xref: /dragonfly/sys/kern/kern_descrip.c (revision 0b2c5ee3)
1 /*
2  * Copyright (c) 2005-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu and Matthew Dillon.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
68  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/sysmsg.h>
75 #include <sys/conf.h>
76 #include <sys/device.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/vnode.h>
82 #include <sys/proc.h>
83 #include <sys/nlookup.h>
84 #include <sys/stat.h>
85 #include <sys/filio.h>
86 #include <sys/fcntl.h>
87 #include <sys/unistd.h>
88 #include <sys/resourcevar.h>
89 #include <sys/event.h>
90 #include <sys/kern_syscall.h>
91 #include <sys/kcore.h>
92 #include <sys/kinfo.h>
93 #include <sys/un.h>
94 #include <sys/objcache.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/file2.h>
100 #include <sys/spinlock2.h>
101 
102 static int fdalloc_locked(struct proc *p, struct filedesc *fdp,
103 			int want, int *result);
104 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
105 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
106 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
107 static void ffree(struct file *fp);
108 
109 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
110 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
111 			"file desc to leader structures");
112 static MALLOC_DEFINE_OBJ(M_FILE, sizeof(struct file),
113 			"file", "Open file structure");
114 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
115 
116 static struct krate krate_uidinfo = { .freq = 1 };
117 
118 static	 d_open_t  fdopen;
119 #define NUMFDESC 64
120 
121 #define CDEV_MAJOR 22
122 static struct dev_ops fildesc_ops = {
123 	{ "FD", 0, 0 },
124 	.d_open =	fdopen,
125 };
126 
127 /*
128  * Descriptor management.
129  */
130 #ifndef NFILELIST_HEADS
131 #define NFILELIST_HEADS		257	/* primary number */
132 #endif
133 
134 struct filelist_head {
135 	struct spinlock		spin;
136 	struct filelist		list;
137 } __cachealign;
138 
139 static struct filelist_head	filelist_heads[NFILELIST_HEADS];
140 
141 static int nfiles;		/* actual number of open files */
142 extern int cmask;
143 
144 struct lwkt_token revoke_token = LWKT_TOKEN_INITIALIZER(revoke_token);
145 
146 /*
147  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
148  *
149  * must be called with fdp->fd_spin exclusively held
150  */
151 static __inline
152 void
153 fdfixup_locked(struct filedesc *fdp, int fd)
154 {
155 	if (fd < fdp->fd_freefile) {
156 	       fdp->fd_freefile = fd;
157 	}
158 	while (fdp->fd_lastfile >= 0 &&
159 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
160 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
161 	) {
162 		--fdp->fd_lastfile;
163 	}
164 }
165 
166 /*
167  * Clear the fd thread caches for this fdnode.
168  *
169  * If match_fdc is NULL, all thread caches of fdn will be cleared.
170  * The caller must hold fdp->fd_spin exclusively.  The threads caching
171  * the descriptor do not have to be the current thread.  The (status)
172  * argument is ignored.
173  *
174  * If match_fdc is not NULL, only the match_fdc's cache will be cleared.
175  * The caller must hold fdp->fd_spin shared and match_fdc must match a
176  * fdcache entry in curthread.  match_fdc has been locked by the caller
177  * and had the specified (status).
178  *
179  * Since we are matching against a fp in the fdp (which must still be present
180  * at this time), fp will have at least two refs on any match and we can
181  * decrement the count trivially.
182  */
183 static
184 void
185 fclearcache(struct fdnode *fdn, struct fdcache *match_fdc, int status)
186 {
187 	struct fdcache *fdc;
188 	struct file *fp;
189 	int i;
190 
191 	/*
192 	 * match_fdc == NULL	We are cleaning out all tdcache entries
193 	 *			for the fdn and hold fdp->fd_spin exclusively.
194 	 *			This can race against the target threads
195 	 *			cleaning out specific entries.
196 	 *
197 	 * match_fdc != NULL	We are cleaning out a specific tdcache
198 	 *			entry on behalf of the owning thread
199 	 *			and hold fdp->fd_spin shared.  The thread
200 	 *			has already locked the entry.  This cannot
201 	 *			race.
202 	 */
203 	fp = fdn->fp;
204 	for (i = 0; i < NTDCACHEFD; ++i) {
205 		if ((fdc = fdn->tdcache[i]) == NULL)
206 			continue;
207 
208 		/*
209 		 * If match_fdc is non-NULL we are being asked to
210 		 * clear a specific fdc owned by curthread.  There must
211 		 * be exactly one match.  The caller has already locked
212 		 * the cache entry and will dispose of the lock after
213 		 * we return.
214 		 *
215 		 * Since we also have a shared lock on fdp, we
216 		 * can do this without atomic ops.
217 		 */
218 		if (match_fdc) {
219 			if (fdc != match_fdc)
220 				continue;
221 			fdn->tdcache[i] = NULL;
222 			KASSERT(fp == fdc->fp,
223 				("fclearcache(1): fp mismatch %p/%p\n",
224 				fp, fdc->fp));
225 			fdc->fp = NULL;
226 			fdc->fd = -1;
227 
228 			/*
229 			 * status can be 0 or 2.  If 2 the ref is borrowed,
230 			 * if 0 the ref is not borrowed and we have to drop
231 			 * it.
232 			 */
233 			if (status == 0)
234 				atomic_add_int(&fp->f_count, -1);
235 			fdn->isfull = 0;	/* heuristic */
236 			return;
237 		}
238 
239 		/*
240 		 * Otherwise we hold an exclusive spin-lock and can only
241 		 * race thread consumers borrowing cache entries.
242 		 *
243 		 * Acquire the lock and dispose of the entry.  We have to
244 		 * spin until we get the lock.
245 		 */
246 		for (;;) {
247 			status = atomic_swap_int(&fdc->locked, 1);
248 			if (status == 1) {	/* foreign lock, retry */
249 				cpu_pause();
250 				continue;
251 			}
252 			fdn->tdcache[i] = NULL;
253 			KASSERT(fp == fdc->fp,
254 				("fclearcache(2): fp mismatch %p/%p\n",
255 				fp, fdc->fp));
256 			fdc->fp = NULL;
257 			fdc->fd = -1;
258 			if (status == 0)
259 				atomic_add_int(&fp->f_count, -1);
260 			fdn->isfull = 0;	/* heuristic */
261 			atomic_swap_int(&fdc->locked, 0);
262 			break;
263 		}
264 	}
265 	KKASSERT(match_fdc == NULL);
266 }
267 
268 /*
269  * Retrieve the fp for the specified fd given the specified file descriptor
270  * table.  The fdp does not have to be owned by the current process.
271  * If flags != -1, fp->f_flag must contain at least one of the flags.
272  *
273  * This function is not able to cache the fp.
274  */
275 struct file *
276 holdfp_fdp(struct filedesc *fdp, int fd, int flag)
277 {
278 	struct file *fp;
279 
280 	spin_lock_shared(&fdp->fd_spin);
281 	if (((u_int)fd) < fdp->fd_nfiles) {
282 		fp = fdp->fd_files[fd].fp;	/* can be NULL */
283 		if (fp) {
284 			if ((fp->f_flag & flag) == 0 && flag != -1) {
285 				fp = NULL;
286 			} else {
287 				fhold(fp);
288 			}
289 		}
290 	} else {
291 		fp = NULL;
292 	}
293 	spin_unlock_shared(&fdp->fd_spin);
294 
295 	return fp;
296 }
297 
298 struct file *
299 holdfp_fdp_locked(struct filedesc *fdp, int fd, int flag)
300 {
301 	struct file *fp;
302 
303 	if (((u_int)fd) < fdp->fd_nfiles) {
304 		fp = fdp->fd_files[fd].fp;	/* can be NULL */
305 		if (fp) {
306 			if ((fp->f_flag & flag) == 0 && flag != -1) {
307 				fp = NULL;
308 			} else {
309 				fhold(fp);
310 			}
311 		}
312 	} else {
313 		fp = NULL;
314 	}
315 	return fp;
316 }
317 
318 /*
319  * Acquire the fp for the specified file descriptor, using the thread
320  * cache if possible and caching it if possible.
