1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.28 2004/12/04 20:38:45 dillon Exp $ 74 */ 75 76 #include "opt_ntp.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/dkstat.h> 81 #include <sys/callout.h> 82 #include <sys/kernel.h> 83 #include <sys/proc.h> 84 #include <sys/malloc.h> 85 #include <sys/resourcevar.h> 86 #include <sys/signalvar.h> 87 #include <sys/timex.h> 88 #include <sys/timepps.h> 89 #include <vm/vm.h> 90 #include <sys/lock.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <sys/sysctl.h> 94 #include <sys/thread2.h> 95 96 #include <machine/cpu.h> 97 #include <machine/limits.h> 98 #include <machine/smp.h> 99 100 #ifdef GPROF 101 #include <sys/gmon.h> 102 #endif 103 104 #ifdef DEVICE_POLLING 105 extern void init_device_poll(void); 106 extern void hardclock_device_poll(void); 107 #endif /* DEVICE_POLLING */ 108 109 static void initclocks (void *dummy); 110 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 111 112 /* 113 * Some of these don't belong here, but it's easiest to concentrate them. 114 * Note that cp_time[] counts in microseconds, but most userland programs 115 * just compare relative times against the total by delta. 116 */ 117 long cp_time[CPUSTATES]; 118 119 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time), 120 "LU", "CPU time statistics"); 121 122 long tk_cancc; 123 long tk_nin; 124 long tk_nout; 125 long tk_rawcc; 126 127 /* 128 * boottime is used to calculate the 'real' uptime. Do not confuse this with 129 * microuptime(). microtime() is not drift compensated. The real uptime 130 * with compensation is nanotime() - bootime. boottime is recalculated 131 * whenever the real time is set based on the compensated elapsed time 132 * in seconds (gd->gd_time_seconds). 133 * 134 * basetime is used to calculate the compensated real time of day. Chunky 135 * changes to the time, aka settimeofday(), are made by modifying basetime. 136 * 137 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 138 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 139 * the real time. 140 */ 141 struct timespec boottime; /* boot time (realtime) for reference only */ 142 struct timespec basetime; /* base time adjusts uptime -> realtime */ 143 time_t time_second; /* read-only 'passive' uptime in seconds */ 144 145 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 146 &boottime, timeval, "System boottime"); 147 SYSCTL_STRUCT(_kern, OID_AUTO, basetime, CTLFLAG_RD, 148 &basetime, timeval, "System basetime"); 149 150 static void hardclock(systimer_t info, struct intrframe *frame); 151 static void statclock(systimer_t info, struct intrframe *frame); 152 static void schedclock(systimer_t info, struct intrframe *frame); 153 154 int ticks; /* system master ticks at hz */ 155 int clocks_running; /* tsleep/timeout clocks operational */ 156 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 157 int64_t nsec_acc; /* accumulator */ 158 159 /* 160 * Finish initializing clock frequencies and start all clocks running. 161 */ 162 /* ARGSUSED*/ 163 static void 164 initclocks(void *dummy) 165 { 166 cpu_initclocks(); 167 #ifdef DEVICE_POLLING 168 init_device_poll(); 169 #endif 170 /*psratio = profhz / stathz;*/ 171 initclocks_pcpu(); 172 clocks_running = 1; 173 } 174 175 /* 176 * Called on a per-cpu basis 177 */ 178 void 179 initclocks_pcpu(void) 180 { 181 struct globaldata *gd = mycpu; 182 183 crit_enter(); 184 if (gd->gd_cpuid == 0) { 185 gd->gd_time_seconds = 1; 186 gd->gd_cpuclock_base = cputimer_count(); 187 } else { 188 /* XXX */ 189 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 190 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 191 } 192 193 /* 194 * Use a non-queued periodic systimer to prevent multiple ticks from 195 * building up if the sysclock jumps forward (8254 gets reset). The 196 * sysclock will never jump backwards. Our time sync is based on 197 * the actual sysclock, not the ticks count. 