xref: /dragonfly/sys/kern/kern_clock.c (revision 8d1e479a)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
68  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
69  */
70 
71 #include "opt_ntp.h"
72 #include "opt_pctrack.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/callout.h>
77 #include <sys/kernel.h>
78 #include <sys/kinfo.h>
79 #include <sys/proc.h>
80 #include <sys/malloc.h>
81 #include <sys/resource.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/priv.h>
85 #include <sys/timex.h>
86 #include <sys/timepps.h>
87 #include <sys/upmap.h>
88 #include <sys/lock.h>
89 #include <sys/sysctl.h>
90 #include <sys/kcollect.h>
91 #include <sys/exislock.h>
92 #include <sys/exislock2.h>
93 
94 #include <vm/vm.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <sys/spinlock2.h>
101 
102 #include <machine/cpu.h>
103 #include <machine/limits.h>
104 #include <machine/smp.h>
105 #include <machine/cpufunc.h>
106 #include <machine/specialreg.h>
107 #include <machine/clock.h>
108 
109 #ifdef DEBUG_PCTRACK
110 static void do_pctrack(struct intrframe *frame, int which);
111 #endif
112 
113 static void initclocks (void *dummy);
114 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
115 
116 /*
117  * Some of these don't belong here, but it's easiest to concentrate them.
118  * Note that cpu_time counts in microseconds, but most userland programs
119  * just compare relative times against the total by delta.
120  */
121 struct kinfo_cputime cputime_percpu[MAXCPU];
122 #ifdef DEBUG_PCTRACK
123 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
124 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
125 #endif
126 
127 __read_mostly static int sniff_enable = 1;
128 __read_mostly static int sniff_target = -1;
129 __read_mostly static int clock_debug2 = 0;
130 SYSCTL_INT(_kern, OID_AUTO, sniff_enable, CTLFLAG_RW, &sniff_enable, 0 , "");
131 SYSCTL_INT(_kern, OID_AUTO, sniff_target, CTLFLAG_RW, &sniff_target, 0 , "");
132 SYSCTL_INT(_debug, OID_AUTO, clock_debug2, CTLFLAG_RW, &clock_debug2, 0 , "");
133 
134 __read_mostly long pseudo_ticks = 1;		/* existential timed locks */
135 
136 static int
137 sysctl_cputime(SYSCTL_HANDLER_ARGS)
138 {
139 	int cpu, error = 0;
140 	int root_error;
141 	size_t size = sizeof(struct kinfo_cputime);
142 	struct kinfo_cputime tmp;
143 
144 	/*
145 	 * NOTE: For security reasons, only root can sniff %rip
146 	 */
147 	root_error = priv_check_cred(curthread->td_ucred, PRIV_ROOT, 0);
148 
149 	for (cpu = 0; cpu < ncpus; ++cpu) {
150 		tmp = cputime_percpu[cpu];
151 		if (root_error == 0) {
152 			tmp.cp_sample_pc =
153 				(int64_t)globaldata_find(cpu)->gd_sample_pc;
154 			tmp.cp_sample_sp =
155 				(int64_t)globaldata_find(cpu)->gd_sample_sp;
156 		}
157 		if ((error = SYSCTL_OUT(req, &tmp, size)) != 0)
158 			break;
159 	}
160 
161 	if (root_error == 0) {
162 		if (sniff_enable) {
163 			int n = sniff_target;
164 			if (n < 0)
165 				smp_sniff();
166 			else if (n < ncpus)
167 				cpu_sniff(n);
168 		}
169 	}
170 
171 	return (error);
172 }
173 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
174 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
175 
176 static int
177 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
178 {
179 	long cpu_states[CPUSTATES] = {0};
180 	int cpu, error = 0;
181 	size_t size = sizeof(cpu_states);
182 
183 	for (cpu = 0; cpu < ncpus; ++cpu) {
184 		cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
185 		cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
186 		cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
187 		cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
188 		cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
189 	}
190 
191 	error = SYSCTL_OUT(req, cpu_states, size);
192 
193 	return (error);
194 }
195 
196 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
197     sysctl_cp_time, "LU", "CPU time statistics");
198 
199 static int
200 sysctl_cp_times(SYSCTL_HANDLER_ARGS)
201 {
202 	long cpu_states[CPUSTATES] = {0};
203 	int cpu, error;
204 	size_t size = sizeof(cpu_states);
205 
206 	for (error = 0, cpu = 0; error == 0 && cpu < ncpus; ++cpu) {
207 		cpu_states[CP_USER] = cputime_percpu[cpu].cp_user;
208 		cpu_states[CP_NICE] = cputime_percpu[cpu].cp_nice;
209 		cpu_states[CP_SYS] = cputime_percpu[cpu].cp_sys;
210 		cpu_states[CP_INTR] = cputime_percpu[cpu].cp_intr;
211 		cpu_states[CP_IDLE] = cputime_percpu[cpu].cp_idle;
212 		error = SYSCTL_OUT(req, cpu_states, size);
213 	}
214 
215 	return (error);
216 }
217 
218 SYSCTL_PROC(_kern, OID_AUTO, cp_times, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
219     sysctl_cp_times, "LU", "per-CPU time statistics");
220 
221 /*
222  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
223  * microuptime().  microtime() is not drift compensated.  The real uptime
224  * with compensation is nanotime() - bootime.  boottime is recalculated
225  * whenever the real time is set based on the compensated elapsed time
226  * in seconds (gd->gd_time_seconds).
227  *
228  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
229  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
230  * the real time.
231  *
232  * WARNING! time_second can backstep on time corrections. Also, unlike
233  *          time_second, time_uptime is not a "real" time_t (seconds
234  *          since the Epoch) but seconds since booting.
235  */
236 __read_mostly struct timespec boottime;	/* boot time (realtime) for ref only */
237 __read_mostly struct timespec ticktime0;/* updated every tick */
238 __read_mostly struct timespec ticktime2;/* updated every tick */
239 __read_mostly int ticktime_update;
240 __read_mostly time_t time_second;	/* read-only 'passive' rt in seconds */
241 __read_mostly time_t time_uptime;	/* read-only 'passive' ut in seconds */
242 
243 /*
244  * basetime is used to calculate the compensated real time of day.  The
245  * basetime can be modified on a per-tick basis by the adjtime(),
246  * ntp_adjtime(), and sysctl-based time correction APIs.
247  *
248  * Note that frequency corrections can also be made by adjusting
249  * gd_cpuclock_base.
250  *
251  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
252  * used on both SMP and UP systems to avoid MP races between cpu's and
253  * interrupt races on UP systems.
254  */
255 struct hardtime {
256 	__uint32_t time_second;
257 	sysclock_t cpuclock_base;
258 };
259 
260 #define BASETIME_ARYSIZE	16
261 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
262 static struct timespec basetime[BASETIME_ARYSIZE];
263 static struct hardtime hardtime[BASETIME_ARYSIZE];
264 static volatile int basetime_index;
265 
266 static int
267 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
268 {
269 	struct timespec *bt;
270 	int error;
271 	int index;
272 
273 	/*
274 	 * Because basetime data and index may be updated by another cpu,
275 	 * a load fence is required to ensure that the data we read has
276 	 * not been speculatively read relative to a possibly updated index.
277 	 */
278 	index = basetime_index;
279 	cpu_lfence();
280 	bt = &basetime[index];
281 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
282 	return (error);
283 }
284 
285 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
286     &boottime, timespec, "System boottime");
287 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
288     sysctl_get_basetime, "S,timespec", "System basetime");
289 
290 static void hardclock(systimer_t info, int, struct intrframe *frame);
291 static void statclock(systimer_t info, int, struct intrframe *frame);
292 static void schedclock(systimer_t info, int, struct intrframe *frame);
293 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
294 
295 /*
296  * Use __read_mostly for ticks and sched_ticks because these variables are
297  * used all over the kernel and only updated once per tick.
