xref: /dragonfly/sys/kern/kern_clock.c (revision c2cd059b)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
72  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73  * $DragonFly: src/sys/kern/kern_clock.c,v 1.51 2006/03/24 18:30:33 dillon Exp $
74  */
75 
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/kernel.h>
83 #include <sys/kinfo.h>
84 #include <sys/proc.h>
85 #include <sys/malloc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/signalvar.h>
88 #include <sys/timex.h>
89 #include <sys/timepps.h>
90 #include <vm/vm.h>
91 #include <sys/lock.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_extern.h>
95 #include <sys/sysctl.h>
96 #include <sys/thread2.h>
97 
98 #include <machine/cpu.h>
99 #include <machine/limits.h>
100 #include <machine/smp.h>
101 
102 #ifdef GPROF
103 #include <sys/gmon.h>
104 #endif
105 
106 #ifdef DEVICE_POLLING
107 extern void init_device_poll(void);
108 #endif
109 
110 static void initclocks (void *dummy);
111 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
112 
113 /*
114  * Some of these don't belong here, but it's easiest to concentrate them.
115  * Note that cpu_time counts in microseconds, but most userland programs
116  * just compare relative times against the total by delta.
117  */
118 struct kinfo_cputime cputime_percpu[MAXCPU];
119 #ifdef SMP
120 static int
121 sysctl_cputime(SYSCTL_HANDLER_ARGS)
122 {
123 	int cpu, error = 0;
124 	size_t size = sizeof(struct kinfo_cputime);
125 
126 	for (cpu = 0; cpu < ncpus; ++cpu) {
127 		if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
128 			break;
129 	}
130 
131 	return (error);
132 }
133 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
134 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
135 #else
136 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
137     "CPU time statistics");
138 #endif
139 
140 /*
141  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
142  * microuptime().  microtime() is not drift compensated.  The real uptime
143  * with compensation is nanotime() - bootime.  boottime is recalculated
144  * whenever the real time is set based on the compensated elapsed time
145  * in seconds (gd->gd_time_seconds).
146  *
147  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
148  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
149  * the real time.
150  */
151 struct timespec boottime;	/* boot time (realtime) for reference only */
152 time_t time_second;		/* read-only 'passive' uptime in seconds */
153 
154 /*
155  * basetime is used to calculate the compensated real time of day.  The
156  * basetime can be modified on a per-tick basis by the adjtime(),
157  * ntp_adjtime(), and sysctl-based time correction APIs.
158  *
159  * Note that frequency corrections can also be made by adjusting
160  * gd_cpuclock_base.
161  *
162  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
163  * used on both SMP and UP systems to avoid MP races between cpu's and
164  * interrupt races on UP systems.
165  */
166 #define BASETIME_ARYSIZE	16
167 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
168 static struct timespec basetime[BASETIME_ARYSIZE];
169 static volatile int basetime_index;
170 
171 static int
172 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
173 {
174 	struct timespec *bt;
175 	int error;
176 	int index;
177 
178 	/*
179 	 * Because basetime data and index may be updated by another cpu,
180 	 * a load fence is required to ensure that the data we read has
181 	 * not been speculatively read relative to a possibly updated index.
182 	 */
183 	index = basetime_index;
184 	cpu_lfence();
185 	bt = &basetime[index];
186 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
187 	return (error);
188 }
189 
190 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
191     &boottime, timespec, "System boottime");
192 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
193     sysctl_get_basetime, "S,timespec", "System basetime");
194 
195 static void hardclock(systimer_t info, struct intrframe *frame);
196 static void statclock(systimer_t info, struct intrframe *frame);
197 static void schedclock(systimer_t info, struct intrframe *frame);
198 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
199 
200 int	ticks;			/* system master ticks at hz */
201 int	clocks_running;		/* tsleep/timeout clocks operational */
202 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
203 int64_t	nsec_acc;		/* accumulator */
204 
205 /* NTPD time correction fields */
206 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
207 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
208 int64_t	ntp_delta;		/* one-time correction in nsec */
209 int64_t ntp_big_delta = 1000000000;
210 int32_t	ntp_tick_delta;		/* current adjustment rate */
211 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
212 time_t	ntp_leap_second;	/* time of next leap second */
213 int	ntp_leap_insert;	/* whether to insert or remove a second */
214 
215 /*
216  * Finish initializing clock frequencies and start all clocks running.