321  *
322  * td must be the curren thread.
323  */
324 static
325 struct file *
326 _holdfp_cache(thread_t td, int fd)
327 {
328 	struct filedesc *fdp;
329 	struct fdcache *fdc;
330 	struct fdcache *best;
331 	struct fdnode *fdn;
332 	struct file *fp;
333 	int status;
334 	int delta;
335 	int i;
336 
337 	/*
338 	 * Fast
339 	 */
340 	for (fdc = &td->td_fdcache[0]; fdc < &td->td_fdcache[NFDCACHE]; ++fdc) {
341 		if (fdc->fd != fd || fdc->fp == NULL)
342 			continue;
343 		status = atomic_swap_int(&fdc->locked, 1);
344 
345 		/*
346 		 * If someone else has locked our cache entry they are in
347 		 * the middle of clearing it, skip the entry.
348 		 */
349 		if (status == 1)
350 			continue;
351 
352 		/*
353 		 * We have locked the entry, but if it no longer matches
354 		 * restore the previous state (0 or 2) and skip the entry.
355 		 */
356 		if (fdc->fd != fd || fdc->fp == NULL) {
357 			atomic_swap_int(&fdc->locked, status);
358 			continue;
359 		}
360 
361 		/*
362 		 * We have locked a valid entry.  We can borrow the ref
363 		 * for a mode 0 entry.  We can get a valid fp for a mode
364 		 * 2 entry but not borrow the ref.
365 		 */
366 		if (status == 0) {
367 			fp = fdc->fp;
368 			fdc->lru = ++td->td_fdcache_lru;
369 			atomic_swap_int(&fdc->locked, 2);
370 
371 			return fp;
372 		}
373 		if (status == 2) {
374 			fp = fdc->fp;
375 			fhold(fp);
376 			fdc->lru = ++td->td_fdcache_lru;
377 			atomic_swap_int(&fdc->locked, 2);
378 
379 			return fp;
380 		}
381 		KKASSERT(0);
382 	}
383 
384 	/*
385 	 * Lookup the descriptor the slow way.  This can contend against
386 	 * modifying operations in a multi-threaded environment and cause
387 	 * cache line ping ponging otherwise.
388 	 */
389 	fdp = td->td_proc->p_fd;
390 	spin_lock_shared(&fdp->fd_spin);
391 
392 	if (((u_int)fd) < fdp->fd_nfiles) {
393 		fp = fdp->fd_files[fd].fp;	/* can be NULL */
394 		if (fp) {
395 			fhold(fp);
396 			if (fdp->fd_files[fd].isfull == 0)
397 				goto enter;
398 		}
399 	} else {
400 		fp = NULL;
401 	}
402 	spin_unlock_shared(&fdp->fd_spin);
403 
404 	return fp;
405 
406 	/*
407 	 * We found a valid fp and held it, fdp is still shared locked.
408 	 * Enter the fp into the per-thread cache.  Find the oldest entry
409 	 * via lru, or an empty entry.
410 	 *
411 	 * Because fdp's spinlock is held (shared is fine), no other
412 	 * thread should be in the middle of clearing our selected entry.
413 	 */
414 enter:
415 	best = &td->td_fdcache[0];
416 	for (fdc = &td->td_fdcache[0]; fdc < &td->td_fdcache[NFDCACHE]; ++fdc) {
417 		if (fdc->fp == NULL) {
418 			best = fdc;
419 			break;
420 		}
421 		delta = fdc->lru - best->lru;
422 		if (delta < 0)
423 			best = fdc;
424 	}
425 
426 	/*
427 	 * Replace best
428 	 *
429 	 * Don't enter into the cache if we cannot get the lock.
430 	 */
431 	status = atomic_swap_int(&best->locked, 1);
432 	if (status == 1)
433 		goto done;
434 
435 	/*
436 	 * Clear the previous cache entry if present
437 	 */
438 	if (best->fp) {
439 		KKASSERT(best->fd >= 0);
440 		fclearcache(&fdp->fd_files[best->fd], best, status);
441 	}
442 
443 	/*
444 	 * Create our new cache entry.  This entry is 'safe' until we tie
445 	 * into the fdnode.  If we cannot tie in, we will clear the entry.
446 	 */
447 	best->fd = fd;
448 	best->fp = fp;
449 	best->lru = ++td->td_fdcache_lru;
450 	best->locked = 2;			/* borrowed ref */
451 
452 	fdn = &fdp->fd_files[fd];
453 	for (i = 0; i < NTDCACHEFD; ++i) {
454 		if (fdn->tdcache[i] == NULL &&
455 		    atomic_cmpset_ptr((void **)&fdn->tdcache[i], NULL, best)) {
456 			goto done;
457 		}
458 	}
459 	fdn->isfull = 1;			/* no space */
460 	best->fd = -1;
461 	best->fp = NULL;
462 	best->locked = 0;
463 done:
464 	spin_unlock_shared(&fdp->fd_spin);
465 
466 	return fp;
467 }
468 
469 /*
470  * holdfp(), bypassing the cache in order to also be able to return
471  * the descriptor flags.  A bit of a hack.
472  */
473 static
474 struct file *
475 _holdfp2(thread_t td, int fd, char *fflagsp)
476 {
477 	struct filedesc *fdp;
478 	struct file *fp;
479 
480 	/*
481 	 * Lookup the descriptor the slow way.  This can contend against
482 	 * modifying operations in a multi-threaded environment and cause
483 	 * cache line ping ponging otherwise.
484 	 */
485 	fdp = td->td_proc->p_fd;
486 	spin_lock_shared(&fdp->fd_spin);
487 
488 	if (((u_int)fd) < fdp->fd_nfiles) {
489 		fp = fdp->fd_files[fd].fp;	/* can be NULL */
490 		if (fp) {
491 			*fflagsp = fdp->fd_files[fd].fileflags;
492 			fhold(fp);
493 		}
494 	} else {
495 		fp = NULL;
496 	}
497 	spin_unlock_shared(&fdp->fd_spin);
498 
499 	return fp;
500 }
501 
502 
503 /*
504  * Drop the file pointer and return to the thread cache if possible.
505  *
506  * Caller must not hold fdp's spin lock.
507  * td must be the current thread.
508  */
509 void
510 dropfp(thread_t td, int fd, struct file *fp)
511 {
512 	struct filedesc *fdp;
513 	struct fdcache *fdc;
514 	int status;
515 
516 	fdp = td->td_proc->p_fd;
517 
518 	/*
519 	 * If our placeholder is still present we can re-cache the ref.
520 	 *
521 	 * Note that we can race an fclearcache().
522 	 */
523 	for (fdc = &td->td_fdcache[0]; fdc < &td->td_fdcache[NFDCACHE]; ++fdc) {
524 		if (fdc->fp != fp || fdc->fd != fd)
525 			continue;
526 		status = atomic_swap_int(&fdc->locked, 1);
527 		switch(status) {
528 		case 0:
529 			/*
530 			 * Not in mode 2, fdrop fp without caching.
531 			 */
532 			atomic_swap_int(&fdc->locked, 0);
533 			break;
534 		case 1:
535 			/*
536 			 * Not in mode 2, locked by someone else.
537 			 * fdrop fp without caching.
538 			 */
539 			break;
540 		case 2:
541 			/*
542 			 * Intact borrowed ref, return to mode 0
543 			 * indicating that we have returned the ref.
