1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 69 */ 70 71 #include "opt_ntp.h" 72 #include "opt_pctrack.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/callout.h> 77 #include <sys/kernel.h> 78 #include <sys/kinfo.h> 79 #include <sys/proc.h> 80 #include <sys/malloc.h> 81 #include <sys/resource.h> 82 #include <sys/resourcevar.h> 83 #include <sys/signalvar.h> 84 #include <sys/priv.h> 85 #include <sys/timex.h> 86 #include <sys/timepps.h> 87 #include <sys/upmap.h> 88 #include <sys/lock.h> 89 #include <sys/sysctl.h> 90 #include <sys/kcollect.h> 91 92 #include <vm/vm.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_extern.h> 96 97 #include <sys/thread2.h> 98 #include <sys/spinlock2.h> 99 100 #include <machine/cpu.h> 101 #include <machine/limits.h> 102 #include <machine/smp.h> 103 #include <machine/cpufunc.h> 104 #include <machine/specialreg.h> 105 #include <machine/clock.h> 106 107 #ifdef GPROF 108 #include <sys/gmon.h> 109 #endif 110 111 #ifdef DEBUG_PCTRACK 112 static void do_pctrack(struct intrframe *frame, int which); 113 #endif 114 115 static void initclocks (void *dummy); 116 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 117 118 /* 119 * Some of these don't belong here, but it's easiest to concentrate them. 120 * Note that cpu_time counts in microseconds, but most userland programs 121 * just compare relative times against the total by delta. 122 */ 123 struct kinfo_cputime cputime_percpu[MAXCPU]; 124 #ifdef DEBUG_PCTRACK 125 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 126 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 127 #endif 128 129 static int sniff_enable = 1; 130 static int sniff_target = -1; 131 SYSCTL_INT(_kern, OID_AUTO, sniff_enable, CTLFLAG_RW, &sniff_enable, 0 , ""); 132 SYSCTL_INT(_kern, OID_AUTO, sniff_target, CTLFLAG_RW, &sniff_target, 0 , ""); 133 134 static int 135 sysctl_cputime(SYSCTL_HANDLER_ARGS) 136 { 137 int cpu, error = 0; 138 int root_error; 139 size_t size = sizeof(struct kinfo_cputime); 140 struct kinfo_cputime tmp; 141 142 /* 143 * NOTE: For security reasons, only root can sniff %rip 144 */ 145 root_error = priv_check_cred(curthread->td_ucred, PRIV_ROOT, 0); 146 147 for (cpu = 0; cpu < ncpus; ++cpu) { 148 tmp = cputime_percpu[cpu]; 149 if (root_error == 0) { 150 tmp.cp_sample_pc = 151 (int64_t)globaldata_find(cpu)->gd_sample_pc; 152 tmp.cp_sample_sp = 153 (int64_t)globaldata_find(cpu)->gd_sample_sp; 154 } 155 if ((error = SYSCTL_OUT(req, &tmp, size)) != 0) 156 break; 157 } 158 159 if (root_error == 0) { 160 if (sniff_enable) { 161 int n = sniff_target; 162 if (n < 0) 163 smp_sniff(); 164 else if (n < ncpus) 165 cpu_sniff(n); 166 } 167 } 168 169 return (error); 170 } 171 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 172 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 173 174 static int 175 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 176 { 177 long cpu_states[CPUSTATES] = {0}; 178 int cpu, error = 0; 179 size_t size = sizeof(cpu_states); 180 181 for (cpu = 0; cpu < ncpus; ++cpu) { 182 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 183 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 184 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 185 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 186 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 187 } 188 189 error = SYSCTL_OUT(req, cpu_states, size); 190 191 return (error); 192 } 193 194 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 195 sysctl_cp_time, "LU", "CPU time statistics"); 196 197 static int 198 sysctl_cp_times(SYSCTL_HANDLER_ARGS) 199 { 200 long cpu_states[CPUSTATES] = {0}; 201 int cpu, error; 202 size_t size = sizeof(cpu_states); 203 204 for (error = 0, cpu = 0; error == 0 && cpu < ncpus; ++cpu) { 205 cpu_states[CP_USER] = cputime_percpu[cpu].cp_user; 206 cpu_states[CP_NICE] = cputime_percpu[cpu].cp_nice; 207 cpu_states[CP_SYS] = cputime_percpu[cpu].cp_sys; 208 cpu_states[CP_INTR] = cputime_percpu[cpu].cp_intr; 209 cpu_states[CP_IDLE] = cputime_percpu[cpu].cp_idle; 210 error = SYSCTL_OUT(req, cpu_states, size); 211 } 212 213 return (error); 214 } 215 216 SYSCTL_PROC(_kern, OID_AUTO, cp_times, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 217 sysctl_cp_times, "LU", "per-CPU time statistics"); 218 219 /* 220 * boottime is used to calculate the 'real' uptime. Do not confuse this with 221 * microuptime(). microtime() is not drift compensated. The real uptime 222 * with compensation is nanotime() - bootime. boottime is recalculated 223 * whenever the real time is set based on the compensated elapsed time 224 * in seconds (gd->gd_time_seconds). 225 * 226 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 227 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 228 * the real time. 229 * 230 * WARNING! time_second can backstep on time corrections. Also, unlike 231 * time_second, time_uptime is not a "real" time_t (seconds 232 * since the Epoch) but seconds since booting. 233 */ 234 struct timespec boottime; /* boot time (realtime) for reference only */ 235 time_t time_second; /* read-only 'passive' realtime in seconds */ 236 time_t time_uptime; /* read-only 'passive' uptime in seconds */ 237 238 /* 239 * basetime is used to calculate the compensated real time of day. The 240 * basetime can be modified on a per-tick basis by the adjtime(), 241 * ntp_adjtime(), and sysctl-based time correction APIs. 242 * 243 * Note that frequency corrections can also be made by adjusting 244 * gd_cpuclock_base. 245 * 246 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 247 * used on both SMP and UP systems to avoid MP races between cpu's and 248 * interrupt races on UP systems. 