217  */
218 /* ARGSUSED*/
219 static void
220 initclocks(void *dummy)
221 {
222 	cpu_initclocks();
223 #ifdef DEVICE_POLLING
224 	init_device_poll();
225 #endif
226 	/*psratio = profhz / stathz;*/
227 	initclocks_pcpu();
228 	clocks_running = 1;
229 }
230 
231 /*
232  * Called on a per-cpu basis
233  */
234 void
235 initclocks_pcpu(void)
236 {
237 	struct globaldata *gd = mycpu;
238 
239 	crit_enter();
240 	if (gd->gd_cpuid == 0) {
241 	    gd->gd_time_seconds = 1;
242 	    gd->gd_cpuclock_base = sys_cputimer->count();
243 	} else {
244 	    /* XXX */
245 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
246 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
247 	}
248 
249 	/*
250 	 * Use a non-queued periodic systimer to prevent multiple ticks from
251 	 * building up if the sysclock jumps forward (8254 gets reset).  The
252 	 * sysclock will never jump backwards.  Our time sync is based on
253 	 * the actual sysclock, not the ticks count.
254 	 */
255 	systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
256 	systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
257 	/* XXX correct the frequency for scheduler / estcpu tests */
258 	systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
259 				NULL, ESTCPUFREQ);
260 	crit_exit();
261 }
262 
263 /*
264  * This sets the current real time of day.  Timespecs are in seconds and
265  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
266  * instead we adjust basetime so basetime + gd_* results in the current
267  * time of day.  This way the gd_* fields are guarenteed to represent
268  * a monotonically increasing 'uptime' value.
269  *
270  * When set_timeofday() is called from userland, the system call forces it
271  * onto cpu #0 since only cpu #0 can update basetime_index.
272  */
273 void
274 set_timeofday(struct timespec *ts)
275 {
276 	struct timespec *nbt;
277 	int ni;
278 
279 	/*
280 	 * XXX SMP / non-atomic basetime updates
281 	 */
282 	crit_enter();
283 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
284 	nbt = &basetime[ni];
285 	nanouptime(nbt);
286 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
287 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
288 	if (nbt->tv_nsec < 0) {
289 	    nbt->tv_nsec += 1000000000;
290 	    --nbt->tv_sec;
291 	}
292 
293 	/*
294 	 * Note that basetime diverges from boottime as the clock drift is
295 	 * compensated for, so we cannot do away with boottime.  When setting
296 	 * the absolute time of day the drift is 0 (for an instant) and we
297 	 * can simply assign boottime to basetime.
298 	 *
299 	 * Note that nanouptime() is based on gd_time_seconds which is drift
300 	 * compensated up to a point (it is guarenteed to remain monotonically
301 	 * increasing).  gd_time_seconds is thus our best uptime guess and
302 	 * suitable for use in the boottime calculation.  It is already taken
303 	 * into account in the basetime calculation above.
304 	 */
305 	boottime.tv_sec = nbt->tv_sec;
306 	ntp_delta = 0;
307 
308 	/*
309 	 * We now have a new basetime, make sure all other cpus have it,
310 	 * then update the index.
311 	 */
312 	cpu_sfence();
313 	basetime_index = ni;
314 
315 	crit_exit();
316 }
317 
318 /*
319  * Each cpu has its own hardclock, but we only increments ticks and softticks
320  * on cpu #0.
321  *
322  * NOTE! systimer! the MP lock might not be held here.  We can only safely
323  * manipulate objects owned by the current cpu.
324  */
325 static void
326 hardclock(systimer_t info, struct intrframe *frame)
327 {
328 	sysclock_t cputicks;
329 	struct proc *p;
330 	struct pstats *pstats;
331 	struct globaldata *gd = mycpu;
332 
333 	/*
334 	 * Realtime updates are per-cpu.  Note that timer corrections as
335 	 * returned by microtime() and friends make an additional adjustment
336 	 * using a system-wise 'basetime', but the running time is always
337 	 * taken from the per-cpu globaldata area.  Since the same clock
338 	 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
339 	 * stay in synch.
340 	 *
341 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
342 	 * to reverse index gd_cpuclock_base, but that it is possible for
343 	 * it to temporarily get behind in the seconds if something in the
344 	 * system locks interrupts for a long period of time.  Since periodic
345 	 * timers count events, though everything should resynch again
346 	 * immediately.
347 	 */
348 	cputicks = info->time - gd->gd_cpuclock_base;
349 	if (cputicks >= sys_cputimer->freq) {
350 		++gd->gd_time_seconds;
351 		gd->gd_cpuclock_base += sys_cputimer->freq;
352 	}
353 
354 	/*
355 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
356 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
357 	 * by updating basetime.
358 	 */
359 	if (gd->gd_cpuid == 0) {
360 	    struct timespec *nbt;
361 	    struct timespec nts;
362 	    int leap;
363 	    int ni;
364 
365 	    ++ticks;
366 
367 #if 0
368 	    if (tco->tc_poll_pps)
369 		tco->tc_poll_pps(tco);
370 #endif
371 
372 	    /*
373 	     * Calculate the new basetime index.  We are in a critical section
374 	     * on cpu #0 and can safely play with basetime_index.  Start
375 	     * with the current basetime and then make adjustments.