198 */ 199 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz); 200 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz); 201 /* XXX correct the frequency for scheduler / estcpu tests */ 202 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 203 NULL, ESTCPUFREQ); 204 crit_exit(); 205 } 206 207 /* 208 * This sets the current real time of day. Timespecs are in seconds and 209 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 210 * instead we adjust basetime so basetime + gd_* results in the current 211 * time of day. This way the gd_* fields are guarenteed to represent 212 * a monotonically increasing 'uptime' value. 213 */ 214 void 215 set_timeofday(struct timespec *ts) 216 { 217 struct timespec ts2; 218 219 /* 220 * XXX SMP / non-atomic basetime updates 221 */ 222 crit_enter(); 223 nanouptime(&ts2); 224 basetime.tv_sec = ts->tv_sec - ts2.tv_sec; 225 basetime.tv_nsec = ts->tv_nsec - ts2.tv_nsec; 226 if (basetime.tv_nsec < 0) { 227 basetime.tv_nsec += 1000000000; 228 --basetime.tv_sec; 229 } 230 231 /* 232 * Note that basetime diverges from boottime as the clock drift is 233 * compensated for, so we cannot do away with boottime. When setting 234 * the absolute time of day the drift is 0 (for an instant) and we 235 * can simply assign boottime to basetime. 236 * 237 * Note that nanouptime() is based on gd_time_seconds which is drift 238 * compensated up to a point (it is guarenteed to remain monotonically 239 * increasing). gd_time_seconds is thus our best uptime guess and 240 * suitable for use in the boottime calculation. It is already taken 241 * into account in the basetime calculation above. 242 */ 243 boottime.tv_sec = basetime.tv_sec; 244 timedelta = 0; 245 crit_exit(); 246 } 247 248 /* 249 * Each cpu has its own hardclock, but we only increments ticks and softticks 250 * on cpu #0. 251 * 252 * NOTE! systimer! the MP lock might not be held here. We can only safely 253 * manipulate objects owned by the current cpu. 254 */ 255 static void 256 hardclock(systimer_t info, struct intrframe *frame) 257 { 258 sysclock_t cputicks; 259 struct proc *p; 260 struct pstats *pstats; 261 struct globaldata *gd = mycpu; 262 263 /* 264 * Realtime updates are per-cpu. Note that timer corrections as 265 * returned by microtime() and friends make an additional adjustment 266 * using a system-wise 'basetime', but the running time is always 267 * taken from the per-cpu globaldata area. Since the same clock 268 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 269 * stay in synch. 270 * 271 * Note that we never allow info->time (aka gd->gd_hardclock.time) 272 * to reverse index gd_cpuclock_base, but that it is possible for 273 * it to temporarily get behind in the seconds if something in the 274 * system locks interrupts for a long period of time. Since periodic 275 * timers count events, though everything should resynch again 276 * immediately. 277 */ 278 cputicks = info->time - gd->gd_cpuclock_base; 279 if (cputicks >= cputimer_freq) { 280 ++gd->gd_time_seconds; 281 gd->gd_cpuclock_base += cputimer_freq; 282 } 283 284 /* 285 * The system-wide ticks counter and NTP related timedelta/tickdelta 286 * adjustments only occur on cpu #0. NTP adjustments are accomplished 287 * by updating basetime. 