xref: /dragonfly/sys/kern/kern_clock.c (revision c03f08f3)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
72  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73  * $DragonFly: src/sys/kern/kern_clock.c,v 1.59 2007/06/30 21:52:19 swildner Exp $
74  */
75 
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
78 #include "opt_pctrack.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/kernel.h>
84 #include <sys/kinfo.h>
85 #include <sys/proc.h>
86 #include <sys/malloc.h>
87 #include <sys/resourcevar.h>
88 #include <sys/signalvar.h>
89 #include <sys/timex.h>
90 #include <sys/timepps.h>
91 #include <vm/vm.h>
92 #include <sys/lock.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_extern.h>
96 #include <sys/sysctl.h>
97 #include <sys/thread2.h>
98 
99 #include <machine/cpu.h>
100 #include <machine/limits.h>
101 #include <machine/smp.h>
102 
103 #ifdef GPROF
104 #include <sys/gmon.h>
105 #endif
106 
107 #ifdef DEVICE_POLLING
108 extern void init_device_poll(void);
109 #endif
110 
111 #ifdef DEBUG_PCTRACK
112 static void do_pctrack(struct intrframe *frame, int which);
113 #endif
114 
115 static void initclocks (void *dummy);
116 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
117 
118 /*
119  * Some of these don't belong here, but it's easiest to concentrate them.
120  * Note that cpu_time counts in microseconds, but most userland programs
121  * just compare relative times against the total by delta.
122  */
123 struct kinfo_cputime cputime_percpu[MAXCPU];
124 #ifdef DEBUG_PCTRACK
125 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
126 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
127 #endif
128 
129 #ifdef SMP
130 static int
131 sysctl_cputime(SYSCTL_HANDLER_ARGS)
132 {
133 	int cpu, error = 0;
134 	size_t size = sizeof(struct kinfo_cputime);
135 
136 	for (cpu = 0; cpu < ncpus; ++cpu) {
137 		if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
138 			break;
139 	}
140 
141 	return (error);
142 }
143 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
144 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
145 #else
146 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
147     "CPU time statistics");
148 #endif
149 
150 /*
151  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
152  * microuptime().  microtime() is not drift compensated.  The real uptime
153  * with compensation is nanotime() - bootime.  boottime is recalculated
154  * whenever the real time is set based on the compensated elapsed time
155  * in seconds (gd->gd_time_seconds).
156  *
157  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
158  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
159  * the real time.
160  */
161 struct timespec boottime;	/* boot time (realtime) for reference only */
162 time_t time_second;		/* read-only 'passive' uptime in seconds */
163 
164 /*
165  * basetime is used to calculate the compensated real time of day.  The
166  * basetime can be modified on a per-tick basis by the adjtime(),
167  * ntp_adjtime(), and sysctl-based time correction APIs.
168  *
169  * Note that frequency corrections can also be made by adjusting
170  * gd_cpuclock_base.
171  *
172  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
173  * used on both SMP and UP systems to avoid MP races between cpu's and
174  * interrupt races on UP systems.
175  */
176 #define BASETIME_ARYSIZE	16
177 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
178 static struct timespec basetime[BASETIME_ARYSIZE];
179 static volatile int basetime_index;
180 
181 static int
182 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
183 {
184 	struct timespec *bt;
185 	int error;
186 	int index;
187 
188 	/*
189 	 * Because basetime data and index may be updated by another cpu,
190 	 * a load fence is required to ensure that the data we read has
191 	 * not been speculatively read relative to a possibly updated index.
192 	 */
193 	index = basetime_index;
194 	cpu_lfence();
195 	bt = &basetime[index];
196 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
197 	return (error);
198 }
199 
200 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
201     &boottime, timespec, "System boottime");
202 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
203     sysctl_get_basetime, "S,timespec", "System basetime");
204 
205 static void hardclock(systimer_t info, struct intrframe *frame);
206 static void statclock(systimer_t info, struct intrframe *frame);
207 static void schedclock(systimer_t info, struct intrframe *frame);
208 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
209 
210 int	ticks;			/* system master ticks at hz */
211 int	clocks_running;		/* tsleep/timeout clocks operational */
212 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
213 int64_t	nsec_acc;		/* accumulator */
214 
215 /* NTPD time correction fields */
216 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
217 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
218 int64_t	ntp_delta;		/* one-time correction in nsec */
219 int64_t ntp_big_delta = 1000000000;
220 int32_t	ntp_tick_delta;		/* current adjustment rate */
221 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
222 time_t	ntp_leap_second;	/* time of next leap second */
223 int	ntp_leap_insert;	/* whether to insert or remove a second */
224 
225 /*
226  * Finish initializing clock frequencies and start all clocks running.
