xref: /dragonfly/sys/kern/imgact_elf.c (revision 8accc937)
1 /*-
2  * Copyright (c) 2000 David O'Brien
3  * Copyright (c) 1995-1996 Søren Schmidt
4  * Copyright (c) 1996 Peter Wemm
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/kern/imgact_elf.c,v 1.73.2.13 2002/12/28 19:49:41 dillon Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/exec.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/imgact.h>
38 #include <sys/imgact_elf.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/nlookup.h>
45 #include <sys/pioctl.h>
46 #include <sys/procfs.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/stat.h>
50 #include <sys/syscall.h>
51 #include <sys/sysctl.h>
52 #include <sys/sysent.h>
53 #include <sys/vnode.h>
54 #include <sys/eventhandler.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_param.h>
61 #include <vm/pmap.h>
62 #include <sys/lock.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_extern.h>
66 
67 #include <machine/elf.h>
68 #include <machine/md_var.h>
69 #include <sys/mount.h>
70 #include <sys/ckpt.h>
71 
72 #define OLD_EI_BRAND	8
73 #define truncps(va,ps)	((va) & ~(ps - 1))
74 #define aligned(a,t)	(truncps((u_long)(a), sizeof(t)) == (u_long)(a))
75 
76 static int __elfN(check_header)(const Elf_Ehdr *hdr);
77 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
78     const char *interp, int32_t *osrel);
79 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
80     u_long *entry);
81 static int __elfN(load_section)(struct proc *p,
82     struct vmspace *vmspace, struct vnode *vp,
83     vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
84     vm_prot_t prot);
85 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
86 static boolean_t __elfN(bsd_trans_osrel)(const Elf_Note *note,
87     int32_t *osrel);
88 static boolean_t __elfN(check_note)(struct image_params *imgp,
89     Elf_Brandnote *checknote, int32_t *osrel);
90 static vm_prot_t __elfN(trans_prot)(Elf_Word);
91 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
92 static boolean_t check_PT_NOTE(struct image_params *imgp,
93     Elf_Brandnote *checknote, int32_t *osrel, const Elf_Phdr * pnote);
94 static boolean_t extract_interpreter(struct image_params *imgp,
95     const Elf_Phdr *pinterpreter, char *data);
96 
97 static int elf_legacy_coredump = 0;
98 static int __elfN(fallback_brand) = -1;
99 #if defined(__x86_64__)
100 SYSCTL_NODE(_kern, OID_AUTO, elf64, CTLFLAG_RW, 0, "");
101 SYSCTL_INT(_debug, OID_AUTO, elf64_legacy_coredump, CTLFLAG_RW,
102     &elf_legacy_coredump, 0, "legacy coredump mode");
103 SYSCTL_INT(_kern_elf64, OID_AUTO, fallback_brand, CTLFLAG_RW,
104     &elf64_fallback_brand, 0, "ELF64 brand of last resort");
105 TUNABLE_INT("kern.elf64.fallback_brand", &elf64_fallback_brand);
106 #else /* i386 assumed */
107 SYSCTL_NODE(_kern, OID_AUTO, elf32, CTLFLAG_RW, 0, "");
108 SYSCTL_INT(_debug, OID_AUTO, elf32_legacy_coredump, CTLFLAG_RW,
109     &elf_legacy_coredump, 0, "legacy coredump mode");
110 SYSCTL_INT(_kern_elf32, OID_AUTO, fallback_brand, CTLFLAG_RW,
111     &elf32_fallback_brand, 0, "ELF32 brand of last resort");
112 TUNABLE_INT("kern.elf32.fallback_brand", &elf32_fallback_brand);
113 #endif
114 
115 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
116 
117 static const char DRAGONFLY_ABI_VENDOR[] = "DragonFly";
118 static const char FREEBSD_ABI_VENDOR[]   = "FreeBSD";
119 
120 Elf_Brandnote __elfN(dragonfly_brandnote) = {
121 	.hdr.n_namesz	= sizeof(DRAGONFLY_ABI_VENDOR),
122 	.hdr.n_descsz	= sizeof(int32_t),
123 	.hdr.n_type	= 1,
124 	.vendor		= DRAGONFLY_ABI_VENDOR,
125 	.flags		= BN_TRANSLATE_OSREL,
126 	.trans_osrel	= __elfN(bsd_trans_osrel),
127 };
128 
129 Elf_Brandnote __elfN(freebsd_brandnote) = {
130 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
131 	.hdr.n_descsz	= sizeof(int32_t),
132 	.hdr.n_type	= 1,
133 	.vendor		= FREEBSD_ABI_VENDOR,
134 	.flags		= BN_TRANSLATE_OSREL,
135 	.trans_osrel	= __elfN(bsd_trans_osrel),
136 };
137 
138 int
139 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
140 {
141 	int i;
142 
143 	for (i = 0; i < MAX_BRANDS; i++) {
144 		if (elf_brand_list[i] == NULL) {
145 			elf_brand_list[i] = entry;
146 			break;
147 		}
148 	}
149 	if (i == MAX_BRANDS) {
150 		uprintf("WARNING: %s: could not insert brandinfo entry: %p\n",
151 			__func__, entry);
152 		return (-1);
153 	}
154 	return (0);
155 }
156 
157 int
158 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
159 {
160 	int i;
161 
162 	for (i = 0; i < MAX_BRANDS; i++) {
163 		if (elf_brand_list[i] == entry) {
164 			elf_brand_list[i] = NULL;
165 			break;
166 		}
167 	}
168 	if (i == MAX_BRANDS)
169 		return (-1);
170 	return (0);
171 }
172 
173 /*
174  * Check if an elf brand is being used anywhere in the system.
175  *
176  * Used by the linux emulation module unloader.  This isn't safe from
177  * races.
178  */
179 struct elf_brand_inuse_info {
180 	int rval;
181 	Elf_Brandinfo *entry;
182 };
183 
184 static int elf_brand_inuse_callback(struct proc *p, void *data);
185 
186 int
187 __elfN(brand_inuse)(Elf_Brandinfo *entry)
188 {
189 	struct elf_brand_inuse_info info;
190 
191 	info.rval = FALSE;
192 	info.entry = entry;
193 	allproc_scan(elf_brand_inuse_callback, &info);
194 	return (info.rval);
195 }
196 
197 static
198 int
199 elf_brand_inuse_callback(struct proc *p, void *data)
200 {
201 	struct elf_brand_inuse_info *info = data;
202 
203 	if (p->p_sysent == info->entry->sysvec) {
204 		info->rval = TRUE;
205 		return (-1);
206 	}
207 	return (0);
208 }
209 
210 static int
211 __elfN(check_header)(const Elf_Ehdr *hdr)
212 {
213 	Elf_Brandinfo *bi;
214 	int i;
215 
216 	if (!IS_ELF(*hdr) ||
217 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
218 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
219 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
220 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
221 	    hdr->e_ehsize != sizeof(Elf_Ehdr) ||
222 	    hdr->e_version != ELF_TARG_VER)
223 		return (ENOEXEC);
224 
225 	/*
226 	 * Make sure we have at least one brand for this machine.
227 	 */
228 
229 	for (i = 0; i < MAX_BRANDS; i++) {
230 		bi = elf_brand_list[i];
231 		if (bi != NULL && bi->machine == hdr->e_machine)
232 			break;
233 	}
234 	if (i == MAX_BRANDS)
235 		return (ENOEXEC);
236 
237 	return (0);
238 }
239 
240 static int
241 __elfN(load_section)(struct proc *p, struct vmspace *vmspace, struct vnode *vp,
242 		 vm_offset_t offset, caddr_t vmaddr, size_t memsz,
243 		 size_t filsz, vm_prot_t prot)
244 {
245 	size_t map_len;
246 	vm_offset_t map_addr;
247 	int error, rv, cow;
248 	int count;
249 	size_t copy_len;
250 	vm_object_t object;
251 	vm_offset_t file_addr;
252 
253 	object = vp->v_object;
254 	error = 0;
255 
256 	vm_object_hold(object);
257 
258 	/*
259 	 * It's necessary to fail if the filsz + offset taken from the
260 	 * header is greater than the actual file pager object's size.
261 	 * If we were to allow this, then the vm_map_find() below would
262 	 * walk right off the end of the file object and into the ether.
263 	 *
264 	 * While I'm here, might as well check for something else that
265 	 * is invalid: filsz cannot be greater than memsz.