376 	     */
377 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
378 	    nbt = &basetime[ni];
379 	    *nbt = basetime[basetime_index];
380 
381 	    /*
382 	     * Apply adjtime corrections.  (adjtime() API)
383 	     *
384 	     * adjtime() only runs on cpu #0 so our critical section is
385 	     * sufficient to access these variables.
386 	     */
387 	    if (ntp_delta != 0) {
388 		nbt->tv_nsec += ntp_tick_delta;
389 		ntp_delta -= ntp_tick_delta;
390 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
391 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
392 			ntp_tick_delta = ntp_delta;
393  		}
394  	    }
395 
396 	    /*
397 	     * Apply permanent frequency corrections.  (sysctl API)
398 	     */
399 	    if (ntp_tick_permanent != 0) {
400 		ntp_tick_acc += ntp_tick_permanent;
401 		if (ntp_tick_acc >= (1LL << 32)) {
402 		    nbt->tv_nsec += ntp_tick_acc >> 32;
403 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
404 		} else if (ntp_tick_acc <= -(1LL << 32)) {
405 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
406 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
407 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
408 		}
409  	    }
410 
411 	    if (nbt->tv_nsec >= 1000000000) {
412 		    nbt->tv_sec++;
413 		    nbt->tv_nsec -= 1000000000;
414 	    } else if (nbt->tv_nsec < 0) {
415 		    nbt->tv_sec--;
416 		    nbt->tv_nsec += 1000000000;
417 	    }
418 
419 	    /*
420 	     * Another per-tick compensation.  (for ntp_adjtime() API)
421 	     */
422 	    if (nsec_adj != 0) {
423 		nsec_acc += nsec_adj;
424 		if (nsec_acc >= 0x100000000LL) {
425 		    nbt->tv_nsec += nsec_acc >> 32;
426 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
427 		} else if (nsec_acc <= -0x100000000LL) {
428 		    nbt->tv_nsec -= -nsec_acc >> 32;
429 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
430 		}
431 		if (nbt->tv_nsec >= 1000000000) {
432 		    nbt->tv_nsec -= 1000000000;
433 		    ++nbt->tv_sec;
434 		} else if (nbt->tv_nsec < 0) {
435 		    nbt->tv_nsec += 1000000000;
436 		    --nbt->tv_sec;
437 		}
438 	    }
439 
440 	    /************************************************************
441 	     *			LEAP SECOND CORRECTION			*
442 	     ************************************************************
443 	     *
444 	     * Taking into account all the corrections made above, figure
445 	     * out the new real time.  If the seconds field has changed
446 	     * then apply any pending leap-second corrections.
447 	     */
448 	    getnanotime_nbt(nbt, &nts);
449 
450 	    if (time_second != nts.tv_sec) {
451 		/*
452 		 * Apply leap second (sysctl API).  Adjust nts for changes
453 		 * so we do not have to call getnanotime_nbt again.
454 		 */
455 		if (ntp_leap_second) {
456 		    if (ntp_leap_second == nts.tv_sec) {
457 			if (ntp_leap_insert) {
458 			    nbt->tv_sec++;
459 			    nts.tv_sec++;
460 			} else {
461 			    nbt->tv_sec--;
462 			    nts.tv_sec--;
463 			}
464 			ntp_leap_second--;
465 		    }
466 		}
467 
468 		/*
469 		 * Apply leap second (ntp_adjtime() API), calculate a new
470 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
471 		 * as a per-second value but we need it as a per-tick value.
472 		 */
473 		leap = ntp_update_second(time_second, &nsec_adj);
474 		nsec_adj /= hz;
475 		nbt->tv_sec += leap;
476 		nts.tv_sec += leap;
477 
478 		/*
479 		 * Update the time_second 'approximate time' global.
480 		 */
481 		time_second = nts.tv_sec;
482 	    }
483 
484 	    /*
485 	     * Finally, our new basetime is ready to go live!
486 	     */
487 	    cpu_sfence();
488 	    basetime_index = ni;
489 
490 	    /*
491 	     * Figure out how badly the system is starved for memory
492 	     */
493 	    vm_fault_ratecheck();
494 	}
495 
496 	/*
497 	 * softticks are handled for all cpus
498 	 */
499 	hardclock_softtick(gd);
500 
501 	/*
502 	 * ITimer handling is per-tick, per-cpu.  I don't think psignal()
503 	 * is mpsafe on curproc, so XXX get the mplock.
