xref: /dragonfly/sys/kern/kern_clock.c (revision 28c7b939)
1 /*-
2  * Copyright (c) 2004, Matthew Dillon <dillon@backplane.com>
3  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
41  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
42  * $DragonFly: src/sys/kern/kern_clock.c,v 1.15 2004/01/30 05:42:17 dillon Exp $
43  */
44 
45 #include "opt_ntp.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/dkstat.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/signalvar.h>
56 #include <sys/timex.h>
57 #include <sys/timepps.h>
58 #include <vm/vm.h>
59 #include <sys/lock.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_map.h>
62 #include <sys/sysctl.h>
63 #include <sys/thread2.h>
64 
65 #include <machine/cpu.h>
66 #include <machine/limits.h>
67 #include <machine/smp.h>
68 
69 #ifdef GPROF
70 #include <sys/gmon.h>
71 #endif
72 
73 #ifdef DEVICE_POLLING
74 extern void init_device_poll(void);
75 extern void hardclock_device_poll(void);
76 #endif /* DEVICE_POLLING */
77 
78 static void initclocks (void *dummy);
79 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
80 
81 /*
82  * Some of these don't belong here, but it's easiest to concentrate them.
83  * Note that cp_time[] counts in microseconds, but most userland programs
84  * just compare relative times against the total by delta.
85  */
86 long cp_time[CPUSTATES];
87 
88 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time),
89     "LU", "CPU time statistics");
90 
91 long tk_cancc;
92 long tk_nin;
93 long tk_nout;
94 long tk_rawcc;
95 
96 /*
97  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
98  * microuptime().  microtime() is not drift compensated.  The real uptime
99  * with compensation is nanotime() - bootime.
100  *
101  * basetime is used to calculate the compensated real time of day.  Chunky
102  * changes to the time, aka settimeofday(), are made by modifying basetime.
103  *
104  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
105  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
106  * the real time.
107  */
108 struct timespec boottime;	/* boot time (realtime) for reference only */
109 struct timespec basetime;	/* base time adjusts uptime -> realtime */
110 time_t time_second;		/* read-only 'passive' uptime in seconds */
111 
112 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
113     &boottime, timeval, "System boottime");
114 SYSCTL_STRUCT(_kern, OID_AUTO, basetime, CTLFLAG_RD,
115     &basetime, timeval, "System basetime");
116 
117 static void hardclock(systimer_t info, struct intrframe *frame);
118 static void statclock(systimer_t info, struct intrframe *frame);
119 static void schedclock(systimer_t info, struct intrframe *frame);
120 
121 int	ticks;			/* system master ticks at hz */
122 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
123 int64_t	nsec_acc;		/* accumulator */
124 
125 /*
126  * Finish initializing clock frequencies and start all clocks running.
127  */
128 /* ARGSUSED*/
129 static void
130 initclocks(void *dummy)
131 {
132 	cpu_initclocks();
133 #ifdef DEVICE_POLLING
134 	init_device_poll();
135 #endif
136 	/*psratio = profhz / stathz;*/
137 	initclocks_pcpu();
138 }
139 
140 /*
141  * Called on a per-cpu basis
142  */
143 void
144 initclocks_pcpu(void)
145 {
146 	struct globaldata *gd = mycpu;
147 
148 	crit_enter();
149 	if (gd->gd_cpuid == 0) {
150 	    gd->gd_time_seconds = 1;
151 	    gd->gd_cpuclock_base = cputimer_count();
152 	} else {
153 	    /* XXX */
154 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
155 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
156 	}
157 	systimer_init_periodic(&gd->gd_hardclock, hardclock, NULL, hz);
158 	systimer_init_periodic(&gd->gd_statclock, statclock, NULL, stathz);
159 	/* XXX correct the frequency for scheduler / estcpu tests */
160 	systimer_init_periodic(&gd->gd_schedclock, schedclock, NULL, 10);
161 	crit_exit();
162 }
163 
164 /*
165  * This sets the current real time of day.  Timespecs are in seconds and
166  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
167  * instead we adjust basetime so basetime + gd_* results in the current
168  * time of day.  This way the gd_* fields are guarenteed to represent
169  * a monotonically increasing 'uptime' value.