544 			 *
545 			 * Return the borrowed ref (2->1->0)
546 			 */
547 			if (fdc->fp == fp && fdc->fd == fd) {
548 				atomic_swap_int(&fdc->locked, 0);
549 				return;
550 			}
551 			atomic_swap_int(&fdc->locked, 2);
552 			break;
553 		}
554 	}
555 
556 	/*
557 	 * Failed to re-cache, drop the fp without caching.
558 	 */
559 	fdrop(fp);
560 }
561 
562 /*
563  * Clear all descriptors cached in the per-thread fd cache for
564  * the specified thread.
565  *
566  * Caller must not hold p_fd->spin.  This function will temporarily
567  * obtain a shared spin lock.
568  */
569 void
570 fexitcache(thread_t td)
571 {
572 	struct filedesc *fdp;
573 	struct fdcache *fdc;
574 	int status;
575 	int i;
576 
577 	if (td->td_proc == NULL)
578 		return;
579 	fdp = td->td_proc->p_fd;
580 	if (fdp == NULL)
581 		return;
582 
583 	/*
584 	 * A shared lock is sufficient as the caller controls td and we
585 	 * are only clearing td's cache.
586 	 */
587 	spin_lock_shared(&fdp->fd_spin);
588 	for (i = 0; i < NFDCACHE; ++i) {
589 		fdc = &td->td_fdcache[i];
590 		if (fdc->fp) {
591 			status = atomic_swap_int(&fdc->locked, 1);
592 			if (status == 1) {
593 				cpu_pause();
594 				--i;
595 				continue;
596 			}
597 			if (fdc->fp) {
598 				KKASSERT(fdc->fd >= 0);
599 				fclearcache(&fdp->fd_files[fdc->fd], fdc,
600 					    status);
601 			}
602 			atomic_swap_int(&fdc->locked, 0);
603 		}
604 	}
605 	spin_unlock_shared(&fdp->fd_spin);
606 }
607 
608 static __inline struct filelist_head *
609 fp2filelist(const struct file *fp)
610 {
611 	u_int i;
612 
613 	i = (u_int)(uintptr_t)fp % NFILELIST_HEADS;
614 	return &filelist_heads[i];
615 }
616 
617 static __inline
618 struct plimit *
619 readplimits(struct proc *p)
620 {
621 	thread_t td = curthread;
622 	struct plimit *limit;
623 
624 	limit = td->td_limit;
625 	if (limit != p->p_limit) {
626 		spin_lock_shared(&p->p_spin);
627 		limit = p->p_limit;
628 		atomic_add_int(&limit->p_refcnt, 1);
629 		spin_unlock_shared(&p->p_spin);
630 		if (td->td_limit)
631 			plimit_free(td->td_limit);
632 		td->td_limit = limit;
633 	}
634 	return limit;
635 }
636 
637 /*
638  * System calls on descriptors.
639  */
640 int
641 sys_getdtablesize(struct sysmsg *sysmsg, const struct getdtablesize_args *uap)
642 {
643 	struct proc *p = curproc;
644 	struct plimit *limit = readplimits(p);
645 	int dtsize;
646 
647 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
648 		dtsize = INT_MAX;
649 	else
650 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
651 
652 	if (dtsize > maxfilesperproc)
653 		dtsize = maxfilesperproc;
654 	if (dtsize < minfilesperproc)
655 		dtsize = minfilesperproc;
656 	if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
657 		dtsize = maxfilesperuser;
658 	sysmsg->sysmsg_result = dtsize;
659 	return (0);
660 }
661 
662 /*
663  * Duplicate a file descriptor to a particular value.
664  *
665  * note: keep in mind that a potential race condition exists when closing
666  * descriptors from a shared descriptor table (via rfork).
667  */
668 int
669 sys_dup2(struct sysmsg *sysmsg, const struct dup2_args *uap)
670 {
671 	int error;
672 	int fd = 0;
673 
674 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
675 	sysmsg->sysmsg_fds[0] = fd;
676 
677 	return (error);
678 }
679 
680 /*
681  * Duplicate a file descriptor.
682  */
683 int
684 sys_dup(struct sysmsg *sysmsg, const struct dup_args *uap)
685 {
686 	int error;
687 	int fd = 0;
688 
689 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
690 	sysmsg->sysmsg_fds[0] = fd;
691 
692 	return (error);
693 }
694 
695 /*
696  * MPALMOSTSAFE - acquires mplock for fp operations
697  */
698 int
699 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
700 {
701 	struct thread *td = curthread;
702 	struct proc *p = td->td_proc;
703 	struct file *fp;
704 	struct vnode *vp;
705 	u_int newmin;
706 	u_int oflags;
707 	u_int nflags;
708 	int closedcounter;
709 	int tmp, error, flg = F_POSIX;
710 
711 	KKASSERT(p);
712 
713 	/*
714 	 * Operations on file descriptors that do not require a file pointer.
715 	 */
716 	switch (cmd) {
717 	case F_GETFD:
718 		error = fgetfdflags(p->p_fd, fd, &tmp);
719 		if (error == 0)
720 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
721 		return (error);
722 
723 	case F_SETFD:
724 		if (dat->fc_cloexec & FD_CLOEXEC)
725 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
726 		else
727 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
728 		return (error);
729 	case F_DUPFD:
730 		newmin = dat->fc_fd;
731 		error = kern_dup(DUP_VARIABLE | DUP_FCNTL, fd, newmin,
732 		    &dat->fc_fd);
733 		return (error);
734 	case F_DUPFD_CLOEXEC:
735 		newmin = dat->fc_fd;
736 		error = kern_dup(DUP_VARIABLE | DUP_CLOEXEC | DUP_FCNTL,
737 		    fd, newmin, &dat->fc_fd);
738 		return (error);
739 	case F_DUP2FD:
740 		newmin = dat->fc_fd;
741 		error = kern_dup(DUP_FIXED, fd, newmin, &dat->fc_fd);
742 		return (error);
743 	case F_DUP2FD_CLOEXEC:
744 		newmin = dat->fc_fd;
745 		error = kern_dup(DUP_FIXED | DUP_CLOEXEC, fd, newmin,
746 				 &dat->fc_fd);
747 		return (error);
748 	default:
749 		break;
750 	}
751 
752 	/*
753 	 * Operations on file pointers
754 	 */
755 	closedcounter = p->p_fd->fd_closedcounter;
756 	if ((fp = holdfp(td, fd, -1)) == NULL)
757 		return (EBADF);
758 
759 	switch (cmd) {
760 	case F_GETFL:
761 		dat->fc_flags = OFLAGS(fp->f_flag);
762 		error = 0;
763 		break;
764 
765 	case F_SETFL:
766 		oflags = fp->f_flag;
767 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
768 		nflags |= oflags & ~FCNTLFLAGS;
769 
770 		error = 0;
771 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
772 			error = EINVAL;
773 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
774 			tmp = nflags & FASYNC;
775 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
776 					 cred, NULL);
777 		}
778 
779 		/*
780 		 * If no error, must be atomically set.