504 	 */
505 	if ((p = curproc) != NULL && try_mplock()) {
506 		pstats = p->p_stats;
507 		if (frame && CLKF_USERMODE(frame) &&
508 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
509 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
510 			psignal(p, SIGVTALRM);
511 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
512 		    itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
513 			psignal(p, SIGPROF);
514 		rel_mplock();
515 	}
516 	setdelayed();
517 }
518 
519 /*
520  * The statistics clock typically runs at a 125Hz rate, and is intended
521  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
522  *
523  * NOTE! systimer! the MP lock might not be held here.  We can only safely
524  * manipulate objects owned by the current cpu.
525  *
526  * The stats clock is responsible for grabbing a profiling sample.
527  * Most of the statistics are only used by user-level statistics programs.
528  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
529  * p->p_estcpu.
530  *
531  * Like the other clocks, the stat clock is called from what is effectively
532  * a fast interrupt, so the context should be the thread/process that got
533  * interrupted.
534  */
535 static void
536 statclock(systimer_t info, struct intrframe *frame)
537 {
538 #ifdef GPROF
539 	struct gmonparam *g;
540 	int i;
541 #endif
542 	thread_t td;
543 	struct proc *p;
544 	int bump;
545 	struct timeval tv;
546 	struct timeval *stv;
547 
548 	/*
549 	 * How big was our timeslice relative to the last time?
550 	 */
551 	microuptime(&tv);	/* mpsafe */
552 	stv = &mycpu->gd_stattv;
553 	if (stv->tv_sec == 0) {
554 	    bump = 1;
555 	} else {
556 	    bump = tv.tv_usec - stv->tv_usec +
557 		(tv.tv_sec - stv->tv_sec) * 1000000;
558 	    if (bump < 0)
559 		bump = 0;
560 	    if (bump > 1000000)
561 		bump = 1000000;
562 	}
563 	*stv = tv;
564 
565 	td = curthread;
566 	p = td->td_proc;
567 
568 	if (frame && CLKF_USERMODE(frame)) {
569 		/*
570 		 * Came from userland, handle user time and deal with
571 		 * possible process.
572 		 */
573 		if (p && (p->p_flag & P_PROFIL))
574 			addupc_intr(p, CLKF_PC(frame), 1);
575 		td->td_uticks += bump;
576 
577 		/*
578 		 * Charge the time as appropriate
579 		 */
580 		if (p && p->p_nice > NZERO)
581 			cpu_time.cp_nice += bump;
582 		else
583 			cpu_time.cp_user += bump;
584 	} else {
585 #ifdef GPROF
586 		/*
587 		 * Kernel statistics are just like addupc_intr, only easier.
588 		 */
589 		g = &_gmonparam;
590 		if (g->state == GMON_PROF_ON && frame) {
591 			i = CLKF_PC(frame) - g->lowpc;
592 			if (i < g->textsize) {
593 				i /= HISTFRACTION * sizeof(*g->kcount);
594 				g->kcount[i]++;
595 			}
596 		}
597 #endif
598 		/*
599 		 * Came from kernel mode, so we were:
600 		 * - handling an interrupt,
601 		 * - doing syscall or trap work on behalf of the current
602 		 *   user process, or
603 		 * - spinning in the idle loop.
604 		 * Whichever it is, charge the time as appropriate.
605 		 * Note that we charge interrupts to the current process,
606 		 * regardless of whether they are ``for'' that process,
607 		 * so that we know how much of its real time was spent
608 		 * in ``non-process'' (i.e., interrupt) work.
609 		 *
610 		 * XXX assume system if frame is NULL.  A NULL frame
611 		 * can occur if ipi processing is done from a crit_exit().
612 		 */
613 		if (frame && CLKF_INTR(frame))
614 			td->td_iticks += bump;
615 		else
616 			td->td_sticks += bump;
617 
618 		if (frame && CLKF_INTR(frame)) {
619 			cpu_time.cp_intr += bump;
620 		} else {
621 			if (td == &mycpu->gd_idlethread)
622 				cpu_time.cp_idle += bump;
623 			else
624 				cpu_time.cp_sys += bump;
625 		}
626 	}
627 }
628 
629 /*
630  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
631  * the MP lock might not be held.  We can safely manipulate parts of curproc
632  * but that's about it.
633  *
634  * Each cpu has its own scheduler clock.
635  */
636 static void
637 schedclock(systimer_t info, struct intrframe *frame)
638 {
639 	struct lwp *lp;
640 	struct pstats *pstats;
641 	struct rusage *ru;
642 	struct vmspace *vm;
643 	long rss;
644 
645 	if ((lp = lwkt_preempted_proc()) != NULL) {
646 		/*
647 		 * Account for cpu time used and hit the scheduler.  Note
648 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
649 		 * HERE.
