xref: /dragonfly/sys/kern/kern_clock.c (revision d600454b)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
72  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73  * $DragonFly: src/sys/kern/kern_clock.c,v 1.50 2005/10/24 08:06:16 sephe Exp $
74  */
75 
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/kernel.h>
83 #include <sys/kinfo.h>
84 #include <sys/proc.h>
85 #include <sys/malloc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/signalvar.h>
88 #include <sys/timex.h>
89 #include <sys/timepps.h>
90 #include <vm/vm.h>
91 #include <sys/lock.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <sys/sysctl.h>
95 #include <sys/thread2.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/limits.h>
99 #include <machine/smp.h>
100 
101 #ifdef GPROF
102 #include <sys/gmon.h>
103 #endif
104 
105 #ifdef DEVICE_POLLING
106 extern void init_device_poll(void);
107 #endif
108 
109 static void initclocks (void *dummy);
110 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
111 
112 /*
113  * Some of these don't belong here, but it's easiest to concentrate them.
114  * Note that cpu_time counts in microseconds, but most userland programs
115  * just compare relative times against the total by delta.
116  */
117 struct kinfo_cputime cputime_percpu[MAXCPU];
118 #ifdef SMP
119 static int
120 sysctl_cputime(SYSCTL_HANDLER_ARGS)
121 {
122 	int cpu, error = 0;
123 	size_t size = sizeof(struct kinfo_cputime);
124 
125 	for (cpu = 0; cpu < ncpus; ++cpu) {
126 		if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
127 			break;
128 	}
129 
130 	return (error);
131 }
132 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
133 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
134 #else
135 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
136     "CPU time statistics");
137 #endif
138 
139 /*
140  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
141  * microuptime().  microtime() is not drift compensated.  The real uptime
142  * with compensation is nanotime() - bootime.  boottime is recalculated
143  * whenever the real time is set based on the compensated elapsed time
144  * in seconds (gd->gd_time_seconds).
145  *
146  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
147  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
148  * the real time.
149  */
150 struct timespec boottime;	/* boot time (realtime) for reference only */
151 time_t time_second;		/* read-only 'passive' uptime in seconds */
152 
153 /*
154  * basetime is used to calculate the compensated real time of day.  The
155  * basetime can be modified on a per-tick basis by the adjtime(),
156  * ntp_adjtime(), and sysctl-based time correction APIs.
157  *
158  * Note that frequency corrections can also be made by adjusting
159  * gd_cpuclock_base.
160  *
161  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
162  * used on both SMP and UP systems to avoid MP races between cpu's and
163  * interrupt races on UP systems.
164  */
165 #define BASETIME_ARYSIZE	16
166 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
167 static struct timespec basetime[BASETIME_ARYSIZE];
168 static volatile int basetime_index;
169 
170 static int
171 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
172 {
173 	struct timespec *bt;
174 	int error;
175 	int index;
176 
177 	/*
178 	 * Because basetime data and index may be updated by another cpu,
179 	 * a load fence is required to ensure that the data we read has
180 	 * not been speculatively read relative to a possibly updated index.
181 	 */
182 	index = basetime_index;
183 	cpu_lfence();
184 	bt = &basetime[index];
185 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
186 	return (error);
187 }
188 
189 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
190     &boottime, timespec, "System boottime");
191 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
192     sysctl_get_basetime, "S,timespec", "System basetime");
193 
194 static void hardclock(systimer_t info, struct intrframe *frame);
195 static void statclock(systimer_t info, struct intrframe *frame);
196 static void schedclock(systimer_t info, struct intrframe *frame);
197 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
198 
199 int	ticks;			/* system master ticks at hz */
200 int	clocks_running;		/* tsleep/timeout clocks operational */
201 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
202 int64_t	nsec_acc;		/* accumulator */
203 
204 /* NTPD time correction fields */
205 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
206 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
207 int64_t	ntp_delta;		/* one-time correction in nsec */
208 int64_t ntp_big_delta = 1000000000;
209 int32_t	ntp_tick_delta;		/* current adjustment rate */
210 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
211 time_t	ntp_leap_second;	/* time of next leap second */
212 int	ntp_leap_insert;	/* whether to insert or remove a second */
213 
214 /*
215  * Finish initializing clock frequencies and start all clocks running.