298  */
299 __read_mostly sbintime_t sbticks;	/* system master ticks at hz (64bit) */
300 __read_mostly int ticks;		/* system master ticks at hz */
301 __read_mostly int sched_ticks;		/* global schedule clock ticks */
302 __read_mostly int clocks_running;	/* tsleep/timeout clocks operational */
303 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
304 int64_t	nsec_acc;		/* accumulator */
305 
306 /* NTPD time correction fields */
307 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
308 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
309 int64_t	ntp_delta;		/* one-time correction in nsec */
310 int64_t ntp_big_delta = 1000000000;
311 int32_t	ntp_tick_delta;		/* current adjustment rate */
312 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
313 time_t	ntp_leap_second;	/* time of next leap second */
314 int	ntp_leap_insert;	/* whether to insert or remove a second */
315 struct spinlock ntp_spin;
316 
317 /*
318  * Finish initializing clock frequencies and start all clocks running.
319  */
320 /* ARGSUSED*/
321 static void
322 initclocks(void *dummy)
323 {
324 	/*psratio = profhz / stathz;*/
325 	spin_init(&ntp_spin, "ntp");
326 	initclocks_pcpu();
327 	clocks_running = 1;
328 	if (kpmap) {
329 	    kpmap->tsc_freq = tsc_frequency;
330 	    kpmap->tick_freq = hz;
331 	}
332 }
333 
334 /*
335  * Called on a per-cpu basis from the idle thread bootstrap on each cpu
336  * during SMP initialization.
337  *
338  * This routine is called concurrently during low-level SMP initialization
339  * and may not block in any way.  Meaning, among other things, we can't
340  * acquire any tokens.
341  */
342 void
343 initclocks_pcpu(void)
344 {
345 	struct globaldata *gd = mycpu;
346 
347 	crit_enter();
348 	if (gd->gd_cpuid == 0) {
349 	    gd->gd_time_seconds = 1;
350 	    gd->gd_cpuclock_base = sys_cputimer->count();
351 	    hardtime[0].time_second = gd->gd_time_seconds;
352 	    hardtime[0].cpuclock_base = gd->gd_cpuclock_base;
353 	} else {
354 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
355 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
356 	}
357 
358 	systimer_intr_enable();
359 
360 	crit_exit();
361 }
362 
363 /*
364  * Called on a 10-second interval after the system is operational.
365  * Return the collection data for USERPCT and install the data for
366  * SYSTPCT and IDLEPCT.
367  */
368 static
369 uint64_t
370 collect_cputime_callback(int n)
371 {
372 	static long cpu_base[CPUSTATES];
373 	long cpu_states[CPUSTATES];
374 	long total;
375 	long acc;
376 	long lsb;
377 
378 	bzero(cpu_states, sizeof(cpu_states));
379 	for (n = 0; n < ncpus; ++n) {
380 		cpu_states[CP_USER] += cputime_percpu[n].cp_user;
381 		cpu_states[CP_NICE] += cputime_percpu[n].cp_nice;
382 		cpu_states[CP_SYS] += cputime_percpu[n].cp_sys;
383 		cpu_states[CP_INTR] += cputime_percpu[n].cp_intr;
384 		cpu_states[CP_IDLE] += cputime_percpu[n].cp_idle;
385 	}
386 
387 	acc = 0;
388 	for (n = 0; n < CPUSTATES; ++n) {
389 		total = cpu_states[n] - cpu_base[n];
390 		cpu_base[n] = cpu_states[n];
391 		cpu_states[n] = total;
392 		acc += total;
393 	}
394 	if (acc == 0)		/* prevent degenerate divide by 0 */
395 		acc = 1;
396 	lsb = acc / (10000 * 2);
397 	kcollect_setvalue(KCOLLECT_SYSTPCT,
398 			  (cpu_states[CP_SYS] + lsb) * 10000 / acc);
399 	kcollect_setvalue(KCOLLECT_IDLEPCT,
400 			  (cpu_states[CP_IDLE] + lsb) * 10000 / acc);
401 	kcollect_setvalue(KCOLLECT_INTRPCT,
402 			  (cpu_states[CP_INTR] + lsb) * 10000 / acc);
403 	return((cpu_states[CP_USER] + cpu_states[CP_NICE] + lsb) * 10000 / acc);
404 }
405 
406 /*
407  * This routine is called on just the BSP, just after SMP initialization
408  * completes to * finish initializing any clocks that might contend/block
409  * (e.g. like on a token).  We can't do this in initclocks_pcpu() because
410  * that function is called from the idle thread bootstrap for each cpu and
411  * not allowed to block at all.
412  */
413 static
414 void
415 initclocks_other(void *dummy)
416 {
417 	struct globaldata *ogd = mycpu;
418 	struct globaldata *gd;
419 	int n;
420 
421 	for (n = 0; n < ncpus; ++n) {
422 		lwkt_setcpu_self(globaldata_find(n));
423 		gd = mycpu;
424 
425 		/*
426 		 * Use a non-queued periodic systimer to prevent multiple
427 		 * ticks from building up if the sysclock jumps forward
428 		 * (8254 gets reset).  The sysclock will never jump backwards.
429 		 * Our time sync is based on the actual sysclock, not the
430 		 * ticks count.
431 		 *
432 		 * Install statclock before hardclock to prevent statclock
433 		 * from misinterpreting gd_flags for tick assignment when
434 		 * they overlap.  Also offset the statclock by half of
435 		 * its interval to try to avoid being coincident with
436 		 * callouts.
437 		 */
438 		systimer_init_periodic_flags(&gd->gd_statclock, statclock,
439 					  NULL, stathz,
440 					  SYSTF_MSSYNC | SYSTF_FIRST |
441 					  SYSTF_OFFSET50 | SYSTF_OFFSETCPU);
442 		systimer_init_periodic_flags(&gd->gd_hardclock, hardclock,
443 					  NULL, hz,
444 					  SYSTF_MSSYNC | SYSTF_OFFSETCPU);
445 	}
446 	lwkt_setcpu_self(ogd);
447 
448 	/*
449 	 * Regular data collection
450 	 */
451 	kcollect_register(KCOLLECT_USERPCT, "user", collect_cputime_callback,
452 			  KCOLLECT_SCALE(KCOLLECT_USERPCT_FORMAT, 0));
453 	kcollect_register(KCOLLECT_SYSTPCT, "syst", NULL,
454 			  KCOLLECT_SCALE(KCOLLECT_SYSTPCT_FORMAT, 0));
455 	kcollect_register(KCOLLECT_IDLEPCT, "idle", NULL,
456 			  KCOLLECT_SCALE(KCOLLECT_IDLEPCT_FORMAT, 0));
457 }
458 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL);
459 
460 /*
461  * This method is called on just the BSP, after all the usched implementations
462  * are initialized. This avoids races between usched initialization functions
463  * and usched_schedulerclock().
464  */
465 static
466 void
467 initclocks_usched(void *dummy)
468 {
469 	struct globaldata *ogd = mycpu;
470 	struct globaldata *gd;
471 	int n;
472 
473 	for (n = 0; n < ncpus; ++n) {
474 		lwkt_setcpu_self(globaldata_find(n));
475 		gd = mycpu;
476 
477 		/* XXX correct the frequency for scheduler / estcpu tests */
478 		systimer_init_periodic_flags(&gd->gd_schedclock, schedclock,
479 					  NULL, ESTCPUFREQ,
480 					  SYSTF_MSSYNC | SYSTF_OFFSETCPU);
481 	}
482 	lwkt_setcpu_self(ogd);
483 }
484 SYSINIT(clocks3, SI_BOOT2_USCHED, SI_ORDER_ANY, initclocks_usched, NULL);
485 
486 /*
487  * This sets the current real time of day.  Timespecs are in seconds and
488  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
489  * instead we adjust basetime so basetime + gd_* results in the current
490  * time of day.  This way the gd_* fields are guaranteed to represent
491  * a monotonically increasing 'uptime' value.