650 		 */
651 		++lp->lwp_cpticks;
652 		/*
653 		 * XXX I think accessing lwp_proc's p_usched is
654 		 * reasonably MP safe.  This needs to be revisited
655 		 * when we have pluggable schedulers.
656 		 */
657 		lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic, info->time);
658 	}
659 	if ((lp = curthread->td_lwp) != NULL) {
660 		/*
661 		 * Update resource usage integrals and maximums.
662 		 */
663 		if ((pstats = lp->lwp_stats) != NULL &&
664 		    (ru = &pstats->p_ru) != NULL &&
665 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
666 			ru->ru_ixrss += pgtok(vm->vm_tsize);
667 			ru->ru_idrss += pgtok(vm->vm_dsize);
668 			ru->ru_isrss += pgtok(vm->vm_ssize);
669 			rss = pgtok(vmspace_resident_count(vm));
670 			if (ru->ru_maxrss < rss)
671 				ru->ru_maxrss = rss;
672 		}
673 	}
674 }
675 
676 /*
677  * Compute number of ticks for the specified amount of time.  The
678  * return value is intended to be used in a clock interrupt timed
679  * operation and guarenteed to meet or exceed the requested time.
680  * If the representation overflows, return INT_MAX.  The minimum return
681  * value is 1 ticks and the function will average the calculation up.
682  * If any value greater then 0 microseconds is supplied, a value
683  * of at least 2 will be returned to ensure that a near-term clock
684  * interrupt does not cause the timeout to occur (degenerately) early.
685  *
686  * Note that limit checks must take into account microseconds, which is
687  * done simply by using the smaller signed long maximum instead of
688  * the unsigned long maximum.
689  *
690  * If ints have 32 bits, then the maximum value for any timeout in
691  * 10ms ticks is 248 days.
692  */
693 int
694 tvtohz_high(struct timeval *tv)
695 {
696 	int ticks;
697 	long sec, usec;
698 
699 	sec = tv->tv_sec;
700 	usec = tv->tv_usec;
701 	if (usec < 0) {
702 		sec--;
703 		usec += 1000000;
704 	}
705 	if (sec < 0) {
706 #ifdef DIAGNOSTIC
707 		if (usec > 0) {
708 			sec++;
709 			usec -= 1000000;
710 		}
711 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
712 		       sec, usec);
713 #endif
714 		ticks = 1;
715 	} else if (sec <= INT_MAX / hz) {
716 		ticks = (int)(sec * hz +
717 			    ((u_long)usec + (tick - 1)) / tick) + 1;
718 	} else {
719 		ticks = INT_MAX;
720 	}
721 	return (ticks);
722 }
723 
724 /*
725  * Compute number of ticks for the specified amount of time, erroring on
726  * the side of it being too low to ensure that sleeping the returned number
727  * of ticks will not result in a late return.
728  *
729  * The supplied timeval may not be negative and should be normalized.  A
730  * return value of 0 is possible if the timeval converts to less then
731  * 1 tick.
732  *
733  * If ints have 32 bits, then the maximum value for any timeout in
734  * 10ms ticks is 248 days.
735  */
736 int
737 tvtohz_low(struct timeval *tv)
738 {
739 	int ticks;
740 	long sec;
741 
742 	sec = tv->tv_sec;
743 	if (sec <= INT_MAX / hz)
744 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
745 	else
746 		ticks = INT_MAX;
747 	return (ticks);
748 }
749 
750 
751 /*
752  * Start profiling on a process.
753  *
754  * Kernel profiling passes proc0 which never exits and hence
755  * keeps the profile clock running constantly.
756  */
757 void
758 startprofclock(struct proc *p)
759 {
760 	if ((p->p_flag & P_PROFIL) == 0) {
761 		p->p_flag |= P_PROFIL;
762 #if 0	/* XXX */
763 		if (++profprocs == 1 && stathz != 0) {
764 			crit_enter();
765 			psdiv = psratio;
766 			setstatclockrate(profhz);
767 			crit_exit();
768 		}
769 #endif
770 	}
771 }
772 
773 /*
774  * Stop profiling on a process.
775  */
776 void
777 stopprofclock(struct proc *p)
778 {
779 	if (p->p_flag & P_PROFIL) {
780 		p->p_flag &= ~P_PROFIL;
781 #if 0	/* XXX */
782 		if (--profprocs == 0 && stathz != 0) {
783 			crit_enter();
784 			psdiv = 1;
785 			setstatclockrate(stathz);
786 			crit_exit();
787 		}
788 #endif
789 	}
790 }
791 
792 /*
793  * Return information about system clocks.
794  */
795 static int
796 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
797 {
798 	struct kinfo_clockinfo clkinfo;
799 	/*
800 	 * Construct clockinfo structure.
