xref: /dragonfly/sys/kern/kern_clock.c (revision 6e285212)
1 /*-
2  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
3  * Copyright (c) 1982, 1986, 1991, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  * (c) UNIX System Laboratories, Inc.
6  * All or some portions of this file are derived from material licensed
7  * to the University of California by American Telephone and Telegraph
8  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
9  * the permission of UNIX System Laboratories, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
40  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
41  * $DragonFly: src/sys/kern/kern_clock.c,v 1.2 2003/06/17 04:28:41 dillon Exp $
42  */
43 
44 #include "opt_ntp.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/dkstat.h>
49 #include <sys/callout.h>
50 #include <sys/kernel.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/signalvar.h>
55 #include <sys/timex.h>
56 #include <sys/timepps.h>
57 #include <vm/vm.h>
58 #include <sys/lock.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_map.h>
61 #include <sys/sysctl.h>
62 
63 #include <machine/cpu.h>
64 #include <machine/limits.h>
65 #include <machine/smp.h>
66 
67 #ifdef GPROF
68 #include <sys/gmon.h>
69 #endif
70 
71 #ifdef DEVICE_POLLING
72 extern void init_device_poll(void);
73 extern void hardclock_device_poll(void);
74 #endif /* DEVICE_POLLING */
75 
76 /*
77  * Number of timecounters used to implement stable storage
78  */
79 #ifndef NTIMECOUNTER
80 #define NTIMECOUNTER	5
81 #endif
82 
83 static MALLOC_DEFINE(M_TIMECOUNTER, "timecounter",
84 	"Timecounter stable storage");
85 
86 static void initclocks __P((void *dummy));
87 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
88 
89 static void tco_forward __P((int force));
90 static void tco_setscales __P((struct timecounter *tc));
91 static __inline unsigned tco_delta __P((struct timecounter *tc));
92 
93 /* Some of these don't belong here, but it's easiest to concentrate them. */
94 long cp_time[CPUSTATES];
95 
96 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time),
97     "LU", "CPU time statistics");
98 
99 long tk_cancc;
100 long tk_nin;
101 long tk_nout;
102 long tk_rawcc;
103 
104 time_t time_second;
105 
106 struct	timeval boottime;
107 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
108     &boottime, timeval, "System boottime");
109 
110 /*
111  * Which update policy to use.
112  *   0 - every tick, bad hardware may fail with "calcru negative..."
113  *   1 - more resistent to the above hardware, but less efficient.
114  */
115 static int tco_method;
116 
117 /*
118  * Implement a dummy timecounter which we can use until we get a real one
119  * in the air.  This allows the console and other early stuff to use
120  * timeservices.
121  */
122 
123 static unsigned
124 dummy_get_timecount(struct timecounter *tc)
125 {
126 	static unsigned now;
127 	return (++now);
128 }
129 
130 static struct timecounter dummy_timecounter = {
131 	dummy_get_timecount,
132 	0,
133 	~0u,
134 	1000000,
135 	"dummy"
136 };
137 
138 struct timecounter *timecounter = &dummy_timecounter;
139 
140 /*
141  * Clock handling routines.
142  *
143  * This code is written to operate with two timers that run independently of
144  * each other.
145  *
146  * The main timer, running hz times per second, is used to trigger interval
147  * timers, timeouts and rescheduling as needed.
148  *
149  * The second timer handles kernel and user profiling,
150  * and does resource use estimation.  If the second timer is programmable,
151  * it is randomized to avoid aliasing between the two clocks.  For example,
152  * the randomization prevents an adversary from always giving up the cpu
153  * just before its quantum expires.  Otherwise, it would never accumulate
154  * cpu ticks.  The mean frequency of the second timer is stathz.
155  *
156  * If no second timer exists, stathz will be zero; in this case we drive
157  * profiling and statistics off the main clock.  This WILL NOT be accurate;
158  * do not do it unless absolutely necessary.
159  *
160  * The statistics clock may (or may not) be run at a higher rate while
161  * profiling.  This profile clock runs at profhz.  We require that profhz
162  * be an integral multiple of stathz.
163  *
164  * If the statistics clock is running fast, it must be divided by the ratio
165  * profhz/stathz for statistics.  (For profiling, every tick counts.)