492  *
493  * When set_timeofday() is called from userland, the system call forces it
494  * onto cpu #0 since only cpu #0 can update basetime_index.
495  */
496 void
497 set_timeofday(struct timespec *ts)
498 {
499 	struct timespec *nbt;
500 	int ni;
501 
502 	/*
503 	 * XXX SMP / non-atomic basetime updates
504 	 */
505 	crit_enter();
506 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
507 	cpu_lfence();
508 	nbt = &basetime[ni];
509 	nanouptime(nbt);
510 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
511 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
512 	if (nbt->tv_nsec < 0) {
513 	    nbt->tv_nsec += 1000000000;
514 	    --nbt->tv_sec;
515 	}
516 
517 	/*
518 	 * Note that basetime diverges from boottime as the clock drift is
519 	 * compensated for, so we cannot do away with boottime.  When setting
520 	 * the absolute time of day the drift is 0 (for an instant) and we
521 	 * can simply assign boottime to basetime.
522 	 *
523 	 * Note that nanouptime() is based on gd_time_seconds which is drift
524 	 * compensated up to a point (it is guaranteed to remain monotonically
525 	 * increasing).  gd_time_seconds is thus our best uptime guess and
526 	 * suitable for use in the boottime calculation.  It is already taken
527 	 * into account in the basetime calculation above.
528 	 */
529 	spin_lock(&ntp_spin);
530 	boottime.tv_sec = nbt->tv_sec;
531 	ntp_delta = 0;
532 
533 	/*
534 	 * We now have a new basetime, make sure all other cpus have it,
535 	 * then update the index.
536 	 */
537 	cpu_sfence();
538 	basetime_index = ni;
539 	spin_unlock(&ntp_spin);
540 
541 	crit_exit();
542 }
543 
544 /*
545  * Each cpu has its own hardclock, but we only increment ticks and softticks
546  * on cpu #0.
547  *
548  * NOTE! systimer! the MP lock might not be held here.  We can only safely
549  * manipulate objects owned by the current cpu.
550  */
551 static void
552 hardclock(systimer_t info, int in_ipi, struct intrframe *frame)
553 {
554 	sysclock_t cputicks;
555 	struct proc *p;
556 	struct globaldata *gd = mycpu;
557 
558 	if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) {
559 		/* Defer to doreti on passive IPIQ processing */
560 		need_ipiq();
561 	}
562 
563 	/*
564 	 * We update the compensation base to calculate fine-grained time
565 	 * from the sys_cputimer on a per-cpu basis in order to avoid
566 	 * having to mess around with locks.  sys_cputimer is assumed to
567 	 * be consistent across all cpus.  CPU N copies the base state from
568 	 * CPU 0 using the same FIFO trick that we use for basetime (so we
569 	 * don't catch a CPU 0 update in the middle).
570 	 *
571 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
572 	 * to reverse index gd_cpuclock_base, but that it is possible for
573 	 * it to temporarily get behind in the seconds if something in the
574 	 * system locks interrupts for a long period of time.  Since periodic
575 	 * timers count events, though everything should resynch again
576 	 * immediately.
577 	 */
578 	if (gd->gd_cpuid == 0) {
579 		int ni;
580 
581 		cputicks = info->time - gd->gd_cpuclock_base;
582 		if (cputicks >= sys_cputimer->freq) {
583 			cputicks /= sys_cputimer->freq;
584 			if (cputicks != 0 && cputicks != 1)
585 				kprintf("Warning: hardclock missed > 1 sec\n");
586 			gd->gd_time_seconds += cputicks;
587 			gd->gd_cpuclock_base += sys_cputimer->freq * cputicks;
588 			/* uncorrected monotonic 1-sec gran */
589 			time_uptime += cputicks;
590 		}
591 		ni = (basetime_index + 1) & BASETIME_ARYMASK;
592 		hardtime[ni].time_second = gd->gd_time_seconds;
593 		hardtime[ni].cpuclock_base = gd->gd_cpuclock_base;
594 	} else {
595 		int ni;
596 
597 		ni = basetime_index;
598 		cpu_lfence();
599 		gd->gd_time_seconds = hardtime[ni].time_second;
600 		gd->gd_cpuclock_base = hardtime[ni].cpuclock_base;
601 	}
602 
603 	/*
604 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
605 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
606 	 * by updating basetime.
607 	 */
608 	if (gd->gd_cpuid == 0) {
609 	    struct timespec *nbt;
610 	    struct timespec nts;
611 	    int leap;
612 	    int ni;
613 
614 	    /*
615 	     * Update system-wide ticks
616 	     */
617 	    ++ticks;
618 	    ++sbticks;
619 
620 	    /*
621 	     * Update system-wide ticktime for getnanotime() and getmicrotime()
622 	     */
623 	    nanotime(&nts);
624 	    atomic_add_int_nonlocked(&ticktime_update, 1);
625 	    cpu_sfence();
626 	    if (ticktime_update & 2)
627 		ticktime2 = nts;
628 	    else
629 		ticktime0 = nts;
630 	    cpu_sfence();
631 	    atomic_add_int_nonlocked(&ticktime_update, 1);
632 
633 #if 0
634 	    if (tco->tc_poll_pps)
635 		tco->tc_poll_pps(tco);
636 #endif
637 
638 	    /*
639 	     * Calculate the new basetime index.  We are in a critical section
640 	     * on cpu #0 and can safely play with basetime_index.  Start
641 	     * with the current basetime and then make adjustments.
642 	     */
643 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
644 	    nbt = &basetime[ni];
645 	    *nbt = basetime[basetime_index];
646 
647 	    /*
648 	     * ntp adjustments only occur on cpu 0 and are protected by
649 	     * ntp_spin.  This spinlock virtually never conflicts.
650 	     */
651 	    spin_lock(&ntp_spin);
652 
653 	    /*
654 	     * Apply adjtime corrections.  (adjtime() API)
655 	     *
656 	     * adjtime() only runs on cpu #0 so our critical section is
657 	     * sufficient to access these variables.
658 	     */
659 	    if (ntp_delta != 0) {
660 		nbt->tv_nsec += ntp_tick_delta;
661 		ntp_delta -= ntp_tick_delta;
662 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
663 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
664 			ntp_tick_delta = ntp_delta;
665  		}
666  	    }
667 
668 	    /*
669 	     * Apply permanent frequency corrections.  (sysctl API)
670 	     */
671 	    if (ntp_tick_permanent != 0) {
672 		ntp_tick_acc += ntp_tick_permanent;
673 		if (ntp_tick_acc >= (1LL << 32)) {
674 		    nbt->tv_nsec += ntp_tick_acc >> 32;
675 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
676 		} else if (ntp_tick_acc <= -(1LL << 32)) {
677 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
678 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
679 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
680 		}
681  	    }
682 
683 	    if (nbt->tv_nsec >= 1000000000) {
684 		    nbt->tv_sec++;
685 		    nbt->tv_nsec -= 1000000000;
686 	    } else if (nbt->tv_nsec < 0) {
687 		    nbt->tv_sec--;
688 		    nbt->tv_nsec += 1000000000;
689 	    }
690 
691 	    /*
692 	     * Another per-tick compensation.  (for ntp_adjtime() API)
693 	     */
694 	    if (nsec_adj != 0) {
695 		nsec_acc += nsec_adj;
696 		if (nsec_acc >= 0x100000000LL) {
697 		    nbt->tv_nsec += nsec_acc >> 32;
698 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
699 		} else if (nsec_acc <= -0x100000000LL) {
700 		    nbt->tv_nsec -= -nsec_acc >> 32;
701 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
702 		}
703 		if (nbt->tv_nsec >= 1000000000) {
704 		    nbt->tv_nsec -= 1000000000;
705 		    ++nbt->tv_sec;
706 		} else if (nbt->tv_nsec < 0) {
707 		    nbt->tv_nsec += 1000000000;
708 		    --nbt->tv_sec;
709 		}
710 	    }
711 	    spin_unlock(&ntp_spin);
712 
713 	    /************************************************************
714 	     *			LEAP SECOND CORRECTION			*
715 	     ************************************************************
716 	     *
717 	     * Taking into account all the corrections made above, figure
718 	     * out the new real time.  If the seconds field has changed
719 	     * then apply any pending leap-second corrections.
