xref: /dragonfly/sys/kern/kern_clock.c (revision 1ab20d67)
1 /*-
2  * Copyright (c) 2004, Matthew Dillon <dillon@backplane.com>
3  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
41  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
42  * $DragonFly: src/sys/kern/kern_clock.c,v 1.19 2004/04/03 05:30:10 dillon Exp $
43  */
44 
45 #include "opt_ntp.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/dkstat.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/signalvar.h>
56 #include <sys/timex.h>
57 #include <sys/timepps.h>
58 #include <vm/vm.h>
59 #include <sys/lock.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_map.h>
62 #include <sys/sysctl.h>
63 #include <sys/thread2.h>
64 
65 #include <machine/cpu.h>
66 #include <machine/limits.h>
67 #include <machine/smp.h>
68 
69 #ifdef GPROF
70 #include <sys/gmon.h>
71 #endif
72 
73 #ifdef DEVICE_POLLING
74 extern void init_device_poll(void);
75 extern void hardclock_device_poll(void);
76 #endif /* DEVICE_POLLING */
77 
78 static void initclocks (void *dummy);
79 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
80 
81 /*
82  * Some of these don't belong here, but it's easiest to concentrate them.
83  * Note that cp_time[] counts in microseconds, but most userland programs
84  * just compare relative times against the total by delta.
85  */
86 long cp_time[CPUSTATES];
87 
88 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time),
89     "LU", "CPU time statistics");
90 
91 long tk_cancc;
92 long tk_nin;
93 long tk_nout;
94 long tk_rawcc;
95 
96 /*
97  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
98  * microuptime().  microtime() is not drift compensated.  The real uptime
99  * with compensation is nanotime() - bootime.  boottime is recalculated
100  * whenever the real time is set based on the compensated elapsed time
101  * in seconds (gd->gd_time_seconds).
102  *
103  * basetime is used to calculate the compensated real time of day.  Chunky
104  * changes to the time, aka settimeofday(), are made by modifying basetime.
105  *
106  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
107  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
108  * the real time.
109  */
110 struct timespec boottime;	/* boot time (realtime) for reference only */
111 struct timespec basetime;	/* base time adjusts uptime -> realtime */
112 time_t time_second;		/* read-only 'passive' uptime in seconds */
113 
114 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
115     &boottime, timeval, "System boottime");
116 SYSCTL_STRUCT(_kern, OID_AUTO, basetime, CTLFLAG_RD,
117     &basetime, timeval, "System basetime");
118 
119 static void hardclock(systimer_t info, struct intrframe *frame);
120 static void statclock(systimer_t info, struct intrframe *frame);
121 static void schedclock(systimer_t info, struct intrframe *frame);
122 
123 int	ticks;			/* system master ticks at hz */
124 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
125 int64_t	nsec_acc;		/* accumulator */
126 
127 /*
128  * Finish initializing clock frequencies and start all clocks running.
129  */
130 /* ARGSUSED*/
131 static void
132 initclocks(void *dummy)
133 {
134 	cpu_initclocks();
135 #ifdef DEVICE_POLLING
136 	init_device_poll();
137 #endif
138 	/*psratio = profhz / stathz;*/
139 	initclocks_pcpu();
140 }
141 
142 /*
143  * Called on a per-cpu basis
144  */
145 void
146 initclocks_pcpu(void)
147 {
148 	struct globaldata *gd = mycpu;
149 
150 	crit_enter();
151 	if (gd->gd_cpuid == 0) {
152 	    gd->gd_time_seconds = 1;
153 	    gd->gd_cpuclock_base = cputimer_count();
154 	} else {
155 	    /* XXX */
156 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
157 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
158 	}
159 	systimer_init_periodic(&gd->gd_hardclock, hardclock, NULL, hz);
160 	systimer_init_periodic(&gd->gd_statclock, statclock, NULL, stathz);
161 	/* XXX correct the frequency for scheduler / estcpu tests */
162 	systimer_init_periodic(&gd->gd_schedclock, schedclock,
163 				NULL, ESTCPUFREQ);
164 	crit_exit();
165 }
166 
167 /*
168  * This sets the current real time of day.  Timespecs are in seconds and
169  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
170  * instead we adjust basetime so basetime + gd_* results in the current
171  * time of day.  This way the gd_* fields are guarenteed to represent
172  * a monotonically increasing 'uptime' value.