249 */ 250 struct hardtime { 251 __uint32_t time_second; 252 sysclock_t cpuclock_base; 253 }; 254 255 #define BASETIME_ARYSIZE 16 256 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 257 static struct timespec basetime[BASETIME_ARYSIZE]; 258 static struct hardtime hardtime[BASETIME_ARYSIZE]; 259 static volatile int basetime_index; 260 261 static int 262 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 263 { 264 struct timespec *bt; 265 int error; 266 int index; 267 268 /* 269 * Because basetime data and index may be updated by another cpu, 270 * a load fence is required to ensure that the data we read has 271 * not been speculatively read relative to a possibly updated index. 272 */ 273 index = basetime_index; 274 cpu_lfence(); 275 bt = &basetime[index]; 276 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 277 return (error); 278 } 279 280 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 281 &boottime, timespec, "System boottime"); 282 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 283 sysctl_get_basetime, "S,timespec", "System basetime"); 284 285 static void hardclock(systimer_t info, int, struct intrframe *frame); 286 static void statclock(systimer_t info, int, struct intrframe *frame); 287 static void schedclock(systimer_t info, int, struct intrframe *frame); 288 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 289 290 int ticks; /* system master ticks at hz */ 291 int clocks_running; /* tsleep/timeout clocks operational */ 292 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 293 int64_t nsec_acc; /* accumulator */ 294 int sched_ticks; /* global schedule clock ticks */ 295 296 /* NTPD time correction fields */ 297 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 298 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 299 int64_t ntp_delta; /* one-time correction in nsec */ 300 int64_t ntp_big_delta = 1000000000; 301 int32_t ntp_tick_delta; /* current adjustment rate */ 302 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 303 time_t ntp_leap_second; /* time of next leap second */ 304 int ntp_leap_insert; /* whether to insert or remove a second */ 305 struct spinlock ntp_spin; 306 307 /* 308 * Finish initializing clock frequencies and start all clocks running. 309 */ 310 /* ARGSUSED*/ 311 static void 312 initclocks(void *dummy) 313 { 314 /*psratio = profhz / stathz;*/ 315 spin_init(&ntp_spin, "ntp"); 316 initclocks_pcpu(); 317 clocks_running = 1; 318 if (kpmap) { 319 kpmap->tsc_freq = tsc_frequency; 320 kpmap->tick_freq = hz; 321 } 322 } 323 324 /* 325 * Called on a per-cpu basis from the idle thread bootstrap on each cpu 326 * during SMP initialization. 327 * 328 * This routine is called concurrently during low-level SMP initialization 329 * and may not block in any way. Meaning, among other things, we can't 330 * acquire any tokens. 331 */ 332 void 333 initclocks_pcpu(void) 334 { 335 struct globaldata *gd = mycpu; 336 337 crit_enter(); 338 if (gd->gd_cpuid == 0) { 339 gd->gd_time_seconds = 1; 340 gd->gd_cpuclock_base = sys_cputimer->count(); 341 hardtime[0].time_second = gd->gd_time_seconds; 342 hardtime[0].cpuclock_base = gd->gd_cpuclock_base; 343 } else { 344 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 345 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 346 } 347 348 systimer_intr_enable(); 349 350 crit_exit(); 351 } 352 353 /* 354 * Called on a 10-second interval after the system is operational. 355 * Return the collection data for USERPCT and install the data for 356 * SYSTPCT and IDLEPCT. 357 */ 358 static 359 uint64_t 360 collect_cputime_callback(int n) 361 { 362 static long cpu_base[CPUSTATES]; 363 long cpu_states[CPUSTATES]; 364 long total; 365 long acc; 366 long lsb; 367 368 bzero(cpu_states, sizeof(cpu_states)); 369 for (n = 0; n < ncpus; ++n) { 370 cpu_states[CP_USER] += cputime_percpu[n].cp_user; 371 cpu_states[CP_NICE] += cputime_percpu[n].cp_nice; 372 cpu_states[CP_SYS] += cputime_percpu[n].cp_sys; 373 cpu_states[CP_INTR] += cputime_percpu[n].cp_intr; 374 cpu_states[CP_IDLE] += cputime_percpu[n].cp_idle; 375 } 376 377 acc = 0; 378 for (n = 0; n < CPUSTATES; ++n) { 379 total = cpu_states[n] - cpu_base[n]; 380 cpu_base[n] = cpu_states[n]; 381 cpu_states[n] = total; 382 acc += total; 383 } 384 if (acc == 0) /* prevent degenerate divide by 0 */ 385 acc = 1; 386 lsb = acc / (10000 * 2); 387 kcollect_setvalue(KCOLLECT_SYSTPCT, 388 (cpu_states[CP_SYS] + lsb) * 10000 / acc); 389 kcollect_setvalue(KCOLLECT_IDLEPCT, 390 (cpu_states[CP_IDLE] + lsb) * 10000 / acc); 391 kcollect_setvalue(KCOLLECT_INTRPCT, 392 (cpu_states[CP_INTR] + lsb) * 10000 / acc); 393 return((cpu_states[CP_USER] + cpu_states[CP_NICE] + lsb) * 10000 / acc); 394 } 395 396 /* 397 * This routine is called on just the BSP, just after SMP initialization 398 * completes to * finish initializing any clocks that might contend/block 399 * (e.g. like on a token). We can't do this in initclocks_pcpu() because 400 * that function is called from the idle thread bootstrap for each cpu and 401 * not allowed to block at all. 402 */ 403 static 404 void 405 initclocks_other(void *dummy) 406 { 407 struct globaldata *ogd = mycpu; 408 struct globaldata *gd; 409 int n; 410 411 for (n = 0; n < ncpus; ++n) { 412 lwkt_setcpu_self(globaldata_find(n)); 413 gd = mycpu; 414 415 /* 416 * Use a non-queued periodic systimer to prevent multiple 417 * ticks from building up if the sysclock jumps forward 418 * (8254 gets reset). The sysclock will never jump backwards. 419 * Our time sync is based on the actual sysclock, not the 420 * ticks count. 421 * 422 * Install statclock before hardclock to prevent statclock 423 * from misinterpreting gd_flags for tick assignment when 424 * they overlap. 