166  *
167  * Time-of-day is maintained using a "timecounter", which may or may
168  * not be related to the hardware generating the above mentioned
169  * interrupts.
170  */
171 
172 int	stathz;
173 int	profhz;
174 static int profprocs;
175 int	ticks;
176 static int psdiv, pscnt;		/* prof => stat divider */
177 int	psratio;			/* ratio: prof / stat */
178 
179 /*
180  * Initialize clock frequencies and start both clocks running.
181  */
182 /* ARGSUSED*/
183 static void
184 initclocks(dummy)
185 	void *dummy;
186 {
187 	register int i;
188 
189 	/*
190 	 * Set divisors to 1 (normal case) and let the machine-specific
191 	 * code do its bit.
192 	 */
193 	psdiv = pscnt = 1;
194 	cpu_initclocks();
195 
196 #ifdef DEVICE_POLLING
197 	init_device_poll();
198 #endif
199 
200 	/*
201 	 * Compute profhz/stathz, and fix profhz if needed.
202 	 */
203 	i = stathz ? stathz : hz;
204 	if (profhz == 0)
205 		profhz = i;
206 	psratio = profhz / i;
207 }
208 
209 /*
210  * The real-time timer, interrupting hz times per second.
211  */
212 void
213 hardclock(frame)
214 	register struct clockframe *frame;
215 {
216 	register struct proc *p;
217 
218 	p = curproc;
219 	if (p) {
220 		register struct pstats *pstats;
221 
222 		/*
223 		 * Run current process's virtual and profile time, as needed.
224 		 */
225 		pstats = p->p_stats;
226 		if (CLKF_USERMODE(frame) &&
227 		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
228 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
229 			psignal(p, SIGVTALRM);
230 		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
231 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
232 			psignal(p, SIGPROF);
233 	}
234 
235 #if defined(SMP) && defined(BETTER_CLOCK)
236 	forward_hardclock(pscnt);
237 #endif
238 
239 	/*
240 	 * If no separate statistics clock is available, run it from here.
241 	 */
242 	if (stathz == 0)
243 		statclock(frame);
244 
245 	tco_forward(0);
246 	ticks++;
247 
248 #ifdef DEVICE_POLLING
249 	hardclock_device_poll();	/* this is very short and quick */
250 #endif /* DEVICE_POLLING */
251 
252 	/*
253 	 * Process callouts at a very low cpu priority, so we don't keep the
254 	 * relatively high clock interrupt priority any longer than necessary.
255 	 */
256 	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
257 		if (CLKF_BASEPRI(frame)) {
258 			/*
259 			 * Save the overhead of a software interrupt;
260 			 * it will happen as soon as we return, so do it now.
261 			 */
262 			(void)splsoftclock();
263 			softclock();
264 		} else
265 			setsoftclock();
266 	} else if (softticks + 1 == ticks)
267 		++softticks;
268 }
269 
270 /*
271  * Compute number of ticks in the specified amount of time.
272  */
273 int
274 tvtohz(tv)
275 	struct timeval *tv;
276 {
277 	register unsigned long ticks;
278 	register long sec, usec;
279 
280 	/*
281 	 * If the number of usecs in the whole seconds part of the time
282 	 * difference fits in a long, then the total number of usecs will
283 	 * fit in an unsigned long.  Compute the total and convert it to
284 	 * ticks, rounding up and adding 1 to allow for the current tick
285 	 * to expire.  Rounding also depends on unsigned long arithmetic
286 	 * to avoid overflow.
287 	 *
288 	 * Otherwise, if the number of ticks in the whole seconds part of
289 	 * the time difference fits in a long, then convert the parts to
290 	 * ticks separately and add, using similar rounding methods and
291 	 * overflow avoidance.  This method would work in the previous
292 	 * case but it is slightly slower and assumes that hz is integral.
293 	 *
294 	 * Otherwise, round the time difference down to the maximum
295 	 * representable value.
296 	 *
297 	 * If ints have 32 bits, then the maximum value for any timeout in
298 	 * 10ms ticks is 248 days.