781 		 */
782 		while (error == 0) {
783 			oflags = fp->f_flag;
784 			cpu_ccfence();
785 			nflags = (oflags & ~FCNTLFLAGS) | (nflags & FCNTLFLAGS);
786 			if (atomic_cmpset_int(&fp->f_flag, oflags, nflags))
787 				break;
788 			cpu_pause();
789 		}
790 		break;
791 
792 	case F_GETOWN:
793 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
794 				 cred, NULL);
795 		break;
796 
797 	case F_SETOWN:
798 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
799 				 cred, NULL);
800 		break;
801 
802 	case F_SETLKW:
803 		flg |= F_WAIT;
804 		/* Fall into F_SETLK */
805 
806 	case F_SETLK:
807 		if (fp->f_type != DTYPE_VNODE) {
808 			error = EBADF;
809 			break;
810 		}
811 		vp = (struct vnode *)fp->f_data;
812 
813 		/*
814 		 * copyin/lockop may block
815 		 */
816 		if (dat->fc_flock.l_whence == SEEK_CUR)
817 			dat->fc_flock.l_start += fp->f_offset;
818 
819 		switch (dat->fc_flock.l_type) {
820 		case F_RDLCK:
821 			if ((fp->f_flag & FREAD) == 0) {
822 				error = EBADF;
823 				break;
824 			}
825 			if (p->p_leader->p_advlock_flag == 0)
826 				p->p_leader->p_advlock_flag = 1;
827 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
828 					    &dat->fc_flock, flg);
829 			break;
830 		case F_WRLCK:
831 			if ((fp->f_flag & FWRITE) == 0) {
832 				error = EBADF;
833 				break;
834 			}
835 			if (p->p_leader->p_advlock_flag == 0)
836 				p->p_leader->p_advlock_flag = 1;
837 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
838 					    &dat->fc_flock, flg);
839 			break;
840 		case F_UNLCK:
841 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
842 					    &dat->fc_flock, F_POSIX);
843 			break;
844 		default:
845 			error = EINVAL;
846 			break;
847 		}
848 
849 		/*
850 		 * It is possible to race a close() on the descriptor while
851 		 * we were blocked getting the lock.  If this occurs the
852 		 * close might not have caught the lock.
853 		 */
854 		if (checkfdclosed(td, p->p_fd, fd, fp, closedcounter)) {
855 			dat->fc_flock.l_whence = SEEK_SET;
856 			dat->fc_flock.l_start = 0;
857 			dat->fc_flock.l_len = 0;
858 			dat->fc_flock.l_type = F_UNLCK;
859 			VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
860 				    F_UNLCK, &dat->fc_flock, F_POSIX);
861 		}
862 		break;
863 
864 	case F_GETLK:
865 		if (fp->f_type != DTYPE_VNODE) {
866 			error = EBADF;
867 			break;
868 		}
869 		vp = (struct vnode *)fp->f_data;
870 		/*
871 		 * copyin/lockop may block
872 		 */
873 		if (dat->fc_flock.l_type != F_RDLCK &&
874 		    dat->fc_flock.l_type != F_WRLCK &&
875 		    dat->fc_flock.l_type != F_UNLCK) {
876 			error = EINVAL;
877 			break;
878 		}
879 		if (dat->fc_flock.l_whence == SEEK_CUR)
880 			dat->fc_flock.l_start += fp->f_offset;
881 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
882 				    &dat->fc_flock, F_POSIX);
883 		break;
884 	default:
885 		error = EINVAL;
886 		break;
887 	}
888 
889 	fdrop(fp);
890 	return (error);
891 }
892 
893 /*
894  * The file control system call.
895  */
896 int
897 sys_fcntl(struct sysmsg *sysmsg, const struct fcntl_args *uap)
898 {
899 	union fcntl_dat dat;
900 	int error;
901 
902 	switch (uap->cmd) {
903 	case F_DUPFD:
904 	case F_DUP2FD:
905 	case F_DUPFD_CLOEXEC:
906 	case F_DUP2FD_CLOEXEC:
907 		dat.fc_fd = uap->arg;
908 		break;
909 	case F_SETFD:
910 		dat.fc_cloexec = uap->arg;
911 		break;
912 	case F_SETFL:
913 		dat.fc_flags = uap->arg;
914 		break;
915 	case F_SETOWN:
916 		dat.fc_owner = uap->arg;
917 		break;
918 	case F_SETLKW:
919 	case F_SETLK:
920 	case F_GETLK:
921 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
922 			       sizeof(struct flock));
923 		if (error)
924 			return (error);
925 		break;
926 	}
927 
928 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
929 
930 	if (error == 0) {
931 		switch (uap->cmd) {
932 		case F_DUPFD:
933 		case F_DUP2FD:
934 		case F_DUPFD_CLOEXEC:
935 		case F_DUP2FD_CLOEXEC:
936 			sysmsg->sysmsg_result = dat.fc_fd;
937 			break;
938 		case F_GETFD:
939 			sysmsg->sysmsg_result = dat.fc_cloexec;
940 			break;
941 		case F_GETFL:
942 			sysmsg->sysmsg_result = dat.fc_flags;
943 			break;
944 		case F_GETOWN:
945 			sysmsg->sysmsg_result = dat.fc_owner;
946 			break;
947 		case F_GETLK:
948 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
949 			    sizeof(struct flock));
950 			break;
951 		}
952 	}
953 
954 	return (error);
955 }
956 
957 /*
958  * Common code for dup, dup2, and fcntl(F_DUPFD).
959  *
960  * There are four type flags: DUP_FCNTL, DUP_FIXED, DUP_VARIABLE, and
961  * DUP_CLOEXEC.
962  *
963  * DUP_FCNTL is for handling EINVAL vs. EBADF differences between
964  * fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC and dup2() (per POSIX).
965  * The next two flags are mutually exclusive, and the fourth is optional.
966  * DUP_FIXED tells kern_dup() to destructively dup over an existing file
967  * descriptor if "new" is already open.  DUP_VARIABLE tells kern_dup()
968  * to find the lowest unused file descriptor that is greater than or
969  * equal to "new".  DUP_CLOEXEC, which works with either of the first
970  * two flags, sets the close-on-exec flag on the "new" file descriptor.
971  */
972 int
973 kern_dup(int flags, int old, int new, int *res)
974 {
975 	struct thread *td = curthread;
976 	struct proc *p = td->td_proc;
977 	struct plimit *limit = readplimits(p);
978 	struct filedesc *fdp = p->p_fd;
979 	struct file *fp;
980 	struct file *delfp;
981 	int oldflags;
982 	int holdleaders;
983 	int dtsize;
984 	int error, newfd;
985 
986 	/*
987 	 * Verify that we have a valid descriptor to dup from and
988 	 * possibly to dup to. When the new descriptor is out of
989 	 * bounds, fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC must
990 	 * return EINVAL, while dup2() returns EBADF in
991 	 * this case.
992 	 *
993 	 * NOTE: maxfilesperuser is not applicable to dup()
994 	 */
995 retry:
996 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
997 		dtsize = INT_MAX;
998 	else
999 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
1000 	if (dtsize > maxfilesperproc)
1001 		dtsize = maxfilesperproc;
1002 	if (dtsize < minfilesperproc)
1003 		dtsize = minfilesperproc;
1004 
1005 	if (new < 0 || new >= dtsize)
1006 		return (flags & DUP_FCNTL ? EINVAL : EBADF);
1007 
1008 	spin_lock(&fdp->fd_spin);
1009 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
1010 		spin_unlock(&fdp->fd_spin);
1011 		return (EBADF);
1012 	}
1013 	if ((flags & DUP_FIXED) && old == new) {
1014 		*res = new;
1015 		if (flags & DUP_CLOEXEC)
1016 			fdp->fd_files[new].fileflags |= UF_EXCLOSE;
1017 		spin_unlock(&fdp->fd_spin);
1018 		return (0);
1019 	}
1020 	fp = fdp->fd_files[old].fp;
1021 	oldflags = fdp->fd_files[old].fileflags;
1022 	fhold(fp);
1023 
1024 	/*
1025 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
1026 	 * if the requested descriptor is beyond the current table size.
1027 	 *
1028 	 * This can block.  Retry if the source descriptor no longer matches
1029 	 * or if our expectation in the expansion case races.
1030 	 *
1031 	 * If we are not expanding or allocating a new decriptor, then reset
1032 	 * the target descriptor to a reserved state so we have a uniform
1033 	 * setup for the next code block.