170  */
171 void
172 set_timeofday(struct timespec *ts)
173 {
174 	struct timespec ts2;
175 
176 	/*
177 	 * XXX SMP / non-atomic basetime updates
178 	 */
179 	crit_enter();
180 	nanouptime(&ts2);
181 	basetime.tv_sec = ts->tv_sec - ts2.tv_sec;
182 	basetime.tv_nsec = ts->tv_nsec - ts2.tv_nsec;
183 	if (basetime.tv_nsec < 0) {
184 	    basetime.tv_nsec += 1000000000;
185 	    --basetime.tv_sec;
186 	}
187 	if (boottime.tv_sec == 0)
188 		boottime = basetime;
189 	timedelta = 0;
190 	crit_exit();
191 }
192 
193 /*
194  * Each cpu has its own hardclock, but we only increments ticks and softticks
195  * on cpu #0.
196  *
197  * NOTE! systimer! the MP lock might not be held here.  We can only safely
198  * manipulate objects owned by the current cpu.
199  */
200 static void
201 hardclock(systimer_t info, struct intrframe *frame)
202 {
203 	sysclock_t cputicks;
204 	struct proc *p;
205 	struct pstats *pstats;
206 	struct globaldata *gd = mycpu;
207 
208 	/*
209 	 * Realtime updates are per-cpu.  Note that timer corrections as
210 	 * returned by microtime() and friends make an additional adjustment
211 	 * using a system-wise 'basetime', but the running time is always
212 	 * taken from the per-cpu globaldata area.  Since the same clock
213 	 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
214 	 * stay in synch.
215 	 *
216 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
217 	 * to reverse index gd_cpuclock_base.
218 	 */
219 	cputicks = info->time - gd->gd_cpuclock_base;
220 	if (cputicks > cputimer_freq) {
221 		++gd->gd_time_seconds;
222 		gd->gd_cpuclock_base += cputimer_freq;
223 	}
224 
225 	/*
226 	 * The system-wide ticks and softticks are only updated by cpu #0.
227 	 * Callwheel actions are also (at the moment) only handled by cpu #0.
228 	 * Finally, we also do NTP related timedelta/tickdelta adjustments
229 	 * by adjusting basetime.
230 	 */
231 	if (gd->gd_cpuid == 0) {
232 	    struct timespec nts;
233 	    int leap;
234 
235 	    ++ticks;
236 
237 #ifdef DEVICE_POLLING
238 	    hardclock_device_poll();	/* mpsafe, short and quick */
239 #endif /* DEVICE_POLLING */
240 
241 	    if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
242 		setsoftclock();
243 	    } else if (softticks + 1 == ticks) {
244 		++softticks;
245 	    }
246 
247 #if 0
248 	    if (tco->tc_poll_pps)
249 		tco->tc_poll_pps(tco);
250 #endif
251 	    /*
252 	     * Apply adjtime corrections.  At the moment only do this if
253 	     * we can get the MP lock to interlock with adjtime's modification
254 	     * of these variables.  Note that basetime adjustments are not
255 	     * MP safe either XXX.
256 	     */
257 	    if (timedelta != 0 && try_mplock()) {
258 		basetime.tv_nsec += tickdelta * 1000;
259 		if (basetime.tv_nsec >= 1000000000) {
260 		    basetime.tv_nsec -= 1000000000;
261 		    ++basetime.tv_sec;
262 		} else if (basetime.tv_nsec < 0) {
263 		    basetime.tv_nsec += 1000000000;
264 		    --basetime.tv_sec;
265 		}
266 		timedelta -= tickdelta;
267 		rel_mplock();
268 	    }
269 
270 	    /*
271 	     * Apply per-tick compensation.  ticks_adj adjusts for both
272 	     * offset and frequency, and could be negative.