288 */ 289 if (gd->gd_cpuid == 0) { 290 struct timespec nts; 291 int leap; 292 293 ++ticks; 294 295 #ifdef DEVICE_POLLING 296 hardclock_device_poll(); /* mpsafe, short and quick */ 297 #endif /* DEVICE_POLLING */ 298 299 #if 0 300 if (tco->tc_poll_pps) 301 tco->tc_poll_pps(tco); 302 #endif 303 /* 304 * Apply adjtime corrections. At the moment only do this if 305 * we can get the MP lock to interlock with adjtime's modification 306 * of these variables. Note that basetime adjustments are not 307 * MP safe either XXX. 308 */ 309 if (timedelta != 0 && try_mplock()) { 310 basetime.tv_nsec += tickdelta * 1000; 311 if (basetime.tv_nsec >= 1000000000) { 312 basetime.tv_nsec -= 1000000000; 313 ++basetime.tv_sec; 314 } else if (basetime.tv_nsec < 0) { 315 basetime.tv_nsec += 1000000000; 316 --basetime.tv_sec; 317 } 318 timedelta -= tickdelta; 319 rel_mplock(); 320 } 321 322 /* 323 * Apply per-tick compensation. ticks_adj adjusts for both 324 * offset and frequency, and could be negative. 325 */ 326 if (nsec_adj != 0 && try_mplock()) { 327 nsec_acc += nsec_adj; 328 if (nsec_acc >= 0x100000000LL) { 329 basetime.tv_nsec += nsec_acc >> 32; 330 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 331 } else if (nsec_acc <= -0x100000000LL) { 332 basetime.tv_nsec -= -nsec_acc >> 32; 333 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 334 } 335 if (basetime.tv_nsec >= 1000000000) { 336 basetime.tv_nsec -= 1000000000; 337 ++basetime.tv_sec; 338 } else if (basetime.tv_nsec < 0) { 339 basetime.tv_nsec += 1000000000; 340 --basetime.tv_sec; 341 } 342 rel_mplock(); 343 } 344 345 /* 346 * If the realtime-adjusted seconds hand rolls over then tell 347 * ntp_update_second() what we did in the last second so it can 348 * calculate what to do in the next second. It may also add 349 * or subtract a leap second. 350 */ 351 getnanotime(&nts); 352 if (time_second != nts.tv_sec) { 353 leap = ntp_update_second(time_second, &nsec_adj); 354 basetime.tv_sec += leap; 355 time_second = nts.tv_sec + leap; 356 nsec_adj /= hz; 357 } 358 } 359 360 /* 361 * softticks are handled for all cpus 362 */ 363 hardclock_softtick(gd); 364 365 /* 366 * ITimer handling is per-tick, per-cpu. I don't think psignal() 367 * is mpsafe on curproc, so XXX get the mplock. 368 */ 369 if ((p = curproc) != NULL && try_mplock()) { 370 pstats = p->p_stats; 371 if (frame && CLKF_USERMODE(frame) && 372 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 373 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 374 psignal(p, SIGVTALRM); 375 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 376 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 377 psignal(p, SIGPROF); 378 rel_mplock(); 379 } 380 setdelayed(); 381 } 382 383 /* 384 * The statistics clock typically runs at a 125Hz rate, and is intended 385 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 386 * 387 * NOTE! systimer! the MP lock might not be held here. We can only safely 388 * manipulate objects owned by the current cpu. 389 * 390 * The stats clock is responsible for grabbing a profiling sample. 391 * Most of the statistics are only used by user-level statistics programs. 392 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 393 * p->p_estcpu. 394 * 395 * Like the other clocks, the stat clock is called from what is effectively 396 * a fast interrupt, so the context should be the thread/process that got 397 * interrupted. 398 */ 399 static void 400 statclock(systimer_t info, struct intrframe *frame) 401 { 402 #ifdef GPROF 403 struct gmonparam *g; 404 int i; 405 #endif 406 thread_t td; 407 struct proc *p; 408 int bump; 409 struct timeval tv; 410 struct timeval *stv; 411 412 /* 413 * How big was our timeslice relative to the last time? 414 */ 415 microuptime(&tv); /* mpsafe */ 416 stv = &mycpu->gd_stattv; 417 if (stv->tv_sec == 0) { 418 bump = 1; 419 } else { 420 bump = tv.tv_usec - stv->tv_usec + 421 (tv.tv_sec - stv->tv_sec) * 1000000; 422 if (bump < 0) 423 bump = 0; 424 if (bump > 1000000) 425 bump = 1000000; 426 } 427 *stv = tv; 428 429 td = curthread; 430 p = td->td_proc; 431 432 if (frame && CLKF_USERMODE(frame)) { 433 /* 434 * Came from userland, handle user time and deal with 435 * possible process. 