720 	     */
721 	    getnanotime_nbt(nbt, &nts);
722 
723 	    if (time_second != nts.tv_sec) {
724 		/*
725 		 * Apply leap second (sysctl API).  Adjust nts for changes
726 		 * so we do not have to call getnanotime_nbt again.
727 		 */
728 		if (ntp_leap_second) {
729 		    if (ntp_leap_second == nts.tv_sec) {
730 			if (ntp_leap_insert) {
731 			    nbt->tv_sec++;
732 			    nts.tv_sec++;
733 			} else {
734 			    nbt->tv_sec--;
735 			    nts.tv_sec--;
736 			}
737 			ntp_leap_second--;
738 		    }
739 		}
740 
741 		/*
742 		 * Apply leap second (ntp_adjtime() API), calculate a new
743 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
744 		 * as a per-second value but we need it as a per-tick value.
745 		 */
746 		leap = ntp_update_second(time_second, &nsec_adj);
747 		nsec_adj /= hz;
748 		nbt->tv_sec += leap;
749 		nts.tv_sec += leap;
750 
751 		/*
752 		 * Update the time_second 'approximate time' global.
753 		 */
754 		time_second = nts.tv_sec;
755 
756 		/*
757 		 * Clear the IPC hint for the currently running thread once
758 		 * per second, allowing us to disconnect the hint from a
759 		 * thread which may no longer care.
760 		 */
761 		curthread->td_wakefromcpu = -1;
762 	    }
763 
764 	    /*
765 	     * Finally, our new basetime is ready to go live!
766 	     */
767 	    cpu_sfence();
768 	    basetime_index = ni;
769 
770 	    /*
771 	     * Update kpmap on each tick.  TS updates are integrated with
772 	     * fences and upticks allowing userland to read the data
773 	     * deterministically.
774 	     */
775 	    if (kpmap) {
776 		int w;
777 
778 		w = (kpmap->upticks + 1) & 1;
779 		getnanouptime(&kpmap->ts_uptime[w]);
780 		getnanotime(&kpmap->ts_realtime[w]);
781 		cpu_sfence();
782 		++kpmap->upticks;
783 		cpu_sfence();
784 	    }
785 
786 	    /*
787 	     * Handle exislock pseudo_ticks.  We make things as simple as
788 	     * possible for the critical path arming code by adding a little
789 	     * complication here.
790 	     *
791 	     * When we find that all cores have been armed, we increment
792 	     * pseudo_ticks and disarm all the cores.
793 	     */
794 	    {
795 		globaldata_t gd;
796 		int n;
797 
798 		for (n = 0; n < ncpus; ++n) {
799 		    gd = globaldata_find(n);
800 		    if (gd->gd_exisarmed == 0)
801 			break;
802 		}
803 
804 		if (n == ncpus) {
805 		    for (n = 0; n < ncpus; ++n) {
806 			gd = globaldata_find(n);
807 			gd->gd_exisarmed = 0;
808 		    }
809 		    ++pseudo_ticks;
810 		}
811 	    }
812 	}
813 
814 	/*
815 	 * lwkt thread scheduler fair queueing
816 	 */
817 	lwkt_schedulerclock(curthread);
818 
819 	/*
820 	 * Cycle the existential lock system on odd ticks in order to re-arm
821 	 * our cpu (in case the cpu is idle or nobody is using any exis locks).
822 	 */
823 	if (ticks & 1) {
824 		exis_hold_gd(gd);
825 		exis_drop_gd(gd);
826 	}
827 
828 	/*
829 	 * softticks are handled for all cpus
830 	 */
831 	hardclock_softtick(gd);
832 
833 	/*
834 	 * Rollup accumulated vmstats, copy-back for critical path checks.
835 	 */
836 	vmstats_rollup_cpu(gd);
837 	vfscache_rollup_cpu(gd);
838 	mycpu->gd_vmstats = vmstats;
839 
840 	/*
841 	 * ITimer handling is per-tick, per-cpu.
842 	 *
843 	 * We must acquire the per-process token in order for ksignal()
844 	 * to be non-blocking.  For the moment this requires an AST fault,
845 	 * the ksignal() cannot be safely issued from this hard interrupt.
846 	 *
847 	 * XXX Even the trytoken here isn't right, and itimer operation in
848 	 *     a multi threaded environment is going to be weird at the
849 	 *     very least.
850 	 */
851 	if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
852 		crit_enter_hard();
853 		if (p->p_upmap)
854 			++p->p_upmap->runticks;
855 
856 		if (frame && CLKF_USERMODE(frame) &&
857 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
858 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
859 			p->p_flags |= P_SIGVTALRM;
860 			need_user_resched();
861 		}
862 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
863 		    itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
864 			p->p_flags |= P_SIGPROF;
865 			need_user_resched();
866 		}
867 		crit_exit_hard();
868 		lwkt_reltoken(&p->p_token);
869 	}
870 	setdelayed();
871 }
872 
873 /*
874  * The statistics clock typically runs at a 125Hz rate, and is intended
875  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
876  *
877  * NOTE! systimer! the MP lock might not be held here.  We can only safely
878  * manipulate objects owned by the current cpu.
879  *
880  * The stats clock is responsible for grabbing a profiling sample.
881  * Most of the statistics are only used by user-level statistics programs.
882  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
883  * p->p_estcpu.
884  *
885  * Like the other clocks, the stat clock is called from what is effectively
886  * a fast interrupt, so the context should be the thread/process that got
887  * interrupted.
888  */
889 static void
890 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
891 {
892 	globaldata_t gd = mycpu;
893 	thread_t td;
894 	struct proc *p;
895 	int bump;
896 	sysclock_t cv;
897 	sysclock_t scv;
898 
899 	/*
900 	 * How big was our timeslice relative to the last time?  Calculate
901 	 * in microseconds.
902 	 *
903 	 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
904 	 *	 during early boot.  Just use the systimer count to be nice
905 	 *	 to e.g. qemu.  The systimer has a better chance of being
906 	 *	 MPSAFE at early boot.
907 	 */
908 	cv = sys_cputimer->count();
909 	scv = gd->statint.gd_statcv;
910 	if (scv == 0) {
911 		bump = 1;
912 	} else {
913 		bump = muldivu64(sys_cputimer->freq64_usec,
914 				 (cv - scv), 1L << 32);
915 		if (bump < 0)
916 			bump = 0;
917 		if (bump > 1000000)
918 			bump = 1000000;
919 	}
920 	gd->statint.gd_statcv = cv;
921 
922 #if 0
923 	stv = &gd->gd_stattv;
924 	if (stv->tv_sec == 0) {
925 	    bump = 1;
926 	} else {
927 	    bump = tv.tv_usec - stv->tv_usec +
928 		(tv.tv_sec - stv->tv_sec) * 1000000;
929 	    if (bump < 0)
930 		bump = 0;
931 	    if (bump > 1000000)
932 		bump = 1000000;
933 	}
934 	*stv = tv;
935 #endif
936 
937 	td = curthread;
938 	p = td->td_proc;
939 
940 	/*
941 	 * If this is an interrupt thread used for the clock interrupt, adjust
942 	 * td to the thread it is preempting.  If a frame is available, it will
943 	 * be related to the thread being preempted.