227  */
228 /* ARGSUSED*/
229 static void
230 initclocks(void *dummy)
231 {
232 #ifdef DEVICE_POLLING
233 	init_device_poll();
234 #endif
235 	/*psratio = profhz / stathz;*/
236 	initclocks_pcpu();
237 	clocks_running = 1;
238 }
239 
240 /*
241  * Called on a per-cpu basis
242  */
243 void
244 initclocks_pcpu(void)
245 {
246 	struct globaldata *gd = mycpu;
247 
248 	crit_enter();
249 	if (gd->gd_cpuid == 0) {
250 	    gd->gd_time_seconds = 1;
251 	    gd->gd_cpuclock_base = sys_cputimer->count();
252 	} else {
253 	    /* XXX */
254 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
255 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
256 	}
257 
258 	/*
259 	 * Use a non-queued periodic systimer to prevent multiple ticks from
260 	 * building up if the sysclock jumps forward (8254 gets reset).  The
261 	 * sysclock will never jump backwards.  Our time sync is based on
262 	 * the actual sysclock, not the ticks count.
263 	 */
264 	systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
265 	systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
266 	/* XXX correct the frequency for scheduler / estcpu tests */
267 	systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
268 				NULL, ESTCPUFREQ);
269 	crit_exit();
270 }
271 
272 /*
273  * This sets the current real time of day.  Timespecs are in seconds and
274  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
275  * instead we adjust basetime so basetime + gd_* results in the current
276  * time of day.  This way the gd_* fields are guarenteed to represent
277  * a monotonically increasing 'uptime' value.
278  *
279  * When set_timeofday() is called from userland, the system call forces it
280  * onto cpu #0 since only cpu #0 can update basetime_index.
281  */
282 void
283 set_timeofday(struct timespec *ts)
284 {
285 	struct timespec *nbt;
286 	int ni;
287 
288 	/*
289 	 * XXX SMP / non-atomic basetime updates
290 	 */
291 	crit_enter();
292 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
293 	nbt = &basetime[ni];
294 	nanouptime(nbt);
295 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
296 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
297 	if (nbt->tv_nsec < 0) {
298 	    nbt->tv_nsec += 1000000000;
299 	    --nbt->tv_sec;
300 	}
301 
302 	/*
303 	 * Note that basetime diverges from boottime as the clock drift is
304 	 * compensated for, so we cannot do away with boottime.  When setting
305 	 * the absolute time of day the drift is 0 (for an instant) and we
306 	 * can simply assign boottime to basetime.
307 	 *
308 	 * Note that nanouptime() is based on gd_time_seconds which is drift
309 	 * compensated up to a point (it is guarenteed to remain monotonically
310 	 * increasing).  gd_time_seconds is thus our best uptime guess and
311 	 * suitable for use in the boottime calculation.  It is already taken
312 	 * into account in the basetime calculation above.
313 	 */
314 	boottime.tv_sec = nbt->tv_sec;
315 	ntp_delta = 0;
316 
317 	/*
318 	 * We now have a new basetime, make sure all other cpus have it,
319 	 * then update the index.
320 	 */
321 	cpu_sfence();
322 	basetime_index = ni;
323 
324 	crit_exit();
325 }
326 
327 /*
328  * Each cpu has its own hardclock, but we only increments ticks and softticks
329  * on cpu #0.
330  *
331  * NOTE! systimer! the MP lock might not be held here.  We can only safely
332  * manipulate objects owned by the current cpu.
333  */
334 static void
335 hardclock(systimer_t info, struct intrframe *frame)
336 {
337 	sysclock_t cputicks;
338 	struct proc *p;
339 	struct globaldata *gd = mycpu;
340 
341 	/*
342 	 * Realtime updates are per-cpu.  Note that timer corrections as
343 	 * returned by microtime() and friends make an additional adjustment
344 	 * using a system-wise 'basetime', but the running time is always
345 	 * taken from the per-cpu globaldata area.  Since the same clock
346 	 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
347 	 * stay in synch.
348 	 *
349 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
350 	 * to reverse index gd_cpuclock_base, but that it is possible for
351 	 * it to temporarily get behind in the seconds if something in the
352 	 * system locks interrupts for a long period of time.  Since periodic
353 	 * timers count events, though everything should resynch again
354 	 * immediately.
355 	 */
356 	cputicks = info->time - gd->gd_cpuclock_base;
357 	if (cputicks >= sys_cputimer->freq) {
358 		++gd->gd_time_seconds;
359 		gd->gd_cpuclock_base += sys_cputimer->freq;
360 	}
361 
362 	/*
363 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
364 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
365 	 * by updating basetime.
366 	 */
367 	if (gd->gd_cpuid == 0) {
368 	    struct timespec *nbt;
369 	    struct timespec nts;
370 	    int leap;
371 	    int ni;
372 
373 	    ++ticks;
374 
375 #if 0
376 	    if (tco->tc_poll_pps)
377 		tco->tc_poll_pps(tco);
378 #endif
379 
380 	    /*
381 	     * Calculate the new basetime index.  We are in a critical section
382 	     * on cpu #0 and can safely play with basetime_index.  Start
383 	     * with the current basetime and then make adjustments.