1034 	 */
1035 	if ((flags & DUP_VARIABLE) || new >= fdp->fd_nfiles) {
1036 		error = fdalloc_locked(p, fdp, new, &newfd);
1037 		if (error) {
1038 			spin_unlock(&fdp->fd_spin);
1039 			fdrop(fp);
1040 			return (error);
1041 		}
1042 		/*
1043 		 * Check for ripout
1044 		 */
1045 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
1046 			fsetfd_locked(fdp, NULL, newfd);
1047 			spin_unlock(&fdp->fd_spin);
1048 			fdrop(fp);
1049 			goto retry;
1050 		}
1051 		/*
1052 		 * Check for expansion race
1053 		 */
1054 		if ((flags & DUP_VARIABLE) == 0 && new != newfd) {
1055 			fsetfd_locked(fdp, NULL, newfd);
1056 			spin_unlock(&fdp->fd_spin);
1057 			fdrop(fp);
1058 			goto retry;
1059 		}
1060 		/*
1061 		 * Check for ripout, newfd reused old (this case probably
1062 		 * can't occur).
1063 		 */
1064 		if (old == newfd) {
1065 			fsetfd_locked(fdp, NULL, newfd);
1066 			spin_unlock(&fdp->fd_spin);
1067 			fdrop(fp);
1068 			goto retry;
1069 		}
1070 		new = newfd;
1071 		delfp = NULL;
1072 	} else {
1073 		if (fdp->fd_files[new].reserved) {
1074 			spin_unlock(&fdp->fd_spin);
1075 			fdrop(fp);
1076 			kprintf("Warning: dup(): target descriptor %d is "
1077 				"reserved, waiting for it to be resolved\n",
1078 				new);
1079 			tsleep(fdp, 0, "fdres", hz);
1080 			goto retry;
1081 		}
1082 
1083 		/*
1084 		 * If the target descriptor was never allocated we have
1085 		 * to allocate it.  If it was we have to clean out the
1086 		 * old descriptor.  delfp inherits the ref from the
1087 		 * descriptor table.
1088 		 */
1089 		++fdp->fd_closedcounter;
1090 		fclearcache(&fdp->fd_files[new], NULL, 0);
1091 		++fdp->fd_closedcounter;
1092 		delfp = fdp->fd_files[new].fp;
1093 		fdp->fd_files[new].fp = NULL;
1094 		fdp->fd_files[new].reserved = 1;
1095 		if (delfp == NULL) {
1096 			fdreserve_locked(fdp, new, 1);
1097 			if (new > fdp->fd_lastfile)
1098 				fdp->fd_lastfile = new;
1099 		}
1100 
1101 	}
1102 
1103 	/*
1104 	 * NOTE: still holding an exclusive spinlock
1105 	 */
1106 
1107 	/*
1108 	 * If a descriptor is being overwritten we may hve to tell
1109 	 * fdfree() to sleep to ensure that all relevant process
1110 	 * leaders can be traversed in closef().
1111 	 */
1112 	if (delfp != NULL && p->p_fdtol != NULL) {
1113 		fdp->fd_holdleaderscount++;
1114 		holdleaders = 1;
1115 	} else {
1116 		holdleaders = 0;
1117 	}
1118 	KASSERT(delfp == NULL || (flags & DUP_FIXED),
1119 		("dup() picked an open file"));
1120 
1121 	/*
1122 	 * Duplicate the source descriptor, update lastfile.  If the new
1123 	 * descriptor was not allocated and we aren't replacing an existing
1124 	 * descriptor we have to mark the descriptor as being in use.
1125 	 *
1126 	 * The fd_files[] array inherits fp's hold reference.
1127 	 */
1128 	fsetfd_locked(fdp, fp, new);
1129 	if ((flags & DUP_CLOEXEC) != 0)
1130 		fdp->fd_files[new].fileflags = oldflags | UF_EXCLOSE;
1131 	else
1132 		fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
1133 	spin_unlock(&fdp->fd_spin);
1134 	fdrop(fp);
1135 	*res = new;
1136 
1137 	/*
1138 	 * If we dup'd over a valid file, we now own the reference to it
1139 	 * and must dispose of it using closef() semantics (as if a
1140 	 * close() were performed on it).
1141 	 */
1142 	if (delfp) {
1143 		if (SLIST_FIRST(&delfp->f_klist))
1144 			knote_fdclose(delfp, fdp, new);
1145 		closef(delfp, p);
1146 		if (holdleaders) {
1147 			spin_lock(&fdp->fd_spin);
1148 			fdp->fd_holdleaderscount--;
1149 			if (fdp->fd_holdleaderscount == 0 &&
1150 			    fdp->fd_holdleaderswakeup != 0) {
1151 				fdp->fd_holdleaderswakeup = 0;
1152 				spin_unlock(&fdp->fd_spin);
1153 				wakeup(&fdp->fd_holdleaderscount);
1154 			} else {
1155 				spin_unlock(&fdp->fd_spin);
1156 			}
1157 		}
1158 	}
1159 	return (0);
1160 }
1161 
1162 /*
1163  * If sigio is on the list associated with a process or process group,
1164  * disable signalling from the device, remove sigio from the list and
1165  * free sigio.
1166  */
1167 void
1168 funsetown(struct sigio **sigiop)
1169 {
1170 	struct pgrp *pgrp;
1171 	struct proc *p;
1172 	struct sigio *sigio;
1173 
1174 	if ((sigio = *sigiop) != NULL) {
1175 		lwkt_gettoken(&sigio_token);	/* protect sigio */
1176 		KKASSERT(sigiop == sigio->sio_myref);
1177 		sigio = *sigiop;
1178 		*sigiop = NULL;
1179 		lwkt_reltoken(&sigio_token);
1180 	}
1181 	if (sigio == NULL)
1182 		return;
1183 
1184 	if (sigio->sio_pgid < 0) {
1185 		pgrp = sigio->sio_pgrp;
1186 		sigio->sio_pgrp = NULL;
1187 		lwkt_gettoken(&pgrp->pg_token);
1188 		SLIST_REMOVE(&pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio);
1189 		lwkt_reltoken(&pgrp->pg_token);
1190 		pgrel(pgrp);
1191 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
1192 		p = sigio->sio_proc;
1193 		sigio->sio_proc = NULL;
1194 		PHOLD(p);
1195 		lwkt_gettoken(&p->p_token);
1196 		SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
1197 		lwkt_reltoken(&p->p_token);
1198 		PRELE(p);
1199 	}
1200 	crfree(sigio->sio_ucred);
1201 	sigio->sio_ucred = NULL;
1202 	kfree(sigio, M_SIGIO);
1203 }
1204 
1205 /*
1206  * Free a list of sigio structures.  Caller is responsible for ensuring
1207  * that the list is MPSAFE.
1208  */
1209 void
1210 funsetownlst(struct sigiolst *sigiolst)
1211 {
1212 	struct sigio *sigio;
1213 
1214 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
1215 		funsetown(sigio->sio_myref);
1216 }
1217 
1218 /*
1219  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
1220  *
1221  * After permission checking, add a sigio structure to the sigio list for
1222  * the process or process group.
1223  */
1224 int
1225 fsetown(pid_t pgid, struct sigio **sigiop)
1226 {
1227 	struct proc *proc = NULL;
1228 	struct pgrp *pgrp = NULL;
1229 	struct sigio *sigio;
1230 	int error;
1231 
1232 	if (pgid == 0) {
1233 		funsetown(sigiop);
1234 		return (0);
1235 	}
1236 
1237 	if (pgid > 0) {
1238 		proc = pfind(pgid);
1239 		if (proc == NULL) {
1240 			error = ESRCH;
1241 			goto done;
1242 		}
1243 
1244 		/*
1245 		 * Policy - Don't allow a process to FSETOWN a process
1246 		 * in another session.