173  */
174 void
175 set_timeofday(struct timespec *ts)
176 {
177 	struct timespec ts2;
178 
179 	/*
180 	 * XXX SMP / non-atomic basetime updates
181 	 */
182 	crit_enter();
183 	nanouptime(&ts2);
184 	basetime.tv_sec = ts->tv_sec - ts2.tv_sec;
185 	basetime.tv_nsec = ts->tv_nsec - ts2.tv_nsec;
186 	if (basetime.tv_nsec < 0) {
187 	    basetime.tv_nsec += 1000000000;
188 	    --basetime.tv_sec;
189 	}
190 	boottime.tv_sec = basetime.tv_sec - mycpu->gd_time_seconds;
191 	timedelta = 0;
192 	crit_exit();
193 }
194 
195 /*
196  * Each cpu has its own hardclock, but we only increments ticks and softticks
197  * on cpu #0.
198  *
199  * NOTE! systimer! the MP lock might not be held here.  We can only safely
200  * manipulate objects owned by the current cpu.
201  */
202 static void
203 hardclock(systimer_t info, struct intrframe *frame)
204 {
205 	sysclock_t cputicks;
206 	struct proc *p;
207 	struct pstats *pstats;
208 	struct globaldata *gd = mycpu;
209 
210 	/*
211 	 * Realtime updates are per-cpu.  Note that timer corrections as
212 	 * returned by microtime() and friends make an additional adjustment
213 	 * using a system-wise 'basetime', but the running time is always
214 	 * taken from the per-cpu globaldata area.  Since the same clock
215 	 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
216 	 * stay in synch.
217 	 *
218 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
219 	 * to reverse index gd_cpuclock_base.
220 	 */
221 	cputicks = info->time - gd->gd_cpuclock_base;
222 	if (cputicks > cputimer_freq) {
223 		++gd->gd_time_seconds;
224 		gd->gd_cpuclock_base += cputimer_freq;
225 	}
226 
227 	/*
228 	 * The system-wide ticks and softticks are only updated by cpu #0.
229 	 * Callwheel actions are also (at the moment) only handled by cpu #0.
230 	 * Finally, we also do NTP related timedelta/tickdelta adjustments
231 	 * by adjusting basetime.
232 	 */
233 	if (gd->gd_cpuid == 0) {
234 	    struct timespec nts;
235 	    int leap;
236 
237 	    ++ticks;
238 
239 #ifdef DEVICE_POLLING
240 	    hardclock_device_poll();	/* mpsafe, short and quick */
241 #endif /* DEVICE_POLLING */
242 
243 	    if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
244 		setsoftclock();
245 	    } else if (softticks + 1 == ticks) {
246 		++softticks;
247 	    }
248 
249 #if 0
250 	    if (tco->tc_poll_pps)
251 		tco->tc_poll_pps(tco);
252 #endif
253 	    /*
254 	     * Apply adjtime corrections.  At the moment only do this if
255 	     * we can get the MP lock to interlock with adjtime's modification
256 	     * of these variables.  Note that basetime adjustments are not
257 	     * MP safe either XXX.
258 	     */
259 	    if (timedelta != 0 && try_mplock()) {
260 		basetime.tv_nsec += tickdelta * 1000;
261 		if (basetime.tv_nsec >= 1000000000) {
262 		    basetime.tv_nsec -= 1000000000;
263 		    ++basetime.tv_sec;
264 		} else if (basetime.tv_nsec < 0) {
265 		    basetime.tv_nsec += 1000000000;
266 		    --basetime.tv_sec;
267 		}
268 		timedelta -= tickdelta;
269 		rel_mplock();
270 	    }
271 
272 	    /*
273 	     * Apply per-tick compensation.  ticks_adj adjusts for both
274 	     * offset and frequency, and could be negative.