266 	 */
267 	if ((off_t)filsz + offset > vp->v_filesize || filsz > memsz) {
268 		uprintf("elf_load_section: truncated ELF file\n");
269 		vm_object_drop(object);
270 		return (ENOEXEC);
271 	}
272 
273 	map_addr = trunc_page((vm_offset_t)vmaddr);
274 	file_addr = trunc_page(offset);
275 
276 	/*
277 	 * We have two choices.  We can either clear the data in the last page
278 	 * of an oversized mapping, or we can start the anon mapping a page
279 	 * early and copy the initialized data into that first page.  We
280 	 * choose the second..
281 	 */
282 	if (memsz > filsz)
283 		map_len = trunc_page(offset+filsz) - file_addr;
284 	else
285 		map_len = round_page(offset+filsz) - file_addr;
286 
287 	if (map_len != 0) {
288 		vm_object_reference_locked(object);
289 
290 		/* cow flags: don't dump readonly sections in core */
291 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
292 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
293 
294 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
295 		vm_map_lock(&vmspace->vm_map);
296 		rv = vm_map_insert(&vmspace->vm_map, &count,
297 				      object,
298 				      file_addr,	/* file offset */
299 				      map_addr,		/* virtual start */
300 				      map_addr + map_len,/* virtual end */
301 				      VM_MAPTYPE_NORMAL,
302 				      prot, VM_PROT_ALL,
303 				      cow);
304 		vm_map_unlock(&vmspace->vm_map);
305 		vm_map_entry_release(count);
306 		if (rv != KERN_SUCCESS) {
307 			vm_object_deallocate(object);
308 			vm_object_drop(object);
309 			return (EINVAL);
310 		}
311 
312 		/* we can stop now if we've covered it all */
313 		if (memsz == filsz) {
314 			vm_object_drop(object);
315 			return (0);
316 		}
317 	}
318 
319 
320 	/*
321 	 * We have to get the remaining bit of the file into the first part
322 	 * of the oversized map segment.  This is normally because the .data
323 	 * segment in the file is extended to provide bss.  It's a neat idea
324 	 * to try and save a page, but it's a pain in the behind to implement.
325 	 */
326 	copy_len = (offset + filsz) - trunc_page(offset + filsz);
327 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
328 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
329 
330 	/* This had damn well better be true! */
331         if (map_len != 0) {
332 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
333 		vm_map_lock(&vmspace->vm_map);
334 		rv = vm_map_insert(&vmspace->vm_map, &count,
335 					NULL, 0,
336 					map_addr, map_addr + map_len,
337 					VM_MAPTYPE_NORMAL,
338 					VM_PROT_ALL, VM_PROT_ALL,
339 					0);
340 		vm_map_unlock(&vmspace->vm_map);
341 		vm_map_entry_release(count);
342 		if (rv != KERN_SUCCESS) {
343 			vm_object_drop(object);
344 			return (EINVAL);
345 		}
346 	}
347 
348 	if (copy_len != 0) {
349 		vm_page_t m;
350 		struct lwbuf *lwb;
351 		struct lwbuf lwb_cache;
352 
353 		m = vm_fault_object_page(object, trunc_page(offset + filsz),
354 					 VM_PROT_READ, 0, &error);
355 		if (m) {
356 			lwb = lwbuf_alloc(m, &lwb_cache);
357 			error = copyout((caddr_t)lwbuf_kva(lwb),
358 					(caddr_t)map_addr, copy_len);
359 			lwbuf_free(lwb);
360 			vm_page_unhold(m);
361 		}
362 		if (error) {
363 			vm_object_drop(object);
364 			return (error);
365 		}
366 	}
367 
368 	vm_object_drop(object);
369 	/*
370 	 * set it to the specified protection
371 	 */
372 	vm_map_protect(&vmspace->vm_map, map_addr, map_addr + map_len,
373 		       prot, FALSE);
374 
375 	return (error);
376 }
377 
378 /*
379  * Load the file "file" into memory.  It may be either a shared object
380  * or an executable.
381  *
382  * The "addr" reference parameter is in/out.  On entry, it specifies
383  * the address where a shared object should be loaded.  If the file is
384  * an executable, this value is ignored.  On exit, "addr" specifies
385  * where the file was actually loaded.
386  *
387  * The "entry" reference parameter is out only.  On exit, it specifies
388  * the entry point for the loaded file.
389  */
390 static int
391 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, u_long *entry)
392 {
393 	struct {
394 		struct nlookupdata nd;
395 		struct vattr attr;
396 		struct image_params image_params;
397 	} *tempdata;
398 	const Elf_Ehdr *hdr = NULL;
399 	const Elf_Phdr *phdr = NULL;
400 	struct nlookupdata *nd;
401 	struct vmspace *vmspace = p->p_vmspace;
402 	struct vattr *attr;
403 	struct image_params *imgp;
404 	struct mount *topmnt;
405 	vm_prot_t prot;
406 	u_long rbase;
407 	u_long base_addr = 0;
408 	int error, i, numsegs;
409 
410 	tempdata = kmalloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
411 	nd = &tempdata->nd;
412 	attr = &tempdata->attr;
413 	imgp = &tempdata->image_params;
414 
415 	/*
416 	 * Initialize part of the common data
417 	 */
418 	imgp->proc = p;
419 	imgp->attr = attr;
420 	imgp->firstpage = NULL;
421 	imgp->image_header = NULL;
422 	imgp->vp = NULL;
423 
424 	error = nlookup_init(nd, file, UIO_SYSSPACE, NLC_FOLLOW);
425 	if (error == 0)
426 		error = nlookup(nd);
427 	if (error == 0)
428 		error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_EXCLUSIVE, &imgp->vp);
429 	topmnt = nd->nl_nch.mount;
430 	nlookup_done(nd);
431 	if (error)
432 		goto fail;
433 
434 	/*
435 	 * Check permissions, modes, uid, etc on the file, and "open" it.
436 	 */
437 	error = exec_check_permissions(imgp, topmnt);
438 	if (error) {
439 		vn_unlock(imgp->vp);
440 		goto fail;
441 	}
442 
443 	error = exec_map_first_page(imgp);
444 	/*
445 	 * Also make certain that the interpreter stays the same, so set
446 	 * its VTEXT flag, too.
447 	 */
448 	if (error == 0)
449 		vsetflags(imgp->vp, VTEXT);
450 	vn_unlock(imgp->vp);
451 	if (error)
452                 goto fail;
453 
454 	hdr = (const Elf_Ehdr *)imgp->image_header;
455 	if ((error = __elfN(check_header)(hdr)) != 0)
456 		goto fail;
457 	if (hdr->e_type == ET_DYN)
458 		rbase = *addr;
459 	else if (hdr->e_type == ET_EXEC)
460 		rbase = 0;
461 	else {
462 		error = ENOEXEC;
463 		goto fail;
464 	}
465 
466 	/* Only support headers that fit within first page for now      */
467 	/*    (multiplication of two Elf_Half fields will not overflow) */
468 	if ((hdr->e_phoff > PAGE_SIZE) ||
469 	    (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) {
470 		error = ENOEXEC;
471 		goto fail;
472 	}
473 
474 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
475 	if (!aligned(phdr, Elf_Addr)) {
476 		error = ENOEXEC;
477 		goto fail;
478 	}
479 
480 	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
481 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
482 			/* Loadable segment */
483 			prot = __elfN(trans_prot)(phdr[i].p_flags);
484 			error = __elfN(load_section)(
485 				    p, vmspace, imgp->vp,
486 				    phdr[i].p_offset,
487 				    (caddr_t)phdr[i].p_vaddr +
488 				    rbase,
489 				    phdr[i].p_memsz,
490 				    phdr[i].p_filesz, prot);
491 			if (error != 0)
492 				goto fail;
493 			/*
494 			 * Establish the base address if this is the
495 			 * first segment.
496 			 */
497 			if (numsegs == 0)
498   				base_addr = trunc_page(phdr[i].p_vaddr + rbase);
499 			numsegs++;
500 		}
501 	}
502 	*addr = base_addr;
503 	*entry = (unsigned long)hdr->e_entry + rbase;
504 
505 fail:
506 	if (imgp->firstpage)
507 		exec_unmap_first_page(imgp);
508 	if (imgp->vp) {
509 		vrele(imgp->vp);
510 		imgp->vp = NULL;
511 	}
512 	kfree(tempdata, M_TEMP);
513 
514 	return (error);
515 }
516 
517 static Elf_Brandinfo *
518 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
519     int32_t *osrel)
520 {
521 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
522 	Elf_Brandinfo *bi;
523 	boolean_t ret;
524 	int i;
525 
526 	/* We support four types of branding -- (1) the ELF EI_OSABI field
527 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
528 	 * branding within the ELF header, (3) path of the `interp_path' field,
529 	 * and (4) the ".note.ABI-tag" ELF section.