436 */ 437 if (p && (p->p_flag & P_PROFIL)) 438 addupc_intr(p, CLKF_PC(frame), 1); 439 td->td_uticks += bump; 440 441 /* 442 * Charge the time as appropriate 443 */ 444 if (p && p->p_nice > NZERO) 445 cp_time[CP_NICE] += bump; 446 else 447 cp_time[CP_USER] += bump; 448 } else { 449 #ifdef GPROF 450 /* 451 * Kernel statistics are just like addupc_intr, only easier. 452 */ 453 g = &_gmonparam; 454 if (g->state == GMON_PROF_ON && frame) { 455 i = CLKF_PC(frame) - g->lowpc; 456 if (i < g->textsize) { 457 i /= HISTFRACTION * sizeof(*g->kcount); 458 g->kcount[i]++; 459 } 460 } 461 #endif 462 /* 463 * Came from kernel mode, so we were: 464 * - handling an interrupt, 465 * - doing syscall or trap work on behalf of the current 466 * user process, or 467 * - spinning in the idle loop. 468 * Whichever it is, charge the time as appropriate. 469 * Note that we charge interrupts to the current process, 470 * regardless of whether they are ``for'' that process, 471 * so that we know how much of its real time was spent 472 * in ``non-process'' (i.e., interrupt) work. 473 * 474 * XXX assume system if frame is NULL. A NULL frame 475 * can occur if ipi processing is done from an splx(). 476 */ 477 if (frame && CLKF_INTR(frame)) 478 td->td_iticks += bump; 479 else 480 td->td_sticks += bump; 481 482 if (frame && CLKF_INTR(frame)) { 483 cp_time[CP_INTR] += bump; 484 } else { 485 if (td == &mycpu->gd_idlethread) 486 cp_time[CP_IDLE] += bump; 487 else 488 cp_time[CP_SYS] += bump; 489 } 490 } 491 } 492 493 /* 494 * The scheduler clock typically runs at a 20Hz rate. NOTE! systimer, 495 * the MP lock might not be held. We can safely manipulate parts of curproc 496 * but that's about it. 497 */ 498 static void 499 schedclock(systimer_t info, struct intrframe *frame) 500 { 501 struct proc *p; 502 struct pstats *pstats; 503 struct rusage *ru; 504 struct vmspace *vm; 505 long rss; 506 507 schedulerclock(NULL); /* mpsafe */ 508 if ((p = curproc) != NULL) { 509 /* Update resource usage integrals and maximums. */ 510 if ((pstats = p->p_stats) != NULL && 511 (ru = &pstats->p_ru) != NULL && 512 (vm = p->p_vmspace) != NULL) { 513 ru->ru_ixrss += pgtok(vm->vm_tsize); 514 ru->ru_idrss += pgtok(vm->vm_dsize); 515 ru->ru_isrss += pgtok(vm->vm_ssize); 516 rss = pgtok(vmspace_resident_count(vm)); 517 if (ru->ru_maxrss < rss) 518 ru->ru_maxrss = rss; 519 } 520 } 521 } 522 523 /* 524 * Compute number of ticks for the specified amount of time. The 525 * return value is intended to be used in a clock interrupt timed 526 * operation and guarenteed to meet or exceed the requested time. 527 * If the representation overflows, return INT_MAX. The minimum return 528 * value is 1 ticks and the function will average the calculation up. 529 * If any value greater then 0 microseconds is supplied, a value 530 * of at least 2 will be returned to ensure that a near-term clock 531 * interrupt does not cause the timeout to occur (degenerately) early. 532 * 533 * Note that limit checks must take into account microseconds, which is 534 * done simply by using the smaller signed long maximum instead of 535 * the unsigned long maximum. 536 * 537 * If ints have 32 bits, then the maximum value for any timeout in 538 * 10ms ticks is 248 days. 539 */ 540 int 541 tvtohz_high(struct timeval *tv) 542 { 543 int ticks; 544 long sec, usec; 545 546 sec = tv->tv_sec; 547 usec = tv->tv_usec; 548 if (usec < 0) { 549 sec--; 550 usec += 1000000; 551 } 552 if (sec < 0) { 553 #ifdef DIAGNOSTIC 554 if (usec > 0) { 555 sec++; 556 usec -= 1000000; 557 } 558 printf("tvotohz: negative time difference %ld sec %ld usec\n", 559 sec, usec); 560 #endif 561 ticks = 1; 562 } else if (sec <= INT_MAX / hz) { 563 ticks = (int)(sec * hz + 564 ((u_long)usec + (tick - 1)) / tick) + 1; 565 } else { 566 ticks = INT_MAX; 567 } 568 return (ticks); 569 } 570 571 /* 572 * Compute number of ticks for the specified amount of time, erroring on 573 * the side of it being too low to ensure that sleeping the returned number 574 * of ticks will not result in a late return. 