275 	     */
276 	    if (nsec_adj != 0 && try_mplock()) {
277 		nsec_acc += nsec_adj;
278 		if (nsec_acc >= 0x100000000LL) {
279 		    basetime.tv_nsec += nsec_acc >> 32;
280 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
281 		} else if (nsec_acc <= -0x100000000LL) {
282 		    basetime.tv_nsec -= -nsec_acc >> 32;
283 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
284 		}
285 		if (basetime.tv_nsec >= 1000000000) {
286 		    basetime.tv_nsec -= 1000000000;
287 		    ++basetime.tv_sec;
288 		} else if (basetime.tv_nsec < 0) {
289 		    basetime.tv_nsec += 1000000000;
290 		    --basetime.tv_sec;
291 		}
292 		rel_mplock();
293 	    }
294 
295 	    /*
296 	     * If the realtime-adjusted seconds hand rolls over then tell
297 	     * ntp_update_second() what we did in the last second so it can
298 	     * calculate what to do in the next second.  It may also add
299 	     * or subtract a leap second.
300 	     */
301 	    getnanotime(&nts);
302 	    if (time_second != nts.tv_sec) {
303 		leap = ntp_update_second(time_second, &nsec_adj);
304 		basetime.tv_sec += leap;
305 		time_second = nts.tv_sec + leap;
306 		nsec_adj /= hz;
307 	    }
308 	}
309 
310 	/*
311 	 * ITimer handling is per-tick, per-cpu.  I don't think psignal()
312 	 * is mpsafe on curproc, so XXX get the mplock.
313 	 */
314 	if ((p = curproc) != NULL && try_mplock()) {
315 		pstats = p->p_stats;
316 		if (frame && CLKF_USERMODE(frame) &&
317 		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
318 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
319 			psignal(p, SIGVTALRM);
320 		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
321 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
322 			psignal(p, SIGPROF);
323 		rel_mplock();
324 	}
325 	setdelayed();
326 }
327 
328 /*
329  * The statistics clock typically runs at a 125Hz rate, and is intended
330  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
331  *
332  * NOTE! systimer! the MP lock might not be held here.  We can only safely
333  * manipulate objects owned by the current cpu.
334  *
335  * The stats clock is responsible for grabbing a profiling sample.
336  * Most of the statistics are only used by user-level statistics programs.
337  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
338  * p->p_estcpu.
339  *
340  * Like the other clocks, the stat clock is called from what is effectively
341  * a fast interrupt, so the context should be the thread/process that got
342  * interrupted.
343  */
344 static void
345 statclock(systimer_t info, struct intrframe *frame)
346 {
347 #ifdef GPROF
348 	struct gmonparam *g;
349 	int i;
350 #endif
351 	thread_t td;
352 	struct proc *p;
353 	int bump;
354 	struct timeval tv;
355 	struct timeval *stv;
356 
357 	/*
358 	 * How big was our timeslice relative to the last time?
359 	 */
360 	microuptime(&tv);	/* mpsafe */
361 	stv = &mycpu->gd_stattv;
362 	if (stv->tv_sec == 0) {
363 	    bump = 1;
364 	} else {
365 	    bump = tv.tv_usec - stv->tv_usec +
366 		(tv.tv_sec - stv->tv_sec) * 1000000;
367 	    if (bump < 0)
368 		bump = 0;
369 	    if (bump > 1000000)
370 		bump = 1000000;
371 	}
372 	*stv = tv;
373 
374 	td = curthread;
375 	p = td->td_proc;
376 
377 	if (frame && CLKF_USERMODE(frame)) {
378 		/*
379 		 * Came from userland, handle user time and deal with
380 		 * possible process.
381 		 */
382 		if (p && (p->p_flag & P_PROFIL))
383 			addupc_intr(p, CLKF_PC(frame), 1);
384 		td->td_uticks += bump;
385 
386 		/*
387 		 * Charge the time as appropriate
388 		 */
389 		if (p && p->p_nice > NZERO)
390 			cp_time[CP_NICE] += bump;
391 		else
392 			cp_time[CP_USER] += bump;
393 	} else {
394 #ifdef GPROF
395 		/*
396 		 * Kernel statistics are just like addupc_intr, only easier.
397 		 */
398 		g = &_gmonparam;
399 		if (g->state == GMON_PROF_ON && frame) {
400 			i = CLKF_PC(frame) - g->lowpc;
401 			if (i < g->textsize) {
402 				i /= HISTFRACTION * sizeof(*g->kcount);
403 				g->kcount[i]++;
404 			}
405 		}
406 #endif
407 		/*
408 		 * Came from kernel mode, so we were:
409 		 * - handling an interrupt,
410 		 * - doing syscall or trap work on behalf of the current
411 		 *   user process, or
412 		 * - spinning in the idle loop.