299 	 */
300 	sec = tv->tv_sec;
301 	usec = tv->tv_usec;
302 	if (usec < 0) {
303 		sec--;
304 		usec += 1000000;
305 	}
306 	if (sec < 0) {
307 #ifdef DIAGNOSTIC
308 		if (usec > 0) {
309 			sec++;
310 			usec -= 1000000;
311 		}
312 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
313 		       sec, usec);
314 #endif
315 		ticks = 1;
316 	} else if (sec <= LONG_MAX / 1000000)
317 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
318 			/ tick + 1;
319 	else if (sec <= LONG_MAX / hz)
320 		ticks = sec * hz
321 			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
322 	else
323 		ticks = LONG_MAX;
324 	if (ticks > INT_MAX)
325 		ticks = INT_MAX;
326 	return ((int)ticks);
327 }
328 
329 /*
330  * Start profiling on a process.
331  *
332  * Kernel profiling passes proc0 which never exits and hence
333  * keeps the profile clock running constantly.
334  */
335 void
336 startprofclock(p)
337 	register struct proc *p;
338 {
339 	int s;
340 
341 	if ((p->p_flag & P_PROFIL) == 0) {
342 		p->p_flag |= P_PROFIL;
343 		if (++profprocs == 1 && stathz != 0) {
344 			s = splstatclock();
345 			psdiv = pscnt = psratio;
346 			setstatclockrate(profhz);
347 			splx(s);
348 		}
349 	}
350 }
351 
352 /*
353  * Stop profiling on a process.
354  */
355 void
356 stopprofclock(p)
357 	register struct proc *p;
358 {
359 	int s;
360 
361 	if (p->p_flag & P_PROFIL) {
362 		p->p_flag &= ~P_PROFIL;
363 		if (--profprocs == 0 && stathz != 0) {
364 			s = splstatclock();
365 			psdiv = pscnt = 1;
366 			setstatclockrate(stathz);
367 			splx(s);
368 		}
369 	}
370 }
371 
372 /*
373  * Statistics clock.  Grab profile sample, and if divider reaches 0,
374  * do process and kernel statistics.  Most of the statistics are only
375  * used by user-level statistics programs.  The main exceptions are
376  * p->p_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu.
377  */
378 void
379 statclock(frame)
380 	register struct clockframe *frame;
381 {
382 #ifdef GPROF
383 	register struct gmonparam *g;
384 	int i;
385 #endif
386 	register struct proc *p;
387 	struct pstats *pstats;
388 	long rss;
389 	struct rusage *ru;
390 	struct vmspace *vm;
391 
392 	if (curproc != NULL && CLKF_USERMODE(frame)) {
393 		/*
394 		 * Came from user mode; CPU was in user state.
395 		 * If this process is being profiled, record the tick.
396 		 */
397 		p = curproc;
398 		if (p->p_flag & P_PROFIL)
399 			addupc_intr(p, CLKF_PC(frame), 1);
400 #if defined(SMP) && defined(BETTER_CLOCK)
401 		if (stathz != 0)
402 			forward_statclock(pscnt);
403 #endif
404 		if (--pscnt > 0)
405 			return;
406 		/*
407 		 * Charge the time as appropriate.
408 		 */
409 		p->p_uticks++;
410 		if (p->p_nice > NZERO)
411 			cp_time[CP_NICE]++;
412 		else
413 			cp_time[CP_USER]++;
414 	} else {
415 #ifdef GPROF
416 		/*
417 		 * Kernel statistics are just like addupc_intr, only easier.
418 		 */
419 		g = &_gmonparam;
420 		if (g->state == GMON_PROF_ON) {
421 			i = CLKF_PC(frame) - g->lowpc;
422 			if (i < g->textsize) {
423 				i /= HISTFRACTION * sizeof(*g->kcount);
424 				g->kcount[i]++;
425 			}
426 		}
427 #endif
428 #if defined(SMP) && defined(BETTER_CLOCK)
429 		if (stathz != 0)
430 			forward_statclock(pscnt);
431 #endif
432 		if (--pscnt > 0)
433 			return;
434 		/*
435 		 * Came from kernel mode, so we were:
436 		 * - handling an interrupt,
437 		 * - doing syscall or trap work on behalf of the current
438 		 *   user process, or
439 		 * - spinning in the idle loop.