944 	 */
945 	if ((td->td_flags & TDF_CLKTHREAD) && td->td_preempted)
946 		td = td->td_preempted;
947 
948 	if (frame && CLKF_USERMODE(frame)) {
949 		/*
950 		 * Came from userland, handle user time and deal with
951 		 * possible process.
952 		 */
953 		if (p && (p->p_flags & P_PROFIL))
954 			addupc_intr(p, CLKF_PC(frame), 1);
955 		td->td_uticks += bump;
956 
957 		/*
958 		 * Charge the time as appropriate
959 		 */
960 		if (p && p->p_nice > NZERO)
961 			cpu_time.cp_nice += bump;
962 		else
963 			cpu_time.cp_user += bump;
964 	} else {
965 		int intr_nest = gd->gd_intr_nesting_level;
966 
967 		if (in_ipi) {
968 			/*
969 			 * IPI processing code will bump gd_intr_nesting_level
970 			 * up by one, which breaks following CLKF_INTR testing,
971 			 * so we subtract it by one here.
972 			 */
973 			--intr_nest;
974 		}
975 
976 		/*
977 		 * Came from kernel mode, so we were:
978 		 * - handling an interrupt,
979 		 * - doing syscall or trap work on behalf of the current
980 		 *   user process, or
981 		 * - spinning in the idle loop.
982 		 * Whichever it is, charge the time as appropriate.
983 		 * Note that we charge interrupts to the current process,
984 		 * regardless of whether they are ``for'' that process,
985 		 * so that we know how much of its real time was spent
986 		 * in ``non-process'' (i.e., interrupt) work.
987 		 *
988 		 * XXX assume system if frame is NULL.  A NULL frame
989 		 * can occur if ipi processing is done from a crit_exit().
990 		 */
991 		if ((frame && CLKF_INTR(intr_nest)) ||
992 		    cpu_interrupt_running(td)) {
993 			/*
994 			 * If we interrupted an interrupt thread, well,
995 			 * count it as interrupt time.
996 			 */
997 			td->td_iticks += bump;
998 #ifdef DEBUG_PCTRACK
999 			if (frame)
1000 				do_pctrack(frame, PCTRACK_INT);
1001 #endif
1002 			cpu_time.cp_intr += bump;
1003 		} else if (gd->gd_flags & GDF_VIRTUSER) {
1004 			/*
1005 			 * The vkernel doesn't do a good job providing trap
1006 			 * frames that we can test.  If the GDF_VIRTUSER
1007 			 * flag is set we probably interrupted user mode.
1008 			 */
1009 			td->td_uticks += bump;
1010 
1011 			/*
1012 			 * Charge the time as appropriate
1013 			 */
1014 			if (p && p->p_nice > NZERO)
1015 				cpu_time.cp_nice += bump;
1016 			else
1017 				cpu_time.cp_user += bump;
1018 		} else {
1019 			if (clock_debug2 > 0) {
1020 				--clock_debug2;
1021 				kprintf("statclock preempt %s (%p %p)\n", td->td_comm, td, &gd->gd_idlethread);
1022 			}
1023 			td->td_sticks += bump;
1024 			if (td == &gd->gd_idlethread) {
1025 				/*
1026 				 * We want to count token contention as
1027 				 * system time.  When token contention occurs
1028 				 * the cpu may only be outside its critical
1029 				 * section while switching through the idle
1030 				 * thread.  In this situation, various flags
1031 				 * will be set in gd_reqflags.
1032 				 *
1033 				 * INTPEND is not necessarily useful because
1034 				 * it will be set if the clock interrupt
1035 				 * happens to be on an interrupt thread, the
1036 				 * cpu_interrupt_running() call does a better
1037 				 * job so we've already handled it.
1038 				 */
1039 				if (gd->gd_reqflags &
1040 				    (RQF_IDLECHECK_WK_MASK & ~RQF_INTPEND)) {
1041 					cpu_time.cp_sys += bump;
1042 				} else {
1043 					cpu_time.cp_idle += bump;
1044 				}
1045 			} else {
1046 				/*
1047 				 * System thread was running.
1048 				 */
1049 #ifdef DEBUG_PCTRACK
1050 				if (frame)
1051 					do_pctrack(frame, PCTRACK_SYS);
1052 #endif
1053 				cpu_time.cp_sys += bump;
1054 			}
1055 		}
1056 	}
1057 }
1058 
1059 #ifdef DEBUG_PCTRACK
1060 /*
1061  * Sample the PC when in the kernel or in an interrupt.  User code can
1062  * retrieve the information and generate a histogram or other output.
1063  */
1064 
1065 static void
1066 do_pctrack(struct intrframe *frame, int which)
1067 {
1068 	struct kinfo_pctrack *pctrack;
1069 
1070 	pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
1071 	pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
1072 		(void *)CLKF_PC(frame);
1073 	++pctrack->pc_index;
1074 }
1075 
1076 static int
1077 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
1078 {
1079 	struct kinfo_pcheader head;
1080 	int error;
1081 	int cpu;
1082 	int ntrack;
1083 
1084 	head.pc_ntrack = PCTRACK_SIZE;
1085 	head.pc_arysize = PCTRACK_ARYSIZE;
1086 
1087 	if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
1088 		return (error);
1089 
1090 	for (cpu = 0; cpu < ncpus; ++cpu) {
1091 		for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
1092 			error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
1093 					   sizeof(struct kinfo_pctrack));
1094 			if (error)
1095 				break;
1096 		}
1097 		if (error)
1098 			break;
1099 	}
1100 	return (error);
1101 }
1102 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
1103 	sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
1104 
1105 #endif
1106 
1107 /*
1108  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
1109  * the MP lock might not be held.  We can safely manipulate parts of curproc
1110  * but that's about it.
1111  *
1112  * Each cpu has its own scheduler clock.
1113  */
1114 static void
1115 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
1116 {
1117 	struct lwp *lp;
1118 	struct rusage *ru;
1119 	struct vmspace *vm;
1120 	long rss;
1121 
1122 	if ((lp = lwkt_preempted_proc()) != NULL) {
1123 		/*
1124 		 * Account for cpu time used and hit the scheduler.  Note
1125 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
1126 		 * HERE.
1127 		 */
1128 		++lp->lwp_cpticks;
1129 		usched_schedulerclock(lp, info->periodic, info->time);
1130 	} else {
1131 		usched_schedulerclock(NULL, info->periodic, info->time);
1132 	}
1133 	if ((lp = curthread->td_lwp) != NULL) {
1134 		/*
1135 		 * Update resource usage integrals and maximums.
1136 		 */
1137 		if ((ru = &lp->lwp_proc->p_ru) &&
1138 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
1139 			ru->ru_ixrss += pgtok(btoc(vm->vm_tsize));
1140 			ru->ru_idrss += pgtok(btoc(vm->vm_dsize));
1141 			ru->ru_isrss += pgtok(btoc(vm->vm_ssize));
1142 			if (lwkt_trytoken(&vm->vm_map.token)) {
1143 				rss = pgtok(vmspace_resident_count(vm));
1144 				if (ru->ru_maxrss < rss)
1145 					ru->ru_maxrss = rss;
1146 				lwkt_reltoken(&vm->vm_map.token);
1147 			}
1148 		}
1149 	}
1150 	/* Increment the global sched_ticks */
1151 	if (mycpu->gd_cpuid == 0)
1152 		++sched_ticks;
1153 }
1154 
1155 /*
1156  * Compute number of ticks for the specified amount of time.  The
1157  * return value is intended to be used in a clock interrupt timed
1158  * operation and guaranteed to meet or exceed the requested time.