216  */
217 /* ARGSUSED*/
218 static void
219 initclocks(void *dummy)
220 {
221 	cpu_initclocks();
222 #ifdef DEVICE_POLLING
223 	init_device_poll();
224 #endif
225 	/*psratio = profhz / stathz;*/
226 	initclocks_pcpu();
227 	clocks_running = 1;
228 }
229 
230 /*
231  * Called on a per-cpu basis
232  */
233 void
234 initclocks_pcpu(void)
235 {
236 	struct globaldata *gd = mycpu;
237 
238 	crit_enter();
239 	if (gd->gd_cpuid == 0) {
240 	    gd->gd_time_seconds = 1;
241 	    gd->gd_cpuclock_base = sys_cputimer->count();
242 	} else {
243 	    /* XXX */
244 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
245 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
246 	}
247 
248 	/*
249 	 * Use a non-queued periodic systimer to prevent multiple ticks from
250 	 * building up if the sysclock jumps forward (8254 gets reset).  The
251 	 * sysclock will never jump backwards.  Our time sync is based on
252 	 * the actual sysclock, not the ticks count.
253 	 */
254 	systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
255 	systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
256 	/* XXX correct the frequency for scheduler / estcpu tests */
257 	systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
258 				NULL, ESTCPUFREQ);
259 	crit_exit();
260 }
261 
262 /*
263  * This sets the current real time of day.  Timespecs are in seconds and
264  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
265  * instead we adjust basetime so basetime + gd_* results in the current
266  * time of day.  This way the gd_* fields are guarenteed to represent
267  * a monotonically increasing 'uptime' value.
268  *
269  * When set_timeofday() is called from userland, the system call forces it
270  * onto cpu #0 since only cpu #0 can update basetime_index.
271  */
272 void
273 set_timeofday(struct timespec *ts)
274 {
275 	struct timespec *nbt;
276 	int ni;
277 
278 	/*
279 	 * XXX SMP / non-atomic basetime updates
280 	 */
281 	crit_enter();
282 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
283 	nbt = &basetime[ni];
284 	nanouptime(nbt);
285 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
286 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
287 	if (nbt->tv_nsec < 0) {
288 	    nbt->tv_nsec += 1000000000;
289 	    --nbt->tv_sec;
290 	}
291 
292 	/*
293 	 * Note that basetime diverges from boottime as the clock drift is
294 	 * compensated for, so we cannot do away with boottime.  When setting
295 	 * the absolute time of day the drift is 0 (for an instant) and we
296 	 * can simply assign boottime to basetime.
297 	 *
298 	 * Note that nanouptime() is based on gd_time_seconds which is drift
299 	 * compensated up to a point (it is guarenteed to remain monotonically
300 	 * increasing).  gd_time_seconds is thus our best uptime guess and
301 	 * suitable for use in the boottime calculation.  It is already taken
302 	 * into account in the basetime calculation above.
303 	 */
304 	boottime.tv_sec = nbt->tv_sec;
305 	ntp_delta = 0;
306 
307 	/*
308 	 * We now have a new basetime, make sure all other cpus have it,
309 	 * then update the index.
310 	 */
311 	cpu_sfence();
312 	basetime_index = ni;
313 
314 	crit_exit();
315 }
316 
317 /*
318  * Each cpu has its own hardclock, but we only increments ticks and softticks
319  * on cpu #0.
320  *
321  * NOTE! systimer! the MP lock might not be held here.  We can only safely
322  * manipulate objects owned by the current cpu.
323  */
324 static void
325 hardclock(systimer_t info, struct intrframe *frame)
326 {
327 	sysclock_t cputicks;
328 	struct proc *p;
329 	struct pstats *pstats;
330 	struct globaldata *gd = mycpu;
331 
332 	/*
333 	 * Realtime updates are per-cpu.  Note that timer corrections as
334 	 * returned by microtime() and friends make an additional adjustment
335 	 * using a system-wise 'basetime', but the running time is always
336 	 * taken from the per-cpu globaldata area.  Since the same clock
337 	 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
338 	 * stay in synch.
339 	 *
340 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
341 	 * to reverse index gd_cpuclock_base, but that it is possible for
342 	 * it to temporarily get behind in the seconds if something in the
343 	 * system locks interrupts for a long period of time.  Since periodic
344 	 * timers count events, though everything should resynch again
345 	 * immediately.
346 	 */
347 	cputicks = info->time - gd->gd_cpuclock_base;
348 	if (cputicks >= sys_cputimer->freq) {
349 		++gd->gd_time_seconds;
350 		gd->gd_cpuclock_base += sys_cputimer->freq;
351 	}
352 
353 	/*
354 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
355 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
356 	 * by updating basetime.
357 	 */
358 	if (gd->gd_cpuid == 0) {
359 	    struct timespec *nbt;
360 	    struct timespec nts;
361 	    int leap;
362 	    int ni;
363 
364 	    ++ticks;
365 
366 #if 0
367 	    if (tco->tc_poll_pps)
368 		tco->tc_poll_pps(tco);
369 #endif
370 
371 	    /*
372 	     * Calculate the new basetime index.  We are in a critical section
373 	     * on cpu #0 and can safely play with basetime_index.  Start
374 	     * with the current basetime and then make adjustments.
