz) {         /* crosses page boundary */
1772 			data = kmalloc(notesz, M_TEMP, M_WAITOK);
1773 			bcopy(page + firstloc, data, firstlen);
1774 
1775 			exec_unmap_page(lwb);
1776 			lwb = &lwb_cache;
1777 			if (exec_map_page(imgp, (noteloc >> PAGE_SHIFT) + 1,
1778 				&lwb, &page)) {
1779 				kfree(data, M_TEMP);
1780 				return (FALSE);
1781 			}
1782 			bcopy(page, data + firstlen, notesz - firstlen);
1783 			note = note0 = (const Elf_Note *)(data);
1784 			note_end = (const Elf_Note *)(data + notesz);
1785 		} else {
1786 			note = note0 = (const Elf_Note *)(page + firstloc);
1787 			note_end = (const Elf_Note *)(page + firstloc +
1788 				firstlen);
1789 		}
1790 	}
1791 
1792 	for (n = 0; n < 100 && note >= note0 && note < note_end; n++) {
1793 		if (!aligned(note, Elf32_Addr))
1794 			break;
1795 		if (note_overflow(note, (const char *)note_end -
1796 					(const char *)note)) {
1797 			break;
1798 		}
1799 		note_name = (const char *)(note + 1);
1800 
1801 		if (note->n_namesz == checknote->hdr.n_namesz
1802 		    && note->n_descsz == checknote->hdr.n_descsz
1803 		    && note->n_type == checknote->hdr.n_type
1804 		    && (strncmp(checknote->vendor, note_name,
1805 			checknote->hdr.n_namesz) == 0)) {
1806 			/* Fetch osreldata from ABI.note-tag */
1807 			if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
1808 			    checknote->trans_osrel != NULL)
1809 				checknote->trans_osrel(note, osrel);
1810 			found = TRUE;
1811 			break;
1812 		}
1813 		note = (const Elf_Note *)((const char *)(note + 1) +
1814 		    roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1815 		    roundup2(note->n_descsz, sizeof(Elf32_Addr)));
1816 	}
1817 
1818 	if (!limited_to_first_page) {
1819 		if (data != NULL)
1820 			kfree(data, M_TEMP);
1821 		exec_unmap_page(lwb);
1822 	}
1823 	return (found);
1824 }
1825 
1826 /*
1827  * The interpreter program header may be located beyond the first page, so
1828  * regardless of its location, a copy of the interpreter path is created so
1829  * that it may be safely referenced by the calling function in all case.  The
1830  * memory is allocated by calling function, and the copying is done here.
1831  */
1832 static boolean_t
1833 extract_interpreter(struct image_params *imgp, const Elf_Phdr *pinterpreter,
1834 		    char *data)
1835 {
1836 	boolean_t limited_to_first_page;
1837 	const boolean_t result_success = FALSE;
1838 	const boolean_t result_failure = TRUE;
1839 	__ElfN(Off) pathloc, firstloc;
1840 	__ElfN(Size) pathsz, firstlen, endbyte;
1841 	struct lwbuf *lwb;
1842 	struct lwbuf lwb_cache;
1843 	const char *page;
1844 
1845 	if (hdr_overflow(pinterpreter->p_offset, pinterpreter->p_filesz))
1846 		return (result_failure);
1847 	pathsz  = pinterpreter->p_filesz;
1848 	pathloc = pinterpreter->p_offset;
1849 	endbyte = pathloc + pathsz;
1850 
1851 	limited_to_first_page = pathloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1852 	if (limited_to_first_page) {
1853 	        bcopy(imgp->image_header + pathloc, data, pathsz);
1854 	        return (result_success);
1855 	}
1856 
1857 	firstloc = pathloc & PAGE_MASK;
1858 	firstlen = PAGE_SIZE - firstloc;
1859 
1860 	lwb = &lwb_cache;
1861 	if (exec_map_page(imgp, pathloc >> PAGE_SHIFT, &lwb, &page))
1862 		return (result_failure);
1863 
1864 	if (firstlen < pathsz) {         /* crosses page boundary */
1865 		bcopy(page + firstloc, data, firstlen);
1866 
1867 		exec_unmap_page(lwb);
1868 		lwb = &lwb_cache;
1869 		if (exec_map_page(imgp, (pathloc >> PAGE_SHIFT) + 1, &lwb,
1870 			&page))
1871 			return (result_failure);
1872 		bcopy(page, data + firstlen, pathsz - firstlen);
1873 	} else
1874 		bcopy(page + firstloc, data, pathsz);
1875 
1876 	exec_unmap_page(lwb);
1877 	return (result_success);
1878 }
1879 
1880 static boolean_t
1881 __elfN(bsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
1882 {
1883 	uintptr_t p;
1884 
1885 	p = (uintptr_t)(note + 1);
1886 	p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1887 	*osrel = *(const int32_t *)(p);
1888 
1889 	return (TRUE);
1890 }
1891 
1892 /*
1893  * Tell kern_execve.c about it, with a little help from the linker.
1894  */
1895 #if defined(__x86_64__)
1896 static struct execsw elf_execsw = {exec_elf64_imgact, "ELF64"};
1897 EXEC_SET_ORDERED(elf64, elf_execsw, SI_ORDER_FIRST);
1898 #else /* i386 assumed */
1899 static struct execsw elf_execsw = {exec_elf32_imgact, "ELF32"};
1900 EXEC_SET_ORDERED(elf32, elf_execsw, SI_ORDER_FIRST);
1901 #endif
1902 
1903 static vm_prot_t
1904 __elfN(trans_prot)(Elf_Word flags)
1905 {
1906 	vm_prot_t prot;
1907 
1908 	prot = 0;
1909 	if (flags & PF_X)
1910 		prot |= VM_PROT_EXECUTE;
1911 	if (flags & PF_W)
1912 		prot |= VM_PROT_WRITE;
1913 	if (flags & PF_R)
1914 		prot |= VM_PROT_READ;
1915 	return (prot);
1916 }
1917 
1918 static Elf_Word
1919 __elfN(untrans_prot)(vm_prot_t prot)
1920 {
1921 	Elf_Word flags;
1922 
1923 	flags = 0;
1924 	if (prot & VM_PROT_EXECUTE)
1925 		flags |= PF_X;
1926 	if (prot & VM_PROT_READ)
1927 		flags |= PF_R;
1928 	if (prot & VM_PROT_WRITE)
1929 		flags |= PF_W;
1930 	return (flags);
1931 }
1932 
1933 static u_long
1934 pie_base_hint(struct proc *p)
1935 {
1936 	u_long base;
1937 
1938 	if (elf_pie_base_mmap)
1939 		base = vm_map_hint(p, 0, VM_PROT_READ | VM_PROT_EXECUTE);
1940 	else
1941 		base = ET_DYN_LOAD_ADDR;
1942 	return base;
1943 }
1944