384 	     */
385 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
386 	    nbt = &basetime[ni];
387 	    *nbt = basetime[basetime_index];
388 
389 	    /*
390 	     * Apply adjtime corrections.  (adjtime() API)
391 	     *
392 	     * adjtime() only runs on cpu #0 so our critical section is
393 	     * sufficient to access these variables.
394 	     */
395 	    if (ntp_delta != 0) {
396 		nbt->tv_nsec += ntp_tick_delta;
397 		ntp_delta -= ntp_tick_delta;
398 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
399 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
400 			ntp_tick_delta = ntp_delta;
401  		}
402  	    }
403 
404 	    /*
405 	     * Apply permanent frequency corrections.  (sysctl API)
406 	     */
407 	    if (ntp_tick_permanent != 0) {
408 		ntp_tick_acc += ntp_tick_permanent;
409 		if (ntp_tick_acc >= (1LL << 32)) {
410 		    nbt->tv_nsec += ntp_tick_acc >> 32;
411 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
412 		} else if (ntp_tick_acc <= -(1LL << 32)) {
413 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
414 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
415 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
416 		}
417  	    }
418 
419 	    if (nbt->tv_nsec >= 1000000000) {
420 		    nbt->tv_sec++;
421 		    nbt->tv_nsec -= 1000000000;
422 	    } else if (nbt->tv_nsec < 0) {
423 		    nbt->tv_sec--;
424 		    nbt->tv_nsec += 1000000000;
425 	    }
426 
427 	    /*
428 	     * Another per-tick compensation.  (for ntp_adjtime() API)
429 	     */
430 	    if (nsec_adj != 0) {
431 		nsec_acc += nsec_adj;
432 		if (nsec_acc >= 0x100000000LL) {
433 		    nbt->tv_nsec += nsec_acc >> 32;
434 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
435 		} else if (nsec_acc <= -0x100000000LL) {
436 		    nbt->tv_nsec -= -nsec_acc >> 32;
437 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
438 		}
439 		if (nbt->tv_nsec >= 1000000000) {
440 		    nbt->tv_nsec -= 1000000000;
441 		    ++nbt->tv_sec;
442 		} else if (nbt->tv_nsec < 0) {
443 		    nbt->tv_nsec += 1000000000;
444 		    --nbt->tv_sec;
445 		}
446 	    }
447 
448 	    /************************************************************
449 	     *			LEAP SECOND CORRECTION			*
450 	     ************************************************************
451 	     *
452 	     * Taking into account all the corrections made above, figure
453 	     * out the new real time.  If the seconds field has changed
454 	     * then apply any pending leap-second corrections.
455 	     */
456 	    getnanotime_nbt(nbt, &nts);
457 
458 	    if (time_second != nts.tv_sec) {
459 		/*
460 		 * Apply leap second (sysctl API).  Adjust nts for changes
461 		 * so we do not have to call getnanotime_nbt again.
462 		 */
463 		if (ntp_leap_second) {
464 		    if (ntp_leap_second == nts.tv_sec) {
465 			if (ntp_leap_insert) {
466 			    nbt->tv_sec++;
467 			    nts.tv_sec++;
468 			} else {
469 			    nbt->tv_sec--;
470 			    nts.tv_sec--;
471 			}
472 			ntp_leap_second--;
473 		    }
474 		}
475 
476 		/*
477 		 * Apply leap second (ntp_adjtime() API), calculate a new
478 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
479 		 * as a per-second value but we need it as a per-tick value.
480 		 */
481 		leap = ntp_update_second(time_second, &nsec_adj);
482 		nsec_adj /= hz;
483 		nbt->tv_sec += leap;
484 		nts.tv_sec += leap;
485 
486 		/*
487 		 * Update the time_second 'approximate time' global.
488 		 */
489 		time_second = nts.tv_sec;
490 	    }
491 
492 	    /*
493 	     * Finally, our new basetime is ready to go live!
494 	     */
495 	    cpu_sfence();
496 	    basetime_index = ni;
497 
498 	    /*
499 	     * Figure out how badly the system is starved for memory
500 	     */
501 	    vm_fault_ratecheck();
502 	}
503 
504 	/*
505 	 * softticks are handled for all cpus
506 	 */
507 	hardclock_softtick(gd);
508 
509 	/*
510 	 * ITimer handling is per-tick, per-cpu.  I don't think ksignal()
511 	 * is mpsafe on curproc, so XXX get the mplock.
512 	 */
513 	if ((p = curproc) != NULL && try_mplock()) {
514 		if (frame && CLKF_USERMODE(frame) &&
515 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
516 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
517 			ksignal(p, SIGVTALRM);
518 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
519 		    itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
520 			ksignal(p, SIGPROF);
521 		rel_mplock();
522 	}
523 	setdelayed();
524 }
525 
526 /*
527  * The statistics clock typically runs at a 125Hz rate, and is intended
528  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
529  *
530  * NOTE! systimer! the MP lock might not be held here.  We can only safely
531  * manipulate objects owned by the current cpu.