273 	     */
274 	    if (nsec_adj != 0 && try_mplock()) {
275 		nsec_acc += nsec_adj;
276 		if (nsec_acc >= 0x100000000LL) {
277 		    basetime.tv_nsec += nsec_acc >> 32;
278 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
279 		} else if (nsec_acc <= -0x100000000LL) {
280 		    basetime.tv_nsec -= -nsec_acc >> 32;
281 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
282 		}
283 		if (basetime.tv_nsec >= 1000000000) {
284 		    basetime.tv_nsec -= 1000000000;
285 		    ++basetime.tv_sec;
286 		} else if (basetime.tv_nsec < 0) {
287 		    basetime.tv_nsec += 1000000000;
288 		    --basetime.tv_sec;
289 		}
290 		rel_mplock();
291 	    }
292 
293 	    /*
294 	     * If the realtime-adjusted seconds hand rolls over then tell
295 	     * ntp_update_second() what we did in the last second so it can
296 	     * calculate what to do in the next second.  It may also add
297 	     * or subtract a leap second.
298 	     */
299 	    getnanotime(&nts);
300 	    if (time_second != nts.tv_sec) {
301 		leap = ntp_update_second(time_second, &nsec_adj);
302 		basetime.tv_sec += leap;
303 		time_second = nts.tv_sec + leap;
304 		nsec_adj /= hz;
305 	    }
306 	}
307 
308 	/*
309 	 * ITimer handling is per-tick, per-cpu.  I don't think psignal()
310 	 * is mpsafe on curproc, so XXX get the mplock.
311 	 */
312 	if ((p = curproc) != NULL && try_mplock()) {
313 		pstats = p->p_stats;
314 		if (frame && CLKF_USERMODE(frame) &&
315 		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
316 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
317 			psignal(p, SIGVTALRM);
318 		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
319 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
320 			psignal(p, SIGPROF);
321 		rel_mplock();
322 	}
323 }
324 
325 /*
326  * The statistics clock typically runs at a 125Hz rate, and is intended
327  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
328  *
329  * NOTE! systimer! the MP lock might not be held here.  We can only safely
330  * manipulate objects owned by the current cpu.
331  *
332  * The stats clock is responsible for grabbing a profiling sample.
333  * Most of the statistics are only used by user-level statistics programs.
334  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
335  * p->p_estcpu.
336  *
337  * Like the other clocks, the stat clock is called from what is effectively
338  * a fast interrupt, so the context should be the thread/process that got
339  * interrupted.
340  */
341 static void
342 statclock(systimer_t info, struct intrframe *frame)
343 {
344 #ifdef GPROF
345 	struct gmonparam *g;
346 	int i;
347 #endif
348 	thread_t td;
349 	struct proc *p;
350 	int bump;
351 	struct timeval tv;
352 	struct timeval *stv;
353 
354 	/*
355 	 * How big was our timeslice relative to the last time?
356 	 */
357 	microuptime(&tv);	/* mpsafe */
358 	stv = &mycpu->gd_stattv;
359 	if (stv->tv_sec == 0) {
360 	    bump = 1;
361 	} else {
362 	    bump = tv.tv_usec - stv->tv_usec +
363 		(tv.tv_sec - stv->tv_sec) * 1000000;
364 	    if (bump < 0)
365 		bump = 0;
366 	    if (bump > 1000000)
367 		bump = 1000000;
368 	}
369 	*stv = tv;
370 
371 	td = curthread;
372 	p = td->td_proc;
373 
374 	if (frame && CLKF_USERMODE(frame)) {
375 		/*
376 		 * Came from userland, handle user time and deal with
377 		 * possible process.
378 		 */
379 		if (p && (p->p_flag & P_PROFIL))
380 			addupc_intr(p, CLKF_PC(frame), 1);
381 		td->td_uticks += bump;
382 
383 		/*
384 		 * Charge the time as appropriate
385 		 */
386 		if (p && p->p_nice > NZERO)
387 			cp_time[CP_NICE] += bump;
388 		else
389 			cp_time[CP_USER] += bump;
390 	} else {
391 #ifdef GPROF
392 		/*
393 		 * Kernel statistics are just like addupc_intr, only easier.
394 		 */
395 		g = &_gmonparam;
396 		if (g->state == GMON_PROF_ON && frame) {
397 			i = CLKF_PC(frame) - g->lowpc;
398 			if (i < g->textsize) {
399 				i /= HISTFRACTION * sizeof(*g->kcount);
400 				g->kcount[i]++;
401 			}
402 		}
403 #endif
404 		/*
405 		 * Came from kernel mode, so we were:
406 		 * - handling an interrupt,
407 		 * - doing syscall or trap work on behalf of the current
408 		 *   user process, or
409 		 * - spinning in the idle loop.