375 	     */
376 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
377 	    nbt = &basetime[ni];
378 	    *nbt = basetime[basetime_index];
379 
380 	    /*
381 	     * Apply adjtime corrections.  (adjtime() API)
382 	     *
383 	     * adjtime() only runs on cpu #0 so our critical section is
384 	     * sufficient to access these variables.
385 	     */
386 	    if (ntp_delta != 0) {
387 		nbt->tv_nsec += ntp_tick_delta;
388 		ntp_delta -= ntp_tick_delta;
389 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
390 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
391 			ntp_tick_delta = ntp_delta;
392  		}
393  	    }
394 
395 	    /*
396 	     * Apply permanent frequency corrections.  (sysctl API)
397 	     */
398 	    if (ntp_tick_permanent != 0) {
399 		ntp_tick_acc += ntp_tick_permanent;
400 		if (ntp_tick_acc >= (1LL << 32)) {
401 		    nbt->tv_nsec += ntp_tick_acc >> 32;
402 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
403 		} else if (ntp_tick_acc <= -(1LL << 32)) {
404 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
405 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
406 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
407 		}
408  	    }
409 
410 	    if (nbt->tv_nsec >= 1000000000) {
411 		    nbt->tv_sec++;
412 		    nbt->tv_nsec -= 1000000000;
413 	    } else if (nbt->tv_nsec < 0) {
414 		    nbt->tv_sec--;
415 		    nbt->tv_nsec += 1000000000;
416 	    }
417 
418 	    /*
419 	     * Another per-tick compensation.  (for ntp_adjtime() API)
420 	     */
421 	    if (nsec_adj != 0) {
422 		nsec_acc += nsec_adj;
423 		if (nsec_acc >= 0x100000000LL) {
424 		    nbt->tv_nsec += nsec_acc >> 32;
425 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
426 		} else if (nsec_acc <= -0x100000000LL) {
427 		    nbt->tv_nsec -= -nsec_acc >> 32;
428 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
429 		}
430 		if (nbt->tv_nsec >= 1000000000) {
431 		    nbt->tv_nsec -= 1000000000;
432 		    ++nbt->tv_sec;
433 		} else if (nbt->tv_nsec < 0) {
434 		    nbt->tv_nsec += 1000000000;
435 		    --nbt->tv_sec;
436 		}
437 	    }
438 
439 	    /************************************************************
440 	     *			LEAP SECOND CORRECTION			*
441 	     ************************************************************
442 	     *
443 	     * Taking into account all the corrections made above, figure
444 	     * out the new real time.  If the seconds field has changed
445 	     * then apply any pending leap-second corrections.
446 	     */
447 	    getnanotime_nbt(nbt, &nts);
448 
449 	    if (time_second != nts.tv_sec) {
450 		/*
451 		 * Apply leap second (sysctl API).  Adjust nts for changes
452 		 * so we do not have to call getnanotime_nbt again.
453 		 */
454 		if (ntp_leap_second) {
455 		    if (ntp_leap_second == nts.tv_sec) {
456 			if (ntp_leap_insert) {
457 			    nbt->tv_sec++;
458 			    nts.tv_sec++;
459 			} else {
460 			    nbt->tv_sec--;
461 			    nts.tv_sec--;
462 			}
463 			ntp_leap_second--;
464 		    }
465 		}
466 
467 		/*
468 		 * Apply leap second (ntp_adjtime() API), calculate a new
469 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
470 		 * as a per-second value but we need it as a per-tick value.
471 		 */
472 		leap = ntp_update_second(time_second, &nsec_adj);
473 		nsec_adj /= hz;
474 		nbt->tv_sec += leap;
475 		nts.tv_sec += leap;
476 
477 		/*
478 		 * Update the time_second 'approximate time' global.
479 		 */
480 		time_second = nts.tv_sec;
481 	    }
482 
483 	    /*
484 	     * Finally, our new basetime is ready to go live!
485 	     */
486 	    cpu_sfence();
487 	    basetime_index = ni;
488 	}
489 
490 	/*
491 	 * softticks are handled for all cpus
492 	 */
493 	hardclock_softtick(gd);
494 
495 	/*
496 	 * ITimer handling is per-tick, per-cpu.  I don't think psignal()
497 	 * is mpsafe on curproc, so XXX get the mplock.