532  *
533  * The stats clock is responsible for grabbing a profiling sample.
534  * Most of the statistics are only used by user-level statistics programs.
535  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
536  * p->p_estcpu.
537  *
538  * Like the other clocks, the stat clock is called from what is effectively
539  * a fast interrupt, so the context should be the thread/process that got
540  * interrupted.
541  */
542 static void
543 statclock(systimer_t info, struct intrframe *frame)
544 {
545 #ifdef GPROF
546 	struct gmonparam *g;
547 	int i;
548 #endif
549 	thread_t td;
550 	struct proc *p;
551 	int bump;
552 	struct timeval tv;
553 	struct timeval *stv;
554 
555 	/*
556 	 * How big was our timeslice relative to the last time?
557 	 */
558 	microuptime(&tv);	/* mpsafe */
559 	stv = &mycpu->gd_stattv;
560 	if (stv->tv_sec == 0) {
561 	    bump = 1;
562 	} else {
563 	    bump = tv.tv_usec - stv->tv_usec +
564 		(tv.tv_sec - stv->tv_sec) * 1000000;
565 	    if (bump < 0)
566 		bump = 0;
567 	    if (bump > 1000000)
568 		bump = 1000000;
569 	}
570 	*stv = tv;
571 
572 	td = curthread;
573 	p = td->td_proc;
574 
575 	if (frame && CLKF_USERMODE(frame)) {
576 		/*
577 		 * Came from userland, handle user time and deal with
578 		 * possible process.
579 		 */
580 		if (p && (p->p_flag & P_PROFIL))
581 			addupc_intr(p, CLKF_PC(frame), 1);
582 		td->td_uticks += bump;
583 
584 		/*
585 		 * Charge the time as appropriate
586 		 */
587 		if (p && p->p_nice > NZERO)
588 			cpu_time.cp_nice += bump;
589 		else
590 			cpu_time.cp_user += bump;
591 	} else {
592 #ifdef GPROF
593 		/*
594 		 * Kernel statistics are just like addupc_intr, only easier.
595 		 */
596 		g = &_gmonparam;
597 		if (g->state == GMON_PROF_ON && frame) {
598 			i = CLKF_PC(frame) - g->lowpc;
599 			if (i < g->textsize) {
600 				i /= HISTFRACTION * sizeof(*g->kcount);
601 				g->kcount[i]++;
602 			}
603 		}
604 #endif
605 		/*
606 		 * Came from kernel mode, so we were:
607 		 * - handling an interrupt,
608 		 * - doing syscall or trap work on behalf of the current
609 		 *   user process, or
610 		 * - spinning in the idle loop.
611 		 * Whichever it is, charge the time as appropriate.
612 		 * Note that we charge interrupts to the current process,
613 		 * regardless of whether they are ``for'' that process,
614 		 * so that we know how much of its real time was spent
615 		 * in ``non-process'' (i.e., interrupt) work.
616 		 *
617 		 * XXX assume system if frame is NULL.  A NULL frame
618 		 * can occur if ipi processing is done from a crit_exit().
619 		 */
620 		if (frame && CLKF_INTR(frame))
621 			td->td_iticks += bump;
622 		else
623 			td->td_sticks += bump;
624 
625 		if (frame && CLKF_INTR(frame)) {
626 #ifdef DEBUG_PCTRACK
627 			do_pctrack(frame, PCTRACK_INT);
628 #endif
629 			cpu_time.cp_intr += bump;
630 		} else {
631 			if (td == &mycpu->gd_idlethread) {
632 				cpu_time.cp_idle += bump;
633 			} else {
634 #ifdef DEBUG_PCTRACK
635 				if (frame)
636 					do_pctrack(frame, PCTRACK_SYS);
637 #endif
638 				cpu_time.cp_sys += bump;
639 			}
640 		}
641 	}
642 }
643 
644 #ifdef DEBUG_PCTRACK
645 /*
646  * Sample the PC when in the kernel or in an interrupt.  User code can
647  * retrieve the information and generate a histogram or other output.
648  */
649 
650 static void
651 do_pctrack(struct intrframe *frame, int which)
652 {
653 	struct kinfo_pctrack *pctrack;
654 
655 	pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
656 	pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
657 		(void *)CLKF_PC(frame);
658 	++pctrack->pc_index;
659 }
660 
661 static int
662 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
663 {
664 	struct kinfo_pcheader head;
665 	int error;
666 	int cpu;
667 	int ntrack;
668 
669 	head.pc_ntrack = PCTRACK_SIZE;
670 	head.pc_arysize = PCTRACK_ARYSIZE;
671 
672 	if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
673 		return (error);
674 
675 	for (cpu = 0; cpu < ncpus; ++cpu) {
676 		for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
677 			error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
678 					   sizeof(struct kinfo_pctrack));
679 			if (error)
680 				break;
681 		}
682 		if (error)
683 			break;
684 	}
685 	return (error);
686 }
687 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
688 	sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
689 
690 #endif
691 
692 /*
693  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
694  * the MP lock might not be held.  We can safely manipulate parts of curproc
695  * but that's about it.