575 * 576 * The supplied timeval may not be negative and should be normalized. A 577 * return value of 0 is possible if the timeval converts to less then 578 * 1 tick. 579 * 580 * If ints have 32 bits, then the maximum value for any timeout in 581 * 10ms ticks is 248 days. 582 */ 583 int 584 tvtohz_low(struct timeval *tv) 585 { 586 int ticks; 587 long sec; 588 589 sec = tv->tv_sec; 590 if (sec <= INT_MAX / hz) 591 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick); 592 else 593 ticks = INT_MAX; 594 return (ticks); 595 } 596 597 598 /* 599 * Start profiling on a process. 600 * 601 * Kernel profiling passes proc0 which never exits and hence 602 * keeps the profile clock running constantly. 603 */ 604 void 605 startprofclock(struct proc *p) 606 { 607 if ((p->p_flag & P_PROFIL) == 0) { 608 p->p_flag |= P_PROFIL; 609 #if 0 /* XXX */ 610 if (++profprocs == 1 && stathz != 0) { 611 s = splstatclock(); 612 psdiv = psratio; 613 setstatclockrate(profhz); 614 splx(s); 615 } 616 #endif 617 } 618 } 619 620 /* 621 * Stop profiling on a process. 622 */ 623 void 624 stopprofclock(struct proc *p) 625 { 626 if (p->p_flag & P_PROFIL) { 627 p->p_flag &= ~P_PROFIL; 628 #if 0 /* XXX */ 629 if (--profprocs == 0 && stathz != 0) { 630 s = splstatclock(); 631 psdiv = 1; 632 setstatclockrate(stathz); 633 splx(s); 634 } 635 #endif 636 } 637 } 638 639 /* 640 * Return information about system clocks. 641 */ 642 static int 643 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 644 { 645 struct clockinfo clkinfo; 646 /* 647 * Construct clockinfo structure. 648 */ 649 clkinfo.hz = hz; 650 clkinfo.tick = tick; 651 clkinfo.tickadj = tickadj; 652 clkinfo.profhz = profhz; 653 clkinfo.stathz = stathz ? stathz : hz; 654 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 655 } 656 657 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 658 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 659 660 /* 661 * We have eight functions for looking at the clock, four for 662 * microseconds and four for nanoseconds. For each there is fast 663 * but less precise version "get{nano|micro}[up]time" which will 664 * return a time which is up to 1/HZ previous to the call, whereas 665 * the raw version "{nano|micro}[up]time" will return a timestamp 666 * which is as precise as possible. The "up" variants return the 667 * time relative to system boot, these are well suited for time 668 * interval measurements. 669 * 670 * Each cpu independantly maintains the current time of day, so all 671 * we need to do to protect ourselves from changes is to do a loop 672 * check on the seconds field changing out from under us. 673 * 674 * The system timer maintains a 32 bit count and due to various issues 675 * it is possible for the calculated delta to occassionally exceed 676 * cputimer_freq. If this occurs the cputimer_freq64_nsec multiplication 677 * can easily overflow, so we deal with the case. For uniformity we deal 678 * with the case in the usec case too. 679 */ 680 void 681 getmicrouptime(struct timeval *tvp) 682 { 683 struct globaldata *gd = mycpu; 684 sysclock_t delta; 685 686 do { 687 tvp->tv_sec = gd->gd_time_seconds; 688 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 689 } while (tvp->tv_sec != gd->gd_time_seconds); 690 691 if (delta >= cputimer_freq) { 692 tvp->tv_sec += delta / cputimer_freq; 693 delta %= cputimer_freq; 694 } 695 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 696 if (tvp->tv_usec >= 1000000) { 697 tvp->tv_usec -= 1000000; 698 ++tvp->tv_sec; 699 } 700 } 701 702 void 703 getnanouptime(struct timespec *tsp) 704 { 705 struct globaldata *gd = mycpu; 706 sysclock_t delta; 707 708 do { 709 tsp->tv_sec = gd->gd_time_seconds; 