530 	 */
531 
532 	/* Look for an ".note.ABI-tag" ELF section */
533 	for (i = 0; i < MAX_BRANDS; i++) {
534 		bi = elf_brand_list[i];
535 
536 		if (bi == NULL)
537 			continue;
538 		if (hdr->e_machine == bi->machine && (bi->flags &
539 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
540 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
541 			if (ret)
542 				return (bi);
543 		}
544 	}
545 
546 	/* If the executable has a brand, search for it in the brand list. */
547 	for (i = 0;  i < MAX_BRANDS;  i++) {
548 		bi = elf_brand_list[i];
549 
550                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
551 			continue;
552 		if (hdr->e_machine == bi->machine &&
553 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
554 		    strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
555 		    bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0))
556 			return (bi);
557 	}
558 
559 	/* Lacking a known brand, search for a recognized interpreter. */
560 	if (interp != NULL) {
561 		for (i = 0;  i < MAX_BRANDS;  i++) {
562 			bi = elf_brand_list[i];
563 
564                         if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
565 				continue;
566 			if (hdr->e_machine == bi->machine &&
567 			    strcmp(interp, bi->interp_path) == 0)
568 				return (bi);
569 		}
570 	}
571 
572 	/* Lacking a recognized interpreter, try the default brand */
573 	for (i = 0; i < MAX_BRANDS; i++) {
574 		bi = elf_brand_list[i];
575 
576 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
577 			continue;
578 		if (hdr->e_machine == bi->machine &&
579 		    __elfN(fallback_brand) == bi->brand)
580 			return (bi);
581 	}
582 	return (NULL);
583 }
584 
585 static int
586 __CONCAT(exec_,__elfN(imgact))(struct image_params *imgp)
587 {
588 	const Elf_Ehdr *hdr = (const Elf_Ehdr *) imgp->image_header;
589 	const Elf_Phdr *phdr;
590 	Elf_Auxargs *elf_auxargs;
591 	struct vmspace *vmspace;
592 	vm_prot_t prot;
593 	u_long text_size = 0, data_size = 0, total_size = 0;
594 	u_long text_addr = 0, data_addr = 0;
595 	u_long seg_size, seg_addr;
596 	u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0;
597 	int32_t osrel = 0;
598 	int error = 0, i, n;
599 	boolean_t failure;
600 	char *interp = NULL;
601 	const char *newinterp = NULL;
602 	Elf_Brandinfo *brand_info;
603 	char *path;
604 
605 	/*
606 	 * Do we have a valid ELF header ?
607 	 *
608 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later if a particular
609 	 * brand doesn't support it.  Both DragonFly platforms do by default.
610 	 */
611 	if (__elfN(check_header)(hdr) != 0 ||
612 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
613 		return (-1);
614 
615 	/*
616 	 * From here on down, we return an errno, not -1, as we've
617 	 * detected an ELF file.
618 	 */
619 
620 	if ((hdr->e_phoff > PAGE_SIZE) ||
621 	    (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) {
622 		/* Only support headers in first page for now */
623 		return (ENOEXEC);
624 	}
625 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
626 	if (!aligned(phdr, Elf_Addr))
627 		return (ENOEXEC);
628 	n = 0;
629 	baddr = 0;
630 	for (i = 0; i < hdr->e_phnum; i++) {
631 		if (phdr[i].p_type == PT_LOAD) {
632 			if (n == 0)
633 				baddr = phdr[i].p_vaddr;
634 			n++;
635 			continue;
636 		}
637 		if (phdr[i].p_type == PT_INTERP) {
638 			/*
639 			 * If interp is already defined there are more than
640 			 * one PT_INTERP program headers present.  Take only
641 			 * the first one and ignore the rest.
642 			 */
643 			if (interp != NULL)
644 				continue;
645 
646 			if (phdr[i].p_filesz == 0 ||
647 			    phdr[i].p_filesz > PAGE_SIZE ||
648 			    phdr[i].p_filesz > MAXPATHLEN)
649 				return (ENOEXEC);
650 
651 			interp = kmalloc(phdr[i].p_filesz, M_TEMP, M_WAITOK);
652 			failure = extract_interpreter(imgp, &phdr[i], interp);
653 			if (failure) {
654 				kfree(interp, M_TEMP);
655 				return (ENOEXEC);
656 			}
657 			continue;
658 		}
659 	}
660 
661 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel);
662 	if (brand_info == NULL) {
663 		uprintf("ELF binary type \"%u\" not known.\n",
664 		    hdr->e_ident[EI_OSABI]);
665 		if (interp != NULL)
666 		        kfree(interp, M_TEMP);
667 		return (ENOEXEC);
668 	}
669 	if (hdr->e_type == ET_DYN) {
670 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
671 		        if (interp != NULL)
672 		                kfree(interp, M_TEMP);
673 			return (ENOEXEC);
674                 }
675 		/*
676 		 * Honour the base load address from the dso if it is
677 		 * non-zero for some reason.
678 		 */
679 		if (baddr == 0)
680 			et_dyn_addr = ET_DYN_LOAD_ADDR;
681 		else
682 			et_dyn_addr = 0;
683 	} else
684 		et_dyn_addr = 0;
685 
686 	if (interp != NULL && brand_info->interp_newpath != NULL)
687 		newinterp = brand_info->interp_newpath;
688 
689 	exec_new_vmspace(imgp, NULL);
690 
691 	/*
692 	 * Yeah, I'm paranoid.  There is every reason in the world to get
693 	 * VTEXT now since from here on out, there are places we can have
694 	 * a context switch.  Better safe than sorry; I really don't want
695 	 * the file to change while it's being loaded.
696 	 */
697 	vsetflags(imgp->vp, VTEXT);
698 
699 	vmspace = imgp->proc->p_vmspace;
700 
701 	for (i = 0; i < hdr->e_phnum; i++) {
702 		switch (phdr[i].p_type) {
703 		case PT_LOAD:	/* Loadable segment */
704 			if (phdr[i].p_memsz == 0)
705 				break;
706 			prot = __elfN(trans_prot)(phdr[i].p_flags);
707 
708 			if ((error = __elfN(load_section)(
709 					imgp->proc,
710 					vmspace,
711 					imgp->vp,
712 					phdr[i].p_offset,
713 					(caddr_t)phdr[i].p_vaddr + et_dyn_addr,
714 					phdr[i].p_memsz,
715 					phdr[i].p_filesz,
716 					prot)) != 0) {
717                                 if (interp != NULL)
718                                         kfree (interp, M_TEMP);
719 				return (error);
720                         }
721 
722 			/*
723 			 * If this segment contains the program headers,
724 			 * remember their virtual address for the AT_PHDR
725 			 * aux entry. Static binaries don't usually include
726 			 * a PT_PHDR entry.
727 			 */
728 			if (phdr[i].p_offset == 0 &&
729 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
730 				<= phdr[i].p_filesz)
731 				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
732 				    et_dyn_addr;
733 
734 			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
735 			seg_size = round_page(phdr[i].p_memsz +
736 			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
737 
738 			/*
739 			 * Is this .text or .data?  We can't use
740 			 * VM_PROT_WRITE or VM_PROT_EXEC, it breaks the
741 			 * alpha terribly and possibly does other bad
742 			 * things so we stick to the old way of figuring
743 			 * it out:  If the segment contains the program
744 			 * entry point, it's a text segment, otherwise it
745 			 * is a data segment.
746 			 *
747 			 * Note that obreak() assumes that data_addr +
748 			 * data_size == end of data load area, and the ELF
749 			 * file format expects segments to be sorted by
750 			 * address.  If multiple data segments exist, the
751 			 * last one will be used.
752 			 */
753 			if (hdr->e_entry >= phdr[i].p_vaddr &&
754 			    hdr->e_entry < (phdr[i].p_vaddr +
755 			    phdr[i].p_memsz)) {
756 				text_size = seg_size;
757 				text_addr = seg_addr;
758 				entry = (u_long)hdr->e_entry + et_dyn_addr;
759 			} else {
760 				data_size = seg_size;
761 				data_addr = seg_addr;
762 			}
763 			total_size += seg_size;
764 
765 			/*
766 			 * Check limits.  It should be safe to check the
767 			 * limits after loading the segment since we do
768 			 * not actually fault in all the segment's pages.