1159  * If the representation overflows, return INT_MAX.  The minimum return
1160  * value is 1 ticks and the function will average the calculation up.
1161  * If any value greater then 0 microseconds is supplied, a value
1162  * of at least 2 will be returned to ensure that a near-term clock
1163  * interrupt does not cause the timeout to occur (degenerately) early.
1164  *
1165  * Note that limit checks must take into account microseconds, which is
1166  * done simply by using the smaller signed long maximum instead of
1167  * the unsigned long maximum.
1168  *
1169  * If ints have 32 bits, then the maximum value for any timeout in
1170  * 10ms ticks is 248 days.
1171  */
1172 int
1173 tvtohz_high(struct timeval *tv)
1174 {
1175 	int ticks;
1176 	long sec, usec;
1177 
1178 	sec = tv->tv_sec;
1179 	usec = tv->tv_usec;
1180 	if (usec < 0) {
1181 		sec--;
1182 		usec += 1000000;
1183 	}
1184 	if (sec < 0) {
1185 #ifdef DIAGNOSTIC
1186 		if (usec > 0) {
1187 			sec++;
1188 			usec -= 1000000;
1189 		}
1190 		kprintf("tvtohz_high: negative time difference "
1191 			"%ld sec %ld usec\n",
1192 			sec, usec);
1193 #endif
1194 		ticks = 1;
1195 	} else if (sec <= INT_MAX / hz) {
1196 		ticks = (int)(sec * hz + howmany((u_long)usec, ustick)) + 1;
1197 	} else {
1198 		ticks = INT_MAX;
1199 	}
1200 	return (ticks);
1201 }
1202 
1203 int
1204 tstohz_high(struct timespec *ts)
1205 {
1206 	int ticks;
1207 	long sec, nsec;
1208 
1209 	sec = ts->tv_sec;
1210 	nsec = ts->tv_nsec;
1211 	if (nsec < 0) {
1212 		sec--;
1213 		nsec += 1000000000;
1214 	}
1215 	if (sec < 0) {
1216 #ifdef DIAGNOSTIC
1217 		if (nsec > 0) {
1218 			sec++;
1219 			nsec -= 1000000000;
1220 		}
1221 		kprintf("tstohz_high: negative time difference "
1222 			"%ld sec %ld nsec\n",
1223 			sec, nsec);
1224 #endif
1225 		ticks = 1;
1226 	} else if (sec <= INT_MAX / hz) {
1227 		ticks = (int)(sec * hz + howmany((u_long)nsec, nstick)) + 1;
1228 	} else {
1229 		ticks = INT_MAX;
1230 	}
1231 	return (ticks);
1232 }
1233 
1234 
1235 /*
1236  * Compute number of ticks for the specified amount of time, erroring on
1237  * the side of it being too low to ensure that sleeping the returned number
1238  * of ticks will not result in a late return.
1239  *
1240  * The supplied timeval may not be negative and should be normalized.  A
1241  * return value of 0 is possible if the timeval converts to less then
1242  * 1 tick.
1243  *
1244  * If ints have 32 bits, then the maximum value for any timeout in
1245  * 10ms ticks is 248 days.
1246  */
1247 int
1248 tvtohz_low(struct timeval *tv)
1249 {
1250 	int ticks;
1251 	long sec;
1252 
1253 	sec = tv->tv_sec;
1254 	if (sec <= INT_MAX / hz)
1255 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
1256 	else
1257 		ticks = INT_MAX;
1258 	return (ticks);
1259 }
1260 
1261 int
1262 tstohz_low(struct timespec *ts)
1263 {
1264 	int ticks;
1265 	long sec;
1266 
1267 	sec = ts->tv_sec;
1268 	if (sec <= INT_MAX / hz)
1269 		ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
1270 	else
1271 		ticks = INT_MAX;
1272 	return (ticks);
1273 }
1274 
1275 /*
1276  * Start profiling on a process.
1277  *
1278  * Caller must hold p->p_token();
1279  *
1280  * Kernel profiling passes proc0 which never exits and hence
1281  * keeps the profile clock running constantly.
1282  */
1283 void
1284 startprofclock(struct proc *p)
1285 {
1286 	if ((p->p_flags & P_PROFIL) == 0) {
1287 		p->p_flags |= P_PROFIL;
1288 #if 0	/* XXX */
1289 		if (++profprocs == 1 && stathz != 0) {
1290 			crit_enter();
1291 			psdiv = psratio;
1292 			setstatclockrate(profhz);
1293 			crit_exit();
1294 		}
1295 #endif
1296 	}
1297 }
1298 
1299 /*
1300  * Stop profiling on a process.
1301  *
1302  * caller must hold p->p_token
1303  */
1304 void
1305 stopprofclock(struct proc *p)
1306 {
1307 	if (p->p_flags & P_PROFIL) {
1308 		p->p_flags &= ~P_PROFIL;
1309 #if 0	/* XXX */
1310 		if (--profprocs == 0 && stathz != 0) {
1311 			crit_enter();
1312 			psdiv = 1;
1313 			setstatclockrate(stathz);
1314 			crit_exit();
1315 		}
1316 #endif
1317 	}
1318 }
1319 
1320 /*
1321  * Return information about system clocks.
1322  */
1323 static int
1324 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1325 {
1326 	struct kinfo_clockinfo clkinfo;
1327 	/*
1328 	 * Construct clockinfo structure.
1329 	 */
1330 	clkinfo.ci_hz = hz;
1331 	clkinfo.ci_tick = ustick;
1332 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1333 	clkinfo.ci_profhz = profhz;
1334 	clkinfo.ci_stathz = stathz ? stathz : hz;
1335 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1336 }
1337 
1338 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1339 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1340 
1341 /*
1342  * We have eight functions for looking at the clock, four for
1343  * microseconds and four for nanoseconds.  For each there is fast
1344  * but less precise version "get{nano|micro}[up]time" which will
1345  * return a time which is up to 1/HZ previous to the call, whereas
1346  * the raw version "{nano|micro}[up]time" will return a timestamp
1347  * which is as precise as possible.  The "up" variants return the
1348  * time relative to system boot, these are well suited for time
1349  * interval measurements.
1350  *
1351  * Each cpu independently maintains the current time of day, so all
1352  * we need to do to protect ourselves from changes is to do a loop
1353  * check on the seconds field changing out from under us.
1354  *
1355  * The system timer maintains a 32 bit count and due to various issues
1356  * it is possible for the calculated delta to occasionally exceed
1357  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
1358  * multiplication can easily overflow, so we deal with the case.  For
1359  * uniformity we deal with the case in the usec case too.
1360  *
1361  * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1362  *
1363  * NEW CODE (!)
1364  *
1365  *	cpu 0 now maintains global ticktimes and an update counter.  The
1366  *	getnanotime() and getmicrotime() routines use these globals.