801 	 */
802 	clkinfo.ci_hz = hz;
803 	clkinfo.ci_tick = tick;
804 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
805 	clkinfo.ci_profhz = profhz;
806 	clkinfo.ci_stathz = stathz ? stathz : hz;
807 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
808 }
809 
810 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
811 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
812 
813 /*
814  * We have eight functions for looking at the clock, four for
815  * microseconds and four for nanoseconds.  For each there is fast
816  * but less precise version "get{nano|micro}[up]time" which will
817  * return a time which is up to 1/HZ previous to the call, whereas
818  * the raw version "{nano|micro}[up]time" will return a timestamp
819  * which is as precise as possible.  The "up" variants return the
820  * time relative to system boot, these are well suited for time
821  * interval measurements.
822  *
823  * Each cpu independantly maintains the current time of day, so all
824  * we need to do to protect ourselves from changes is to do a loop
825  * check on the seconds field changing out from under us.
826  *
827  * The system timer maintains a 32 bit count and due to various issues
828  * it is possible for the calculated delta to occassionally exceed
829  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
830  * multiplication can easily overflow, so we deal with the case.  For
831  * uniformity we deal with the case in the usec case too.
832  */
833 void
834 getmicrouptime(struct timeval *tvp)
835 {
836 	struct globaldata *gd = mycpu;
837 	sysclock_t delta;
838 
839 	do {
840 		tvp->tv_sec = gd->gd_time_seconds;
841 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
842 	} while (tvp->tv_sec != gd->gd_time_seconds);
843 
844 	if (delta >= sys_cputimer->freq) {
845 		tvp->tv_sec += delta / sys_cputimer->freq;
846 		delta %= sys_cputimer->freq;
847 	}
848 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
849 	if (tvp->tv_usec >= 1000000) {
850 		tvp->tv_usec -= 1000000;
851 		++tvp->tv_sec;
852 	}
853 }
854 
855 void
856 getnanouptime(struct timespec *tsp)
857 {
858 	struct globaldata *gd = mycpu;
859 	sysclock_t delta;
860 
861 	do {
862 		tsp->tv_sec = gd->gd_time_seconds;
863 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
864 	} while (tsp->tv_sec != gd->gd_time_seconds);
865 
866 	if (delta >= sys_cputimer->freq) {
867 		tsp->tv_sec += delta / sys_cputimer->freq;
868 		delta %= sys_cputimer->freq;
869 	}
870 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
871 }
872 
873 void
874 microuptime(struct timeval *tvp)
875 {
876 	struct globaldata *gd = mycpu;
877 	sysclock_t delta;
878 
879 	do {
880 		tvp->tv_sec = gd->gd_time_seconds;
881 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
882 	} while (tvp->tv_sec != gd->gd_time_seconds);
883 
884 	if (delta >= sys_cputimer->freq) {
885 		tvp->tv_sec += delta / sys_cputimer->freq;
886 		delta %= sys_cputimer->freq;
887 	}
888 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
889 }
890 
891 void
892 nanouptime(struct timespec *tsp)
893 {
894 	struct globaldata *gd = mycpu;
895 	sysclock_t delta;
896 
897 	do {
898 		tsp->tv_sec = gd->gd_time_seconds;
899 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
900 	} while (tsp->tv_sec != gd->gd_time_seconds);
901 
902 	if (delta >= sys_cputimer->freq) {
903 		tsp->tv_sec += delta / sys_cputimer->freq;
904 		delta %= sys_cputimer->freq;
905 	}
906 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
907 }
908 
909 /*
910  * realtime routines
911  */
912 
913 void
914 getmicrotime(struct timeval *tvp)
915 {
916 	struct globaldata *gd = mycpu;
917 	struct timespec *bt;