425 */ 426 systimer_init_periodic_flags(&gd->gd_statclock, statclock, 427 NULL, stathz, 428 SYSTF_MSSYNC | SYSTF_FIRST); 429 systimer_init_periodic_flags(&gd->gd_hardclock, hardclock, 430 NULL, hz, SYSTF_MSSYNC); 431 /* XXX correct the frequency for scheduler / estcpu tests */ 432 systimer_init_periodic_flags(&gd->gd_schedclock, schedclock, 433 NULL, ESTCPUFREQ, SYSTF_MSSYNC); 434 } 435 lwkt_setcpu_self(ogd); 436 437 /* 438 * Regular data collection 439 */ 440 kcollect_register(KCOLLECT_USERPCT, "user", collect_cputime_callback, 441 KCOLLECT_SCALE(KCOLLECT_USERPCT_FORMAT, 0)); 442 kcollect_register(KCOLLECT_SYSTPCT, "syst", NULL, 443 KCOLLECT_SCALE(KCOLLECT_SYSTPCT_FORMAT, 0)); 444 kcollect_register(KCOLLECT_IDLEPCT, "idle", NULL, 445 KCOLLECT_SCALE(KCOLLECT_IDLEPCT_FORMAT, 0)); 446 } 447 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL); 448 449 /* 450 * This sets the current real time of day. Timespecs are in seconds and 451 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 452 * instead we adjust basetime so basetime + gd_* results in the current 453 * time of day. This way the gd_* fields are guaranteed to represent 454 * a monotonically increasing 'uptime' value. 455 * 456 * When set_timeofday() is called from userland, the system call forces it 457 * onto cpu #0 since only cpu #0 can update basetime_index. 458 */ 459 void 460 set_timeofday(struct timespec *ts) 461 { 462 struct timespec *nbt; 463 int ni; 464 465 /* 466 * XXX SMP / non-atomic basetime updates 467 */ 468 crit_enter(); 469 ni = (basetime_index + 1) & BASETIME_ARYMASK; 470 cpu_lfence(); 471 nbt = &basetime[ni]; 472 nanouptime(nbt); 473 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 474 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 475 if (nbt->tv_nsec < 0) { 476 nbt->tv_nsec += 1000000000; 477 --nbt->tv_sec; 478 } 479 480 /* 481 * Note that basetime diverges from boottime as the clock drift is 482 * compensated for, so we cannot do away with boottime. When setting 483 * the absolute time of day the drift is 0 (for an instant) and we 484 * can simply assign boottime to basetime. 485 * 486 * Note that nanouptime() is based on gd_time_seconds which is drift 487 * compensated up to a point (it is guaranteed to remain monotonically 488 * increasing). gd_time_seconds is thus our best uptime guess and 489 * suitable for use in the boottime calculation. It is already taken 490 * into account in the basetime calculation above. 491 */ 492 spin_lock(&ntp_spin); 493 boottime.tv_sec = nbt->tv_sec; 494 ntp_delta = 0; 495 496 /* 497 * We now have a new basetime, make sure all other cpus have it, 498 * then update the index. 499 */ 500 cpu_sfence(); 501 basetime_index = ni; 502 spin_unlock(&ntp_spin); 503 504 crit_exit(); 505 } 506 507 /* 508 * Each cpu has its own hardclock, but we only increments ticks and softticks 509 * on cpu #0. 510 * 511 * NOTE! systimer! the MP lock might not be held here. We can only safely 512 * manipulate objects owned by the current cpu. 513 */ 514 static void 515 hardclock(systimer_t info, int in_ipi, struct intrframe *frame) 516 { 517 sysclock_t cputicks; 518 struct proc *p; 519 struct globaldata *gd = mycpu; 520 521 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) { 522 /* Defer to doreti on passive IPIQ processing */ 523 need_ipiq(); 524 } 525 526 /* 527 * We update the compensation base to calculate fine-grained time 528 * from the sys_cputimer on a per-cpu basis in order to avoid 529 * having to mess around with locks. sys_cputimer is assumed to 530 * be consistent across all cpus. CPU N copies the base state from 531 * CPU 0 using the same FIFO trick that we use for basetime (so we 532 * don't catch a CPU 0 update in the middle). 533 * 534 * Note that we never allow info->time (aka gd->gd_hardclock.time) 535 * to reverse index gd_cpuclock_base, but that it is possible for 536 * it to temporarily get behind in the seconds if something in the 537 * system locks interrupts for a long period of time. Since periodic 538 * timers count events, though everything should resynch again 539 * immediately. 540 */ 541 if (gd->gd_cpuid == 0) { 542 int ni; 543 544 cputicks = info->time - gd->gd_cpuclock_base; 545 if (cputicks >= sys_cputimer->freq) { 546 cputicks /= sys_cputimer->freq; 547 if (cputicks != 0 && cputicks != 1) 548 kprintf("Warning: hardclock missed > 1 sec\n"); 549 gd->gd_time_seconds += cputicks; 550 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks; 551 /* uncorrected monotonic 1-sec gran */ 552 time_uptime += cputicks; 553 } 554 ni = (basetime_index + 1) & BASETIME_ARYMASK; 555 hardtime[ni].time_second = gd->gd_time_seconds; 556 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base; 557 } else { 558 int ni; 559 560 ni = basetime_index; 561 cpu_lfence(); 562 gd->gd_time_seconds = hardtime[ni].time_second; 563 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base; 564 } 565 566 /* 567 * The system-wide ticks counter and NTP related timedelta/tickdelta 568 * adjustments only occur on cpu #0. NTP adjustments are accomplished 569 * by updating basetime. 570 */ 571 if (gd->gd_cpuid == 0) { 572 struct timespec *nbt; 573 struct timespec nts; 574 int leap; 575 int ni; 576 577 ++ticks; 578 579 #if 0 580 if (tco->tc_poll_pps) 581 tco->tc_poll_pps(tco); 582 #endif 583 584 /* 585 * Calculate the new basetime index. We are in a critical section 586 * on cpu #0 and can safely play with basetime_index. Start 587 * with the current basetime and then make adjustments. 588 */ 589 ni = (basetime_index + 1) & BASETIME_ARYMASK; 590 nbt = &basetime[ni]; 591 *nbt = basetime[basetime_index]; 592 593 /* 594 * ntp adjustments only occur on cpu 0 and are protected by 595 * ntp_spin. This spinlock virtually never conflicts. 596 */ 597 spin_lock(&ntp_spin); 598 599 /* 600 * Apply adjtime corrections. (adjtime() API) 601 * 602 * adjtime() only runs on cpu #0 so our critical section is 603 * sufficient to access these variables. 