1367  */
1368 void
1369 getmicrouptime(struct timeval *tvp)
1370 {
1371 	struct globaldata *gd = mycpu;
1372 	sysclock_t delta;
1373 
1374 	do {
1375 		tvp->tv_sec = gd->gd_time_seconds;
1376 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1377 	} while (tvp->tv_sec != gd->gd_time_seconds);
1378 
1379 	if (delta >= sys_cputimer->freq) {
1380 		tvp->tv_sec += delta / sys_cputimer->freq;
1381 		delta %= sys_cputimer->freq;
1382 	}
1383 	tvp->tv_usec = muldivu64(sys_cputimer->freq64_usec, delta, 1L << 32);
1384 	if (tvp->tv_usec >= 1000000) {
1385 		tvp->tv_usec -= 1000000;
1386 		++tvp->tv_sec;
1387 	}
1388 }
1389 
1390 void
1391 getnanouptime(struct timespec *tsp)
1392 {
1393 	struct globaldata *gd = mycpu;
1394 	sysclock_t delta;
1395 
1396 	do {
1397 		tsp->tv_sec = gd->gd_time_seconds;
1398 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1399 	} while (tsp->tv_sec != gd->gd_time_seconds);
1400 
1401 	if (delta >= sys_cputimer->freq) {
1402 		tsp->tv_sec += delta / sys_cputimer->freq;
1403 		delta %= sys_cputimer->freq;
1404 	}
1405 	tsp->tv_nsec = muldivu64(sys_cputimer->freq64_nsec, delta, 1L << 32);
1406 }
1407 
1408 void
1409 microuptime(struct timeval *tvp)
1410 {
1411 	struct globaldata *gd = mycpu;
1412 	sysclock_t delta;
1413 
1414 	do {
1415 		tvp->tv_sec = gd->gd_time_seconds;
1416 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1417 	} while (tvp->tv_sec != gd->gd_time_seconds);
1418 
1419 	if (delta >= sys_cputimer->freq) {
1420 		tvp->tv_sec += delta / sys_cputimer->freq;
1421 		delta %= sys_cputimer->freq;
1422 	}
1423 	tvp->tv_usec = muldivu64(sys_cputimer->freq64_usec, delta, 1L << 32);
1424 }
1425 
1426 void
1427 nanouptime(struct timespec *tsp)
1428 {
1429 	struct globaldata *gd = mycpu;
1430 	sysclock_t delta;
1431 
1432 	do {
1433 		tsp->tv_sec = gd->gd_time_seconds;
1434 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1435 	} while (tsp->tv_sec != gd->gd_time_seconds);
1436 
1437 	if (delta >= sys_cputimer->freq) {
1438 		tsp->tv_sec += delta / sys_cputimer->freq;
1439 		delta %= sys_cputimer->freq;
1440 	}
1441 	tsp->tv_nsec = muldivu64(sys_cputimer->freq64_nsec, delta, 1L << 32);
1442 }
1443 
1444 /*
1445  * realtime routines
1446  */
1447 void
1448 getmicrotime(struct timeval *tvp)
1449 {
1450 	struct timespec ts;
1451 	int counter;
1452 
1453 	do {
1454 		counter = *(volatile int *)&ticktime_update;
1455 		cpu_lfence();
1456 		switch(counter & 3) {
1457 		case 0:			/* ticktime2 completed update */
1458 			ts = ticktime2;
1459 			break;
1460 		case 1:			/* ticktime0 update in progress */
1461 			ts = ticktime2;
1462 			break;
1463 		case 2:			/* ticktime0 completed update */
1464 			ts = ticktime0;
1465 			break;
1466 		case 3:			/* ticktime2 update in progress */
1467 			ts = ticktime0;
1468 			break;
1469 		}
1470 		cpu_lfence();
1471 	} while (counter != *(volatile int *)&ticktime_update);
1472 	tvp->tv_sec = ts.tv_sec;
1473 	tvp->tv_usec = ts.tv_nsec / 1000;
1474 }
1475 
1476 void
1477 getnanotime(struct timespec *tsp)
1478 {
1479 	struct timespec ts;
1480 	int counter;
1481 
1482 	do {
1483 		counter = *(volatile int *)&ticktime_update;
1484 		cpu_lfence();
1485 		switch(counter & 3) {
1486 		case 0:			/* ticktime2 completed update */
1487 			ts = ticktime2;
1488 			break;
1489 		case 1:			/* ticktime0 update in progress */
1490 			ts = ticktime2;
1491 			break;
1492 		case 2:			/* ticktime0 completed update */
1493 			ts = ticktime0;
1494 			break;
1495 		case 3:			/* ticktime2 update in progress */
1496 			ts = ticktime0;
1497 			break;
1498 		}
1499 		cpu_lfence();
1500 	} while (counter != *(volatile int *)&ticktime_update);
1501 	*tsp = ts;
1502 }
1503 
1504 static void
1505 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1506 {
1507 	struct globaldata *gd = mycpu;
1508 	sysclock_t delta;
1509 
1510 	do {
1511 		tsp->tv_sec = gd->gd_time_seconds;
1512 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1513 	} while (tsp->tv_sec != gd->gd_time_seconds);
1514 
1515 	if (delta >= sys_cputimer->freq) {
1516 		tsp->tv_sec += delta / sys_cputimer->freq;
1517 		delta %= sys_cputimer->freq;
1518 	}
1519 	tsp->tv_nsec = muldivu64(sys_cputimer->freq64_nsec, delta, 1L << 32);
1520 
1521 	tsp->tv_sec += nbt->tv_sec;
1522 	tsp->tv_nsec += nbt->tv_nsec;
1523 	while (tsp->tv_nsec >= 1000000000) {
1524 		tsp->tv_nsec -= 1000000000;
1525 		++tsp->tv_sec;
1526 	}
1527 }
1528 
1529 
1530 void
1531 microtime(struct timeval *tvp)
1532 {
1533 	struct globaldata *gd = mycpu;
1534 	struct timespec *bt;
1535 	sysclock_t delta;
1536 
1537 	do {
1538 		tvp->tv_sec = gd->gd_time_seconds;
1539 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1540 	} while (tvp->tv_sec != gd->gd_time_seconds);
1541 
1542 	if (delta >= sys_cputimer->freq) {
1543 		tvp->tv_sec += delta / sys_cputimer->freq;
1544 		delta %= sys_cputimer->freq;
1545 	}
1546 	tvp->tv_usec = muldivu64(sys_cputimer->freq64_usec, delta, 1L << 32);
1547 
1548 	bt = &basetime[basetime_index];
1549 	cpu_lfence();
1550 	tvp->tv_sec += bt->tv_sec;
1551 	tvp->tv_usec += bt->tv_nsec / 1000;
1552 	while (tvp->tv_usec >= 1000000) {
1553 		tvp->tv_usec -= 1000000;
1554 		++tvp->tv_sec;
1555 	}
1556 }
1557 
1558 void
1559 nanotime(struct timespec *tsp)
1560 {
1561 	struct globaldata *gd = mycpu;
1562 	struct timespec *bt;
1563 	sysclock_t delta;
1564 
1565 	do {
1566 		tsp->tv_sec = gd->gd_time_seconds;
1567 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1568 	} while (tsp->tv_sec != gd->gd_time_seconds);
1569 
1570 	if (delta >= sys_cputimer->freq) {
1571 		tsp->tv_sec += delta / sys_cputimer->freq;
1572 		delta %= sys_cputimer->freq;
1573 	}
1574 	tsp->tv_nsec = muldivu64(sys_cputimer->freq64_nsec, delta, 1L << 32);
1575 
1576 	bt = &basetime[basetime_index];
1577 	cpu_lfence();
1578 	tsp->tv_sec += bt->tv_sec;
1579 	tsp->tv_nsec += bt->tv_nsec;
1580 	while (tsp->tv_nsec >= 1000000000) {
1581 		tsp->tv_nsec -= 1000000000;
1582 		++tsp->tv_sec;
1583 	}
1584 }
1585 
1586 /*
1587  * Get an approximate time_t.  It does not have to be accurate.  This
1588  * function is called only from KTR and can be called with the system in
1589  * any state so do not use a critical section or other complex operation
1590  * here.
1591  *
1592  * NOTE: This is not exactly synchronized with real time.  To do that we
1593  *	 would have to do what microtime does and check for a nanoseconds
1594  *	 overflow.