769 			 */
770 			if (data_size >
771 			    imgp->proc->p_rlimit[RLIMIT_DATA].rlim_cur ||
772 			    text_size > maxtsiz ||
773 			    total_size >
774 			    imgp->proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
775 				if (interp != NULL)
776 					kfree(interp, M_TEMP);
777 				error = ENOMEM;
778 				return (error);
779 			}
780 			break;
781 		case PT_PHDR: 	/* Program header table info */
782 			proghdr = phdr[i].p_vaddr + et_dyn_addr;
783 			break;
784 		default:
785 			break;
786 		}
787 	}
788 
789 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
790 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
791 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
792 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
793 
794 	addr = ELF_RTLD_ADDR(vmspace);
795 
796 	imgp->entry_addr = entry;
797 
798 	imgp->proc->p_sysent = brand_info->sysvec;
799 	EVENTHANDLER_INVOKE(process_exec, imgp);
800 
801 	if (interp != NULL) {
802 		int have_interp = FALSE;
803 		if (brand_info->emul_path != NULL &&
804 		    brand_info->emul_path[0] != '\0') {
805 			path = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
806 		        ksnprintf(path, MAXPATHLEN, "%s%s",
807 			    brand_info->emul_path, interp);
808 			error = __elfN(load_file)(imgp->proc, path, &addr,
809 			    &imgp->entry_addr);
810 			kfree(path, M_TEMP);
811 			if (error == 0)
812 				have_interp = TRUE;
813 		}
814 		if (!have_interp && newinterp != NULL) {
815 			error = __elfN(load_file)(imgp->proc, newinterp,
816 			    &addr, &imgp->entry_addr);
817 			if (error == 0)
818 				have_interp = TRUE;
819 		}
820 		if (!have_interp) {
821 			error = __elfN(load_file)(imgp->proc, interp, &addr,
822 			    &imgp->entry_addr);
823 		}
824 		if (error != 0) {
825 			uprintf("ELF interpreter %s not found\n", interp);
826 			kfree(interp, M_TEMP);
827 			return (error);
828 		}
829 		kfree(interp, M_TEMP);
830 	} else
831 		addr = et_dyn_addr;
832 
833 	/*
834 	 * Construct auxargs table (used by the fixup routine)
835 	 */
836 	elf_auxargs = kmalloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
837 	elf_auxargs->execfd = -1;
838 	elf_auxargs->phdr = proghdr;
839 	elf_auxargs->phent = hdr->e_phentsize;
840 	elf_auxargs->phnum = hdr->e_phnum;
841 	elf_auxargs->pagesz = PAGE_SIZE;
842 	elf_auxargs->base = addr;
843 	elf_auxargs->flags = 0;
844 	elf_auxargs->entry = entry;
845 
846 	imgp->auxargs = elf_auxargs;
847 	imgp->interpreted = 0;
848 	imgp->proc->p_osrel = osrel;
849 
850 	return (error);
851 }
852 
853 int
854 __elfN(dragonfly_fixup)(register_t **stack_base, struct image_params *imgp)
855 {
856 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
857 	Elf_Addr *base;
858 	Elf_Addr *pos;
859 
860 	base = (Elf_Addr *)*stack_base;
861 	pos = base + (imgp->args->argc + imgp->args->envc + 2);
862 
863 	if (args->execfd != -1)
864 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
865 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
866 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
867 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
868 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
869 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
870 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
871 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
872 	if (imgp->execpathp != 0)
873 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
874 	AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate);
875 	AUXARGS_ENTRY(pos, AT_NULL, 0);
876 
877 	kfree(imgp->auxargs, M_TEMP);
878 	imgp->auxargs = NULL;
879 
880 	base--;
881 	suword(base, (long)imgp->args->argc);
882 	*stack_base = (register_t *)base;
883 	return (0);
884 }
885 
886 /*
887  * Code for generating ELF core dumps.
888  */
889 
890 typedef int (*segment_callback)(vm_map_entry_t, void *);
891 
892 /* Closure for cb_put_phdr(). */
893 struct phdr_closure {
894 	Elf_Phdr *phdr;		/* Program header to fill in (incremented) */
895 	Elf_Phdr *phdr_max;	/* Pointer bound for error check */
896 	Elf_Off offset;		/* Offset of segment in core file */
897 };
898 
899 /* Closure for cb_size_segment(). */
900 struct sseg_closure {
901 	int count;		/* Count of writable segments. */
902 	size_t vsize;		/* Total size of all writable segments. */
903 };
904 
905 /* Closure for cb_put_fp(). */
906 struct fp_closure {
907 	struct vn_hdr *vnh;
908 	struct vn_hdr *vnh_max;
909 	int count;
910 	struct stat *sb;
911 };
912 
913 typedef struct elf_buf {
914 	char	*buf;
915 	size_t	off;
916 	size_t	off_max;
917 } *elf_buf_t;
918 
919 static void *target_reserve(elf_buf_t target, size_t bytes, int *error);
920 
921 static int cb_put_phdr (vm_map_entry_t, void *);
922 static int cb_size_segment (vm_map_entry_t, void *);
923 static int cb_fpcount_segment(vm_map_entry_t, void *);
924 static int cb_put_fp(vm_map_entry_t, void *);
925 
926 
927 static int each_segment (struct proc *, segment_callback, void *, int);
928 static int __elfN(corehdr)(struct lwp *, int, struct file *, struct ucred *,
929 			int, elf_buf_t);
930 enum putmode { WRITE, DRYRUN };
931 static int __elfN(puthdr)(struct lwp *, elf_buf_t, int sig, enum putmode,
932 			int, struct file *);
933 static int elf_putallnotes(struct lwp *, elf_buf_t, int, enum putmode);
934 static int __elfN(putnote)(elf_buf_t, const char *, int, const void *, size_t);
935 
936 static int elf_putsigs(struct lwp *, elf_buf_t);
937 static int elf_puttextvp(struct proc *, elf_buf_t);
938 static int elf_putfiles(struct proc *, elf_buf_t, struct file *);
939 
940 int
941 __elfN(coredump)(struct lwp *lp, int sig, struct vnode *vp, off_t limit)
942 {
943 	struct file *fp;
944 	int error;
945 
946 	if ((error = falloc(NULL, &fp, NULL)) != 0)
947 		return (error);
948 	fsetcred(fp, lp->lwp_proc->p_ucred);
949 
950 	/*
951 	 * XXX fixme.
952 	 */
953 	fp->f_type = DTYPE_VNODE;
954 	fp->f_flag = O_CREAT|O_WRONLY|O_NOFOLLOW;
955 	fp->f_ops = &vnode_fileops;
956 	fp->f_data = vp;
957 
958 	error = generic_elf_coredump(lp, sig, fp, limit);
959 
960 	fp->f_type = 0;
961 	fp->f_flag = 0;
962 	fp->f_ops = &badfileops;
963 	fp->f_data = NULL;
964 	fdrop(fp);
965 	return (error);
966 }
967 
968 int
969 generic_elf_coredump(struct lwp *lp, int sig, struct file *fp, off_t limit)
970 {
971 	struct proc *p = lp->lwp_proc;
972 	struct ucred *cred = p->p_ucred;
973 	int error = 0;
974 	struct sseg_closure seginfo;
975 	struct elf_buf target;
976 
977 	if (!fp)
978 		kprintf("can't dump core - null fp\n");
979 
980 	/*
981 	 * Size the program segments
982 	 */
983 	seginfo.count = 0;
984 	seginfo.vsize = 0;
985 	each_segment(p, cb_size_segment, &seginfo, 1);
986 
987 	/*
988 	 * Calculate the size of the core file header area by making
989 	 * a dry run of generating it.  Nothing is written, but the
990 	 * size is calculated.
991 	 */
992 	bzero(&target, sizeof(target));
993 	__elfN(puthdr)(lp, &target, sig, DRYRUN, seginfo.count, fp);
994 
995 	if (target.off + seginfo.vsize >= limit)
996 		return (EFAULT);
997 
998 	/*
999 	 * Allocate memory for building the header, fill it up,
1000 	 * and write it out.
1001 	 */
1002 	target.off_max = target.off;
1003 	target.off = 0;
1004 	target.buf = kmalloc(target.off_max, M_TEMP, M_WAITOK|M_ZERO);
1005 
1006 	error = __elfN(corehdr)(lp, sig, fp, cred, seginfo.count, &target);
1007 
1008 	/* Write the contents of all of the writable segments. */
1009 	if (error == 0) {
1010 		Elf_Phdr *php;
1011 		int i;
1012 		ssize_t nbytes;
1013 
1014 		php = (Elf_Phdr *)(target.buf + sizeof(Elf_Ehdr)) + 1;
1015 		for (i = 0; i < seginfo.count; i++) {
1016 			error = fp_write(fp, (caddr_t)php->p_vaddr,
1017 					php->p_filesz, &nbytes, UIO_USERSPACE);
1018 			if (error != 0)
1019 				break;
1020 			php++;
1021 		}
1022 	}
1023 	kfree(target.buf, M_TEMP);
1024 
1025 	return (error);
1026 }
1027 
1028 /*
1029  * A callback for each_segment() to write out the segment's
1030  * program header entry.