440 		 * Whichever it is, charge the time as appropriate.
441 		 * Note that we charge interrupts to the current process,
442 		 * regardless of whether they are ``for'' that process,
443 		 * so that we know how much of its real time was spent
444 		 * in ``non-process'' (i.e., interrupt) work.
445 		 */
446 		p = curproc;
447 		if (CLKF_INTR(frame)) {
448 			if (p != NULL)
449 				p->p_iticks++;
450 			cp_time[CP_INTR]++;
451 		} else if (p != NULL) {
452 			p->p_sticks++;
453 			cp_time[CP_SYS]++;
454 		} else
455 			cp_time[CP_IDLE]++;
456 	}
457 	pscnt = psdiv;
458 
459 	if (p != NULL) {
460 		schedclock(p);
461 
462 		/* Update resource usage integrals and maximums. */
463 		if ((pstats = p->p_stats) != NULL &&
464 		    (ru = &pstats->p_ru) != NULL &&
465 		    (vm = p->p_vmspace) != NULL) {
466 			ru->ru_ixrss += pgtok(vm->vm_tsize);
467 			ru->ru_idrss += pgtok(vm->vm_dsize);
468 			ru->ru_isrss += pgtok(vm->vm_ssize);
469 			rss = pgtok(vmspace_resident_count(vm));
470 			if (ru->ru_maxrss < rss)
471 				ru->ru_maxrss = rss;
472 		}
473 	}
474 }
475 
476 /*
477  * Return information about system clocks.
478  */
479 static int
480 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
481 {
482 	struct clockinfo clkinfo;
483 	/*
484 	 * Construct clockinfo structure.
485 	 */
486 	clkinfo.hz = hz;
487 	clkinfo.tick = tick;
488 	clkinfo.tickadj = tickadj;
489 	clkinfo.profhz = profhz;
490 	clkinfo.stathz = stathz ? stathz : hz;
491 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
492 }
493 
494 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
495 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
496 
497 static __inline unsigned
498 tco_delta(struct timecounter *tc)
499 {
500 
501 	return ((tc->tc_get_timecount(tc) - tc->tc_offset_count) &
502 	    tc->tc_counter_mask);
503 }
504 
505 /*
506  * We have eight functions for looking at the clock, four for
507  * microseconds and four for nanoseconds.  For each there is fast
508  * but less precise version "get{nano|micro}[up]time" which will
509  * return a time which is up to 1/HZ previous to the call, whereas
510  * the raw version "{nano|micro}[up]time" will return a timestamp
511  * which is as precise as possible.  The "up" variants return the
512  * time relative to system boot, these are well suited for time
513  * interval measurements.
514  */
515 
516 void
517 getmicrotime(struct timeval *tvp)
518 {
519 	struct timecounter *tc;
520 
521 	if (!tco_method) {
522 		tc = timecounter;
523 		*tvp = tc->tc_microtime;
524 	} else {
525 		microtime(tvp);
526 	}
527 }
528 
529 void
530 getnanotime(struct timespec *tsp)
531 {
532 	struct timecounter *tc;
533 
534 	if (!tco_method) {
535 		tc = timecounter;
536 		*tsp = tc->tc_nanotime;
537 	} else {
538 		nanotime(tsp);
539 	}
540 }
541 
542 void
543 microtime(struct timeval *tv)
544 {
545 	struct timecounter *tc;
546 
547 	tc = timecounter;
548 	tv->tv_sec = tc->tc_offset_sec;
549 	tv->tv_usec = tc->tc_offset_micro;
550 	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
551 	tv->tv_usec += boottime.tv_usec;
552 	tv->tv_sec += boottime.tv_sec;
553 	while (tv->tv_usec < 0) {
554 		tv->tv_usec += 1000000;
555 		if (tv->tv_sec > 0)
556 			tv->tv_sec--;
557 	}
558 	while (tv->tv_usec >= 1000000) {