1595  */
1596 time_t
1597 get_approximate_time_t(void)
1598 {
1599 	struct globaldata *gd = mycpu;
1600 	struct timespec *bt;
1601 
1602 	bt = &basetime[basetime_index];
1603 	return(gd->gd_time_seconds + bt->tv_sec);
1604 }
1605 
1606 int
1607 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1608 {
1609 	pps_params_t *app;
1610 	struct pps_fetch_args *fapi;
1611 #ifdef PPS_SYNC
1612 	struct pps_kcbind_args *kapi;
1613 #endif
1614 
1615 	switch (cmd) {
1616 	case PPS_IOC_CREATE:
1617 		return (0);
1618 	case PPS_IOC_DESTROY:
1619 		return (0);
1620 	case PPS_IOC_SETPARAMS:
1621 		app = (pps_params_t *)data;
1622 		if (app->mode & ~pps->ppscap)
1623 			return (EINVAL);
1624 		pps->ppsparam = *app;
1625 		return (0);
1626 	case PPS_IOC_GETPARAMS:
1627 		app = (pps_params_t *)data;
1628 		*app = pps->ppsparam;
1629 		app->api_version = PPS_API_VERS_1;
1630 		return (0);
1631 	case PPS_IOC_GETCAP:
1632 		*(int*)data = pps->ppscap;
1633 		return (0);
1634 	case PPS_IOC_FETCH:
1635 		fapi = (struct pps_fetch_args *)data;
1636 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1637 			return (EINVAL);
1638 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1639 			return (EOPNOTSUPP);
1640 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1641 		fapi->pps_info_buf = pps->ppsinfo;
1642 		return (0);
1643 	case PPS_IOC_KCBIND:
1644 #ifdef PPS_SYNC
1645 		kapi = (struct pps_kcbind_args *)data;
1646 		/* XXX Only root should be able to do this */
1647 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1648 			return (EINVAL);
1649 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1650 			return (EINVAL);
1651 		if (kapi->edge & ~pps->ppscap)
1652 			return (EINVAL);
1653 		pps->kcmode = kapi->edge;
1654 		return (0);
1655 #else
1656 		return (EOPNOTSUPP);
1657 #endif
1658 	default:
1659 		return (ENOTTY);
1660 	}
1661 }
1662 
1663 void
1664 pps_init(struct pps_state *pps)
1665 {
1666 	pps->ppscap |= PPS_TSFMT_TSPEC;
1667 	if (pps->ppscap & PPS_CAPTUREASSERT)
1668 		pps->ppscap |= PPS_OFFSETASSERT;
1669 	if (pps->ppscap & PPS_CAPTURECLEAR)
1670 		pps->ppscap |= PPS_OFFSETCLEAR;
1671 }
1672 
1673 void
1674 pps_event(struct pps_state *pps, sysclock_t count, int event)
1675 {
1676 	struct globaldata *gd;
1677 	struct timespec *tsp;
1678 	struct timespec *osp;
1679 	struct timespec *bt;
1680 	struct timespec ts;
1681 	sysclock_t *pcount;
1682 #ifdef PPS_SYNC
1683 	sysclock_t tcount;
1684 #endif
1685 	sysclock_t delta;
1686 	pps_seq_t *pseq;
1687 	int foff;
1688 #ifdef PPS_SYNC
1689 	int fhard;
1690 #endif
1691 	int ni;
1692 
1693 	gd = mycpu;
1694 
1695 	/* Things would be easier with arrays... */
1696 	if (event == PPS_CAPTUREASSERT) {
1697 		tsp = &pps->ppsinfo.assert_timestamp;
1698 		osp = &pps->ppsparam.assert_offset;
1699 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1700 #ifdef PPS_SYNC
1701 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1702 #endif
1703 		pcount = &pps->ppscount[0];
1704 		pseq = &pps->ppsinfo.assert_sequence;
1705 	} else {
1706 		tsp = &pps->ppsinfo.clear_timestamp;
1707 		osp = &pps->ppsparam.clear_offset;
1708 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1709 #ifdef PPS_SYNC
1710 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1711 #endif
1712 		pcount = &pps->ppscount[1];
1713 		pseq = &pps->ppsinfo.clear_sequence;
1714 	}
1715 
1716 	/* Nothing really happened */
1717 	if (*pcount == count)
1718 		return;
1719 
1720 	*pcount = count;
1721 
1722 	do {
1723 		ts.tv_sec = gd->gd_time_seconds;
1724 		delta = count - gd->gd_cpuclock_base;
1725 	} while (ts.tv_sec != gd->gd_time_seconds);
1726 
1727 	if (delta >= sys_cputimer->freq) {
1728 		ts.tv_sec += delta / sys_cputimer->freq;
1729 		delta %= sys_cputimer->freq;
1730 	}
1731 	ts.tv_nsec = muldivu64(sys_cputimer->freq64_nsec, delta, 1L << 32);
1732 	ni = basetime_index;
1733 	cpu_lfence();
1734 	bt = &basetime[ni];
1735 	ts.tv_sec += bt->tv_sec;
1736 	ts.tv_nsec += bt->tv_nsec;
1737 	while (ts.tv_nsec >= 1000000000) {
1738 		ts.tv_nsec -= 1000000000;
1739 		++ts.tv_sec;
1740 	}
1741 
1742 	(*pseq)++;
1743 	*tsp = ts;
1744 
1745 	if (foff) {
1746 		timespecadd(tsp, osp, tsp);
1747 		if (tsp->tv_nsec < 0) {
1748 			tsp->tv_nsec += 1000000000;
1749 			tsp->tv_sec -= 1;
1750 		}
1751 	}
1752 #ifdef PPS_SYNC
1753 	if (fhard) {
1754 		/* magic, at its best... */
1755 		tcount = count - pps->ppscount[2];
1756 		pps->ppscount[2] = count;
1757 		if (tcount >= sys_cputimer->freq) {
1758 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1759 				 sys_cputimer->freq64_nsec *
1760 				 (tcount % sys_cputimer->freq)) >> 32;
1761 		} else {
1762 			delta = muldivu64(sys_cputimer->freq64_nsec,
1763 					  tcount, 1L << 32);
1764 		}
1765 		hardpps(tsp, delta);
1766 	}
1767 #endif
1768 }
1769 
1770 /*
1771  * Return the tsc target value for a delay of (ns).
1772  *
1773  * Returns -1 if the TSC is not supported.
1774  */
1775 tsc_uclock_t
1776 tsc_get_target(int ns)
1777 {
1778 #if defined(_RDTSC_SUPPORTED_)
1779 	if (cpu_feature & CPUID_TSC) {
1780 		return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1781 	}
1782 #endif
1783 	return(-1);
1784 }
1785 
1786 /*
1787  * Compare the tsc against the passed target
1788  *
1789  * Returns +1 if the target has been reached
1790  * Returns  0 if the target has not yet been reached
1791  * Returns -1 if the TSC is not supported.
1792  *
1793  * Typical use:		while (tsc_test_target(target) == 0) { ...poll... }
1794  */
1795 int
1796 tsc_test_target(int64_t target)
1797 {
1798 #if defined(_RDTSC_SUPPORTED_)
1799 	if (cpu_feature & CPUID_TSC) {
1800 		if ((int64_t)(target - rdtsc()) <= 0)
1801 			return(1);
1802 		return(0);
1803 	}
1804 #endif
1805 	return(-1);
1806 }
1807 
1808 /*
1809  * Delay the specified number of nanoseconds using the tsc.  This function
1810  * returns immediately if the TSC is not supported.  At least one cpu_pause()
1811  * will be issued.
1812  */
1813 void
1814 tsc_delay(int ns)
1815 {
1816 	int64_t clk;
1817 
1818 	clk = tsc_get_target(ns);
1819 	cpu_pause();
1820 	cpu_pause();
1821 	while (tsc_test_target(clk) == 0) {
1822 		cpu_pause();
1823 		cpu_pause();
1824 		cpu_pause();
1825 		cpu_pause();
1826 	}
1827 }
1828