498 	 */
499 	if ((p = curproc) != NULL && try_mplock()) {
500 		pstats = p->p_stats;
501 		if (frame && CLKF_USERMODE(frame) &&
502 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
503 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
504 			psignal(p, SIGVTALRM);
505 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
506 		    itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
507 			psignal(p, SIGPROF);
508 		rel_mplock();
509 	}
510 	setdelayed();
511 }
512 
513 /*
514  * The statistics clock typically runs at a 125Hz rate, and is intended
515  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
516  *
517  * NOTE! systimer! the MP lock might not be held here.  We can only safely
518  * manipulate objects owned by the current cpu.
519  *
520  * The stats clock is responsible for grabbing a profiling sample.
521  * Most of the statistics are only used by user-level statistics programs.
522  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
523  * p->p_estcpu.
524  *
525  * Like the other clocks, the stat clock is called from what is effectively
526  * a fast interrupt, so the context should be the thread/process that got
527  * interrupted.
528  */
529 static void
530 statclock(systimer_t info, struct intrframe *frame)
531 {
532 #ifdef GPROF
533 	struct gmonparam *g;
534 	int i;
535 #endif
536 	thread_t td;
537 	struct proc *p;
538 	int bump;
539 	struct timeval tv;
540 	struct timeval *stv;
541 
542 	/*
543 	 * How big was our timeslice relative to the last time?
544 	 */
545 	microuptime(&tv);	/* mpsafe */
546 	stv = &mycpu->gd_stattv;
547 	if (stv->tv_sec == 0) {
548 	    bump = 1;
549 	} else {
550 	    bump = tv.tv_usec - stv->tv_usec +
551 		(tv.tv_sec - stv->tv_sec) * 1000000;
552 	    if (bump < 0)
553 		bump = 0;
554 	    if (bump > 1000000)
555 		bump = 1000000;
556 	}
557 	*stv = tv;
558 
559 	td = curthread;
560 	p = td->td_proc;
561 
562 	if (frame && CLKF_USERMODE(frame)) {
563 		/*
564 		 * Came from userland, handle user time and deal with
565 		 * possible process.
566 		 */
567 		if (p && (p->p_flag & P_PROFIL))
568 			addupc_intr(p, CLKF_PC(frame), 1);
569 		td->td_uticks += bump;
570 
571 		/*
572 		 * Charge the time as appropriate
573 		 */
574 		if (p && p->p_nice > NZERO)
575 			cpu_time.cp_nice += bump;
576 		else
577 			cpu_time.cp_user += bump;
578 	} else {
579 #ifdef GPROF
580 		/*
581 		 * Kernel statistics are just like addupc_intr, only easier.
582 		 */
583 		g = &_gmonparam;
584 		if (g->state == GMON_PROF_ON && frame) {
585 			i = CLKF_PC(frame) - g->lowpc;
586 			if (i < g->textsize) {
587 				i /= HISTFRACTION * sizeof(*g->kcount);
588 				g->kcount[i]++;
589 			}
590 		}
591 #endif
592 		/*
593 		 * Came from kernel mode, so we were:
594 		 * - handling an interrupt,
595 		 * - doing syscall or trap work on behalf of the current
596 		 *   user process, or
597 		 * - spinning in the idle loop.
598 		 * Whichever it is, charge the time as appropriate.
599 		 * Note that we charge interrupts to the current process,
600 		 * regardless of whether they are ``for'' that process,
601 		 * so that we know how much of its real time was spent
602 		 * in ``non-process'' (i.e., interrupt) work.
603 		 *
604 		 * XXX assume system if frame is NULL.  A NULL frame
605 		 * can occur if ipi processing is done from a crit_exit().
606 		 */
607 		if (frame && CLKF_INTR(frame))
608 			td->td_iticks += bump;
609 		else
610 			td->td_sticks += bump;
611 
612 		if (frame && CLKF_INTR(frame)) {
613 			cpu_time.cp_intr += bump;
614 		} else {
615 			if (td == &mycpu->gd_idlethread)
616 				cpu_time.cp_idle += bump;
617 			else
618 				cpu_time.cp_sys += bump;
619 		}
620 	}
621 }
622 
623 /*
624  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
625  * the MP lock might not be held.  We can safely manipulate parts of curproc
626  * but that's about it.
627  *
628  * Each cpu has its own scheduler clock.
629  */
630 static void
631 schedclock(systimer_t info, struct intrframe *frame)
632 {
633 	struct lwp *lp;
634 	struct pstats *pstats;
635 	struct rusage *ru;
636 	struct vmspace *vm;
637 	long rss;
638 
639 	if ((lp = lwkt_preempted_proc()) != NULL) {
640 		/*
641 		 * Account for cpu time used and hit the scheduler.  Note
642 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
643 		 * HERE.
644 		 */
645 		++lp->lwp_cpticks;
646 		/*
647 		 * XXX I think accessing lwp_proc's p_usched is
648 		 * reasonably MP safe.  This needs to be revisited
649 		 * when we have pluggable schedulers.