696  *
697  * Each cpu has its own scheduler clock.
698  */
699 static void
700 schedclock(systimer_t info, struct intrframe *frame)
701 {
702 	struct lwp *lp;
703 	struct rusage *ru;
704 	struct vmspace *vm;
705 	long rss;
706 
707 	if ((lp = lwkt_preempted_proc()) != NULL) {
708 		/*
709 		 * Account for cpu time used and hit the scheduler.  Note
710 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
711 		 * HERE.
712 		 */
713 		++lp->lwp_cpticks;
714 		lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
715 						       info->time);
716 	}
717 	if ((lp = curthread->td_lwp) != NULL) {
718 		/*
719 		 * Update resource usage integrals and maximums.
720 		 */
721 		if ((ru = &lp->lwp_proc->p_ru) &&
722 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
723 			ru->ru_ixrss += pgtok(vm->vm_tsize);
724 			ru->ru_idrss += pgtok(vm->vm_dsize);
725 			ru->ru_isrss += pgtok(vm->vm_ssize);
726 			rss = pgtok(vmspace_resident_count(vm));
727 			if (ru->ru_maxrss < rss)
728 				ru->ru_maxrss = rss;
729 		}
730 	}
731 }
732 
733 /*
734  * Compute number of ticks for the specified amount of time.  The
735  * return value is intended to be used in a clock interrupt timed
736  * operation and guarenteed to meet or exceed the requested time.
737  * If the representation overflows, return INT_MAX.  The minimum return
738  * value is 1 ticks and the function will average the calculation up.
739  * If any value greater then 0 microseconds is supplied, a value
740  * of at least 2 will be returned to ensure that a near-term clock
741  * interrupt does not cause the timeout to occur (degenerately) early.
742  *
743  * Note that limit checks must take into account microseconds, which is
744  * done simply by using the smaller signed long maximum instead of
745  * the unsigned long maximum.
746  *
747  * If ints have 32 bits, then the maximum value for any timeout in
748  * 10ms ticks is 248 days.
749  */
750 int
751 tvtohz_high(struct timeval *tv)
752 {
753 	int ticks;
754 	long sec, usec;
755 
756 	sec = tv->tv_sec;
757 	usec = tv->tv_usec;
758 	if (usec < 0) {
759 		sec--;
760 		usec += 1000000;
761 	}
762 	if (sec < 0) {
763 #ifdef DIAGNOSTIC
764 		if (usec > 0) {
765 			sec++;
766 			usec -= 1000000;
767 		}
768 		kprintf("tvtohz_high: negative time difference %ld sec %ld usec\n",
769 		       sec, usec);
770 #endif
771 		ticks = 1;
772 	} else if (sec <= INT_MAX / hz) {
773 		ticks = (int)(sec * hz +
774 			    ((u_long)usec + (tick - 1)) / tick) + 1;
775 	} else {
776 		ticks = INT_MAX;
777 	}
778 	return (ticks);
779 }
780 
781 /*
782  * Compute number of ticks for the specified amount of time, erroring on
783  * the side of it being too low to ensure that sleeping the returned number
784  * of ticks will not result in a late return.
785  *
786  * The supplied timeval may not be negative and should be normalized.  A
787  * return value of 0 is possible if the timeval converts to less then
788  * 1 tick.
789  *
790  * If ints have 32 bits, then the maximum value for any timeout in
791  * 10ms ticks is 248 days.
792  */
793 int
794 tvtohz_low(struct timeval *tv)
795 {
796 	int ticks;
797 	long sec;
798 
799 	sec = tv->tv_sec;
800 	if (sec <= INT_MAX / hz)
801 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
802 	else
803 		ticks = INT_MAX;
804 	return (ticks);
805 }
806 
807 
808 /*
809  * Start profiling on a process.
810  *
811  * Kernel profiling passes proc0 which never exits and hence
812  * keeps the profile clock running constantly.
813  */
814 void
815 startprofclock(struct proc *p)
816 {
817 	if ((p->p_flag & P_PROFIL) == 0) {
818 		p->p_flag |= P_PROFIL;
819 #if 0	/* XXX */
820 		if (++profprocs == 1 && stathz != 0) {
821 			crit_enter();
822 			psdiv = psratio;
823 			setstatclockrate(profhz);
824 			crit_exit();
825 		}
826 #endif
827 	}
828 }
829 
830 /*
831  * Stop profiling on a process.