410 		 * Whichever it is, charge the time as appropriate.
411 		 * Note that we charge interrupts to the current process,
412 		 * regardless of whether they are ``for'' that process,
413 		 * so that we know how much of its real time was spent
414 		 * in ``non-process'' (i.e., interrupt) work.
415 		 *
416 		 * XXX assume system if frame is NULL.  A NULL frame
417 		 * can occur if ipi processing is done from an splx().
418 		 */
419 		if (frame && CLKF_INTR(frame))
420 			td->td_iticks += bump;
421 		else
422 			td->td_sticks += bump;
423 
424 		if (frame && CLKF_INTR(frame)) {
425 			cp_time[CP_INTR] += bump;
426 		} else {
427 			if (td == &mycpu->gd_idlethread)
428 				cp_time[CP_IDLE] += bump;
429 			else
430 				cp_time[CP_SYS] += bump;
431 		}
432 	}
433 }
434 
435 /*
436  * The scheduler clock typically runs at a 10Hz rate.  NOTE! systimer,
437  * the MP lock might not be held.  We can safely manipulate parts of curproc
438  * but that's about it.
439  */
440 static void
441 schedclock(systimer_t info, struct intrframe *frame)
442 {
443 	struct proc *p;
444 	struct pstats *pstats;
445 	struct rusage *ru;
446 	struct vmspace *vm;
447 	long rss;
448 
449 	schedulerclock(NULL);	/* mpsafe */
450 	if ((p = curproc) != NULL) {
451 		/* Update resource usage integrals and maximums. */
452 		if ((pstats = p->p_stats) != NULL &&
453 		    (ru = &pstats->p_ru) != NULL &&
454 		    (vm = p->p_vmspace) != NULL) {
455 			ru->ru_ixrss += pgtok(vm->vm_tsize);
456 			ru->ru_idrss += pgtok(vm->vm_dsize);
457 			ru->ru_isrss += pgtok(vm->vm_ssize);
458 			rss = pgtok(vmspace_resident_count(vm));
459 			if (ru->ru_maxrss < rss)
460 				ru->ru_maxrss = rss;
461 		}
462 	}
463 }
464 
465 /*
466  * Compute number of ticks for the specified amount of time.  The
467  * return value is intended to be used in a clock interrupt timed
468  * operation and guarenteed to meet or exceed the requested time.
469  * If the representation overflows, return INT_MAX.  The minimum return
470  * value is 1 ticks and the function will average the calculation up.
471  * If any value greater then 0 microseconds is supplied, a value
472  * of at least 2 will be returned to ensure that a near-term clock
473  * interrupt does not cause the timeout to occur (degenerately) early.
474  *
475  * Note that limit checks must take into account microseconds, which is
476  * done simply by using the smaller signed long maximum instead of
477  * the unsigned long maximum.
478  *
479  * If ints have 32 bits, then the maximum value for any timeout in
480  * 10ms ticks is 248 days.
481  */
482 int
483 tvtohz_high(struct timeval *tv)
484 {
485 	int ticks;
486 	long sec, usec;
487 
488 	sec = tv->tv_sec;
489 	usec = tv->tv_usec;
490 	if (usec < 0) {
491 		sec--;
492 		usec += 1000000;
493 	}
494 	if (sec < 0) {
495 #ifdef DIAGNOSTIC
496 		if (usec > 0) {
497 			sec++;
498 			usec -= 1000000;
499 		}
500 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
501 		       sec, usec);
502 #endif
503 		ticks = 1;
504 	} else if (sec <= INT_MAX / hz) {
505 		ticks = (int)(sec * hz +
506 			    ((u_long)usec + (tick - 1)) / tick) + 1;
507 	} else {
508 		ticks = INT_MAX;
509 	}
510 	return (ticks);
511 }
512 
513 /*
514  * Compute number of ticks for the specified amount of time, erroring on
515  * the side of it being too low to ensure that sleeping the returned number
516  * of ticks will not result in a late return.
517  *
518  * The supplied timeval may not be negative and should be normalized.  A
519  * return value of 0 is possible if the timeval converts to less then
520  * 1 tick.