650 		 */
651 		lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic, info->time);
652 	}
653 	if ((lp = curthread->td_lwp) != NULL) {
654 		/*
655 		 * Update resource usage integrals and maximums.
656 		 */
657 		if ((pstats = lp->lwp_stats) != NULL &&
658 		    (ru = &pstats->p_ru) != NULL &&
659 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
660 			ru->ru_ixrss += pgtok(vm->vm_tsize);
661 			ru->ru_idrss += pgtok(vm->vm_dsize);
662 			ru->ru_isrss += pgtok(vm->vm_ssize);
663 			rss = pgtok(vmspace_resident_count(vm));
664 			if (ru->ru_maxrss < rss)
665 				ru->ru_maxrss = rss;
666 		}
667 	}
668 }
669 
670 /*
671  * Compute number of ticks for the specified amount of time.  The
672  * return value is intended to be used in a clock interrupt timed
673  * operation and guarenteed to meet or exceed the requested time.
674  * If the representation overflows, return INT_MAX.  The minimum return
675  * value is 1 ticks and the function will average the calculation up.
676  * If any value greater then 0 microseconds is supplied, a value
677  * of at least 2 will be returned to ensure that a near-term clock
678  * interrupt does not cause the timeout to occur (degenerately) early.
679  *
680  * Note that limit checks must take into account microseconds, which is
681  * done simply by using the smaller signed long maximum instead of
682  * the unsigned long maximum.
683  *
684  * If ints have 32 bits, then the maximum value for any timeout in
685  * 10ms ticks is 248 days.
686  */
687 int
688 tvtohz_high(struct timeval *tv)
689 {
690 	int ticks;
691 	long sec, usec;
692 
693 	sec = tv->tv_sec;
694 	usec = tv->tv_usec;
695 	if (usec < 0) {
696 		sec--;
697 		usec += 1000000;
698 	}
699 	if (sec < 0) {
700 #ifdef DIAGNOSTIC
701 		if (usec > 0) {
702 			sec++;
703 			usec -= 1000000;
704 		}
705 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
706 		       sec, usec);
707 #endif
708 		ticks = 1;
709 	} else if (sec <= INT_MAX / hz) {
710 		ticks = (int)(sec * hz +
711 			    ((u_long)usec + (tick - 1)) / tick) + 1;
712 	} else {
713 		ticks = INT_MAX;
714 	}
715 	return (ticks);
716 }
717 
718 /*
719  * Compute number of ticks for the specified amount of time, erroring on
720  * the side of it being too low to ensure that sleeping the returned number
721  * of ticks will not result in a late return.
722  *
723  * The supplied timeval may not be negative and should be normalized.  A
724  * return value of 0 is possible if the timeval converts to less then
725  * 1 tick.
726  *
727  * If ints have 32 bits, then the maximum value for any timeout in
728  * 10ms ticks is 248 days.
729  */
730 int
731 tvtohz_low(struct timeval *tv)
732 {
733 	int ticks;
734 	long sec;
735 
736 	sec = tv->tv_sec;
737 	if (sec <= INT_MAX / hz)
738 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
739 	else
740 		ticks = INT_MAX;
741 	return (ticks);
742 }
743 
744 
745 /*
746  * Start profiling on a process.
747  *
748  * Kernel profiling passes proc0 which never exits and hence
749  * keeps the profile clock running constantly.
750  */
751 void
752 startprofclock(struct proc *p)
753 {
754 	if ((p->p_flag & P_PROFIL) == 0) {
755 		p->p_flag |= P_PROFIL;
756 #if 0	/* XXX */
757 		if (++profprocs == 1 && stathz != 0) {
758 			crit_enter();
759 			psdiv = psratio;
760 			setstatclockrate(profhz);
761 			crit_exit();
762 		}
763 #endif
764 	}
765 }
766 
767 /*
768  * Stop profiling on a process.
769  */
770 void
771 stopprofclock(struct proc *p)
772 {
773 	if (p->p_flag & P_PROFIL) {
774 		p->p_flag &= ~P_PROFIL;
775 #if 0	/* XXX */
776 		if (--profprocs == 0 && stathz != 0) {
777 			crit_enter();
778 			psdiv = 1;
779 			setstatclockrate(stathz);
780 			crit_exit();
781 		}
782 #endif
783 	}
784 }
785 
786 /*
787  * Return information about system clocks.
788  */
789 static int
790 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
791 {
792 	struct kinfo_clockinfo clkinfo;
793 	/*
794 	 * Construct clockinfo structure.