832  */
833 void
834 stopprofclock(struct proc *p)
835 {
836 	if (p->p_flag & P_PROFIL) {
837 		p->p_flag &= ~P_PROFIL;
838 #if 0	/* XXX */
839 		if (--profprocs == 0 && stathz != 0) {
840 			crit_enter();
841 			psdiv = 1;
842 			setstatclockrate(stathz);
843 			crit_exit();
844 		}
845 #endif
846 	}
847 }
848 
849 /*
850  * Return information about system clocks.
851  */
852 static int
853 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
854 {
855 	struct kinfo_clockinfo clkinfo;
856 	/*
857 	 * Construct clockinfo structure.
858 	 */
859 	clkinfo.ci_hz = hz;
860 	clkinfo.ci_tick = tick;
861 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
862 	clkinfo.ci_profhz = profhz;
863 	clkinfo.ci_stathz = stathz ? stathz : hz;
864 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
865 }
866 
867 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
868 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
869 
870 /*
871  * We have eight functions for looking at the clock, four for
872  * microseconds and four for nanoseconds.  For each there is fast
873  * but less precise version "get{nano|micro}[up]time" which will
874  * return a time which is up to 1/HZ previous to the call, whereas
875  * the raw version "{nano|micro}[up]time" will return a timestamp
876  * which is as precise as possible.  The "up" variants return the
877  * time relative to system boot, these are well suited for time
878  * interval measurements.
879  *
880  * Each cpu independantly maintains the current time of day, so all
881  * we need to do to protect ourselves from changes is to do a loop
882  * check on the seconds field changing out from under us.
883  *
884  * The system timer maintains a 32 bit count and due to various issues
885  * it is possible for the calculated delta to occassionally exceed
886  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
887  * multiplication can easily overflow, so we deal with the case.  For
888  * uniformity we deal with the case in the usec case too.
889  */
890 void
891 getmicrouptime(struct timeval *tvp)
892 {
893 	struct globaldata *gd = mycpu;
894 	sysclock_t delta;
895 
896 	do {
897 		tvp->tv_sec = gd->gd_time_seconds;
898 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
899 	} while (tvp->tv_sec != gd->gd_time_seconds);
900 
901 	if (delta >= sys_cputimer->freq) {
902 		tvp->tv_sec += delta / sys_cputimer->freq;
903 		delta %= sys_cputimer->freq;
904 	}
905 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
906 	if (tvp->tv_usec >= 1000000) {
907 		tvp->tv_usec -= 1000000;
908 		++tvp->tv_sec;
909 	}
910 }
911 
912 void
913 getnanouptime(struct timespec *tsp)
914 {
915 	struct globaldata *gd = mycpu;
916 	sysclock_t delta;
917 
918 	do {
919 		tsp->tv_sec = gd->gd_time_seconds;
920 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
921 	} while (tsp->tv_sec != gd->gd_time_seconds);
922 
923 	if (delta >= sys_cputimer->freq) {
924 		tsp->tv_sec += delta / sys_cputimer->freq;
925 		delta %= sys_cputimer->freq;
926 	}
927 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
928 }
929 
930 void
931 microuptime(struct timeval *tvp)
932 {
933 	struct globaldata *gd = mycpu;
934 	sysclock_t delta;
935 
936 	do {
937 		tvp->tv_sec = gd->gd_time_seconds;
938 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
939 	} while (tvp->tv_sec != gd->gd_time_seconds);
940 
941 	if (delta >= sys_cputimer->freq) {
942 		tvp->tv_sec += delta / sys_cputimer->freq;
943 		delta %= sys_cputimer->freq;
944 	}
945 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
946 }
947 
948 void
949 nanouptime(struct timespec *tsp)
950 {
951 	struct globaldata *gd = mycpu;
952 	sysclock_t delta;
953 
954 	do {
955 		tsp->tv_sec = gd->gd_time_seconds;
956 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
957 	} while (tsp->tv_sec != gd->gd_time_seconds);
958 
959 	if (delta >= sys_cputimer->freq) {
960 		tsp->tv_sec += delta / sys_cputimer->freq;
961 		delta %= sys_cputimer->freq;