1247 		 *
1248 		 * Remove this test to allow maximum flexibility or
1249 		 * restrict FSETOWN to the current process or process
1250 		 * group for maximum safety.
1251 		 */
1252 		if (proc->p_session != curproc->p_session) {
1253 			error = EPERM;
1254 			goto done;
1255 		}
1256 	} else /* if (pgid < 0) */ {
1257 		pgrp = pgfind(-pgid);
1258 		if (pgrp == NULL) {
1259 			error = ESRCH;
1260 			goto done;
1261 		}
1262 
1263 		/*
1264 		 * Policy - Don't allow a process to FSETOWN a process
1265 		 * in another session.
1266 		 *
1267 		 * Remove this test to allow maximum flexibility or
1268 		 * restrict FSETOWN to the current process or process
1269 		 * group for maximum safety.
1270 		 */
1271 		if (pgrp->pg_session != curproc->p_session) {
1272 			error = EPERM;
1273 			goto done;
1274 		}
1275 	}
1276 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK | M_ZERO);
1277 	if (pgid > 0) {
1278 		KKASSERT(pgrp == NULL);
1279 		lwkt_gettoken(&proc->p_token);
1280 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
1281 		sigio->sio_proc = proc;
1282 		lwkt_reltoken(&proc->p_token);
1283 	} else {
1284 		KKASSERT(proc == NULL);
1285 		lwkt_gettoken(&pgrp->pg_token);
1286 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
1287 		sigio->sio_pgrp = pgrp;
1288 		lwkt_reltoken(&pgrp->pg_token);
1289 		pgrp = NULL;
1290 	}
1291 	sigio->sio_pgid = pgid;
1292 	sigio->sio_ucred = crhold(curthread->td_ucred);
1293 	/* It would be convenient if p_ruid was in ucred. */
1294 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
1295 	sigio->sio_myref = sigiop;
1296 
1297 	lwkt_gettoken(&sigio_token);
1298 	while (*sigiop)
1299 		funsetown(sigiop);
1300 	*sigiop = sigio;
1301 	lwkt_reltoken(&sigio_token);
1302 	error = 0;
1303 done:
1304 	if (pgrp)
1305 		pgrel(pgrp);
1306 	if (proc)
1307 		PRELE(proc);
1308 	return (error);
1309 }
1310 
1311 /*
1312  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
1313  */
1314 pid_t
1315 fgetown(struct sigio **sigiop)
1316 {
1317 	struct sigio *sigio;
1318 	pid_t own;
1319 
1320 	lwkt_gettoken_shared(&sigio_token);
1321 	sigio = *sigiop;
1322 	own = (sigio != NULL ? sigio->sio_pgid : 0);
1323 	lwkt_reltoken(&sigio_token);
1324 
1325 	return (own);
1326 }
1327 
1328 /*
1329  * Close many file descriptors.
1330  */
1331 int
1332 sys_closefrom(struct sysmsg *sysmsg, const struct closefrom_args *uap)
1333 {
1334 	return(kern_closefrom(uap->fd));
1335 }
1336 
1337 /*
1338  * Close all file descriptors greater then or equal to fd
1339  */
1340 int
1341 kern_closefrom(int fd)
1342 {
1343 	struct thread *td = curthread;
1344 	struct proc *p = td->td_proc;
1345 	struct filedesc *fdp;
1346 	int error;
1347 	int e2;
1348 
1349 	KKASSERT(p);
1350 	fdp = p->p_fd;
1351 
1352 	if (fd < 0)
1353 		return (EINVAL);
1354 
1355 	/*
1356 	 * NOTE: This function will skip unassociated descriptors and
1357 	 *	 reserved descriptors that have not yet been assigned.
1358 	 *	 fd_lastfile can change as a side effect of kern_close().
1359 	 *
1360 	 * NOTE: We accumulate EINTR errors and return EINTR if any
1361 	 *	 close() returned EINTR.  However, the descriptor is
1362 	 *	 still closed and we do not break out of the loop.
1363 	 */
1364 	error = 0;
1365 	spin_lock(&fdp->fd_spin);
1366 	while (fd <= fdp->fd_lastfile) {
1367 		if (fdp->fd_files[fd].fp != NULL) {
1368 			spin_unlock(&fdp->fd_spin);
1369 			/* ok if this races another close */
1370 			e2 = kern_close(fd);
1371 			if (e2 == EINTR)
1372 				error = EINTR;
1373 			spin_lock(&fdp->fd_spin);
1374 		}
1375 		++fd;
1376 	}
1377 	spin_unlock(&fdp->fd_spin);
1378 
1379 	return error;
1380 }
1381 
1382 /*
1383  * Close a file descriptor.
1384  */
1385 int
1386 sys_close(struct sysmsg *sysmsg, const struct close_args *uap)
1387 {
1388 	return(kern_close(uap->fd));
1389 }
1390 
1391 /*
1392  * close() helper
1393  */
1394 int
1395 kern_close(int fd)
1396 {
1397 	struct thread *td = curthread;
1398 	struct proc *p = td->td_proc;
1399 	struct filedesc *fdp;
1400 	struct file *fp;
1401 	int error;
1402 	int holdleaders;
1403 
1404 	KKASSERT(p);
1405 	fdp = p->p_fd;
1406 
1407 	/*
1408 	 * funsetfd*() also clears the fd cache
1409 	 */
1410 	spin_lock(&fdp->fd_spin);
1411 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
1412 		spin_unlock(&fdp->fd_spin);
1413 		return (EBADF);
1414 	}
1415 	holdleaders = 0;
1416 	if (p->p_fdtol != NULL) {
1417 		/*
1418 		 * Ask fdfree() to sleep to ensure that all relevant
1419 		 * process leaders can be traversed in closef().
1420 		 */
1421 		fdp->fd_holdleaderscount++;
1422 		holdleaders = 1;
1423 	}
1424 
1425 	/*
1426 	 * we now hold the fp reference that used to be owned by the descriptor
1427 	 * array.
1428 	 */
1429 	spin_unlock(&fdp->fd_spin);
1430 	if (SLIST_FIRST(&fp->f_klist))
1431 		knote_fdclose(fp, fdp, fd);
1432 	error = closef(fp, p);
1433 	if (holdleaders) {
1434 		spin_lock(&fdp->fd_spin);
1435 		fdp->fd_holdleaderscount--;
1436 		if (fdp->fd_holdleaderscount == 0 &&
1437 		    fdp->fd_holdleaderswakeup != 0) {
1438 			fdp->fd_holdleaderswakeup = 0;
1439 			spin_unlock(&fdp->fd_spin);
1440 			wakeup(&fdp->fd_holdleaderscount);
1441 		} else {
1442 			spin_unlock(&fdp->fd_spin);
1443 		}
1444 	}
1445 	return (error);
1446 }
1447 
1448 /*
1449  * shutdown_args(int fd, int how)
1450  */
1451 int
1452 kern_shutdown(int fd, int how)
1453 {
1454 	struct thread *td = curthread;
1455 	struct file *fp;
1456 	int error;
1457 
1458 	if ((fp = holdfp(td, fd, -1)) == NULL)
1459 		return (EBADF);
1460 	error = fo_shutdown(fp, how);
1461 	fdrop(fp);
1462 
1463 	return (error);
1464 }
1465 
1466 /*
1467  * MPALMOSTSAFE
1468  */
1469 int
1470 sys_shutdown(struct sysmsg *sysmsg, const struct shutdown_args *uap)
1471 {
1472 	int error;
1473 
1474 	error = kern_shutdown(uap->s, uap->how);
1475 
1476 	return (error);
1477 }
1478 
1479 /*
1480  * fstat() helper
1481  */
1482 int
1483 kern_fstat(int fd, struct stat *ub)
1484 {
1485 	struct thread *td = curthread;
1486 	struct file *fp;
1487 	int error;
1488 
1489 	if ((fp = holdfp(td, fd, -1)) == NULL)
1490 		return (EBADF);
1491 	error = fo_stat(fp, ub, td->td_ucred);
1492 	fdrop(fp);
1493 
1494 	return (error);
1495 }
1496 
1497 /*
1498  * Return status information about a file descriptor.