1031  */
1032 static int
1033 cb_put_phdr(vm_map_entry_t entry, void *closure)
1034 {
1035 	struct phdr_closure *phc = closure;
1036 	Elf_Phdr *phdr = phc->phdr;
1037 
1038 	if (phc->phdr == phc->phdr_max)
1039 		return (EINVAL);
1040 
1041 	phc->offset = round_page(phc->offset);
1042 
1043 	phdr->p_type = PT_LOAD;
1044 	phdr->p_offset = phc->offset;
1045 	phdr->p_vaddr = entry->start;
1046 	phdr->p_paddr = 0;
1047 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1048 	phdr->p_align = PAGE_SIZE;
1049 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1050 
1051 	phc->offset += phdr->p_filesz;
1052 	++phc->phdr;
1053 	return (0);
1054 }
1055 
1056 /*
1057  * A callback for each_writable_segment() to gather information about
1058  * the number of segments and their total size.
1059  */
1060 static int
1061 cb_size_segment(vm_map_entry_t entry, void *closure)
1062 {
1063 	struct sseg_closure *ssc = closure;
1064 
1065 	++ssc->count;
1066 	ssc->vsize += entry->end - entry->start;
1067 	return (0);
1068 }
1069 
1070 /*
1071  * A callback for each_segment() to gather information about
1072  * the number of text segments.
1073  */
1074 static int
1075 cb_fpcount_segment(vm_map_entry_t entry, void *closure)
1076 {
1077 	int *count = closure;
1078 	struct vnode *vp;
1079 
1080 	if (entry->object.vm_object->type == OBJT_VNODE) {
1081 		vp = (struct vnode *)entry->object.vm_object->handle;
1082 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1083 			return (0);
1084 		++*count;
1085 	}
1086 	return (0);
1087 }
1088 
1089 static int
1090 cb_put_fp(vm_map_entry_t entry, void *closure)
1091 {
1092 	struct fp_closure *fpc = closure;
1093 	struct vn_hdr *vnh = fpc->vnh;
1094 	Elf_Phdr *phdr = &vnh->vnh_phdr;
1095 	struct vnode *vp;
1096 	int error;
1097 
1098 	/*
1099 	 * If an entry represents a vnode then write out a file handle.
1100 	 *
1101 	 * If we are checkpointing a checkpoint-restored program we do
1102 	 * NOT record the filehandle for the old checkpoint vnode (which
1103 	 * is mapped all over the place).  Instead we rely on the fact
1104 	 * that a checkpoint-restored program does not mmap() the checkpt
1105 	 * vnode NOCORE, so its contents will be written out to the
1106 	 * new checkpoint file.  This is necessary because the 'old'
1107 	 * checkpoint file is typically destroyed when a new one is created
1108 	 * and thus cannot be used to restore the new checkpoint.
1109 	 *
1110 	 * Theoretically we could create a chain of checkpoint files and
1111 	 * operate the checkpointing operation kinda like an incremental
1112 	 * checkpoint, but a checkpoint restore would then likely wind up
1113 	 * referencing many prior checkpoint files and that is a bit over
1114 	 * the top for the purpose of the checkpoint API.
1115 	 */
1116 	if (entry->object.vm_object->type == OBJT_VNODE) {
1117 		vp = (struct vnode *)entry->object.vm_object->handle;
1118 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1119 			return (0);
1120 		if (vnh == fpc->vnh_max)
1121 			return (EINVAL);
1122 
1123 		if (vp->v_mount)
1124 			vnh->vnh_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1125 		error = VFS_VPTOFH(vp, &vnh->vnh_fh.fh_fid);
1126 		if (error) {
1127 			char *freepath, *fullpath;
1128 
1129 			if (vn_fullpath(curproc, vp, &fullpath, &freepath, 0)) {
1130 				kprintf("Warning: coredump, error %d: cannot store file handle for vnode %p\n", error, vp);
1131 			} else {
1132 				kprintf("Warning: coredump, error %d: cannot store file handle for %s\n", error, fullpath);
1133 				kfree(freepath, M_TEMP);
1134 			}
1135 			error = 0;
1136 		}
1137 
1138 		phdr->p_type = PT_LOAD;
1139 		phdr->p_offset = 0;        /* not written to core */
1140 		phdr->p_vaddr = entry->start;
1141 		phdr->p_paddr = 0;
1142 		phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1143 		phdr->p_align = PAGE_SIZE;
1144 		phdr->p_flags = 0;
1145 		if (entry->protection & VM_PROT_READ)
1146 			phdr->p_flags |= PF_R;
1147 		if (entry->protection & VM_PROT_WRITE)
1148 			phdr->p_flags |= PF_W;
1149 		if (entry->protection & VM_PROT_EXECUTE)
1150 			phdr->p_flags |= PF_X;
1151 		++fpc->vnh;
1152 		++fpc->count;
1153 	}
1154 	return (0);
1155 }
1156 
1157 /*
1158  * For each writable segment in the process's memory map, call the given
1159  * function with a pointer to the map entry and some arbitrary
1160  * caller-supplied data.
1161  */
1162 static int
1163 each_segment(struct proc *p, segment_callback func, void *closure, int writable)
1164 {
1165 	int error = 0;
1166 	vm_map_t map = &p->p_vmspace->vm_map;
1167 	vm_map_entry_t entry;
1168 
1169 	for (entry = map->header.next; error == 0 && entry != &map->header;
1170 	    entry = entry->next) {
1171 		vm_object_t obj;
1172 		vm_object_t lobj;
1173 		vm_object_t tobj;
1174 
1175 		/*
1176 		 * Don't dump inaccessible mappings, deal with legacy
1177 		 * coredump mode.
1178 		 *
1179 		 * Note that read-only segments related to the elf binary
1180 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1181 		 * need to arbitrarily ignore such segments.
1182 		 */
1183 		if (elf_legacy_coredump) {
1184 			if (writable && (entry->protection & VM_PROT_RW) != VM_PROT_RW)
1185 				continue;
1186 		} else {
1187 			if (writable && (entry->protection & VM_PROT_ALL) == 0)
1188 				continue;
1189 		}
1190 
1191 		/*
1192 		 * Dont include memory segment in the coredump if
1193 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1194 		 * madvise(2).
1195 		 *
1196 		 * Currently we only dump normal VM object maps.  We do
1197 		 * not dump submaps or virtual page tables.
1198 		 */
1199 		if (writable && (entry->eflags & MAP_ENTRY_NOCOREDUMP))
1200 			continue;
1201 		if (entry->maptype != VM_MAPTYPE_NORMAL)
1202 			continue;
1203 		if ((obj = entry->object.vm_object) == NULL)
1204 			continue;
1205 
1206 		/*
1207 		 * Find the bottom-most object, leaving the base object
1208 		 * and the bottom-most object held (but only one hold
1209 		 * if they happen to be the same).
1210 		 */
1211 		vm_object_hold(obj);
1212 
1213 		lobj = obj;
1214 		while (lobj && (tobj = lobj->backing_object) != NULL) {
1215 			KKASSERT(tobj != obj);
1216 			vm_object_hold(tobj);
1217 			if (tobj == lobj->backing_object) {
1218 				if (lobj != obj) {
1219 					vm_object_lock_swap();
1220 					vm_object_drop(lobj);
1221 				}
1222 				lobj = tobj;
1223 			} else {
1224 				vm_object_drop(tobj);
1225 			}
1226 		}
1227 
1228 		/*
1229 		 * The callback only applies to default, swap, or vnode
1230 		 * objects.  Other types of objects such as memory-mapped
1231 		 * devices are ignored.
1232 		 */
1233 		if (lobj->type == OBJT_DEFAULT || lobj->type == OBJT_SWAP ||
1234 		    lobj->type == OBJT_VNODE) {
1235 			error = (*func)(entry, closure);
1236 		}
1237 		if (lobj != obj)
1238 			vm_object_drop(lobj);
1239 		vm_object_drop(obj);
1240 	}
1241 	return (error);
1242 }
1243 
1244 static
1245 void *
1246 target_reserve(elf_buf_t target, size_t bytes, int *error)
1247 {
1248     void *res = NULL;
1249 
1250     if (target->buf) {
1251 	    if (target->off + bytes > target->off_max)
1252 		    *error = EINVAL;
1253 	    else
1254 		    res = target->buf + target->off;
1255     }
1256     target->off += bytes;
1257     return (res);
1258 }
1259 
1260 /*
1261  * Write the core file header to the file, including padding up to
1262  * the page boundary.