795 	 */
796 	clkinfo.ci_hz = hz;
797 	clkinfo.ci_tick = tick;
798 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
799 	clkinfo.ci_profhz = profhz;
800 	clkinfo.ci_stathz = stathz ? stathz : hz;
801 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
802 }
803 
804 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
805 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
806 
807 /*
808  * We have eight functions for looking at the clock, four for
809  * microseconds and four for nanoseconds.  For each there is fast
810  * but less precise version "get{nano|micro}[up]time" which will
811  * return a time which is up to 1/HZ previous to the call, whereas
812  * the raw version "{nano|micro}[up]time" will return a timestamp
813  * which is as precise as possible.  The "up" variants return the
814  * time relative to system boot, these are well suited for time
815  * interval measurements.
816  *
817  * Each cpu independantly maintains the current time of day, so all
818  * we need to do to protect ourselves from changes is to do a loop
819  * check on the seconds field changing out from under us.
820  *
821  * The system timer maintains a 32 bit count and due to various issues
822  * it is possible for the calculated delta to occassionally exceed
823  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
824  * multiplication can easily overflow, so we deal with the case.  For
825  * uniformity we deal with the case in the usec case too.
826  */
827 void
828 getmicrouptime(struct timeval *tvp)
829 {
830 	struct globaldata *gd = mycpu;
831 	sysclock_t delta;
832 
833 	do {
834 		tvp->tv_sec = gd->gd_time_seconds;
835 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
836 	} while (tvp->tv_sec != gd->gd_time_seconds);
837 
838 	if (delta >= sys_cputimer->freq) {
839 		tvp->tv_sec += delta / sys_cputimer->freq;
840 		delta %= sys_cputimer->freq;
841 	}
842 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
843 	if (tvp->tv_usec >= 1000000) {
844 		tvp->tv_usec -= 1000000;
845 		++tvp->tv_sec;
846 	}
847 }
848 
849 void
850 getnanouptime(struct timespec *tsp)
851 {
852 	struct globaldata *gd = mycpu;
853 	sysclock_t delta;
854 
855 	do {
856 		tsp->tv_sec = gd->gd_time_seconds;
857 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
858 	} while (tsp->tv_sec != gd->gd_time_seconds);
859 
860 	if (delta >= sys_cputimer->freq) {
861 		tsp->tv_sec += delta / sys_cputimer->freq;
862 		delta %= sys_cputimer->freq;
863 	}
864 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
865 }
866 
867 void
868 microuptime(struct timeval *tvp)
869 {
870 	struct globaldata *gd = mycpu;
871 	sysclock_t delta;
872 
873 	do {
874 		tvp->tv_sec = gd->gd_time_seconds;
875 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
876 	} while (tvp->tv_sec != gd->gd_time_seconds);
877 
878 	if (delta >= sys_cputimer->freq) {
879 		tvp->tv_sec += delta / sys_cputimer->freq;
880 		delta %= sys_cputimer->freq;
881 	}
882 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
883 }
884 
885 void
886 nanouptime(struct timespec *tsp)
887 {
888 	struct globaldata *gd = mycpu;
889 	sysclock_t delta;
890 
891 	do {
892 		tsp->tv_sec = gd->gd_time_seconds;
893 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
894 	} while (tsp->tv_sec != gd->gd_time_seconds);
895 
896 	if (delta >= sys_cputimer->freq) {
897 		tsp->tv_sec += delta / sys_cputimer->freq;
898 		delta %= sys_cputimer->freq;
899 	}
900 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
901 }
902 
903 /*
904  * realtime routines
905  */
906 
907 void
908 getmicrotime(struct timeval *tvp)
909 {
910 	struct globaldata *gd = mycpu;
911 	struct timespec *bt;