604 */ 605 if (ntp_delta != 0) { 606 nbt->tv_nsec += ntp_tick_delta; 607 ntp_delta -= ntp_tick_delta; 608 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 609 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 610 ntp_tick_delta = ntp_delta; 611 } 612 } 613 614 /* 615 * Apply permanent frequency corrections. (sysctl API) 616 */ 617 if (ntp_tick_permanent != 0) { 618 ntp_tick_acc += ntp_tick_permanent; 619 if (ntp_tick_acc >= (1LL << 32)) { 620 nbt->tv_nsec += ntp_tick_acc >> 32; 621 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 622 } else if (ntp_tick_acc <= -(1LL << 32)) { 623 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 624 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 625 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 626 } 627 } 628 629 if (nbt->tv_nsec >= 1000000000) { 630 nbt->tv_sec++; 631 nbt->tv_nsec -= 1000000000; 632 } else if (nbt->tv_nsec < 0) { 633 nbt->tv_sec--; 634 nbt->tv_nsec += 1000000000; 635 } 636 637 /* 638 * Another per-tick compensation. (for ntp_adjtime() API) 639 */ 640 if (nsec_adj != 0) { 641 nsec_acc += nsec_adj; 642 if (nsec_acc >= 0x100000000LL) { 643 nbt->tv_nsec += nsec_acc >> 32; 644 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 645 } else if (nsec_acc <= -0x100000000LL) { 646 nbt->tv_nsec -= -nsec_acc >> 32; 647 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 648 } 649 if (nbt->tv_nsec >= 1000000000) { 650 nbt->tv_nsec -= 1000000000; 651 ++nbt->tv_sec; 652 } else if (nbt->tv_nsec < 0) { 653 nbt->tv_nsec += 1000000000; 654 --nbt->tv_sec; 655 } 656 } 657 spin_unlock(&ntp_spin); 658 659 /************************************************************ 660 * LEAP SECOND CORRECTION * 661 ************************************************************ 662 * 663 * Taking into account all the corrections made above, figure 664 * out the new real time. If the seconds field has changed 665 * then apply any pending leap-second corrections. 666 */ 667 getnanotime_nbt(nbt, &nts); 668 669 if (time_second != nts.tv_sec) { 670 /* 671 * Apply leap second (sysctl API). Adjust nts for changes 672 * so we do not have to call getnanotime_nbt again. 673 */ 674 if (ntp_leap_second) { 675 if (ntp_leap_second == nts.tv_sec) { 676 if (ntp_leap_insert) { 677 nbt->tv_sec++; 678 nts.tv_sec++; 679 } else { 680 nbt->tv_sec--; 681 nts.tv_sec--; 682 } 683 ntp_leap_second--; 684 } 685 } 686 687 /* 688 * Apply leap second (ntp_adjtime() API), calculate a new 689 * nsec_adj field. ntp_update_second() returns nsec_adj 690 * as a per-second value but we need it as a per-tick value. 691 */ 692 leap = ntp_update_second(time_second, &nsec_adj); 693 nsec_adj /= hz; 694 nbt->tv_sec += leap; 695 nts.tv_sec += leap; 696 697 /* 698 * Update the time_second 'approximate time' global. 699 */ 700 time_second = nts.tv_sec; 701 } 702 703 /* 704 * Finally, our new basetime is ready to go live! 705 */ 706 cpu_sfence(); 707 basetime_index = ni; 708 709 /* 710 * Update kpmap on each tick. TS updates are integrated with 711 * fences and upticks allowing userland to read the data 712 * deterministically. 713 */ 714 if (kpmap) { 715 int w; 716 717 w = (kpmap->upticks + 1) & 1; 718 getnanouptime(&kpmap->ts_uptime[w]); 719 getnanotime(&kpmap->ts_realtime[w]); 720 cpu_sfence(); 721 ++kpmap->upticks; 722 cpu_sfence(); 723 } 724 } 725 726 /* 727 * lwkt thread scheduler fair queueing 728 */ 729 lwkt_schedulerclock(curthread); 730 731 /* 732 * softticks are handled for all cpus 733 */ 734 hardclock_softtick(gd); 735 736 /* 737 * Rollup accumulated vmstats, copy-back for critical path checks. 738 */ 739 vmstats_rollup_cpu(gd); 740 vfscache_rollup_cpu(gd); 741 mycpu->gd_vmstats = vmstats; 742 743 /* 744 * ITimer handling is per-tick, per-cpu. 745 * 746 * We must acquire the per-process token in order for ksignal() 747 * to be non-blocking. For the moment this requires an AST fault, 748 * the ksignal() cannot be safely issued from this hard interrupt. 749 * 750 * XXX Even the trytoken here isn't right, and itimer operation in 751 * a multi threaded environment is going to be weird at the 752 * very least. 753 */ 754 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 755 crit_enter_hard(); 756 if (p->p_upmap) 757 ++p->p_upmap->runticks; 758 759 if (frame && CLKF_USERMODE(frame) && 760 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 761 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 762 p->p_flags |= P_SIGVTALRM; 763 need_user_resched(); 764 } 765 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 766 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 767 p->p_flags |= P_SIGPROF; 768 need_user_resched(); 769 } 770 crit_exit_hard(); 771 lwkt_reltoken(&p->p_token); 772 } 773 setdelayed(); 774 } 775 776 /* 777 * The statistics clock typically runs at a 125Hz rate, and is intended 778 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 779 * 780 * NOTE! systimer! the MP lock might not be held here. We can only safely 781 * manipulate objects owned by the current cpu. 782 * 783 * The stats clock is responsible for grabbing a profiling sample. 784 * Most of the statistics are only used by user-level statistics programs. 785 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 786 * p->p_estcpu. 787 * 788 * Like the other clocks, the stat clock is called from what is effectively 789 * a fast interrupt, so the context should be the thread/process that got 790 * interrupted. 791 */ 792 static void 793 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 794 { 795 #ifdef GPROF 796 struct gmonparam *g; 797 int i; 798 #endif 799 globaldata_t gd = mycpu; 800 thread_t td; 801 struct proc *p; 802 int bump; 803 sysclock_t cv; 804 sysclock_t scv; 805 806 /* 807 * How big was our timeslice relative to the last time? Calculate 808 * in microseconds. 809 * 810 * NOTE: Use of microuptime() is typically MPSAFE, but usually not 811 * during early boot. Just use the systimer count to be nice 812 * to e.g. qemu. The systimer has a better chance of being 813 * MPSAFE at early boot. 814 */ 815 cv = sys_cputimer->count(); 816 scv = gd->statint.gd_statcv; 817 if (scv == 0) { 818 bump = 1; 819 } else { 820 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32; 821 if (bump < 0) 822 bump = 0; 823 if (bump > 1000000) 824 bump = 1000000; 825 } 826 gd->statint.gd_statcv = cv; 827 828 #if 0 829 stv = &gd->gd_stattv; 830 if (stv->tv_sec == 0) { 831 bump = 1; 832 } else { 833 bump = tv.tv_usec - stv->tv_usec + 834 (tv.tv_sec - stv->tv_sec) * 1000000; 835 if (bump < 0) 836 bump = 0; 837 if (bump > 1000000) 838 bump = 1000000; 839 } 840 *stv = tv; 841 #endif 842 843 td = curthread; 844 p = td->td_proc; 845 846 if (frame && CLKF_USERMODE(frame)) { 847 /* 848 * Came from userland, handle user time and deal with 849 * possible process. 