1263  */
1264 static int
1265 __elfN(corehdr)(struct lwp *lp, int sig, struct file *fp, struct ucred *cred,
1266 	    int numsegs, elf_buf_t target)
1267 {
1268 	int error;
1269 	ssize_t nbytes;
1270 
1271 	/*
1272 	 * Fill in the header.  The fp is passed so we can detect and flag
1273 	 * a checkpoint file pointer within the core file itself, because
1274 	 * it may not be restored from the same file handle.
1275 	 */
1276 	error = __elfN(puthdr)(lp, target, sig, WRITE, numsegs, fp);
1277 
1278 	/* Write it to the core file. */
1279 	if (error == 0) {
1280 		error = fp_write(fp, target->buf, target->off, &nbytes,
1281 				 UIO_SYSSPACE);
1282 	}
1283 	return (error);
1284 }
1285 
1286 static int
1287 __elfN(puthdr)(struct lwp *lp, elf_buf_t target, int sig, enum putmode mode,
1288     int numsegs, struct file *fp)
1289 {
1290 	struct proc *p = lp->lwp_proc;
1291 	int error = 0;
1292 	size_t phoff;
1293 	size_t noteoff;
1294 	size_t notesz;
1295 	Elf_Ehdr *ehdr;
1296 	Elf_Phdr *phdr;
1297 
1298 	ehdr = target_reserve(target, sizeof(Elf_Ehdr), &error);
1299 
1300 	phoff = target->off;
1301 	phdr = target_reserve(target, (numsegs + 1) * sizeof(Elf_Phdr), &error);
1302 
1303 	noteoff = target->off;
1304 	if (error == 0)
1305 		elf_putallnotes(lp, target, sig, mode);
1306 	notesz = target->off - noteoff;
1307 
1308 	/*
1309 	 * put extra cruft for dumping process state here
1310 	 *  - we really want it be before all the program
1311 	 *    mappings
1312 	 *  - we just need to update the offset accordingly
1313 	 *    and GDB will be none the wiser.
1314 	 */
1315 	if (error == 0)
1316 		error = elf_puttextvp(p, target);
1317 	if (error == 0)
1318 		error = elf_putsigs(lp, target);
1319 	if (error == 0)
1320 		error = elf_putfiles(p, target, fp);
1321 
1322 	/*
1323 	 * Align up to a page boundary for the program segments.  The
1324 	 * actual data will be written to the outptu file, not to elf_buf_t,
1325 	 * so we do not have to do any further bounds checking.
1326 	 */
1327 	target->off = round_page(target->off);
1328 	if (error == 0 && ehdr != NULL) {
1329 		/*
1330 		 * Fill in the ELF header.
1331 		 */
1332 		ehdr->e_ident[EI_MAG0] = ELFMAG0;
1333 		ehdr->e_ident[EI_MAG1] = ELFMAG1;
1334 		ehdr->e_ident[EI_MAG2] = ELFMAG2;
1335 		ehdr->e_ident[EI_MAG3] = ELFMAG3;
1336 		ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1337 		ehdr->e_ident[EI_DATA] = ELF_DATA;
1338 		ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1339 		ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1340 		ehdr->e_ident[EI_ABIVERSION] = 0;
1341 		ehdr->e_ident[EI_PAD] = 0;
1342 		ehdr->e_type = ET_CORE;
1343 		ehdr->e_machine = ELF_ARCH;
1344 		ehdr->e_version = EV_CURRENT;
1345 		ehdr->e_entry = 0;
1346 		ehdr->e_phoff = phoff;
1347 		ehdr->e_flags = 0;
1348 		ehdr->e_ehsize = sizeof(Elf_Ehdr);
1349 		ehdr->e_phentsize = sizeof(Elf_Phdr);
1350 		ehdr->e_phnum = numsegs + 1;
1351 		ehdr->e_shentsize = sizeof(Elf_Shdr);
1352 		ehdr->e_shnum = 0;
1353 		ehdr->e_shstrndx = SHN_UNDEF;
1354 	}
1355 	if (error == 0 && phdr != NULL) {
1356 		/*
1357 		 * Fill in the program header entries.
1358 		 */
1359 		struct phdr_closure phc;
1360 
1361 		/* The note segement. */
1362 		phdr->p_type = PT_NOTE;
1363 		phdr->p_offset = noteoff;
1364 		phdr->p_vaddr = 0;
1365 		phdr->p_paddr = 0;
1366 		phdr->p_filesz = notesz;
1367 		phdr->p_memsz = 0;
1368 		phdr->p_flags = 0;
1369 		phdr->p_align = 0;
1370 		++phdr;
1371 
1372 		/* All the writable segments from the program. */
1373 		phc.phdr = phdr;
1374 		phc.phdr_max = phdr + numsegs;
1375 		phc.offset = target->off;
1376 		each_segment(p, cb_put_phdr, &phc, 1);
1377 	}
1378 	return (error);
1379 }
1380 
1381 /*
1382  * Append core dump notes to target ELF buffer or simply update target size
1383  * if dryrun selected.
1384  */
1385 static int
1386 elf_putallnotes(struct lwp *corelp, elf_buf_t target, int sig,
1387     enum putmode mode)
1388 {
1389 	struct proc *p = corelp->lwp_proc;
1390 	int error;
1391 	struct {
1392 		prstatus_t status;
1393 		prfpregset_t fpregs;
1394 		prpsinfo_t psinfo;
1395 	} *tmpdata;
1396 	prstatus_t *status;
1397 	prfpregset_t *fpregs;
1398 	prpsinfo_t *psinfo;
1399 	struct lwp *lp;
1400 
1401 	/*
1402 	 * Allocate temporary storage for notes on heap to avoid stack overflow.
1403 	 */
1404 	if (mode != DRYRUN) {
1405 		tmpdata = kmalloc(sizeof(*tmpdata), M_TEMP, M_ZERO | M_WAITOK);
1406 		status = &tmpdata->status;
1407 		fpregs = &tmpdata->fpregs;
1408 		psinfo = &tmpdata->psinfo;
1409 	} else {
1410 		tmpdata = NULL;
1411 		status = NULL;
1412 		fpregs = NULL;
1413 		psinfo = NULL;
1414 	}
1415 
1416 	/*
1417 	 * Append LWP-agnostic note.
1418 	 */
1419 	if (mode != DRYRUN) {
1420 		psinfo->pr_version = PRPSINFO_VERSION;
1421 		psinfo->pr_psinfosz = sizeof(prpsinfo_t);
1422 		strlcpy(psinfo->pr_fname, p->p_comm,
1423 			sizeof(psinfo->pr_fname));
1424 		/*
1425 		 * XXX - We don't fill in the command line arguments
1426 		 * properly yet.
1427 		 */
1428 		strlcpy(psinfo->pr_psargs, p->p_comm,
1429 			sizeof(psinfo->pr_psargs));
1430 	}
1431 	error =
1432 	    __elfN(putnote)(target, "CORE", NT_PRPSINFO, psinfo, sizeof *psinfo);
1433 	if (error)
1434 		goto exit;
1435 
1436 	/*
1437 	 * Append first note for LWP that triggered core so that it is
1438 	 * the selected one when the debugger starts.
1439 	 */
1440 	if (mode != DRYRUN) {
1441 		status->pr_version = PRSTATUS_VERSION;
1442 		status->pr_statussz = sizeof(prstatus_t);
1443 		status->pr_gregsetsz = sizeof(gregset_t);
1444 		status->pr_fpregsetsz = sizeof(fpregset_t);
1445 		status->pr_osreldate = osreldate;
1446 		status->pr_cursig = sig;
1447 		/*
1448 		 * XXX GDB needs unique pr_pid for each LWP and does not
1449 		 * not support pr_pid==0 but lwp_tid can be 0, so hack unique
1450 		 * value.
1451 		 */
1452 		status->pr_pid = corelp->lwp_tid;
1453 		fill_regs(corelp, &status->pr_reg);
1454 		fill_fpregs(corelp, fpregs);
1455 	}
1456 	error =
1457 	    __elfN(putnote)(target, "CORE", NT_PRSTATUS, status, sizeof *status);
1458 	if (error)
1459 		goto exit;
1460 	error =
1461 	    __elfN(putnote)(target, "CORE", NT_FPREGSET, fpregs, sizeof *fpregs);
1462 	if (error)
1463 		goto exit;
1464 
1465 	/*
1466 	 * Then append notes for other LWPs.