559 		tv->tv_usec -= 1000000;
560 		tv->tv_sec++;
561 	}
562 }
563 
564 void
565 nanotime(struct timespec *ts)
566 {
567 	unsigned count;
568 	u_int64_t delta;
569 	struct timecounter *tc;
570 
571 	tc = timecounter;
572 	ts->tv_sec = tc->tc_offset_sec;
573 	count = tco_delta(tc);
574 	delta = tc->tc_offset_nano;
575 	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
576 	delta >>= 32;
577 	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
578 	delta += boottime.tv_usec * 1000;
579 	ts->tv_sec += boottime.tv_sec;
580 	while (delta < 0) {
581 		delta += 1000000000;
582 		if (ts->tv_sec > 0)
583 			ts->tv_sec--;
584 	}
585 	while (delta >= 1000000000) {
586 		delta -= 1000000000;
587 		ts->tv_sec++;
588 	}
589 	ts->tv_nsec = delta;
590 }
591 
592 void
593 getmicrouptime(struct timeval *tvp)
594 {
595 	struct timecounter *tc;
596 
597 	if (!tco_method) {
598 		tc = timecounter;
599 		tvp->tv_sec = tc->tc_offset_sec;
600 		tvp->tv_usec = tc->tc_offset_micro;
601 	} else {
602 		microuptime(tvp);
603 	}
604 }
605 
606 void
607 getnanouptime(struct timespec *tsp)
608 {
609 	struct timecounter *tc;
610 
611 	if (!tco_method) {
612 		tc = timecounter;
613 		tsp->tv_sec = tc->tc_offset_sec;
614 		tsp->tv_nsec = tc->tc_offset_nano >> 32;
615 	} else {
616 		nanouptime(tsp);
617 	}
618 }
619 
620 void
621 microuptime(struct timeval *tv)
622 {
623 	struct timecounter *tc;
624 
625 	tc = timecounter;
626 	tv->tv_sec = tc->tc_offset_sec;
627 	tv->tv_usec = tc->tc_offset_micro;
628 	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
629 	while (tv->tv_usec < 0) {
630 		tv->tv_usec += 1000000;
631 		if (tv->tv_sec > 0)
632 			tv->tv_sec--;
633 	}
634 	while (tv->tv_usec >= 1000000) {
635 		tv->tv_usec -= 1000000;
636 		tv->tv_sec++;
637 	}
638 }
639 
640 void
641 nanouptime(struct timespec *ts)
642 {
643 	unsigned count;
644 	u_int64_t delta;
645 	struct timecounter *tc;
646 
647 	tc = timecounter;
648 	ts->tv_sec = tc->tc_offset_sec;
649 	count = tco_delta(tc);
650 	delta = tc->tc_offset_nano;
651 	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
652 	delta >>= 32;
653 	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
654 	while (delta < 0) {
655 		delta += 1000000000;
656 		if (ts->tv_sec > 0)
657 			ts->tv_sec--;
658 	}
659 	while (delta >= 1000000000) {
660 		delta -= 1000000000;
661 		ts->tv_sec++;
662 	}
663 	ts->tv_nsec = delta;
664 }
665 
666 static void
667 tco_setscales(struct timecounter *tc)
668 {
669 	u_int64_t scale;
670 
671 	scale = 1000000000LL << 32;
672 	scale += tc->tc_adjustment;
673 	scale /= tc->tc_tweak->tc_frequency;
674 	tc->tc_scale_micro = scale / 1000;
675 	tc->tc_scale_nano_f = scale & 0xffffffff;
676 	tc->tc_scale_nano_i = scale >> 32;
677 }
678 
679 void
680 update_timecounter(struct timecounter *tc)
681 {
682 	tco_setscales(tc);
683 }
684 
685 void
686 init_timecounter(struct timecounter *tc)
687 {
688 	struct timespec ts1;
689 	struct timecounter *t1, *t2, *t3;
690 	unsigned u;
691 	int i;
692 
693 	u = tc->tc_frequency / tc->tc_counter_mask;
694 	if (u > hz) {
695 		printf("Timecounter \"%s\" frequency %lu Hz"
696 		       " -- Insufficient hz, needs at least %u\n",
697 		       tc->tc_name, (u_long) tc->tc_frequency, u);
698 		return;
699 	}
700 
701 	tc->tc_adjustment = 0;