850 */ 851 if (p && (p->p_flags & P_PROFIL)) 852 addupc_intr(p, CLKF_PC(frame), 1); 853 td->td_uticks += bump; 854 855 /* 856 * Charge the time as appropriate 857 */ 858 if (p && p->p_nice > NZERO) 859 cpu_time.cp_nice += bump; 860 else 861 cpu_time.cp_user += bump; 862 } else { 863 int intr_nest = gd->gd_intr_nesting_level; 864 865 if (in_ipi) { 866 /* 867 * IPI processing code will bump gd_intr_nesting_level 868 * up by one, which breaks following CLKF_INTR testing, 869 * so we subtract it by one here. 870 */ 871 --intr_nest; 872 } 873 #ifdef GPROF 874 /* 875 * Kernel statistics are just like addupc_intr, only easier. 876 */ 877 g = &_gmonparam; 878 if (g->state == GMON_PROF_ON && frame) { 879 i = CLKF_PC(frame) - g->lowpc; 880 if (i < g->textsize) { 881 i /= HISTFRACTION * sizeof(*g->kcount); 882 g->kcount[i]++; 883 } 884 } 885 #endif 886 887 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 888 889 /* 890 * Came from kernel mode, so we were: 891 * - handling an interrupt, 892 * - doing syscall or trap work on behalf of the current 893 * user process, or 894 * - spinning in the idle loop. 895 * Whichever it is, charge the time as appropriate. 896 * Note that we charge interrupts to the current process, 897 * regardless of whether they are ``for'' that process, 898 * so that we know how much of its real time was spent 899 * in ``non-process'' (i.e., interrupt) work. 900 * 901 * XXX assume system if frame is NULL. A NULL frame 902 * can occur if ipi processing is done from a crit_exit(). 903 */ 904 if (IS_INTR_RUNNING || 905 (gd->gd_reqflags & RQF_INTPEND)) { 906 /* 907 * If we interrupted an interrupt thread, well, 908 * count it as interrupt time. 909 */ 910 td->td_iticks += bump; 911 #ifdef DEBUG_PCTRACK 912 if (frame) 913 do_pctrack(frame, PCTRACK_INT); 914 #endif 915 cpu_time.cp_intr += bump; 916 } else if (gd->gd_flags & GDF_VIRTUSER) { 917 /* 918 * The vkernel doesn't do a good job providing trap 919 * frames that we can test. If the GDF_VIRTUSER 920 * flag is set we probably interrupted user mode. 921 * 922 * We also use this flag on the host when entering 923 * VMM mode. 924 */ 925 td->td_uticks += bump; 926 927 /* 928 * Charge the time as appropriate 929 */ 930 if (p && p->p_nice > NZERO) 931 cpu_time.cp_nice += bump; 932 else 933 cpu_time.cp_user += bump; 934 } else { 935 td->td_sticks += bump; 936 if (td == &gd->gd_idlethread) { 937 /* 938 * We want to count token contention as 939 * system time. When token contention occurs 940 * the cpu may only be outside its critical 941 * section while switching through the idle 942 * thread. In this situation, various flags 943 * will be set in gd_reqflags. 944 */ 945 if (gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) 946 cpu_time.cp_sys += bump; 947 else 948 cpu_time.cp_idle += bump; 949 } else { 950 /* 951 * System thread was running. 952 */ 953 #ifdef DEBUG_PCTRACK 954 if (frame) 955 do_pctrack(frame, PCTRACK_SYS); 956 #endif 957 cpu_time.cp_sys += bump; 958 } 959 } 960 961 #undef IS_INTR_RUNNING 962 } 963 } 964 965 #ifdef DEBUG_PCTRACK 966 /* 967 * Sample the PC when in the kernel or in an interrupt. User code can 968 * retrieve the information and generate a histogram or other output. 969 */ 970 971 static void 972 do_pctrack(struct intrframe *frame, int which) 973 { 974 struct kinfo_pctrack *pctrack; 975 976 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 977 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 978 (void *)CLKF_PC(frame); 979 ++pctrack->pc_index; 980 } 981 982 static int 983 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 984 { 985 struct kinfo_pcheader head; 986 int error; 987 int cpu; 988 int ntrack; 989 990 head.pc_ntrack = PCTRACK_SIZE; 991 head.pc_arysize = PCTRACK_ARYSIZE; 992 993 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 994 return (error); 995 996 for (cpu = 0; cpu < ncpus; ++cpu) { 997 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 998 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 999 sizeof(struct kinfo_pctrack)); 1000 if (error) 1001 break; 1002 } 1003 if (error) 1004 break; 1005 } 1006 return (error); 1007 } 1008 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 1009 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 1010 1011 #endif 1012 1013 /* 1014 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 1015 * the MP lock might not be held. We can safely manipulate parts of curproc 1016 * but that's about it. 1017 * 1018 * Each cpu has its own scheduler clock. 1019 */ 1020 static void 1021 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 1022 { 1023 struct lwp *lp; 1024 struct rusage *ru; 1025 struct vmspace *vm; 1026 long rss; 1027 1028 if ((lp = lwkt_preempted_proc()) != NULL) { 1029 /* 1030 * Account for cpu time used and hit the scheduler. Note 1031 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 1032 * HERE. 1033 */ 1034 ++lp->lwp_cpticks; 1035 usched_schedulerclock(lp, info->periodic, info->time); 1036 } else { 1037 usched_schedulerclock(NULL, info->periodic, info->time); 1038 } 1039 if ((lp = curthread->td_lwp) != NULL) { 1040 /* 1041 * Update resource usage integrals and maximums. 1042 */ 1043 if ((ru = &lp->lwp_proc->p_ru) && 1044 (vm = lp->lwp_proc->p_vmspace) != NULL) { 1045 ru->ru_ixrss += pgtok(vm->vm_tsize); 1046 ru->ru_idrss += pgtok(vm->vm_dsize); 1047 ru->ru_isrss += pgtok(vm->vm_ssize); 1048 if (lwkt_trytoken(&vm->vm_map.token)) { 1049 rss = pgtok(vmspace_resident_count(vm)); 1050 if (ru->ru_maxrss < rss) 1051 ru->ru_maxrss = rss; 1052 lwkt_reltoken(&vm->vm_map.token); 1053 } 1054 } 1055 } 1056 /* Increment the global sched_ticks */ 1057 if (mycpu->gd_cpuid == 0) 1058 ++sched_ticks; 1059 } 1060 1061 /* 1062 * Compute number of ticks for the specified amount of time. The 1063 * return value is intended to be used in a clock interrupt timed 1064 * operation and guaranteed to meet or exceed the requested time. 1065 * If the representation overflows, return INT_MAX. The minimum return 1066 * value is 1 ticks and the function will average the calculation up. 1067 * If any value greater then 0 microseconds is supplied, a value 1068 * of at least 2 will be returned to ensure that a near-term clock 1069 * interrupt does not cause the timeout to occur (degenerately) early. 