1499  */
1500 int
1501 sys_fstat(struct sysmsg *sysmsg, const struct fstat_args *uap)
1502 {
1503 	struct stat st;
1504 	int error;
1505 
1506 	error = kern_fstat(uap->fd, &st);
1507 
1508 	if (error == 0)
1509 		error = copyout(&st, uap->sb, sizeof(st));
1510 	return (error);
1511 }
1512 
1513 /*
1514  * Return pathconf information about a file descriptor.
1515  *
1516  * MPALMOSTSAFE
1517  */
1518 int
1519 sys_fpathconf(struct sysmsg *sysmsg, const struct fpathconf_args *uap)
1520 {
1521 	struct thread *td = curthread;
1522 	struct file *fp;
1523 	struct vnode *vp;
1524 	int error = 0;
1525 
1526 	if ((fp = holdfp(td, uap->fd, -1)) == NULL)
1527 		return (EBADF);
1528 
1529 	switch (fp->f_type) {
1530 	case DTYPE_PIPE:
1531 	case DTYPE_SOCKET:
1532 		if (uap->name != _PC_PIPE_BUF) {
1533 			error = EINVAL;
1534 		} else {
1535 			sysmsg->sysmsg_result = PIPE_BUF;
1536 			error = 0;
1537 		}
1538 		break;
1539 	case DTYPE_FIFO:
1540 	case DTYPE_VNODE:
1541 		vp = (struct vnode *)fp->f_data;
1542 		error = VOP_PATHCONF(vp, uap->name, &sysmsg->sysmsg_reg);
1543 		break;
1544 	default:
1545 		error = EOPNOTSUPP;
1546 		break;
1547 	}
1548 	fdrop(fp);
1549 	return(error);
1550 }
1551 
1552 /*
1553  * Grow the file table so it can hold through descriptor (want).
1554  *
1555  * The fdp's spinlock must be held exclusively on entry and may be held
1556  * exclusively on return.  The spinlock may be cycled by the routine.
1557  */
1558 static void
1559 fdgrow_locked(struct filedesc *fdp, int want)
1560 {
1561 	struct fdnode *newfiles;
1562 	struct fdnode *oldfiles;
1563 	int nf, extra;
1564 
1565 	nf = fdp->fd_nfiles;
1566 	do {
1567 		/* nf has to be of the form 2^n - 1 */
1568 		nf = 2 * nf + 1;
1569 	} while (nf <= want);
1570 
1571 	spin_unlock(&fdp->fd_spin);
1572 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1573 	spin_lock(&fdp->fd_spin);
1574 
1575 	/*
1576 	 * We could have raced another extend while we were not holding
1577 	 * the spinlock.
1578 	 */
1579 	if (fdp->fd_nfiles >= nf) {
1580 		spin_unlock(&fdp->fd_spin);
1581 		kfree(newfiles, M_FILEDESC);
1582 		spin_lock(&fdp->fd_spin);
1583 		return;
1584 	}
1585 	/*
1586 	 * Copy the existing ofile and ofileflags arrays
1587 	 * and zero the new portion of each array.
1588 	 */
1589 	extra = nf - fdp->fd_nfiles;
1590 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1591 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1592 
1593 	oldfiles = fdp->fd_files;
1594 	fdp->fd_files = newfiles;
1595 	fdp->fd_nfiles = nf;
1596 
1597 	if (oldfiles != fdp->fd_builtin_files) {
1598 		spin_unlock(&fdp->fd_spin);
1599 		kfree(oldfiles, M_FILEDESC);
1600 		spin_lock(&fdp->fd_spin);
1601 	}
1602 }
1603 
1604 /*
1605  * Number of nodes in right subtree, including the root.
1606  */
1607 static __inline int
1608 right_subtree_size(int n)
1609 {
1610 	return (n ^ (n | (n + 1)));
1611 }
1612 
1613 /*
1614  * Bigger ancestor.
1615  */
1616 static __inline int
1617 right_ancestor(int n)
1618 {
1619 	return (n | (n + 1));
1620 }
1621 
1622 /*
1623  * Smaller ancestor.
1624  */
1625 static __inline int
1626 left_ancestor(int n)
1627 {
1628 	return ((n & (n + 1)) - 1);
1629 }
1630 
1631 /*
1632  * Traverse the in-place binary tree buttom-up adjusting the allocation
1633  * count so scans can determine where free descriptors are located.
1634  *
1635  * caller must be holding an exclusive spinlock on fdp
1636  */
1637 static
1638 void
1639 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1640 {
1641 	while (fd >= 0) {
1642 		fdp->fd_files[fd].allocated += incr;
1643 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1644 		fd = left_ancestor(fd);
1645 	}
1646 }
1647 
1648 /*
1649  * Reserve a file descriptor for the process.  If no error occurs, the
1650  * caller MUST at some point call fsetfd() or assign a file pointer
1651  * or dispose of the reservation.
1652  */
1653 static
1654 int
1655 fdalloc_locked(struct proc *p, struct filedesc *fdp, int want, int *result)
1656 {
1657 	struct plimit *limit = readplimits(p);
1658 	struct uidinfo *uip;
1659 	int fd, rsize, rsum, node, lim;
1660 
1661 	/*
1662 	 * Check dtable size limit
1663 	 */
1664 	*result = -1;	/* avoid gcc warnings */
1665 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1666 		lim = INT_MAX;
1667 	else
1668 		lim = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
1669 
1670 	if (lim > maxfilesperproc)
1671 		lim = maxfilesperproc;
1672 	if (lim < minfilesperproc)
1673 		lim = minfilesperproc;
1674 	if (want >= lim)
1675 		return (EINVAL);
1676 
1677 	/*
1678 	 * Check that the user has not run out of descriptors (non-root only).
1679 	 * As a safety measure the dtable is allowed to have at least
1680 	 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1681 	 *
1682 	 * This isn't as loose a spec as ui_posixlocks, so we use atomic
1683 	 * ops to force synchronize and recheck if we would otherwise
1684 	 * error.
1685 	 */
1686 	if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1687 		uip = p->p_ucred->cr_uidinfo;
1688 		if (uip->ui_openfiles > maxfilesperuser) {
1689 			int n;
1690 			int count;
1691 
1692 			count = 0;
1693 			for (n = 0; n < ncpus; ++n) {
1694 				count += atomic_swap_int(
1695 					    &uip->ui_pcpu[n].pu_openfiles, 0);
1696 			}
1697 			atomic_add_int(&uip->ui_openfiles, count);
1698 			if (uip->ui_openfiles > maxfilesperuser) {
1699 				krateprintf(&krate_uidinfo,
1700 					    "Warning: user %d pid %d (%s) "
1701 					    "ran out of file descriptors "
1702 					    "(%d/%d)\n",
1703 					    p->p_ucred->cr_uid, (int)p->p_pid,
1704 					    p->p_comm,
1705 					    uip->ui_openfiles, maxfilesperuser);
1706 				return(ENFILE);
1707 			}
1708 		}
1709 	}
1710 
1711 	/*
1712 	 * Grow the dtable if necessary
1713 	 */
1714 	if (want >= fdp->fd_nfiles)
1715 		fdgrow_locked(fdp, want);
1716 
1717 	/*
1718 	 * Search for a free descriptor starting at the higher
1719 	 * of want or fd_freefile.  If that fails, consider
1720 	 * expanding the ofile array.