710 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 711 } while (tsp->tv_sec != gd->gd_time_seconds); 712 713 if (delta >= cputimer_freq) { 714 tsp->tv_sec += delta / cputimer_freq; 715 delta %= cputimer_freq; 716 } 717 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 718 } 719 720 void 721 microuptime(struct timeval *tvp) 722 { 723 struct globaldata *gd = mycpu; 724 sysclock_t delta; 725 726 do { 727 tvp->tv_sec = gd->gd_time_seconds; 728 delta = cputimer_count() - gd->gd_cpuclock_base; 729 } while (tvp->tv_sec != gd->gd_time_seconds); 730 731 if (delta >= cputimer_freq) { 732 tvp->tv_sec += delta / cputimer_freq; 733 delta %= cputimer_freq; 734 } 735 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 736 } 737 738 void 739 nanouptime(struct timespec *tsp) 740 { 741 struct globaldata *gd = mycpu; 742 sysclock_t delta; 743 744 do { 745 tsp->tv_sec = gd->gd_time_seconds; 746 delta = cputimer_count() - gd->gd_cpuclock_base; 747 } while (tsp->tv_sec != gd->gd_time_seconds); 748 749 if (delta >= cputimer_freq) { 750 tsp->tv_sec += delta / cputimer_freq; 751 delta %= cputimer_freq; 752 } 753 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 754 } 755 756 /* 757 * realtime routines 758 */ 759 760 void 761 getmicrotime(struct timeval *tvp) 762 { 763 struct globaldata *gd = mycpu; 764 sysclock_t delta; 765 766 do { 767 tvp->tv_sec = gd->gd_time_seconds; 768 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 769 } while (tvp->tv_sec != gd->gd_time_seconds); 770 771 if (delta >= cputimer_freq) { 772 tvp->tv_sec += delta / cputimer_freq; 773 delta %= cputimer_freq; 774 } 775 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 776 777 tvp->tv_sec += basetime.tv_sec; 778 tvp->tv_usec += basetime.tv_nsec / 1000; 779 while (tvp->tv_usec >= 1000000) { 780 tvp->tv_usec -= 1000000; 781 ++tvp->tv_sec; 782 } 783 } 784 785 void 786 getnanotime(struct timespec *tsp) 787 { 788 struct globaldata *gd = mycpu; 789 sysclock_t delta; 790 791 do { 792 tsp->tv_sec = gd->gd_time_seconds; 793 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 794 } while (tsp->tv_sec != gd->gd_time_seconds); 795 796 if (delta >= cputimer_freq) { 797 tsp->tv_sec += delta / cputimer_freq; 798 delta %= cputimer_freq; 799 } 800 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 801 802 tsp->tv_sec += basetime.tv_sec; 803 tsp->tv_nsec += basetime.tv_nsec; 804 while (tsp->tv_nsec >= 1000000000) { 805 tsp->tv_nsec -= 1000000000; 806 ++tsp->tv_sec; 807 } 808 } 809 810 void 811 microtime(struct timeval *tvp) 812 { 813 struct globaldata *gd = mycpu; 814 sysclock_t delta; 815 816 do { 817 tvp->tv_sec = gd->gd_time_seconds; 818 delta = cputimer_count() - gd->gd_cpuclock_base; 819 } while (tvp->tv_sec != gd->gd_time_seconds); 820 821 if (delta >= cputimer_freq) { 822 tvp->tv_sec += delta / cputimer_freq; 823 delta %= cputimer_freq; 824 } 825 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 826 827 tvp->tv_sec += basetime.tv_sec; 828 tvp->tv_usec += basetime.tv_nsec / 1000; 829 while (tvp->tv_usec >= 1000000) { 830 tvp->tv_usec -= 1000000; 831 ++tvp->tv_sec; 832 } 833 } 834 835 void 836 nanotime(struct timespec *tsp) 837 { 838 struct globaldata *gd = mycpu; 839 sysclock_t delta; 840 841 do { 842 tsp->tv_sec = gd->gd_time_seconds; 843 delta = cputimer_count() - gd->gd_cpuclock_base; 844 } while (tsp->tv_sec != gd->gd_time_seconds); 845 846 if (delta >= cputimer_freq) { 847 tsp->tv_sec += delta / cputimer_freq; 848 delta %= cputimer_freq; 849 } 850 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 851 852 tsp->tv_sec += basetime.tv_sec; 853 tsp->tv_nsec += basetime.tv_nsec; 854 while (tsp->tv_nsec >= 1000000000) { 855 tsp->tv_nsec -= 1000000000; 856 ++tsp->tv_sec; 857 } 858 } 859 860 int 861 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 862 { 863 pps_params_t *app; 