1070 * 1071 * Note that limit checks must take into account microseconds, which is 1072 * done simply by using the smaller signed long maximum instead of 1073 * the unsigned long maximum. 1074 * 1075 * If ints have 32 bits, then the maximum value for any timeout in 1076 * 10ms ticks is 248 days. 1077 */ 1078 int 1079 tvtohz_high(struct timeval *tv) 1080 { 1081 int ticks; 1082 long sec, usec; 1083 1084 sec = tv->tv_sec; 1085 usec = tv->tv_usec; 1086 if (usec < 0) { 1087 sec--; 1088 usec += 1000000; 1089 } 1090 if (sec < 0) { 1091 #ifdef DIAGNOSTIC 1092 if (usec > 0) { 1093 sec++; 1094 usec -= 1000000; 1095 } 1096 kprintf("tvtohz_high: negative time difference " 1097 "%ld sec %ld usec\n", 1098 sec, usec); 1099 #endif 1100 ticks = 1; 1101 } else if (sec <= INT_MAX / hz) { 1102 ticks = (int)(sec * hz + 1103 ((u_long)usec + (ustick - 1)) / ustick) + 1; 1104 } else { 1105 ticks = INT_MAX; 1106 } 1107 return (ticks); 1108 } 1109 1110 int 1111 tstohz_high(struct timespec *ts) 1112 { 1113 int ticks; 1114 long sec, nsec; 1115 1116 sec = ts->tv_sec; 1117 nsec = ts->tv_nsec; 1118 if (nsec < 0) { 1119 sec--; 1120 nsec += 1000000000; 1121 } 1122 if (sec < 0) { 1123 #ifdef DIAGNOSTIC 1124 if (nsec > 0) { 1125 sec++; 1126 nsec -= 1000000000; 1127 } 1128 kprintf("tstohz_high: negative time difference " 1129 "%ld sec %ld nsec\n", 1130 sec, nsec); 1131 #endif 1132 ticks = 1; 1133 } else if (sec <= INT_MAX / hz) { 1134 ticks = (int)(sec * hz + 1135 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 1136 } else { 1137 ticks = INT_MAX; 1138 } 1139 return (ticks); 1140 } 1141 1142 1143 /* 1144 * Compute number of ticks for the specified amount of time, erroring on 1145 * the side of it being too low to ensure that sleeping the returned number 1146 * of ticks will not result in a late return. 1147 * 1148 * The supplied timeval may not be negative and should be normalized. A 1149 * return value of 0 is possible if the timeval converts to less then 1150 * 1 tick. 1151 * 1152 * If ints have 32 bits, then the maximum value for any timeout in 1153 * 10ms ticks is 248 days. 1154 */ 1155 int 1156 tvtohz_low(struct timeval *tv) 1157 { 1158 int ticks; 1159 long sec; 1160 1161 sec = tv->tv_sec; 1162 if (sec <= INT_MAX / hz) 1163 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 1164 else 1165 ticks = INT_MAX; 1166 return (ticks); 1167 } 1168 1169 int 1170 tstohz_low(struct timespec *ts) 1171 { 1172 int ticks; 1173 long sec; 1174 1175 sec = ts->tv_sec; 1176 if (sec <= INT_MAX / hz) 1177 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 1178 else 1179 ticks = INT_MAX; 1180 return (ticks); 1181 } 1182 1183 /* 1184 * Start profiling on a process. 1185 * 1186 * Caller must hold p->p_token(); 1187 * 1188 * Kernel profiling passes proc0 which never exits and hence 1189 * keeps the profile clock running constantly. 1190 */ 1191 void 1192 startprofclock(struct proc *p) 1193 { 1194 if ((p->p_flags & P_PROFIL) == 0) { 1195 p->p_flags |= P_PROFIL; 1196 #if 0 /* XXX */ 1197 if (++profprocs == 1 && stathz != 0) { 1198 crit_enter(); 1199 psdiv = psratio; 1200 setstatclockrate(profhz); 1201 crit_exit(); 1202 } 1203 #endif 1204 } 1205 } 1206 1207 /* 1208 * Stop profiling on a process. 1209 * 1210 * caller must hold p->p_token 1211 */ 1212 void 1213 stopprofclock(struct proc *p) 1214 { 1215 if (p->p_flags & P_PROFIL) { 1216 p->p_flags &= ~P_PROFIL; 1217 #if 0 /* XXX */ 1218 if (--profprocs == 0 && stathz != 0) { 1219 crit_enter(); 1220 psdiv = 1; 1221 setstatclockrate(stathz); 1222 crit_exit(); 1223 } 1224 #endif 1225 } 1226 } 1227 1228 /* 1229 * Return information about system clocks. 1230 */ 1231 static int 1232 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 1233 { 1234 struct kinfo_clockinfo clkinfo; 1235 /* 1236 * Construct clockinfo structure. 1237 */ 1238 clkinfo.ci_hz = hz; 1239 clkinfo.ci_tick = ustick; 1240 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 1241 clkinfo.ci_profhz = profhz; 1242 clkinfo.ci_stathz = stathz ? stathz : hz; 1243 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1244 } 1245 1246 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1247 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1248 1249 /* 1250 * We have eight functions for looking at the clock, four for 1251 * microseconds and four for nanoseconds. For each there is fast 1252 * but less precise version "get{nano|micro}[up]time" which will 1253 * return a time which is up to 1/HZ previous to the call, whereas 1254 * the raw version "{nano|micro}[up]time" will return a timestamp 1255 * which is as precise as possible. The "up" variants return the 1256 * time relative to system boot, these are well suited for time 1257 * interval measurements. 