702 	tc->tc_tweak = tc;
703 	tco_setscales(tc);
704 	tc->tc_offset_count = tc->tc_get_timecount(tc);
705 	if (timecounter == &dummy_timecounter)
706 		tc->tc_avail = tc;
707 	else {
708 		tc->tc_avail = timecounter->tc_tweak->tc_avail;
709 		timecounter->tc_tweak->tc_avail = tc;
710 	}
711 	MALLOC(t1, struct timecounter *, sizeof *t1, M_TIMECOUNTER, M_WAITOK);
712 	tc->tc_other = t1;
713 	*t1 = *tc;
714 	t2 = t1;
715 	for (i = 1; i < NTIMECOUNTER; i++) {
716 		MALLOC(t3, struct timecounter *, sizeof *t3,
717 		    M_TIMECOUNTER, M_WAITOK);
718 		*t3 = *tc;
719 		t3->tc_other = t2;
720 		t2 = t3;
721 	}
722 	t1->tc_other = t3;
723 	tc = t1;
724 
725 	printf("Timecounter \"%s\"  frequency %lu Hz\n",
726 	    tc->tc_name, (u_long)tc->tc_frequency);
727 
728 	/* XXX: For now always start using the counter. */
729 	tc->tc_offset_count = tc->tc_get_timecount(tc);
730 	nanouptime(&ts1);
731 	tc->tc_offset_nano = (u_int64_t)ts1.tv_nsec << 32;
732 	tc->tc_offset_micro = ts1.tv_nsec / 1000;
733 	tc->tc_offset_sec = ts1.tv_sec;
734 	timecounter = tc;
735 }
736 
737 void
738 set_timecounter(struct timespec *ts)
739 {
740 	struct timespec ts2;
741 
742 	nanouptime(&ts2);
743 	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
744 	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
745 	if (boottime.tv_usec < 0) {
746 		boottime.tv_usec += 1000000;
747 		boottime.tv_sec--;
748 	}
749 	/* fiddle all the little crinkly bits around the fiords... */
750 	tco_forward(1);
751 }
752 
753 static void
754 switch_timecounter(struct timecounter *newtc)
755 {
756 	int s;
757 	struct timecounter *tc;
758 	struct timespec ts;
759 
760 	s = splclock();
761 	tc = timecounter;
762 	if (newtc->tc_tweak == tc->tc_tweak) {
763 		splx(s);
764 		return;
765 	}
766 	newtc = newtc->tc_tweak->tc_other;
767 	nanouptime(&ts);
768 	newtc->tc_offset_sec = ts.tv_sec;
769 	newtc->tc_offset_nano = (u_int64_t)ts.tv_nsec << 32;
770 	newtc->tc_offset_micro = ts.tv_nsec / 1000;
771 	newtc->tc_offset_count = newtc->tc_get_timecount(newtc);
772 	tco_setscales(newtc);
773 	timecounter = newtc;
774 	splx(s);
775 }
776 
777 static struct timecounter *
778 sync_other_counter(void)
779 {
780 	struct timecounter *tc, *tcn, *tco;
781 	unsigned delta;
782 
783 	tco = timecounter;
784 	tc = tco->tc_other;
785 	tcn = tc->tc_other;
786 	*tc = *tco;
787 	tc->tc_other = tcn;
788 	delta = tco_delta(tc);
789 	tc->tc_offset_count += delta;
790 	tc->tc_offset_count &= tc->tc_counter_mask;
791 	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_f;
792 	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_i << 32;
793 	return (tc);
794 }
795 
796 static void
797 tco_forward(int force)
798 {
799 	struct timecounter *tc, *tco;
800 	struct timeval tvt;
801 
802 	tco = timecounter;
803 	tc = sync_other_counter();
804 	/*
805 	 * We may be inducing a tiny error here, the tc_poll_pps() may
806 	 * process a latched count which happens after the tco_delta()
807 	 * in sync_other_counter(), which would extend the previous
808 	 * counters parameters into the domain of this new one.
809 	 * Since the timewindow is very small for this, the error is
810 	 * going to be only a few weenieseconds (as Dave Mills would
811 	 * say), so lets just not talk more about it, OK ?