1467 	 */
1468 	FOREACH_LWP_IN_PROC(lp, p) {
1469 		if (lp == corelp)
1470 			continue;
1471 		/* skip lwps being created */
1472 		if (lp->lwp_thread == NULL)
1473 			continue;
1474 		if (mode != DRYRUN) {
1475 			status->pr_pid = lp->lwp_tid;
1476 			fill_regs(lp, &status->pr_reg);
1477 			fill_fpregs(lp, fpregs);
1478 		}
1479 		error = __elfN(putnote)(target, "CORE", NT_PRSTATUS,
1480 					status, sizeof *status);
1481 		if (error)
1482 			goto exit;
1483 		error = __elfN(putnote)(target, "CORE", NT_FPREGSET,
1484 					fpregs, sizeof *fpregs);
1485 		if (error)
1486 			goto exit;
1487 	}
1488 
1489 exit:
1490 	if (tmpdata != NULL)
1491 		kfree(tmpdata, M_TEMP);
1492 	return (error);
1493 }
1494 
1495 /*
1496  * Generate a note sub-structure.
1497  *
1498  * NOTE: 4-byte alignment.
1499  */
1500 static int
1501 __elfN(putnote)(elf_buf_t target, const char *name, int type,
1502 	    const void *desc, size_t descsz)
1503 {
1504 	int error = 0;
1505 	char *dst;
1506 	Elf_Note note;
1507 
1508 	note.n_namesz = strlen(name) + 1;
1509 	note.n_descsz = descsz;
1510 	note.n_type = type;
1511 	dst = target_reserve(target, sizeof(note), &error);
1512 	if (dst != NULL)
1513 		bcopy(&note, dst, sizeof note);
1514 	dst = target_reserve(target, note.n_namesz, &error);
1515 	if (dst != NULL)
1516 		bcopy(name, dst, note.n_namesz);
1517 	target->off = roundup2(target->off, sizeof(Elf_Word));
1518 	dst = target_reserve(target, note.n_descsz, &error);
1519 	if (dst != NULL)
1520 		bcopy(desc, dst, note.n_descsz);
1521 	target->off = roundup2(target->off, sizeof(Elf_Word));
1522 	return (error);
1523 }
1524 
1525 
1526 static int
1527 elf_putsigs(struct lwp *lp, elf_buf_t target)
1528 {
1529 	/* XXX lwp handle more than one lwp */
1530 	struct proc *p = lp->lwp_proc;
1531 	int error = 0;
1532 	struct ckpt_siginfo *csi;
1533 
1534 	csi = target_reserve(target, sizeof(struct ckpt_siginfo), &error);
1535 	if (csi) {
1536 		csi->csi_ckptpisz = sizeof(struct ckpt_siginfo);
1537 		bcopy(p->p_sigacts, &csi->csi_sigacts, sizeof(*p->p_sigacts));
1538 		bcopy(&p->p_realtimer, &csi->csi_itimerval, sizeof(struct itimerval));
1539 		bcopy(&lp->lwp_sigmask, &csi->csi_sigmask,
1540 			sizeof(sigset_t));
1541 		csi->csi_sigparent = p->p_sigparent;
1542 	}
1543 	return (error);
1544 }
1545 
1546 static int
1547 elf_putfiles(struct proc *p, elf_buf_t target, struct file *ckfp)
1548 {
1549 	int error = 0;
1550 	int i;
1551 	struct ckpt_filehdr *cfh = NULL;
1552 	struct ckpt_fileinfo *cfi;
1553 	struct file *fp;
1554 	struct vnode *vp;
1555 	/*
1556 	 * the duplicated loop is gross, but it was the only way
1557 	 * to eliminate uninitialized variable warnings
1558 	 */
1559 	cfh = target_reserve(target, sizeof(struct ckpt_filehdr), &error);
1560 	if (cfh) {
1561 		cfh->cfh_nfiles = 0;
1562 	}
1563 
1564 	/*
1565 	 * ignore STDIN/STDERR/STDOUT.
1566 	 */
1567 	for (i = 3; error == 0 && i < p->p_fd->fd_nfiles; i++) {
1568 		fp = holdfp(p->p_fd, i, -1);
1569 		if (fp == NULL)
1570 			continue;
1571 		/*
1572 		 * XXX Only checkpoint vnodes for now.
1573 		 */
1574 		if (fp->f_type != DTYPE_VNODE) {
1575 			fdrop(fp);
1576 			continue;
1577 		}
1578 		cfi = target_reserve(target, sizeof(struct ckpt_fileinfo),
1579 					&error);
1580 		if (cfi == NULL) {
1581 			fdrop(fp);
1582 			continue;
1583 		}
1584 		cfi->cfi_index = -1;
1585 		cfi->cfi_type = fp->f_type;
1586 		cfi->cfi_flags = fp->f_flag;
1587 		cfi->cfi_offset = fp->f_offset;
1588 		cfi->cfi_ckflags = 0;
1589 
1590 		if (fp == ckfp)
1591 			cfi->cfi_ckflags |= CKFIF_ISCKPTFD;
1592 		/* f_count and f_msgcount should not be saved/restored */
1593 		/* XXX save cred info */
1594 
1595 		switch(fp->f_type) {
1596 		case DTYPE_VNODE:
1597 			vp = (struct vnode *)fp->f_data;
1598 			/*
1599 			 * it looks like a bug in ptrace is marking
1600 			 * a non-vnode as a vnode - until we find the
1601 			 * root cause this will at least prevent
1602 			 * further panics from truss
1603 			 */
1604 			if (vp == NULL || vp->v_mount == NULL)
1605 				break;
1606 			cfh->cfh_nfiles++;
1607 			cfi->cfi_index = i;
1608 			cfi->cfi_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1609 			error = VFS_VPTOFH(vp, &cfi->cfi_fh.fh_fid);
1610 			break;
1611 		default:
1612 			break;
1613 		}
1614 		fdrop(fp);
1615 	}
1616 	return (error);
1617 }
1618 
1619 static int
1620 elf_puttextvp(struct proc *p, elf_buf_t target)
1621 {
1622 	int error = 0;
1623 	int *vn_count;
1624 	struct fp_closure fpc;
1625 	struct ckpt_vminfo *vminfo;
1626 
1627 	vminfo = target_reserve(target, sizeof(struct ckpt_vminfo), &error);
1628 	if (vminfo != NULL) {
1629 		vminfo->cvm_dsize = p->p_vmspace->vm_dsize;
1630 		vminfo->cvm_tsize = p->p_vmspace->vm_tsize;
1631 		vminfo->cvm_daddr = p->p_vmspace->vm_daddr;
1632 		vminfo->cvm_taddr = p->p_vmspace->vm_taddr;
1633 	}
1634 
1635 	fpc.count = 0;
1636 	vn_count = target_reserve(target, sizeof(int), &error);
1637 	if (target->buf != NULL) {
1638 		fpc.vnh = (struct vn_hdr *)(target->buf + target->off);
1639 		fpc.vnh_max = fpc.vnh +
1640 			(target->off_max - target->off) / sizeof(struct vn_hdr);
1641 		error = each_segment(p, cb_put_fp, &fpc, 0);
1642 		if (vn_count)
1643 			*vn_count = fpc.count;
1644 	} else {
1645 		error = each_segment(p, cb_fpcount_segment, &fpc.count, 0);
1646 	}
1647 	target->off += fpc.count * sizeof(struct vn_hdr);
1648 	return (error);
1649 }
1650 
1651 /*
1652  * Try to find the appropriate ABI-note section for checknote,
1653  * The entire image is searched if necessary, not only the first page.
1654  */
1655 static boolean_t
1656 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
1657     int32_t *osrel)
1658 {
1659 	boolean_t valid_note_found;
1660 	const Elf_Phdr *phdr, *pnote;
1661 	const Elf_Ehdr *hdr;
1662 	int i;
1663 
1664 	valid_note_found = FALSE;
1665 	hdr = (const Elf_Ehdr *)imgp->image_header;
1666 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1667 
1668 	for (i = 0; i < hdr->e_phnum; i++) {
1669 		if (phdr[i].p_type == PT_NOTE) {
1670 			pnote = &phdr[i];
1671 			valid_note_found = check_PT_NOTE (imgp, checknote,
1672 				osrel, pnote);
1673 			if (valid_note_found)
1674 				break;
1675 		}
1676 	}
1677 	return valid_note_found;
1678 }
1679 
1680 /*
1681  * Be careful not to create new overflow conditions when checking
1682  * for overflow.