918 	sysclock_t delta;
919 
920 	do {
921 		tvp->tv_sec = gd->gd_time_seconds;
922 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
923 	} while (tvp->tv_sec != gd->gd_time_seconds);
924 
925 	if (delta >= sys_cputimer->freq) {
926 		tvp->tv_sec += delta / sys_cputimer->freq;
927 		delta %= sys_cputimer->freq;
928 	}
929 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
930 
931 	bt = &basetime[basetime_index];
932 	tvp->tv_sec += bt->tv_sec;
933 	tvp->tv_usec += bt->tv_nsec / 1000;
934 	while (tvp->tv_usec >= 1000000) {
935 		tvp->tv_usec -= 1000000;
936 		++tvp->tv_sec;
937 	}
938 }
939 
940 void
941 getnanotime(struct timespec *tsp)
942 {
943 	struct globaldata *gd = mycpu;
944 	struct timespec *bt;
945 	sysclock_t delta;
946 
947 	do {
948 		tsp->tv_sec = gd->gd_time_seconds;
949 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
950 	} while (tsp->tv_sec != gd->gd_time_seconds);
951 
952 	if (delta >= sys_cputimer->freq) {
953 		tsp->tv_sec += delta / sys_cputimer->freq;
954 		delta %= sys_cputimer->freq;
955 	}
956 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
957 
958 	bt = &basetime[basetime_index];
959 	tsp->tv_sec += bt->tv_sec;
960 	tsp->tv_nsec += bt->tv_nsec;
961 	while (tsp->tv_nsec >= 1000000000) {
962 		tsp->tv_nsec -= 1000000000;
963 		++tsp->tv_sec;
964 	}
965 }
966 
967 static void
968 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
969 {
970 	struct globaldata *gd = mycpu;
971 	sysclock_t delta;
972 
973 	do {
974 		tsp->tv_sec = gd->gd_time_seconds;
975 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
976 	} while (tsp->tv_sec != gd->gd_time_seconds);
977 
978 	if (delta >= sys_cputimer->freq) {
979 		tsp->tv_sec += delta / sys_cputimer->freq;
980 		delta %= sys_cputimer->freq;
981 	}
982 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
983 
984 	tsp->tv_sec += nbt->tv_sec;
985 	tsp->tv_nsec += nbt->tv_nsec;
986 	while (tsp->tv_nsec >= 1000000000) {
987 		tsp->tv_nsec -= 1000000000;
988 		++tsp->tv_sec;
989 	}
990 }
991 
992 
993 void
994 microtime(struct timeval *tvp)
995 {
996 	struct globaldata *gd = mycpu;
997 	struct timespec *bt;
998 	sysclock_t delta;
999 
1000 	do {
1001 		tvp->tv_sec = gd->gd_time_seconds;
1002 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1003 	} while (tvp->tv_sec != gd->gd_time_seconds);
1004 
1005 	if (delta >= sys_cputimer->freq) {
1006 		tvp->tv_sec += delta / sys_cputimer->freq;
1007 		delta %= sys_cputimer->freq;
1008 	}
1009 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1010 
1011 	bt = &basetime[basetime_index];
1012 	tvp->tv_sec += bt->tv_sec;
1013 	tvp->tv_usec += bt->tv_nsec / 1000;
1014 	while (tvp->tv_usec >= 1000000) {
1015 		tvp->tv_usec -= 1000000;
1016 		++tvp->tv_sec;
1017 	}
1018 }
1019 
1020 void
1021 nanotime(struct timespec *tsp)
1022 {
1023 	struct globaldata *gd = mycpu;
1024 	struct timespec *bt;
1025 	sysclock_t delta;
1026 
1027 	do {
1028 		tsp->tv_sec = gd->gd_time_seconds;
1029 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1030 	} while (tsp->tv_sec != gd->gd_time_seconds);
1031 
1032 	if (delta >= sys_cputimer->freq) {
1033 		tsp->tv_sec += delta / sys_cputimer->freq;
1034 		delta %= sys_cputimer->freq;
1035 	}
1036 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1037 
1038 	bt = &basetime[basetime_index];
1039 	tsp->tv_sec += bt->tv_sec;
1040 	tsp->tv_nsec += bt->tv_nsec;
1041 	while (tsp->tv_nsec >= 1000000000) {
1042 		tsp->tv_nsec -= 1000000000;
1043 		++tsp->tv_sec;
1044 	}
1045 }
1046 
1047 /*
1048  * note: this is not exactly synchronized with real time.  To do that we
1049  * would have to do what microtime does and check for a nanoseconds overflow.