812 	 */
813 	if (tco->tc_poll_pps)
814 		tco->tc_poll_pps(tco);
815 	if (timedelta != 0) {
816 		tvt = boottime;
817 		tvt.tv_usec += tickdelta;
818 		if (tvt.tv_usec >= 1000000) {
819 			tvt.tv_sec++;
820 			tvt.tv_usec -= 1000000;
821 		} else if (tvt.tv_usec < 0) {
822 			tvt.tv_sec--;
823 			tvt.tv_usec += 1000000;
824 		}
825 		boottime = tvt;
826 		timedelta -= tickdelta;
827 	}
828 
829 	while (tc->tc_offset_nano >= 1000000000ULL << 32) {
830 		tc->tc_offset_nano -= 1000000000ULL << 32;
831 		tc->tc_offset_sec++;
832 		ntp_update_second(tc);	/* XXX only needed if xntpd runs */
833 		tco_setscales(tc);
834 		force++;
835 	}
836 
837 	if (tco_method && !force)
838 		return;
839 
840 	tc->tc_offset_micro = (tc->tc_offset_nano / 1000) >> 32;
841 
842 	/* Figure out the wall-clock time */
843 	tc->tc_nanotime.tv_sec = tc->tc_offset_sec + boottime.tv_sec;
844 	tc->tc_nanotime.tv_nsec =
845 	    (tc->tc_offset_nano >> 32) + boottime.tv_usec * 1000;
846 	tc->tc_microtime.tv_usec = tc->tc_offset_micro + boottime.tv_usec;
847 	while (tc->tc_nanotime.tv_nsec >= 1000000000) {
848 		tc->tc_nanotime.tv_nsec -= 1000000000;
849 		tc->tc_microtime.tv_usec -= 1000000;
850 		tc->tc_nanotime.tv_sec++;
851 	}
852 	time_second = tc->tc_microtime.tv_sec = tc->tc_nanotime.tv_sec;
853 
854 	timecounter = tc;
855 }
856 
857 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
858 
859 SYSCTL_INT(_kern_timecounter, OID_AUTO, method, CTLFLAG_RW, &tco_method, 0,
860     "This variable determines the method used for updating timecounters. "
861     "If the default algorithm (0) fails with \"calcru negative...\" messages "
862     "try the alternate algorithm (1) which handles bad hardware better."
863 
864 );
865 
866 static int
867 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
868 {
869 	char newname[32];
870 	struct timecounter *newtc, *tc;
871 	int error;
872 
873 	tc = timecounter->tc_tweak;
874 	strncpy(newname, tc->tc_name, sizeof(newname));
875 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
876 	if (error == 0 && req->newptr != NULL &&
877 	    strcmp(newname, tc->tc_name) != 0) {
878 		for (newtc = tc->tc_avail; newtc != tc;
879 		    newtc = newtc->tc_avail) {
880 			if (strcmp(newname, newtc->tc_name) == 0) {
881 				/* Warm up new timecounter. */
882 				(void)newtc->tc_get_timecount(newtc);
883 
884 				switch_timecounter(newtc);
885 				return (0);
886 			}
887 		}
888 		return (EINVAL);
889 	}
890 	return (error);
891 }
892 
893 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
894     0, 0, sysctl_kern_timecounter_hardware, "A", "");
895 
896 
897 int
898 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
899 {
900 	pps_params_t *app;
901 	struct pps_fetch_args *fapi;
902 #ifdef PPS_SYNC
903 	struct pps_kcbind_args *kapi;
904 #endif
905 
906 	switch (cmd) {
907 	case PPS_IOC_CREATE:
908 		return (0);
909 	case PPS_IOC_DESTROY:
910 		return (0);
911 	case PPS_IOC_SETPARAMS:
912 		app = (pps_params_t *)data;
913 		if (app->mode & ~pps->ppscap)
914 			return (EINVAL);
915 		pps->ppsparam = *app;
916 		return (0);
917 	case PPS_IOC_GETPARAMS:
918 		app = (pps_params_t *)data;
919 		*app = pps->ppsparam;
920 		app->api_version = PPS_API_VERS_1;
921 		return (0);
922 	case PPS_IOC_GETCAP:
923 		*(int*)data = pps->ppscap;
924 		return (0);
925 	case PPS_IOC_FETCH:
926 		fapi = (struct pps_fetch_args *)data;
927 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