912 	sysclock_t delta;
913 
914 	do {
915 		tvp->tv_sec = gd->gd_time_seconds;
916 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
917 	} while (tvp->tv_sec != gd->gd_time_seconds);
918 
919 	if (delta >= sys_cputimer->freq) {
920 		tvp->tv_sec += delta / sys_cputimer->freq;
921 		delta %= sys_cputimer->freq;
922 	}
923 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
924 
925 	bt = &basetime[basetime_index];
926 	tvp->tv_sec += bt->tv_sec;
927 	tvp->tv_usec += bt->tv_nsec / 1000;
928 	while (tvp->tv_usec >= 1000000) {
929 		tvp->tv_usec -= 1000000;
930 		++tvp->tv_sec;
931 	}
932 }
933 
934 void
935 getnanotime(struct timespec *tsp)
936 {
937 	struct globaldata *gd = mycpu;
938 	struct timespec *bt;
939 	sysclock_t delta;
940 
941 	do {
942 		tsp->tv_sec = gd->gd_time_seconds;
943 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
944 	} while (tsp->tv_sec != gd->gd_time_seconds);
945 
946 	if (delta >= sys_cputimer->freq) {
947 		tsp->tv_sec += delta / sys_cputimer->freq;
948 		delta %= sys_cputimer->freq;
949 	}
950 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
951 
952 	bt = &basetime[basetime_index];
953 	tsp->tv_sec += bt->tv_sec;
954 	tsp->tv_nsec += bt->tv_nsec;
955 	while (tsp->tv_nsec >= 1000000000) {
956 		tsp->tv_nsec -= 1000000000;
957 		++tsp->tv_sec;
958 	}
959 }
960 
961 static void
962 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
963 {
964 	struct globaldata *gd = mycpu;
965 	sysclock_t delta;
966 
967 	do {
968 		tsp->tv_sec = gd->gd_time_seconds;
969 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
970 	} while (tsp->tv_sec != gd->gd_time_seconds);
971 
972 	if (delta >= sys_cputimer->freq) {
973 		tsp->tv_sec += delta / sys_cputimer->freq;
974 		delta %= sys_cputimer->freq;
975 	}
976 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
977 
978 	tsp->tv_sec += nbt->tv_sec;
979 	tsp->tv_nsec += nbt->tv_nsec;
980 	while (tsp->tv_nsec >= 1000000000) {
981 		tsp->tv_nsec -= 1000000000;
982 		++tsp->tv_sec;
983 	}
984 }
985 
986 
987 void
988 microtime(struct timeval *tvp)
989 {
990 	struct globaldata *gd = mycpu;
991 	struct timespec *bt;
992 	sysclock_t delta;
993 
994 	do {
995 		tvp->tv_sec = gd->gd_time_seconds;
996 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
997 	} while (tvp->tv_sec != gd->gd_time_seconds);
998 
999 	if (delta >= sys_cputimer->freq) {
1000 		tvp->tv_sec += delta / sys_cputimer->freq;
1001 		delta %= sys_cputimer->freq;
1002 	}
1003 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1004 
1005 	bt = &basetime[basetime_index];
1006 	tvp->tv_sec += bt->tv_sec;
1007 	tvp->tv_usec += bt->tv_nsec / 1000;
1008 	while (tvp->tv_usec >= 1000000) {
1009 		tvp->tv_usec -= 1000000;
1010 		++tvp->tv_sec;
1011 	}
1012 }
1013 
1014 void
1015 nanotime(struct timespec *tsp)
1016 {
1017 	struct globaldata *gd = mycpu;
1018 	struct timespec *bt;
1019 	sysclock_t delta;
1020 
1021 	do {
1022 		tsp->tv_sec = gd->gd_time_seconds;
1023 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1024 	} while (tsp->tv_sec != gd->gd_time_seconds);
1025 
1026 	if (delta >= sys_cputimer->freq) {
1027 		tsp->tv_sec += delta / sys_cputimer->freq;
1028 		delta %= sys_cputimer->freq;
1029 	}
1030 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1031 
1032 	bt = &basetime[basetime_index];
1033 	tsp->tv_sec += bt->tv_sec;
1034 	tsp->tv_nsec += bt->tv_nsec;
1035 	while (tsp->tv_nsec >= 1000000000) {
1036 		tsp->tv_nsec -= 1000000000;
1037 		++tsp->tv_sec;
1038 	}
1039 }
1040 
1041 /*
1042  * note: this is not exactly synchronized with real time.  To do that we
1043  * would have to do what microtime does and check for a nanoseconds overflow.