521  *
522  * If ints have 32 bits, then the maximum value for any timeout in
523  * 10ms ticks is 248 days.
524  */
525 int
526 tvtohz_low(struct timeval *tv)
527 {
528 	int ticks;
529 	long sec;
530 
531 	sec = tv->tv_sec;
532 	if (sec <= INT_MAX / hz)
533 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
534 	else
535 		ticks = INT_MAX;
536 	return (ticks);
537 }
538 
539 
540 /*
541  * Start profiling on a process.
542  *
543  * Kernel profiling passes proc0 which never exits and hence
544  * keeps the profile clock running constantly.
545  */
546 void
547 startprofclock(struct proc *p)
548 {
549 	if ((p->p_flag & P_PROFIL) == 0) {
550 		p->p_flag |= P_PROFIL;
551 #if 0	/* XXX */
552 		if (++profprocs == 1 && stathz != 0) {
553 			s = splstatclock();
554 			psdiv = psratio;
555 			setstatclockrate(profhz);
556 			splx(s);
557 		}
558 #endif
559 	}
560 }
561 
562 /*
563  * Stop profiling on a process.
564  */
565 void
566 stopprofclock(struct proc *p)
567 {
568 	if (p->p_flag & P_PROFIL) {
569 		p->p_flag &= ~P_PROFIL;
570 #if 0	/* XXX */
571 		if (--profprocs == 0 && stathz != 0) {
572 			s = splstatclock();
573 			psdiv = 1;
574 			setstatclockrate(stathz);
575 			splx(s);
576 		}
577 #endif
578 	}
579 }
580 
581 /*
582  * Return information about system clocks.
583  */
584 static int
585 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
586 {
587 	struct clockinfo clkinfo;
588 	/*
589 	 * Construct clockinfo structure.
590 	 */
591 	clkinfo.hz = hz;
592 	clkinfo.tick = tick;
593 	clkinfo.tickadj = tickadj;
594 	clkinfo.profhz = profhz;
595 	clkinfo.stathz = stathz ? stathz : hz;
596 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
597 }
598 
599 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
600 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
601 
602 /*
603  * We have eight functions for looking at the clock, four for
604  * microseconds and four for nanoseconds.  For each there is fast
605  * but less precise version "get{nano|micro}[up]time" which will
606  * return a time which is up to 1/HZ previous to the call, whereas
607  * the raw version "{nano|micro}[up]time" will return a timestamp
608  * which is as precise as possible.  The "up" variants return the
609  * time relative to system boot, these are well suited for time
610  * interval measurements.
611  *
612  * Each cpu independantly maintains the current time of day, so all
613  * we need to do to protect ourselves from changes is to do a loop
614  * check on the seconds field changing out from under us.
615  */
616 void
617 getmicrouptime(struct timeval *tvp)
618 {
619 	struct globaldata *gd = mycpu;
620 	sysclock_t delta;
621 
622 	do {
623 		tvp->tv_sec = gd->gd_time_seconds;
624 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
625 	} while (tvp->tv_sec != gd->gd_time_seconds);
626 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
627 	if (tvp->tv_usec >= 1000000) {
628 		tvp->tv_usec -= 1000000;
629 		++tvp->tv_sec;
630 	}
631 }
632 
633 void
634 getnanouptime(struct timespec *tsp)
635 {
636 	struct globaldata *gd = mycpu;
637 	sysclock_t delta;
638 
639 	do {
640 		tsp->tv_sec = gd->gd_time_seconds;
641 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
642 	} while (tsp->tv_sec != gd->gd_time_seconds);
643 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
644 	if (tsp->tv_nsec >= 1000000000) {
645 		tsp->tv_nsec -= 1000000000;
646 		++tsp->tv_sec;
647 	}
648 }
649 
650 void