1258 * 1259 * Each cpu independently maintains the current time of day, so all 1260 * we need to do to protect ourselves from changes is to do a loop 1261 * check on the seconds field changing out from under us. 1262 * 1263 * The system timer maintains a 32 bit count and due to various issues 1264 * it is possible for the calculated delta to occasionally exceed 1265 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1266 * multiplication can easily overflow, so we deal with the case. For 1267 * uniformity we deal with the case in the usec case too. 1268 * 1269 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1270 */ 1271 void 1272 getmicrouptime(struct timeval *tvp) 1273 { 1274 struct globaldata *gd = mycpu; 1275 sysclock_t delta; 1276 1277 do { 1278 tvp->tv_sec = gd->gd_time_seconds; 1279 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1280 } while (tvp->tv_sec != gd->gd_time_seconds); 1281 1282 if (delta >= sys_cputimer->freq) { 1283 tvp->tv_sec += delta / sys_cputimer->freq; 1284 delta %= sys_cputimer->freq; 1285 } 1286 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1287 if (tvp->tv_usec >= 1000000) { 1288 tvp->tv_usec -= 1000000; 1289 ++tvp->tv_sec; 1290 } 1291 } 1292 1293 void 1294 getnanouptime(struct timespec *tsp) 1295 { 1296 struct globaldata *gd = mycpu; 1297 sysclock_t delta; 1298 1299 do { 1300 tsp->tv_sec = gd->gd_time_seconds; 1301 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1302 } while (tsp->tv_sec != gd->gd_time_seconds); 1303 1304 if (delta >= sys_cputimer->freq) { 1305 tsp->tv_sec += delta / sys_cputimer->freq; 1306 delta %= sys_cputimer->freq; 1307 } 1308 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1309 } 1310 1311 void 1312 microuptime(struct timeval *tvp) 1313 { 1314 struct globaldata *gd = mycpu; 1315 sysclock_t delta; 1316 1317 do { 1318 tvp->tv_sec = gd->gd_time_seconds; 1319 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1320 } while (tvp->tv_sec != gd->gd_time_seconds); 1321 1322 if (delta >= sys_cputimer->freq) { 1323 tvp->tv_sec += delta / sys_cputimer->freq; 1324 delta %= sys_cputimer->freq; 1325 } 1326 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1327 } 1328 1329 void 1330 nanouptime(struct timespec *tsp) 1331 { 1332 struct globaldata *gd = mycpu; 1333 sysclock_t delta; 1334 1335 do { 1336 tsp->tv_sec = gd->gd_time_seconds; 1337 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1338 } while (tsp->tv_sec != gd->gd_time_seconds); 1339 1340 if (delta >= sys_cputimer->freq) { 1341 tsp->tv_sec += delta / sys_cputimer->freq; 1342 delta %= sys_cputimer->freq; 1343 } 1344 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1345 } 1346 1347 /* 1348 * realtime routines 1349 */ 1350 void 1351 getmicrotime(struct timeval *tvp) 1352 { 1353 struct globaldata *gd = mycpu; 1354 struct timespec *bt; 1355 sysclock_t delta; 1356 1357 do { 1358 tvp->tv_sec = gd->gd_time_seconds; 1359 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1360 } while (tvp->tv_sec != gd->gd_time_seconds); 1361 1362 if (delta >= sys_cputimer->freq) { 1363 tvp->tv_sec += delta / sys_cputimer->freq; 1364 delta %= sys_cputimer->freq; 1365 } 1366 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1367 1368 bt = &basetime[basetime_index]; 1369 cpu_lfence(); 1370 tvp->tv_sec += bt->tv_sec; 1371 tvp->tv_usec += bt->tv_nsec / 1000; 1372 while (tvp->tv_usec >= 1000000) { 1373 tvp->tv_usec -= 1000000; 1374 ++tvp->tv_sec; 1375 } 1376 } 1377 1378 void 1379 getnanotime(struct timespec *tsp) 1380 { 1381 struct globaldata *gd = mycpu; 1382 struct timespec *bt; 1383 sysclock_t delta; 1384 1385 do { 1386 tsp->tv_sec = gd->gd_time_seconds; 1387 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1388 } while (tsp->tv_sec != gd->gd_time_seconds); 1389 1390 if (delta >= sys_cputimer->freq) { 1391 tsp->tv_sec += delta / sys_cputimer->freq; 1392 delta %= sys_cputimer->freq; 1393 } 1394 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1395 1396 bt = &basetime[basetime_index]; 1397 cpu_lfence(); 1398 tsp->tv_sec += bt->tv_sec; 1399 tsp->tv_nsec += bt->tv_nsec; 1400 while (tsp->tv_nsec >= 1000000000) { 1401 tsp->tv_nsec -= 1000000000; 1402 ++tsp->tv_sec; 1403 } 1404 } 1405 1406 static void 1407 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1408 { 1409 struct globaldata *gd = mycpu; 1410 sysclock_t delta; 1411 1412 do { 1413 tsp->tv_sec = gd->gd_time_seconds; 1414 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1415 } while (tsp->tv_sec != gd->gd_time_seconds); 1416 1417 if (delta >= sys_cputimer->freq) { 1418 tsp->tv_sec += delta / sys_cputimer->freq; 1419 delta %= sys_cputimer->freq; 1420 } 1421 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1422 1423 tsp->tv_sec += nbt->tv_sec; 1424 tsp->tv_nsec += nbt->tv_nsec; 1425 while (tsp->tv_nsec >= 1000000000) { 1426 tsp->tv_nsec -= 1000000000; 1427 ++tsp->tv_sec; 1428 } 1429 } 1430 1431 1432 void 1433 microtime(struct timeval *tvp) 1434 { 1435 struct globaldata *gd = mycpu; 1436 struct timespec *bt; 1437 sysclock_t delta; 1438 1439 do { 1440 tvp->tv_sec = gd->gd_time_seconds; 1441 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1442 } while (tvp->tv_sec != gd->gd_time_seconds); 1443 1444 if (delta >= sys_cputimer->freq) { 1445 tvp->tv_sec += delta / sys_cputimer->freq; 1446 delta %= sys_cputimer->freq; 1447 } 1448 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1449 1450 bt = &basetime[basetime_index]; 1451 cpu_lfence(); 1452 tvp->tv_sec += bt->tv_sec; 1453 tvp->tv_usec += bt->tv_nsec / 1000; 1454 while (tvp->tv_usec >= 1000000) { 1455 tvp->tv_usec -= 1000000; 1456 ++tvp->tv_sec; 1457 } 1458 } 1459 1460 void 1461 nanotime(struct timespec *tsp) 1462 { 1463 struct globaldata *gd = mycpu; 1464 struct timespec *bt; 1465 sysclock_t delta; 1466 1467 do { 1468 tsp->tv_sec = gd->gd_time_seconds; 1469 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1470 } while (tsp->tv_sec != gd->gd_time_seconds); 1471 1472 if (delta >= sys_cputimer->freq) { 1473 tsp->tv_sec += delta / sys_cputimer->freq; 1474 delta %= sys_cputimer->freq; 1475 } 1476 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1477 1478 bt = &basetime[basetime_index]; 1479 cpu_lfence(); 1480 tsp->tv_sec += bt->tv_sec; 1481 tsp->tv_nsec += bt->tv_nsec; 1482 while (tsp->tv_nsec >= 1000000000) { 1483 tsp->tv_nsec -= 1000000000; 1484 ++tsp->tv_sec; 1485 } 1486 } 1487 1488 /* 1489 * Get an approximate time_t. It does not have to be accurate. This 1490 * function is called only from KTR and can be called with the system in 1491 * any state so do not use a critical section or other complex operation 1492 * here. 1493 * 1494 * NOTE: This is not exactly synchronized with real time. To do that we 1495 * would have to do what microtime does and check for a nanoseconds 1496 * overflow. 