413 		 * Whichever it is, charge the time as appropriate.
414 		 * Note that we charge interrupts to the current process,
415 		 * regardless of whether they are ``for'' that process,
416 		 * so that we know how much of its real time was spent
417 		 * in ``non-process'' (i.e., interrupt) work.
418 		 *
419 		 * XXX assume system if frame is NULL.  A NULL frame
420 		 * can occur if ipi processing is done from an splx().
421 		 */
422 		if (frame && CLKF_INTR(frame))
423 			td->td_iticks += bump;
424 		else
425 			td->td_sticks += bump;
426 
427 		if (frame && CLKF_INTR(frame)) {
428 			cp_time[CP_INTR] += bump;
429 		} else {
430 			if (td == &mycpu->gd_idlethread)
431 				cp_time[CP_IDLE] += bump;
432 			else
433 				cp_time[CP_SYS] += bump;
434 		}
435 	}
436 }
437 
438 /*
439  * The scheduler clock typically runs at a 20Hz rate.  NOTE! systimer,
440  * the MP lock might not be held.  We can safely manipulate parts of curproc
441  * but that's about it.
442  */
443 static void
444 schedclock(systimer_t info, struct intrframe *frame)
445 {
446 	struct proc *p;
447 	struct pstats *pstats;
448 	struct rusage *ru;
449 	struct vmspace *vm;
450 	long rss;
451 
452 	schedulerclock(NULL);	/* mpsafe */
453 	if ((p = curproc) != NULL) {
454 		/* Update resource usage integrals and maximums. */
455 		if ((pstats = p->p_stats) != NULL &&
456 		    (ru = &pstats->p_ru) != NULL &&
457 		    (vm = p->p_vmspace) != NULL) {
458 			ru->ru_ixrss += pgtok(vm->vm_tsize);
459 			ru->ru_idrss += pgtok(vm->vm_dsize);
460 			ru->ru_isrss += pgtok(vm->vm_ssize);
461 			rss = pgtok(vmspace_resident_count(vm));
462 			if (ru->ru_maxrss < rss)
463 				ru->ru_maxrss = rss;
464 		}
465 	}
466 }
467 
468 /*
469  * Compute number of ticks for the specified amount of time.  The
470  * return value is intended to be used in a clock interrupt timed
471  * operation and guarenteed to meet or exceed the requested time.
472  * If the representation overflows, return INT_MAX.  The minimum return
473  * value is 1 ticks and the function will average the calculation up.
474  * If any value greater then 0 microseconds is supplied, a value
475  * of at least 2 will be returned to ensure that a near-term clock
476  * interrupt does not cause the timeout to occur (degenerately) early.
477  *
478  * Note that limit checks must take into account microseconds, which is
479  * done simply by using the smaller signed long maximum instead of
480  * the unsigned long maximum.
481  *
482  * If ints have 32 bits, then the maximum value for any timeout in
483  * 10ms ticks is 248 days.
484  */
485 int
486 tvtohz_high(struct timeval *tv)
487 {
488 	int ticks;
489 	long sec, usec;
490 
491 	sec = tv->tv_sec;
492 	usec = tv->tv_usec;
493 	if (usec < 0) {
494 		sec--;
495 		usec += 1000000;
496 	}
497 	if (sec < 0) {
498 #ifdef DIAGNOSTIC
499 		if (usec > 0) {
500 			sec++;
501 			usec -= 1000000;
502 		}
503 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
504 		       sec, usec);
505 #endif
506 		ticks = 1;
507 	} else if (sec <= INT_MAX / hz) {
508 		ticks = (int)(sec * hz +
509 			    ((u_long)usec + (tick - 1)) / tick) + 1;
510 	} else {
511 		ticks = INT_MAX;
512 	}
513 	return (ticks);
514 }
515 
516 /*
517  * Compute number of ticks for the specified amount of time, erroring on
518  * the side of it being too low to ensure that sleeping the returned number
519  * of ticks will not result in a late return.