651 microuptime(struct timeval *tvp)
652 {
653 	struct globaldata *gd = mycpu;
654 	sysclock_t delta;
655 
656 	do {
657 		tvp->tv_sec = gd->gd_time_seconds;
658 		delta = cputimer_count() - gd->gd_cpuclock_base;
659 	} while (tvp->tv_sec != gd->gd_time_seconds);
660 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
661 	if (tvp->tv_usec >= 1000000) {
662 		tvp->tv_usec -= 1000000;
663 		++tvp->tv_sec;
664 	}
665 }
666 
667 void
668 nanouptime(struct timespec *tsp)
669 {
670 	struct globaldata *gd = mycpu;
671 	sysclock_t delta;
672 
673 	do {
674 		tsp->tv_sec = gd->gd_time_seconds;
675 		delta = cputimer_count() - gd->gd_cpuclock_base;
676 	} while (tsp->tv_sec != gd->gd_time_seconds);
677 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
678 	if (tsp->tv_nsec >= 1000000000) {
679 		tsp->tv_nsec -= 1000000000;
680 		++tsp->tv_sec;
681 	}
682 }
683 
684 /*
685  * realtime routines
686  */
687 
688 void
689 getmicrotime(struct timeval *tvp)
690 {
691 	struct globaldata *gd = mycpu;
692 	sysclock_t delta;
693 
694 	do {
695 		tvp->tv_sec = gd->gd_time_seconds;
696 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
697 	} while (tvp->tv_sec != gd->gd_time_seconds);
698 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
699 
700 	tvp->tv_sec += basetime.tv_sec;
701 	tvp->tv_usec += basetime.tv_nsec / 1000;
702 	while (tvp->tv_usec >= 1000000) {
703 		tvp->tv_usec -= 1000000;
704 		++tvp->tv_sec;
705 	}
706 }
707 
708 void
709 getnanotime(struct timespec *tsp)
710 {
711 	struct globaldata *gd = mycpu;
712 	sysclock_t delta;
713 
714 	do {
715 		tsp->tv_sec = gd->gd_time_seconds;
716 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
717 	} while (tsp->tv_sec != gd->gd_time_seconds);
718 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
719 
720 	tsp->tv_sec += basetime.tv_sec;
721 	tsp->tv_nsec += basetime.tv_nsec;
722 	while (tsp->tv_nsec >= 1000000000) {
723 		tsp->tv_nsec -= 1000000000;
724 		++tsp->tv_sec;
725 	}
726 }
727 
728 void
729 microtime(struct timeval *tvp)
730 {
731 	struct globaldata *gd = mycpu;
732 	sysclock_t delta;
733 
734 	do {
735 		tvp->tv_sec = gd->gd_time_seconds;
736 		delta = cputimer_count() - gd->gd_cpuclock_base;
737 	} while (tvp->tv_sec != gd->gd_time_seconds);
738 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
739 
740 	tvp->tv_sec += basetime.tv_sec;
741 	tvp->tv_usec += basetime.tv_nsec / 1000;
742 	while (tvp->tv_usec >= 1000000) {
743 		tvp->tv_usec -= 1000000;
744 		++tvp->tv_sec;
745 	}
746 }
747 
748 void
749 nanotime(struct timespec *tsp)
750 {
751 	struct globaldata *gd = mycpu;
752 	sysclock_t delta;
753 
754 	do {
755 		tsp->tv_sec = gd->gd_time_seconds;
756 		delta = cputimer_count() - gd->gd_cpuclock_base;
757 	} while (tsp->tv_sec != gd->gd_time_seconds);
758 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
759 
760 	tsp->tv_sec += basetime.tv_sec;
761 	tsp->tv_nsec += basetime.tv_nsec;
762 	while (tsp->tv_nsec >= 1000000000) {
763 		tsp->tv_nsec -= 1000000000;
764 		++tsp->tv_sec;
765 	}
766 }
767 
768 int
769 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
770 {
771 	pps_params_t *app;
772 	struct pps_fetch_args *fapi;
773 #ifdef PPS_SYNC
774 	struct pps_kcbind_args *kapi;
775 #endif
776 
777 	switch (cmd) {
778 	case PPS_IOC_CREATE:
779 		return (0);
780 	case PPS_IOC_DESTROY:
781 		return (0);
782 	case PPS_IOC_SETPARAMS:
783 		app = (pps_params_t *)data;
784 		if (app->mode & ~pps->ppscap)
785 			return (EINVAL);
786 		pps->ppsparam = *app;