1497 */ 1498 time_t 1499 get_approximate_time_t(void) 1500 { 1501 struct globaldata *gd = mycpu; 1502 struct timespec *bt; 1503 1504 bt = &basetime[basetime_index]; 1505 return(gd->gd_time_seconds + bt->tv_sec); 1506 } 1507 1508 int 1509 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1510 { 1511 pps_params_t *app; 1512 struct pps_fetch_args *fapi; 1513 #ifdef PPS_SYNC 1514 struct pps_kcbind_args *kapi; 1515 #endif 1516 1517 switch (cmd) { 1518 case PPS_IOC_CREATE: 1519 return (0); 1520 case PPS_IOC_DESTROY: 1521 return (0); 1522 case PPS_IOC_SETPARAMS: 1523 app = (pps_params_t *)data; 1524 if (app->mode & ~pps->ppscap) 1525 return (EINVAL); 1526 pps->ppsparam = *app; 1527 return (0); 1528 case PPS_IOC_GETPARAMS: 1529 app = (pps_params_t *)data; 1530 *app = pps->ppsparam; 1531 app->api_version = PPS_API_VERS_1; 1532 return (0); 1533 case PPS_IOC_GETCAP: 1534 *(int*)data = pps->ppscap; 1535 return (0); 1536 case PPS_IOC_FETCH: 1537 fapi = (struct pps_fetch_args *)data; 1538 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1539 return (EINVAL); 1540 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1541 return (EOPNOTSUPP); 1542 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1543 fapi->pps_info_buf = pps->ppsinfo; 1544 return (0); 1545 case PPS_IOC_KCBIND: 1546 #ifdef PPS_SYNC 1547 kapi = (struct pps_kcbind_args *)data; 1548 /* XXX Only root should be able to do this */ 1549 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1550 return (EINVAL); 1551 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1552 return (EINVAL); 1553 if (kapi->edge & ~pps->ppscap) 1554 return (EINVAL); 1555 pps->kcmode = kapi->edge; 1556 return (0); 1557 #else 1558 return (EOPNOTSUPP); 1559 #endif 1560 default: 1561 return (ENOTTY); 1562 } 1563 } 1564 1565 void 1566 pps_init(struct pps_state *pps) 1567 { 1568 pps->ppscap |= PPS_TSFMT_TSPEC; 1569 if (pps->ppscap & PPS_CAPTUREASSERT) 1570 pps->ppscap |= PPS_OFFSETASSERT; 1571 if (pps->ppscap & PPS_CAPTURECLEAR) 1572 pps->ppscap |= PPS_OFFSETCLEAR; 1573 } 1574 1575 void 1576 pps_event(struct pps_state *pps, sysclock_t count, int event) 1577 { 1578 struct globaldata *gd; 1579 struct timespec *tsp; 1580 struct timespec *osp; 1581 struct timespec *bt; 1582 struct timespec ts; 1583 sysclock_t *pcount; 1584 #ifdef PPS_SYNC 1585 sysclock_t tcount; 1586 #endif 1587 sysclock_t delta; 1588 pps_seq_t *pseq; 1589 int foff; 1590 #ifdef PPS_SYNC 1591 int fhard; 1592 #endif 1593 int ni; 1594 1595 gd = mycpu; 1596 1597 /* Things would be easier with arrays... */ 1598 if (event == PPS_CAPTUREASSERT) { 1599 tsp = &pps->ppsinfo.assert_timestamp; 1600 osp = &pps->ppsparam.assert_offset; 1601 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1602 #ifdef PPS_SYNC 1603 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1604 #endif 1605 pcount = &pps->ppscount[0]; 1606 pseq = &pps->ppsinfo.assert_sequence; 1607 } else { 1608 tsp = &pps->ppsinfo.clear_timestamp; 1609 osp = &pps->ppsparam.clear_offset; 1610 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1611 #ifdef PPS_SYNC 1612 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1613 #endif 1614 pcount = &pps->ppscount[1]; 1615 pseq = &pps->ppsinfo.clear_sequence; 1616 } 1617 1618 /* Nothing really happened */ 1619 if (*pcount == count) 1620 return; 1621 1622 *pcount = count; 1623 1624 do { 1625 ts.tv_sec = gd->gd_time_seconds; 1626 delta = count - gd->gd_cpuclock_base; 1627 } while (ts.tv_sec != gd->gd_time_seconds); 1628 1629 if (delta >= sys_cputimer->freq) { 1630 ts.tv_sec += delta / sys_cputimer->freq; 1631 delta %= sys_cputimer->freq; 1632 } 1633 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1634 ni = basetime_index; 1635 cpu_lfence(); 1636 bt = &basetime[ni]; 1637 ts.tv_sec += bt->tv_sec; 1638 ts.tv_nsec += bt->tv_nsec; 1639 while (ts.tv_nsec >= 1000000000) { 1640 ts.tv_nsec -= 1000000000; 1641 ++ts.tv_sec; 1642 } 1643 1644 (*pseq)++; 1645 *tsp = ts; 1646 1647 if (foff) { 1648 timespecadd(tsp, osp); 1649 if (tsp->tv_nsec < 0) { 1650 tsp->tv_nsec += 1000000000; 1651 tsp->tv_sec -= 1; 1652 } 1653 } 1654 #ifdef PPS_SYNC 1655 if (fhard) { 1656 /* magic, at its best... */ 1657 tcount = count - pps->ppscount[2]; 1658 pps->ppscount[2] = count; 1659 if (tcount >= sys_cputimer->freq) { 1660 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1661 sys_cputimer->freq64_nsec * 1662 (tcount % sys_cputimer->freq)) >> 32; 1663 } else { 1664 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1665 } 1666 hardpps(tsp, delta); 1667 } 1668 #endif 1669 } 1670 1671 /* 1672 * Return the tsc target value for a delay of (ns). 1673 * 1674 * Returns -1 if the TSC is not supported. 1675 */ 1676 tsc_uclock_t 1677 tsc_get_target(int ns) 1678 { 1679 #if defined(_RDTSC_SUPPORTED_) 1680 if (cpu_feature & CPUID_TSC) { 1681 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1682 } 1683 #endif 1684 return(-1); 1685 } 1686 1687 /* 1688 * Compare the tsc against the passed target 1689 * 1690 * Returns +1 if the target has been reached 1691 * Returns 0 if the target has not yet been reached 1692 * Returns -1 if the TSC is not supported. 1693 * 1694 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1695 */ 1696 int 1697 tsc_test_target(int64_t target) 1698 { 1699 #if defined(_RDTSC_SUPPORTED_) 1700 if (cpu_feature & CPUID_TSC) { 1701 if ((int64_t)(target - rdtsc()) <= 0) 1702 return(1); 1703 return(0); 1704 } 1705 #endif 1706 return(-1); 1707 } 1708 1709 /* 1710 * Delay the specified number of nanoseconds using the tsc. This function 1711 * returns immediately if the TSC is not supported. At least one cpu_pause() 1712 * will be issued. 1713 */ 1714 void 1715 tsc_delay(int ns) 1716 { 1717 int64_t clk; 1718 1719 clk = tsc_get_target(ns); 1720 cpu_pause(); 1721 cpu_pause(); 1722 while (tsc_test_target(clk) == 0) { 1723 cpu_pause(); 1724 cpu_pause(); 1725 cpu_pause(); 1726 cpu_pause(); 1727 } 1728 } 1729