962 	}
963 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
964 }
965 
966 /*
967  * realtime routines
968  */
969 
970 void
971 getmicrotime(struct timeval *tvp)
972 {
973 	struct globaldata *gd = mycpu;
974 	struct timespec *bt;
975 	sysclock_t delta;
976 
977 	do {
978 		tvp->tv_sec = gd->gd_time_seconds;
979 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
980 	} while (tvp->tv_sec != gd->gd_time_seconds);
981 
982 	if (delta >= sys_cputimer->freq) {
983 		tvp->tv_sec += delta / sys_cputimer->freq;
984 		delta %= sys_cputimer->freq;
985 	}
986 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
987 
988 	bt = &basetime[basetime_index];
989 	tvp->tv_sec += bt->tv_sec;
990 	tvp->tv_usec += bt->tv_nsec / 1000;
991 	while (tvp->tv_usec >= 1000000) {
992 		tvp->tv_usec -= 1000000;
993 		++tvp->tv_sec;
994 	}
995 }
996 
997 void
998 getnanotime(struct timespec *tsp)
999 {
1000 	struct globaldata *gd = mycpu;
1001 	struct timespec *bt;
1002 	sysclock_t delta;
1003 
1004 	do {
1005 		tsp->tv_sec = gd->gd_time_seconds;
1006 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1007 	} while (tsp->tv_sec != gd->gd_time_seconds);
1008 
1009 	if (delta >= sys_cputimer->freq) {
1010 		tsp->tv_sec += delta / sys_cputimer->freq;
1011 		delta %= sys_cputimer->freq;
1012 	}
1013 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1014 
1015 	bt = &basetime[basetime_index];
1016 	tsp->tv_sec += bt->tv_sec;
1017 	tsp->tv_nsec += bt->tv_nsec;
1018 	while (tsp->tv_nsec >= 1000000000) {
1019 		tsp->tv_nsec -= 1000000000;
1020 		++tsp->tv_sec;
1021 	}
1022 }
1023 
1024 static void
1025 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1026 {
1027 	struct globaldata *gd = mycpu;
1028 	sysclock_t delta;
1029 
1030 	do {
1031 		tsp->tv_sec = gd->gd_time_seconds;
1032 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1033 	} while (tsp->tv_sec != gd->gd_time_seconds);
1034 
1035 	if (delta >= sys_cputimer->freq) {
1036 		tsp->tv_sec += delta / sys_cputimer->freq;
1037 		delta %= sys_cputimer->freq;
1038 	}
1039 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1040 
1041 	tsp->tv_sec += nbt->tv_sec;
1042 	tsp->tv_nsec += nbt->tv_nsec;
1043 	while (tsp->tv_nsec >= 1000000000) {
1044 		tsp->tv_nsec -= 1000000000;
1045 		++tsp->tv_sec;
1046 	}
1047 }
1048 
1049 
1050 void
1051 microtime(struct timeval *tvp)
1052 {
1053 	struct globaldata *gd = mycpu;
1054 	struct timespec *bt;
1055 	sysclock_t delta;
1056 
1057 	do {
1058 		tvp->tv_sec = gd->gd_time_seconds;
1059 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1060 	} while (tvp->tv_sec != gd->gd_time_seconds);
1061 
1062 	if (delta >= sys_cputimer->freq) {
1063 		tvp->tv_sec += delta / sys_cputimer->freq;
1064 		delta %= sys_cputimer->freq;
1065 	}
1066 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1067 
1068 	bt = &basetime[basetime_index];
1069 	tvp->tv_sec += bt->tv_sec;
1070 	tvp->tv_usec += bt->tv_nsec / 1000;
1071 	while (tvp->tv_usec >= 1000000) {
1072 		tvp->tv_usec -= 1000000;
1073 		++tvp->tv_sec;
1074 	}
1075 }
1076 
1077 void
1078 nanotime(struct timespec *tsp)
1079 {
1080 	struct globaldata *gd = mycpu;
1081 	struct timespec *bt;
1082 	sysclock_t delta;
1083 
1084 	do {
1085 		tsp->tv_sec = gd->gd_time_seconds;
1086 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1087 	} while (tsp->tv_sec != gd->gd_time_seconds);
1088 
1089 	if (delta >= sys_cputimer->freq) {
1090 		tsp->tv_sec += delta / sys_cputimer->freq;
1091 		delta %= sys_cputimer->freq;
1092 	}
1093 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1094 
1095 	bt = &basetime[basetime_index];
1096 	tsp->tv_sec += bt->tv_sec;
1097 	tsp->tv_nsec += bt->tv_nsec;
1098 	while (tsp->tv_nsec >= 1000000000) {
1099 		tsp->tv_nsec -= 1000000000;
1100 		++tsp->tv_sec;
1101 	}
1102 }
1103 
1104 /*
1105  * note: this is not exactly synchronized with real time.  To do that we
1106  * would have to do what microtime does and check for a nanoseconds overflow.