928 			return (EINVAL);
929 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
930 			return (EOPNOTSUPP);
931 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
932 		fapi->pps_info_buf = pps->ppsinfo;
933 		return (0);
934 	case PPS_IOC_KCBIND:
935 #ifdef PPS_SYNC
936 		kapi = (struct pps_kcbind_args *)data;
937 		/* XXX Only root should be able to do this */
938 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
939 			return (EINVAL);
940 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
941 			return (EINVAL);
942 		if (kapi->edge & ~pps->ppscap)
943 			return (EINVAL);
944 		pps->kcmode = kapi->edge;
945 		return (0);
946 #else
947 		return (EOPNOTSUPP);
948 #endif
949 	default:
950 		return (ENOTTY);
951 	}
952 }
953 
954 void
955 pps_init(struct pps_state *pps)
956 {
957 	pps->ppscap |= PPS_TSFMT_TSPEC;
958 	if (pps->ppscap & PPS_CAPTUREASSERT)
959 		pps->ppscap |= PPS_OFFSETASSERT;
960 	if (pps->ppscap & PPS_CAPTURECLEAR)
961 		pps->ppscap |= PPS_OFFSETCLEAR;
962 }
963 
964 void
965 pps_event(struct pps_state *pps, struct timecounter *tc, unsigned count, int event)
966 {
967 	struct timespec ts, *tsp, *osp;
968 	u_int64_t delta;
969 	unsigned tcount, *pcount;
970 	int foff, fhard;
971 	pps_seq_t	*pseq;
972 
973 	/* Things would be easier with arrays... */
974 	if (event == PPS_CAPTUREASSERT) {
975 		tsp = &pps->ppsinfo.assert_timestamp;
976 		osp = &pps->ppsparam.assert_offset;
977 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
978 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
979 		pcount = &pps->ppscount[0];
980 		pseq = &pps->ppsinfo.assert_sequence;
981 	} else {
982 		tsp = &pps->ppsinfo.clear_timestamp;
983 		osp = &pps->ppsparam.clear_offset;
984 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
985 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
986 		pcount = &pps->ppscount[1];
987 		pseq = &pps->ppsinfo.clear_sequence;
988 	}
989 
990 	/* The timecounter changed: bail */
991 	if (!pps->ppstc ||
992 	    pps->ppstc->tc_name != tc->tc_name ||
993 	    tc->tc_name != timecounter->tc_name) {
994 		pps->ppstc = tc;
995 		*pcount = count;
996 		return;
997 	}
998 
999 	/* Nothing really happened */
1000 	if (*pcount == count)
1001 		return;
1002 
1003 	*pcount = count;
1004 
1005 	/* Convert the count to timespec */
1006 	ts.tv_sec = tc->tc_offset_sec;
1007 	tcount = count - tc->tc_offset_count;
1008 	tcount &= tc->tc_counter_mask;
1009 	delta = tc->tc_offset_nano;
1010 	delta += ((u_int64_t)tcount * tc->tc_scale_nano_f);
1011 	delta >>= 32;
1012 	delta += ((u_int64_t)tcount * tc->tc_scale_nano_i);
1013 	delta += boottime.tv_usec * 1000;
1014 	ts.tv_sec += boottime.tv_sec;
1015 	while (delta >= 1000000000) {
1016 		delta -= 1000000000;
1017 		ts.tv_sec++;
1018 	}
1019 	ts.tv_nsec = delta;
1020 
1021 	(*pseq)++;
1022 	*tsp = ts;
1023 
1024 	if (foff) {
1025 		timespecadd(tsp, osp);
1026 		if (tsp->tv_nsec < 0) {
1027 			tsp->tv_nsec += 1000000000;
1028 			tsp->tv_sec -= 1;
1029 		}
1030 	}
1031 #ifdef PPS_SYNC
1032 	if (fhard) {
1033 		/* magic, at its best... */
1034 		tcount = count - pps->ppscount[2];
1035 		pps->ppscount[2] = count;
1036 		tcount &= tc->tc_counter_mask;
1037 		delta = ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_f);
1038 		delta >>= 32;
1039 		delta += ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_i);
1040 		hardpps(tsp, delta);
1041 	}
1042 #endif
1043 }
1044