520  *
521  * The supplied timeval may not be negative and should be normalized.  A
522  * return value of 0 is possible if the timeval converts to less then
523  * 1 tick.
524  *
525  * If ints have 32 bits, then the maximum value for any timeout in
526  * 10ms ticks is 248 days.
527  */
528 int
529 tvtohz_low(struct timeval *tv)
530 {
531 	int ticks;
532 	long sec;
533 
534 	sec = tv->tv_sec;
535 	if (sec <= INT_MAX / hz)
536 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
537 	else
538 		ticks = INT_MAX;
539 	return (ticks);
540 }
541 
542 
543 /*
544  * Start profiling on a process.
545  *
546  * Kernel profiling passes proc0 which never exits and hence
547  * keeps the profile clock running constantly.
548  */
549 void
550 startprofclock(struct proc *p)
551 {
552 	if ((p->p_flag & P_PROFIL) == 0) {
553 		p->p_flag |= P_PROFIL;
554 #if 0	/* XXX */
555 		if (++profprocs == 1 && stathz != 0) {
556 			s = splstatclock();
557 			psdiv = psratio;
558 			setstatclockrate(profhz);
559 			splx(s);
560 		}
561 #endif
562 	}
563 }
564 
565 /*
566  * Stop profiling on a process.
567  */
568 void
569 stopprofclock(struct proc *p)
570 {
571 	if (p->p_flag & P_PROFIL) {
572 		p->p_flag &= ~P_PROFIL;
573 #if 0	/* XXX */
574 		if (--profprocs == 0 && stathz != 0) {
575 			s = splstatclock();
576 			psdiv = 1;
577 			setstatclockrate(stathz);
578 			splx(s);
579 		}
580 #endif
581 	}
582 }
583 
584 /*
585  * Return information about system clocks.
586  */
587 static int
588 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
589 {
590 	struct clockinfo clkinfo;
591 	/*
592 	 * Construct clockinfo structure.
593 	 */
594 	clkinfo.hz = hz;
595 	clkinfo.tick = tick;
596 	clkinfo.tickadj = tickadj;
597 	clkinfo.profhz = profhz;
598 	clkinfo.stathz = stathz ? stathz : hz;
599 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
600 }
601 
602 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
603 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
604 
605 /*
606  * We have eight functions for looking at the clock, four for
607  * microseconds and four for nanoseconds.  For each there is fast
608  * but less precise version "get{nano|micro}[up]time" which will
609  * return a time which is up to 1/HZ previous to the call, whereas
610  * the raw version "{nano|micro}[up]time" will return a timestamp
611  * which is as precise as possible.  The "up" variants return the
612  * time relative to system boot, these are well suited for time
613  * interval measurements.
614  *
615  * Each cpu independantly maintains the current time of day, so all
616  * we need to do to protect ourselves from changes is to do a loop
617  * check on the seconds field changing out from under us.
618  */
619 void
620 getmicrouptime(struct timeval *tvp)
621 {
622 	struct globaldata *gd = mycpu;
623 	sysclock_t delta;
624 
625 	do {
626 		tvp->tv_sec = gd->gd_time_seconds;
627 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
628 	} while (tvp->tv_sec != gd->gd_time_seconds);
629 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
630 	if (tvp->tv_usec >= 1000000) {
631 		tvp->tv_usec -= 1000000;
632 		++tvp->tv_sec;
633 	}
634 }
635 
636 void
637 getnanouptime(struct timespec *tsp)
638 {
639 	struct globaldata *gd = mycpu;
640 	sysclock_t delta;
641 
642 	do {
643 		tsp->tv_sec = gd->gd_time_seconds;
644 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
645 	} while (tsp->tv_sec != gd->gd_time_seconds);
646 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
647 	if (tsp->tv_nsec >= 1000000000) {