1107  */
1108 time_t
1109 get_approximate_time_t(void)
1110 {
1111 	struct globaldata *gd = mycpu;
1112 	struct timespec *bt;
1113 
1114 	bt = &basetime[basetime_index];
1115 	return(gd->gd_time_seconds + bt->tv_sec);
1116 }
1117 
1118 int
1119 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1120 {
1121 	pps_params_t *app;
1122 	struct pps_fetch_args *fapi;
1123 #ifdef PPS_SYNC
1124 	struct pps_kcbind_args *kapi;
1125 #endif
1126 
1127 	switch (cmd) {
1128 	case PPS_IOC_CREATE:
1129 		return (0);
1130 	case PPS_IOC_DESTROY:
1131 		return (0);
1132 	case PPS_IOC_SETPARAMS:
1133 		app = (pps_params_t *)data;
1134 		if (app->mode & ~pps->ppscap)
1135 			return (EINVAL);
1136 		pps->ppsparam = *app;
1137 		return (0);
1138 	case PPS_IOC_GETPARAMS:
1139 		app = (pps_params_t *)data;
1140 		*app = pps->ppsparam;
1141 		app->api_version = PPS_API_VERS_1;
1142 		return (0);
1143 	case PPS_IOC_GETCAP:
1144 		*(int*)data = pps->ppscap;
1145 		return (0);
1146 	case PPS_IOC_FETCH:
1147 		fapi = (struct pps_fetch_args *)data;
1148 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1149 			return (EINVAL);
1150 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1151 			return (EOPNOTSUPP);
1152 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1153 		fapi->pps_info_buf = pps->ppsinfo;
1154 		return (0);
1155 	case PPS_IOC_KCBIND:
1156 #ifdef PPS_SYNC
1157 		kapi = (struct pps_kcbind_args *)data;
1158 		/* XXX Only root should be able to do this */
1159 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1160 			return (EINVAL);
1161 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1162 			return (EINVAL);
1163 		if (kapi->edge & ~pps->ppscap)
1164 			return (EINVAL);
1165 		pps->kcmode = kapi->edge;
1166 		return (0);
1167 #else
1168 		return (EOPNOTSUPP);
1169 #endif
1170 	default:
1171 		return (ENOTTY);
1172 	}
1173 }
1174 
1175 void
1176 pps_init(struct pps_state *pps)
1177 {
1178 	pps->ppscap |= PPS_TSFMT_TSPEC;
1179 	if (pps->ppscap & PPS_CAPTUREASSERT)
1180 		pps->ppscap |= PPS_OFFSETASSERT;
1181 	if (pps->ppscap & PPS_CAPTURECLEAR)
1182 		pps->ppscap |= PPS_OFFSETCLEAR;
1183 }
1184 
1185 void
1186 pps_event(struct pps_state *pps, sysclock_t count, int event)
1187 {
1188 	struct globaldata *gd;
1189 	struct timespec *tsp;
1190 	struct timespec *osp;
1191 	struct timespec *bt;
1192 	struct timespec ts;
1193 	sysclock_t *pcount;
1194 #ifdef PPS_SYNC
1195 	sysclock_t tcount;
1196 #endif
1197 	sysclock_t delta;
1198 	pps_seq_t *pseq;
1199 	int foff;
1200 	int fhard;
1201 
1202 	gd = mycpu;
1203 
1204 	/* Things would be easier with arrays... */
1205 	if (event == PPS_CAPTUREASSERT) {
1206 		tsp = &pps->ppsinfo.assert_timestamp;
1207 		osp = &pps->ppsparam.assert_offset;
1208 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1209 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1210 		pcount = &pps->ppscount[0];
1211 		pseq = &pps->ppsinfo.assert_sequence;
1212 	} else {
1213 		tsp = &pps->ppsinfo.clear_timestamp;
1214 		osp = &pps->ppsparam.clear_offset;
1215 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1216 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1217 		pcount = &pps->ppscount[1];
1218 		pseq = &pps->ppsinfo.clear_sequence;
1219 	}
1220 
1221 	/* Nothing really happened */
1222 	if (*pcount == count)
1223 		return;
1224 
1225 	*pcount = count;
1226 
1227 	do {
1228 		ts.tv_sec = gd->gd_time_seconds;
1229 		delta = count - gd->gd_cpuclock_base;
1230 	} while (ts.tv_sec != gd->gd_time_seconds);
1231 
1232 	if (delta >= sys_cputimer->freq) {
1233 		ts.tv_sec += delta / sys_cputimer->freq;
1234 		delta %= sys_cputimer->freq;
1235 	}
1236 	ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1237 	bt = &basetime[basetime_index];
1238 	ts.tv_sec += bt->tv_sec;
1239 	ts.tv_nsec += bt->tv_nsec;
1240 	while (ts.tv_nsec >= 1000000000) {
1241 		ts.tv_nsec -= 1000000000;
1242 		++ts.tv_sec;
1243 	}
1244 
1245 	(*pseq)++;
1246 	*tsp = ts;
1247 
1248 	if (foff) {
1249 		timespecadd(tsp, osp);
1250 		if (tsp->tv_nsec < 0) {
1251 			tsp->tv_nsec += 1000000000;
1252 			tsp->tv_sec -= 1;
1253 		}
1254 	}
1255 #ifdef PPS_SYNC
1256 	if (fhard) {
1257 		/* magic, at its best... */
1258 		tcount = count - pps->ppscount[2];
1259 		pps->ppscount[2] = count;
1260 		if (tcount >= sys_cputimer->freq) {
1261 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1262 				 sys_cputimer->freq64_nsec *
1263 				 (tcount % sys_cputimer->freq)) >> 32;
1264 		} else {
1265 			delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1266 		}
1267 		hardpps(tsp, delta);
1268 	}
1269 #endif
1270 }
1271 
1272