1050  */
1051 time_t
1052 get_approximate_time_t(void)
1053 {
1054 	struct globaldata *gd = mycpu;
1055 	struct timespec *bt;
1056 
1057 	bt = &basetime[basetime_index];
1058 	return(gd->gd_time_seconds + bt->tv_sec);
1059 }
1060 
1061 int
1062 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1063 {
1064 	pps_params_t *app;
1065 	struct pps_fetch_args *fapi;
1066 #ifdef PPS_SYNC
1067 	struct pps_kcbind_args *kapi;
1068 #endif
1069 
1070 	switch (cmd) {
1071 	case PPS_IOC_CREATE:
1072 		return (0);
1073 	case PPS_IOC_DESTROY:
1074 		return (0);
1075 	case PPS_IOC_SETPARAMS:
1076 		app = (pps_params_t *)data;
1077 		if (app->mode & ~pps->ppscap)
1078 			return (EINVAL);
1079 		pps->ppsparam = *app;
1080 		return (0);
1081 	case PPS_IOC_GETPARAMS:
1082 		app = (pps_params_t *)data;
1083 		*app = pps->ppsparam;
1084 		app->api_version = PPS_API_VERS_1;
1085 		return (0);
1086 	case PPS_IOC_GETCAP:
1087 		*(int*)data = pps->ppscap;
1088 		return (0);
1089 	case PPS_IOC_FETCH:
1090 		fapi = (struct pps_fetch_args *)data;
1091 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1092 			return (EINVAL);
1093 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1094 			return (EOPNOTSUPP);
1095 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1096 		fapi->pps_info_buf = pps->ppsinfo;
1097 		return (0);
1098 	case PPS_IOC_KCBIND:
1099 #ifdef PPS_SYNC
1100 		kapi = (struct pps_kcbind_args *)data;
1101 		/* XXX Only root should be able to do this */
1102 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1103 			return (EINVAL);
1104 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1105 			return (EINVAL);
1106 		if (kapi->edge & ~pps->ppscap)
1107 			return (EINVAL);
1108 		pps->kcmode = kapi->edge;
1109 		return (0);
1110 #else
1111 		return (EOPNOTSUPP);
1112 #endif
1113 	default:
1114 		return (ENOTTY);
1115 	}
1116 }
1117 
1118 void
1119 pps_init(struct pps_state *pps)
1120 {
1121 	pps->ppscap |= PPS_TSFMT_TSPEC;
1122 	if (pps->ppscap & PPS_CAPTUREASSERT)
1123 		pps->ppscap |= PPS_OFFSETASSERT;
1124 	if (pps->ppscap & PPS_CAPTURECLEAR)
1125 		pps->ppscap |= PPS_OFFSETCLEAR;
1126 }
1127 
1128 void
1129 pps_event(struct pps_state *pps, sysclock_t count, int event)
1130 {
1131 	struct globaldata *gd;
1132 	struct timespec *tsp;
1133 	struct timespec *osp;
1134 	struct timespec *bt;
1135 	struct timespec ts;
1136 	sysclock_t *pcount;
1137 #ifdef PPS_SYNC
1138 	sysclock_t tcount;
1139 #endif
1140 	sysclock_t delta;
1141 	pps_seq_t *pseq;
1142 	int foff;
1143 	int fhard;
1144 
1145 	gd = mycpu;
1146 
1147 	/* Things would be easier with arrays... */
1148 	if (event == PPS_CAPTUREASSERT) {
1149 		tsp = &pps->ppsinfo.assert_timestamp;
1150 		osp = &pps->ppsparam.assert_offset;
1151 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1152 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1153 		pcount = &pps->ppscount[0];
1154 		pseq = &pps->ppsinfo.assert_sequence;
1155 	} else {
1156 		tsp = &pps->ppsinfo.clear_timestamp;
1157 		osp = &pps->ppsparam.clear_offset;
1158 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1159 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1160 		pcount = &pps->ppscount[1];
1161 		pseq = &pps->ppsinfo.clear_sequence;
1162 	}
1163 
1164 	/* Nothing really happened */
1165 	if (*pcount == count)
1166 		return;
1167 
1168 	*pcount = count;
1169 
1170 	do {
1171 		ts.tv_sec = gd->gd_time_seconds;
1172 		delta = count - gd->gd_cpuclock_base;
1173 	} while (ts.tv_sec != gd->gd_time_seconds);
1174 
1175 	if (delta >= sys_cputimer->freq) {
1176 		ts.tv_sec += delta / sys_cputimer->freq;
1177 		delta %= sys_cputimer->freq;
1178 	}
1179 	ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1180 	bt = &basetime[basetime_index];
1181 	ts.tv_sec += bt->tv_sec;
1182 	ts.tv_nsec += bt->tv_nsec;
1183 	while (ts.tv_nsec >= 1000000000) {
1184 		ts.tv_nsec -= 1000000000;
1185 		++ts.tv_sec;
1186 	}
1187 
1188 	(*pseq)++;
1189 	*tsp = ts;
1190 
1191 	if (foff) {
1192 		timespecadd(tsp, osp);
1193 		if (tsp->tv_nsec < 0) {
1194 			tsp->tv_nsec += 1000000000;
1195 			tsp->tv_sec -= 1;
1196 		}
1197 	}
1198 #ifdef PPS_SYNC
1199 	if (fhard) {
1200 		/* magic, at its best... */
1201 		tcount = count - pps->ppscount[2];
1202 		pps->ppscount[2] = count;
1203 		if (tcount >= sys_cputimer->freq) {
1204 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1205 				 sys_cputimer->freq64_nsec *
1206 				 (tcount % sys_cputimer->freq)) >> 32;
1207 		} else {
1208 			delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1209 		}
1210 		hardpps(tsp, delta);
1211 	}
1212 #endif
1213 }
1214 
1215