648 		tsp->tv_nsec -= 1000000000;
649 		++tsp->tv_sec;
650 	}
651 }
652 
653 void
654 microuptime(struct timeval *tvp)
655 {
656 	struct globaldata *gd = mycpu;
657 	sysclock_t delta;
658 
659 	do {
660 		tvp->tv_sec = gd->gd_time_seconds;
661 		delta = cputimer_count() - gd->gd_cpuclock_base;
662 	} while (tvp->tv_sec != gd->gd_time_seconds);
663 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
664 	if (tvp->tv_usec >= 1000000) {
665 		tvp->tv_usec -= 1000000;
666 		++tvp->tv_sec;
667 	}
668 }
669 
670 void
671 nanouptime(struct timespec *tsp)
672 {
673 	struct globaldata *gd = mycpu;
674 	sysclock_t delta;
675 
676 	do {
677 		tsp->tv_sec = gd->gd_time_seconds;
678 		delta = cputimer_count() - gd->gd_cpuclock_base;
679 	} while (tsp->tv_sec != gd->gd_time_seconds);
680 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
681 	if (tsp->tv_nsec >= 1000000000) {
682 		tsp->tv_nsec -= 1000000000;
683 		++tsp->tv_sec;
684 	}
685 }
686 
687 /*
688  * realtime routines
689  */
690 
691 void
692 getmicrotime(struct timeval *tvp)
693 {
694 	struct globaldata *gd = mycpu;
695 	sysclock_t delta;
696 
697 	do {
698 		tvp->tv_sec = gd->gd_time_seconds;
699 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
700 	} while (tvp->tv_sec != gd->gd_time_seconds);
701 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
702 
703 	tvp->tv_sec += basetime.tv_sec;
704 	tvp->tv_usec += basetime.tv_nsec / 1000;
705 	while (tvp->tv_usec >= 1000000) {
706 		tvp->tv_usec -= 1000000;
707 		++tvp->tv_sec;
708 	}
709 }
710 
711 void
712 getnanotime(struct timespec *tsp)
713 {
714 	struct globaldata *gd = mycpu;
715 	sysclock_t delta;
716 
717 	do {
718 		tsp->tv_sec = gd->gd_time_seconds;
719 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
720 	} while (tsp->tv_sec != gd->gd_time_seconds);
721 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
722 
723 	tsp->tv_sec += basetime.tv_sec;
724 	tsp->tv_nsec += basetime.tv_nsec;
725 	while (tsp->tv_nsec >= 1000000000) {
726 		tsp->tv_nsec -= 1000000000;
727 		++tsp->tv_sec;
728 	}
729 }
730 
731 void
732 microtime(struct timeval *tvp)
733 {
734 	struct globaldata *gd = mycpu;
735 	sysclock_t delta;
736 
737 	do {
738 		tvp->tv_sec = gd->gd_time_seconds;
739 		delta = cputimer_count() - gd->gd_cpuclock_base;
740 	} while (tvp->tv_sec != gd->gd_time_seconds);
741 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
742 
743 	tvp->tv_sec += basetime.tv_sec;
744 	tvp->tv_usec += basetime.tv_nsec / 1000;
745 	while (tvp->tv_usec >= 1000000) {
746 		tvp->tv_usec -= 1000000;
747 		++tvp->tv_sec;
748 	}
749 }
750 
751 void
752 nanotime(struct timespec *tsp)
753 {
754 	struct globaldata *gd = mycpu;
755 	sysclock_t delta;
756 
757 	do {
758 		tsp->tv_sec = gd->gd_time_seconds;
759 		delta = cputimer_count() - gd->gd_cpuclock_base;
760 	} while (tsp->tv_sec != gd->gd_time_seconds);
761 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
762 
763 	tsp->tv_sec += basetime.tv_sec;
764 	tsp->tv_nsec += basetime.tv_nsec;
765 	while (tsp->tv_nsec >= 1000000000) {
766 		tsp->tv_nsec -= 1000000000;
767 		++tsp->tv_sec;
768 	}
769 }
770 
771 int
772 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
773 {
774 	pps_params_t *app;
775 	struct pps_fetch_args *fapi;
776 #ifdef PPS_SYNC
777 	struct pps_kcbind_args *kapi;
778 #endif
779 
780 	switch (cmd) {
781 	case PPS_IOC_CREATE:
782 		return (0);
783 	case PPS_IOC_DESTROY:
784 		return (0);
785 	case PPS_IOC_SETPARAMS:
786 		app = (pps_params_t *)data;
787 		if (app->mode & ~pps->ppscap)