1044  */
1045 time_t
1046 get_approximate_time_t(void)
1047 {
1048 	struct globaldata *gd = mycpu;
1049 	struct timespec *bt;
1050 
1051 	bt = &basetime[basetime_index];
1052 	return(gd->gd_time_seconds + bt->tv_sec);
1053 }
1054 
1055 int
1056 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1057 {
1058 	pps_params_t *app;
1059 	struct pps_fetch_args *fapi;
1060 #ifdef PPS_SYNC
1061 	struct pps_kcbind_args *kapi;
1062 #endif
1063 
1064 	switch (cmd) {
1065 	case PPS_IOC_CREATE:
1066 		return (0);
1067 	case PPS_IOC_DESTROY:
1068 		return (0);
1069 	case PPS_IOC_SETPARAMS:
1070 		app = (pps_params_t *)data;
1071 		if (app->mode & ~pps->ppscap)
1072 			return (EINVAL);
1073 		pps->ppsparam = *app;
1074 		return (0);
1075 	case PPS_IOC_GETPARAMS:
1076 		app = (pps_params_t *)data;
1077 		*app = pps->ppsparam;
1078 		app->api_version = PPS_API_VERS_1;
1079 		return (0);
1080 	case PPS_IOC_GETCAP:
1081 		*(int*)data = pps->ppscap;
1082 		return (0);
1083 	case PPS_IOC_FETCH:
1084 		fapi = (struct pps_fetch_args *)data;
1085 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1086 			return (EINVAL);
1087 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1088 			return (EOPNOTSUPP);
1089 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1090 		fapi->pps_info_buf = pps->ppsinfo;
1091 		return (0);
1092 	case PPS_IOC_KCBIND:
1093 #ifdef PPS_SYNC
1094 		kapi = (struct pps_kcbind_args *)data;
1095 		/* XXX Only root should be able to do this */
1096 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1097 			return (EINVAL);
1098 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1099 			return (EINVAL);
1100 		if (kapi->edge & ~pps->ppscap)
1101 			return (EINVAL);
1102 		pps->kcmode = kapi->edge;
1103 		return (0);
1104 #else
1105 		return (EOPNOTSUPP);
1106 #endif
1107 	default:
1108 		return (ENOTTY);
1109 	}
1110 }
1111 
1112 void
1113 pps_init(struct pps_state *pps)
1114 {
1115 	pps->ppscap |= PPS_TSFMT_TSPEC;
1116 	if (pps->ppscap & PPS_CAPTUREASSERT)
1117 		pps->ppscap |= PPS_OFFSETASSERT;
1118 	if (pps->ppscap & PPS_CAPTURECLEAR)
1119 		pps->ppscap |= PPS_OFFSETCLEAR;
1120 }
1121 
1122 void
1123 pps_event(struct pps_state *pps, sysclock_t count, int event)
1124 {
1125 	struct globaldata *gd;
1126 	struct timespec *tsp;
1127 	struct timespec *osp;
1128 	struct timespec *bt;
1129 	struct timespec ts;
1130 	sysclock_t *pcount;
1131 #ifdef PPS_SYNC
1132 	sysclock_t tcount;
1133 #endif
1134 	sysclock_t delta;
1135 	pps_seq_t *pseq;
1136 	int foff;
1137 	int fhard;
1138 
1139 	gd = mycpu;
1140 
1141 	/* Things would be easier with arrays... */
1142 	if (event == PPS_CAPTUREASSERT) {
1143 		tsp = &pps->ppsinfo.assert_timestamp;
1144 		osp = &pps->ppsparam.assert_offset;
1145 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1146 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1147 		pcount = &pps->ppscount[0];
1148 		pseq = &pps->ppsinfo.assert_sequence;
1149 	} else {
1150 		tsp = &pps->ppsinfo.clear_timestamp;
1151 		osp = &pps->ppsparam.clear_offset;
1152 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1153 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1154 		pcount = &pps->ppscount[1];
1155 		pseq = &pps->ppsinfo.clear_sequence;
1156 	}
1157 
1158 	/* Nothing really happened */
1159 	if (*pcount == count)
1160 		return;
1161 
1162 	*pcount = count;
1163 
1164 	do {
1165 		ts.tv_sec = gd->gd_time_seconds;
1166 		delta = count - gd->gd_cpuclock_base;
1167 	} while (ts.tv_sec != gd->gd_time_seconds);
1168 
1169 	if (delta >= sys_cputimer->freq) {
1170 		ts.tv_sec += delta / sys_cputimer->freq;
1171 		delta %= sys_cputimer->freq;
1172 	}
1173 	ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1174 	bt = &basetime[basetime_index];
1175 	ts.tv_sec += bt->tv_sec;
1176 	ts.tv_nsec += bt->tv_nsec;
1177 	while (ts.tv_nsec >= 1000000000) {
1178 		ts.tv_nsec -= 1000000000;
1179 		++ts.tv_sec;
1180 	}
1181 
1182 	(*pseq)++;
1183 	*tsp = ts;
1184 
1185 	if (foff) {
1186 		timespecadd(tsp, osp);
1187 		if (tsp->tv_nsec < 0) {
1188 			tsp->tv_nsec += 1000000000;
1189 			tsp->tv_sec -= 1;
1190 		}
1191 	}
1192 #ifdef PPS_SYNC
1193 	if (fhard) {
1194 		/* magic, at its best... */
1195 		tcount = count - pps->ppscount[2];
1196 		pps->ppscount[2] = count;
1197 		if (tcount >= sys_cputimer->freq) {
1198 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1199 				 sys_cputimer->freq64_nsec *
1200 				 (tcount % sys_cputimer->freq)) >> 32;
1201 		} else {
1202 			delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1203 		}
1204 		hardpps(tsp, delta);
1205 	}
1206 #endif
1207 }
1208 
1209