864 struct pps_fetch_args *fapi; 865 #ifdef PPS_SYNC 866 struct pps_kcbind_args *kapi; 867 #endif 868 869 switch (cmd) { 870 case PPS_IOC_CREATE: 871 return (0); 872 case PPS_IOC_DESTROY: 873 return (0); 874 case PPS_IOC_SETPARAMS: 875 app = (pps_params_t *)data; 876 if (app->mode & ~pps->ppscap) 877 return (EINVAL); 878 pps->ppsparam = *app; 879 return (0); 880 case PPS_IOC_GETPARAMS: 881 app = (pps_params_t *)data; 882 *app = pps->ppsparam; 883 app->api_version = PPS_API_VERS_1; 884 return (0); 885 case PPS_IOC_GETCAP: 886 *(int*)data = pps->ppscap; 887 return (0); 888 case PPS_IOC_FETCH: 889 fapi = (struct pps_fetch_args *)data; 890 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 891 return (EINVAL); 892 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 893 return (EOPNOTSUPP); 894 pps->ppsinfo.current_mode = pps->ppsparam.mode; 895 fapi->pps_info_buf = pps->ppsinfo; 896 return (0); 897 case PPS_IOC_KCBIND: 898 #ifdef PPS_SYNC 899 kapi = (struct pps_kcbind_args *)data; 900 /* XXX Only root should be able to do this */ 901 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 902 return (EINVAL); 903 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 904 return (EINVAL); 905 if (kapi->edge & ~pps->ppscap) 906 return (EINVAL); 907 pps->kcmode = kapi->edge; 908 return (0); 909 #else 910 return (EOPNOTSUPP); 911 #endif 912 default: 913 return (ENOTTY); 914 } 915 } 916 917 void 918 pps_init(struct pps_state *pps) 919 { 920 pps->ppscap |= PPS_TSFMT_TSPEC; 921 if (pps->ppscap & PPS_CAPTUREASSERT) 922 pps->ppscap |= PPS_OFFSETASSERT; 923 if (pps->ppscap & PPS_CAPTURECLEAR) 924 pps->ppscap |= PPS_OFFSETCLEAR; 925 } 926 927 void 928 pps_event(struct pps_state *pps, sysclock_t count, int event) 929 { 930 struct globaldata *gd; 931 struct timespec *tsp; 932 struct timespec *osp; 933 struct timespec ts; 934 sysclock_t *pcount; 935 #ifdef PPS_SYNC 936 sysclock_t tcount; 937 #endif 938 sysclock_t delta; 939 pps_seq_t *pseq; 940 int foff; 941 int fhard; 942 943 gd = mycpu; 944 945 /* Things would be easier with arrays... */ 946 if (event == PPS_CAPTUREASSERT) { 947 tsp = &pps->ppsinfo.assert_timestamp; 948 osp = &pps->ppsparam.assert_offset; 949 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 950 fhard = pps->kcmode & PPS_CAPTUREASSERT; 951 pcount = &pps->ppscount[0]; 952 pseq = &pps->ppsinfo.assert_sequence; 953 } else { 954 tsp = &pps->ppsinfo.clear_timestamp; 955 osp = &pps->ppsparam.clear_offset; 956 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 957 fhard = pps->kcmode & PPS_CAPTURECLEAR; 958 pcount = &pps->ppscount[1]; 959 pseq = &pps->ppsinfo.clear_sequence; 960 } 961 962 /* Nothing really happened */ 963 if (*pcount == count) 964 return; 965 966 *pcount = count; 967 968 do { 969 ts.tv_sec = gd->gd_time_seconds; 970 delta = count - gd->gd_cpuclock_base; 971 } while (ts.tv_sec != gd->gd_time_seconds); 972 973 if (delta >= cputimer_freq) { 974 ts.tv_sec += delta / cputimer_freq; 975 delta %= cputimer_freq; 976 } 977 ts.tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 978 ts.tv_sec += basetime.tv_sec; 979 ts.tv_nsec += basetime.tv_nsec; 980 while (ts.tv_nsec >= 1000000000) { 981 ts.tv_nsec -= 1000000000; 982 ++ts.tv_sec; 983 } 984 985 (*pseq)++; 986 *tsp = ts; 987 988 if (foff) { 989 timespecadd(tsp, osp); 990 if (tsp->tv_nsec < 0) { 991 tsp->tv_nsec += 1000000000; 992 tsp->tv_sec -= 1; 993 } 994 } 995 #ifdef PPS_SYNC 996 if (fhard) { 997 /* magic, at its best... */ 998 tcount = count - pps->ppscount[2]; 999 pps->ppscount[2] = count; 1000 if (tcount >= cputimer_freq) { 1001 delta = 1000000000 * (tcount / cputimer_freq) + 1002 (cputimer_freq64_nsec * 1003 (tcount % cputimer_freq)) >> 32; 1004 } else { 1005 delta = (cputimer_freq64_nsec * tcount) >> 32; 1006 } 1007 hardpps(tsp, delta); 1008 } 1009 #endif 1010 } 1011 1012