788 			return (EINVAL);
789 		pps->ppsparam = *app;
790 		return (0);
791 	case PPS_IOC_GETPARAMS:
792 		app = (pps_params_t *)data;
793 		*app = pps->ppsparam;
794 		app->api_version = PPS_API_VERS_1;
795 		return (0);
796 	case PPS_IOC_GETCAP:
797 		*(int*)data = pps->ppscap;
798 		return (0);
799 	case PPS_IOC_FETCH:
800 		fapi = (struct pps_fetch_args *)data;
801 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
802 			return (EINVAL);
803 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
804 			return (EOPNOTSUPP);
805 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
806 		fapi->pps_info_buf = pps->ppsinfo;
807 		return (0);
808 	case PPS_IOC_KCBIND:
809 #ifdef PPS_SYNC
810 		kapi = (struct pps_kcbind_args *)data;
811 		/* XXX Only root should be able to do this */
812 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
813 			return (EINVAL);
814 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
815 			return (EINVAL);
816 		if (kapi->edge & ~pps->ppscap)
817 			return (EINVAL);
818 		pps->kcmode = kapi->edge;
819 		return (0);
820 #else
821 		return (EOPNOTSUPP);
822 #endif
823 	default:
824 		return (ENOTTY);
825 	}
826 }
827 
828 void
829 pps_init(struct pps_state *pps)
830 {
831 	pps->ppscap |= PPS_TSFMT_TSPEC;
832 	if (pps->ppscap & PPS_CAPTUREASSERT)
833 		pps->ppscap |= PPS_OFFSETASSERT;
834 	if (pps->ppscap & PPS_CAPTURECLEAR)
835 		pps->ppscap |= PPS_OFFSETCLEAR;
836 }
837 
838 void
839 pps_event(struct pps_state *pps, sysclock_t count, int event)
840 {
841 	struct globaldata *gd;
842 	struct timespec *tsp;
843 	struct timespec *osp;
844 	struct timespec ts;
845 	sysclock_t *pcount;
846 #ifdef PPS_SYNC
847 	sysclock_t tcount;
848 #endif
849 	sysclock_t delta;
850 	pps_seq_t *pseq;
851 	int foff;
852 	int fhard;
853 
854 	gd = mycpu;
855 
856 	/* Things would be easier with arrays... */
857 	if (event == PPS_CAPTUREASSERT) {
858 		tsp = &pps->ppsinfo.assert_timestamp;
859 		osp = &pps->ppsparam.assert_offset;
860 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
861 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
862 		pcount = &pps->ppscount[0];
863 		pseq = &pps->ppsinfo.assert_sequence;
864 	} else {
865 		tsp = &pps->ppsinfo.clear_timestamp;
866 		osp = &pps->ppsparam.clear_offset;
867 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
868 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
869 		pcount = &pps->ppscount[1];
870 		pseq = &pps->ppsinfo.clear_sequence;
871 	}
872 
873 	/* Nothing really happened */
874 	if (*pcount == count)
875 		return;
876 
877 	*pcount = count;
878 
879 	do {
880 		ts.tv_sec = gd->gd_time_seconds;
881 		delta = count - gd->gd_cpuclock_base;
882 	} while (ts.tv_sec != gd->gd_time_seconds);
883 	if (delta > cputimer_freq) {
884 		ts.tv_sec += delta / cputimer_freq;
885 		delta %= cputimer_freq;
886 	}
887 	ts.tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
888 	ts.tv_sec += basetime.tv_sec;
889 	ts.tv_nsec += basetime.tv_nsec;
890 	while (ts.tv_nsec >= 1000000000) {
891 		ts.tv_nsec -= 1000000000;
892 		++ts.tv_sec;
893 	}
894 
895 	(*pseq)++;
896 	*tsp = ts;
897 
898 	if (foff) {
899 		timespecadd(tsp, osp);
900 		if (tsp->tv_nsec < 0) {
901 			tsp->tv_nsec += 1000000000;
902 			tsp->tv_sec -= 1;
903 		}
904 	}
905 #ifdef PPS_SYNC
906 	if (fhard) {
907 		/* magic, at its best... */
908 		tcount = count - pps->ppscount[2];
909 		pps->ppscount[2] = count;
910 		delta = (cputimer_freq64_nsec * tcount) >> 32;
911 		hardpps(tsp, delta);
912 	}
913 #endif
914 }
915 
916