1683  */
1684 static boolean_t
1685 note_overflow(const Elf_Note *note, size_t maxsize)
1686 {
1687 	if (sizeof(*note) > maxsize)
1688 		return TRUE;
1689 	if (note->n_namesz > maxsize - sizeof(*note))
1690 		return TRUE;
1691 	return FALSE;
1692 }
1693 
1694 static boolean_t
1695 hdr_overflow(__ElfN(Off) off_beg, __ElfN(Size) size)
1696 {
1697 	__ElfN(Off) off_end;
1698 
1699 	off_end = off_beg + size;
1700 	if (off_end < off_beg)
1701 		return TRUE;
1702 	return FALSE;
1703 }
1704 
1705 static boolean_t
1706 check_PT_NOTE(struct image_params *imgp, Elf_Brandnote *checknote,
1707 	      int32_t *osrel, const Elf_Phdr * pnote)
1708 {
1709 	boolean_t limited_to_first_page;
1710 	boolean_t found = FALSE;
1711 	const Elf_Note *note, *note0, *note_end;
1712 	const char *note_name;
1713 	__ElfN(Off) noteloc, firstloc;
1714 	__ElfN(Size) notesz, firstlen, endbyte;
1715 	struct lwbuf *lwb;
1716 	struct lwbuf lwb_cache;
1717 	const char *page;
1718 	char *data = NULL;
1719 	int n;
1720 
1721 	if (hdr_overflow(pnote->p_offset, pnote->p_filesz))
1722 		return (FALSE);
1723 	notesz = pnote->p_filesz;
1724 	noteloc = pnote->p_offset;
1725 	endbyte = noteloc + notesz;
1726 	limited_to_first_page = noteloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1727 
1728 	if (limited_to_first_page) {
1729 		note = (const Elf_Note *)(imgp->image_header + noteloc);
1730 		note_end = (const Elf_Note *)(imgp->image_header + endbyte);
1731 		note0 = note;
1732 	} else {
1733 		firstloc = noteloc & PAGE_MASK;
1734 		firstlen = PAGE_SIZE - firstloc;
1735 		if (notesz < sizeof(Elf_Note) || notesz > PAGE_SIZE)
1736 			return (FALSE);
1737 
1738 		lwb = &lwb_cache;
1739 		if (exec_map_page(imgp, noteloc >> PAGE_SHIFT, &lwb, &page))
1740 			return (FALSE);
1741 		if (firstlen < notesz) {         /* crosses page boundary */
1742 			data = kmalloc(notesz, M_TEMP, M_WAITOK);
1743 			bcopy(page + firstloc, data, firstlen);
1744 
1745 			exec_unmap_page(lwb);
1746 			lwb = &lwb_cache;
1747 			if (exec_map_page(imgp, (noteloc >> PAGE_SHIFT) + 1,
1748 				&lwb, &page)) {
1749 				kfree(data, M_TEMP);
1750 				return (FALSE);
1751 			}
1752 			bcopy(page, data + firstlen, notesz - firstlen);
1753 			note = note0 = (const Elf_Note *)(data);
1754 			note_end = (const Elf_Note *)(data + notesz);
1755 		} else {
1756 			note = note0 = (const Elf_Note *)(page + firstloc);
1757 			note_end = (const Elf_Note *)(page + firstloc +
1758 				firstlen);
1759 		}
1760 	}
1761 
1762 	for (n = 0; n < 100 && note >= note0 && note < note_end; n++) {
1763 		if (!aligned(note, Elf32_Addr))
1764 			break;
1765 		if (note_overflow(note, (const char *)note_end -
1766 					(const char *)note)) {
1767 			break;
1768 		}
1769 		note_name = (const char *)(note + 1);
1770 
1771 		if (note->n_namesz == checknote->hdr.n_namesz
1772 		    && note->n_descsz == checknote->hdr.n_descsz
1773 		    && note->n_type == checknote->hdr.n_type
1774 		    && (strncmp(checknote->vendor, note_name,
1775 			checknote->hdr.n_namesz) == 0)) {
1776 			/* Fetch osreldata from ABI.note-tag */
1777 			if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
1778 			    checknote->trans_osrel != NULL)
1779 				checknote->trans_osrel(note, osrel);
1780 			found = TRUE;
1781 			break;
1782 		}
1783 		note = (const Elf_Note *)((const char *)(note + 1) +
1784 		    roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1785 		    roundup2(note->n_descsz, sizeof(Elf32_Addr)));
1786 	}
1787 
1788 	if (!limited_to_first_page) {
1789 		if (data != NULL)
1790 			kfree(data, M_TEMP);
1791 		exec_unmap_page(lwb);
1792 	}
1793 	return (found);
1794 }
1795 
1796 /*
1797  * The interpreter program header may be located beyond the first page, so
1798  * regardless of its location, a copy of the interpreter path is created so
1799  * that it may be safely referenced by the calling function in all case.  The
1800  * memory is allocated by calling function, and the copying is done here.
1801  */
1802 static boolean_t
1803 extract_interpreter(struct image_params *imgp, const Elf_Phdr *pinterpreter,
1804 		    char *data)
1805 {
1806 	boolean_t limited_to_first_page;
1807 	const boolean_t result_success = FALSE;
1808 	const boolean_t result_failure = TRUE;
1809 	__ElfN(Off) pathloc, firstloc;
1810 	__ElfN(Size) pathsz, firstlen, endbyte;
1811 	struct lwbuf *lwb;
1812 	struct lwbuf lwb_cache;
1813 	const char *page;
1814 
1815 	if (hdr_overflow(pinterpreter->p_offset, pinterpreter->p_filesz))
1816 		return (result_failure);
1817 	pathsz  = pinterpreter->p_filesz;
1818 	pathloc = pinterpreter->p_offset;
1819 	endbyte = pathloc + pathsz;
1820 
1821 	limited_to_first_page = pathloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1822 	if (limited_to_first_page) {
1823 	        bcopy(imgp->image_header + pathloc, data, pathsz);
1824 	        return (result_success);
1825 	}
1826 
1827 	firstloc = pathloc & PAGE_MASK;
1828 	firstlen = PAGE_SIZE - firstloc;
1829 
1830 	lwb = &lwb_cache;
1831 	if (exec_map_page(imgp, pathloc >> PAGE_SHIFT, &lwb, &page))
1832 		return (result_failure);
1833 
1834 	if (firstlen < pathsz) {         /* crosses page boundary */
1835 		bcopy(page + firstloc, data, firstlen);
1836 
1837 		exec_unmap_page(lwb);
1838 		lwb = &lwb_cache;
1839 		if (exec_map_page(imgp, (pathloc >> PAGE_SHIFT) + 1, &lwb,
1840 			&page))
1841 			return (result_failure);
1842 		bcopy(page, data + firstlen, pathsz - firstlen);
1843 	} else
1844 		bcopy(page + firstloc, data, pathsz);
1845 
1846 	exec_unmap_page(lwb);
1847 	return (result_success);
1848 }
1849 
1850 static boolean_t
1851 __elfN(bsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
1852 {
1853 	uintptr_t p;
1854 
1855 	p = (uintptr_t)(note + 1);
1856 	p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1857 	*osrel = *(const int32_t *)(p);
1858 
1859 	return (TRUE);
1860 }
1861 
1862 /*
1863  * Tell kern_execve.c about it, with a little help from the linker.
1864  */
1865 #if defined(__x86_64__)
1866 static struct execsw elf_execsw = {exec_elf64_imgact, "ELF64"};
1867 EXEC_SET_ORDERED(elf64, elf_execsw, SI_ORDER_FIRST);
1868 #else /* i386 assumed */
1869 static struct execsw elf_execsw = {exec_elf32_imgact, "ELF32"};
1870 EXEC_SET_ORDERED(elf32, elf_execsw, SI_ORDER_FIRST);
1871 #endif
1872 
1873 static vm_prot_t
1874 __elfN(trans_prot)(Elf_Word flags)
1875 {
1876 	vm_prot_t prot;
1877 
1878 	prot = 0;
1879 	if (flags & PF_X)
1880 		prot |= VM_PROT_EXECUTE;
1881 	if (flags & PF_W)
1882 		prot |= VM_PROT_WRITE;
1883 	if (flags & PF_R)
1884 		prot |= VM_PROT_READ;
1885 	return (prot);
1886 }
1887 
1888 static Elf_Word
1889 __elfN(untrans_prot)(vm_prot_t prot)
1890 {
1891 	Elf_Word flags;
1892 
1893 	flags = 0;
1894 	if (prot & VM_PROT_EXECUTE)
1895 		flags |= PF_X;
1896 	if (prot & VM_PROT_READ)
1897 		flags |= PF_R;
1898 	if (prot & VM_PROT_WRITE)
1899 		flags |= PF_W;
1900 	return (flags);
1901 }
1902