787 		return (0);
788 	case PPS_IOC_GETPARAMS:
789 		app = (pps_params_t *)data;
790 		*app = pps->ppsparam;
791 		app->api_version = PPS_API_VERS_1;
792 		return (0);
793 	case PPS_IOC_GETCAP:
794 		*(int*)data = pps->ppscap;
795 		return (0);
796 	case PPS_IOC_FETCH:
797 		fapi = (struct pps_fetch_args *)data;
798 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
799 			return (EINVAL);
800 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
801 			return (EOPNOTSUPP);
802 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
803 		fapi->pps_info_buf = pps->ppsinfo;
804 		return (0);
805 	case PPS_IOC_KCBIND:
806 #ifdef PPS_SYNC
807 		kapi = (struct pps_kcbind_args *)data;
808 		/* XXX Only root should be able to do this */
809 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
810 			return (EINVAL);
811 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
812 			return (EINVAL);
813 		if (kapi->edge & ~pps->ppscap)
814 			return (EINVAL);
815 		pps->kcmode = kapi->edge;
816 		return (0);
817 #else
818 		return (EOPNOTSUPP);
819 #endif
820 	default:
821 		return (ENOTTY);
822 	}
823 }
824 
825 void
826 pps_init(struct pps_state *pps)
827 {
828 	pps->ppscap |= PPS_TSFMT_TSPEC;
829 	if (pps->ppscap & PPS_CAPTUREASSERT)
830 		pps->ppscap |= PPS_OFFSETASSERT;
831 	if (pps->ppscap & PPS_CAPTURECLEAR)
832 		pps->ppscap |= PPS_OFFSETCLEAR;
833 }
834 
835 void
836 pps_event(struct pps_state *pps, sysclock_t count, int event)
837 {
838 	struct globaldata *gd;
839 	struct timespec *tsp;
840 	struct timespec *osp;
841 	struct timespec ts;
842 	sysclock_t *pcount;
843 #ifdef PPS_SYNC
844 	sysclock_t tcount;
845 #endif
846 	sysclock_t delta;
847 	pps_seq_t *pseq;
848 	int foff;
849 	int fhard;
850 
851 	gd = mycpu;
852 
853 	/* Things would be easier with arrays... */
854 	if (event == PPS_CAPTUREASSERT) {
855 		tsp = &pps->ppsinfo.assert_timestamp;
856 		osp = &pps->ppsparam.assert_offset;
857 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
858 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
859 		pcount = &pps->ppscount[0];
860 		pseq = &pps->ppsinfo.assert_sequence;
861 	} else {
862 		tsp = &pps->ppsinfo.clear_timestamp;
863 		osp = &pps->ppsparam.clear_offset;
864 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
865 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
866 		pcount = &pps->ppscount[1];
867 		pseq = &pps->ppsinfo.clear_sequence;
868 	}
869 
870 	/* Nothing really happened */
871 	if (*pcount == count)
872 		return;
873 
874 	*pcount = count;
875 
876 	do {
877 		ts.tv_sec = gd->gd_time_seconds;
878 		delta = count - gd->gd_cpuclock_base;
879 	} while (ts.tv_sec != gd->gd_time_seconds);
880 	if (delta > cputimer_freq) {
881 		ts.tv_sec += delta / cputimer_freq;
882 		delta %= cputimer_freq;
883 	}
884 	ts.tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
885 	ts.tv_sec += basetime.tv_sec;
886 	ts.tv_nsec += basetime.tv_nsec;
887 	while (ts.tv_nsec >= 1000000000) {
888 		ts.tv_nsec -= 1000000000;
889 		++ts.tv_sec;
890 	}
891 
892 	(*pseq)++;
893 	*tsp = ts;
894 
895 	if (foff) {
896 		timespecadd(tsp, osp);
897 		if (tsp->tv_nsec < 0) {
898 			tsp->tv_nsec += 1000000000;
899 			tsp->tv_sec -= 1;
900 		}
901 	}
902 #ifdef PPS_SYNC
903 	if (fhard) {
904 		/* magic, at its best... */
905 		tcount = count - pps->ppscount[2];
906 		pps->ppscount[2] = count;
907 		delta = (cputimer_freq64_nsec * tcount) >> 32;
908 		hardpps(tsp, delta);
909 	}
910 #endif
911 }
912 
913