1721 	 *
1722 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1723 	 * count.  If we happen to see a value of 0 then we can shortcut
1724 	 * our search.  Otherwise we run through through the tree going
1725 	 * down branches we know have free descriptor(s) until we hit a
1726 	 * leaf node.  The leaf node will be free but will not necessarily
1727 	 * have an allocated field of 0.
1728 	 */
1729 retry:
1730 	/* move up the tree looking for a subtree with a free node */
1731 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1732 	     fd = right_ancestor(fd)) {
1733 		if (fdp->fd_files[fd].allocated == 0)
1734 			goto found;
1735 
1736 		rsize = right_subtree_size(fd);
1737 		if (fdp->fd_files[fd].allocated == rsize)
1738 			continue;	/* right subtree full */
1739 
1740 		/*
1741 		 * Free fd is in the right subtree of the tree rooted at fd.
1742 		 * Call that subtree R.  Look for the smallest (leftmost)
1743 		 * subtree of R with an unallocated fd: continue moving
1744 		 * down the left branch until encountering a full left
1745 		 * subtree, then move to the right.
1746 		 */
1747 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1748 			node = fd + rsize;
1749 			rsum += fdp->fd_files[node].allocated;
1750 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1751 				fd = node;	/* move to the right */
1752 				if (fdp->fd_files[node].allocated == 0)
1753 					goto found;
1754 				rsum = 0;
1755 			}
1756 		}
1757 		goto found;
1758 	}
1759 
1760 	/*
1761 	 * No space in current array.  Expand?
1762 	 */
1763 	if (fdp->fd_nfiles >= lim) {
1764 		return (EMFILE);
1765 	}
1766 	fdgrow_locked(fdp, want);
1767 	goto retry;
1768 
1769 found:
1770 	KKASSERT(fd < fdp->fd_nfiles);
1771 	if (fd > fdp->fd_lastfile)
1772 		fdp->fd_lastfile = fd;
1773 	if (want <= fdp->fd_freefile)
1774 		fdp->fd_freefile = fd;
1775 	*result = fd;
1776 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1777 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1778 	fdp->fd_files[fd].fileflags = 0;
1779 	fdp->fd_files[fd].reserved = 1;
1780 	fdreserve_locked(fdp, fd, 1);
1781 
1782 	return (0);
1783 }
1784 
1785 int
1786 fdalloc(struct proc *p, int want, int *result)
1787 {
1788 	struct filedesc *fdp = p->p_fd;
1789 	int error;
1790 
1791 	spin_lock(&fdp->fd_spin);
1792 	error = fdalloc_locked(p, fdp, want, result);
1793 	spin_unlock(&fdp->fd_spin);
1794 
1795 	return error;
1796 }
1797 
1798 /*
1799  * Check to see whether n user file descriptors
1800  * are available to the process p.
1801  */
1802 int
1803 fdavail(struct proc *p, int n)
1804 {
1805 	struct plimit *limit = readplimits(p);
1806 	struct filedesc *fdp = p->p_fd;
1807 	struct fdnode *fdnode;
1808 	int i, lim, last;
1809 
1810 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1811 		lim = INT_MAX;
1812 	else
1813 		lim = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
1814 
1815 	if (lim > maxfilesperproc)
1816 		lim = maxfilesperproc;
1817 	if (lim < minfilesperproc)
1818 		lim = minfilesperproc;
1819 
1820 	spin_lock(&fdp->fd_spin);
1821 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1822 		spin_unlock(&fdp->fd_spin);
1823 		return (1);
1824 	}
1825 	last = min(fdp->fd_nfiles, lim);
1826 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1827 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1828 		if (fdnode->fp == NULL && --n <= 0) {
1829 			spin_unlock(&fdp->fd_spin);
1830 			return (1);
1831 		}
1832 	}
1833 	spin_unlock(&fdp->fd_spin);
1834 	return (0);
1835 }
1836 
1837 /*
1838  * Revoke open descriptors referencing (f_data, f_type)
1839  *
1840  * Any revoke executed within a prison is only able to
1841  * revoke descriptors for processes within that prison.
1842  *
1843  * Returns 0 on success or an error code.
1844  */
1845 struct fdrevoke_info {
1846 	void *data;
1847 	short type;
1848 	short unused;
1849 	int found;
1850 	struct ucred *cred;
1851 	struct file *nfp;
1852 };
1853 
1854 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1855 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1856 
1857 int
1858 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1859 {
1860 	struct fdrevoke_info info;
1861 	int error;
1862 
1863 	bzero(&info, sizeof(info));
1864 	info.data = f_data;
1865 	info.type = f_type;
1866 	info.cred = cred;
1867 	error = falloc(NULL, &info.nfp, NULL);
1868 	if (error)
1869 		return (error);
1870 
1871 	/*
1872 	 * Scan the file pointer table once.  dups do not dup file pointers,
1873 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1874 	 * being revoked.
1875 	 *
1876 	 * Any fps sent over unix-domain sockets will be revoked by the
1877 	 * socket code checking for FREVOKED when the fps are externialized.
1878 	 * revoke_token is used to make sure that fps marked FREVOKED and
1879 	 * externalized will be picked up by the following allproc_scan().
1880 	 */
1881 	lwkt_gettoken(&revoke_token);
1882 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1883 	lwkt_reltoken(&revoke_token);
1884 
1885 	/*
1886 	 * If any fps were marked track down the related descriptors
1887 	 * and close them.  Any dup()s at this point will notice
1888 	 * the FREVOKED already set in the fp and do the right thing.
1889 	 */
1890 	if (info.found)
1891 		allproc_scan(fdrevoke_proc_callback, &info, 0);
1892 	fdrop(info.nfp);
1893 	return(0);
1894 }
1895 
1896 /*
1897  * Locate matching file pointers directly.
1898  *
1899  * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1900  */
1901 static int
1902 fdrevoke_check_callback(struct file *fp, void *vinfo)
1903 {
1904 	struct fdrevoke_info *info = vinfo;
1905 
1906 	/*
1907 	 * File pointers already flagged for revokation are skipped.
1908 	 */
1909 	if (fp->f_flag & FREVOKED)
1910 		return(0);
1911 
1912 	/*
1913 	 * If revoking from a prison file pointers created outside of
1914 	 * that prison, or file pointers without creds, cannot be revoked.
1915 	 */
1916 	if (info->cred->cr_prison &&
1917 	    (fp->f_cred == NULL ||
1918 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1919 		return(0);
1920 	}
1921 
1922 	/*
1923 	 * If the file pointer matches then mark it for revocation.  The
1924 	 * flag is currently only used by unp_revoke_gc().
1925 	 *
1926 	 * info->found is a heuristic and can race in a SMP environment.
1927 	 */
1928 	if (info->data == fp->f_data && info->type == fp->f_type) {
1929 		atomic_set_int(&fp->f_flag, FREVOKED);
1930 		info->found = 1;
1931 	}
1932 	return(0);
1933 }
1934 
1935 /*
1936  * Locate matching file pointers via process descriptor tables.
1937  */
1938 static int
1939 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1940 {
1941 	struct fdrevoke_info *info = vinfo;
1942 	struct filedesc *fdp;
1943 	struct file *fp;
1944 	int n;
1945 
1946 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1947 		return(0);
1948 	if (info->cred->cr_prison &&
1949 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1950 		return(0);
1951 	}
1952 
1953 	/*
1954 	 * If the controlling terminal of the process matches the
1955 	 * vnode being revoked we clear the controlling terminal.
1956 	 *
1957 	 * The normal spec_close() may not catch this because it
1958 	 * uses curproc instead of p.
1959 	 */
1960 	if (p->p_session && info->type == DTYPE_VNODE &&
1961 	    info->data == p->p_session->s_ttyvp) {
1962 		p->p_session->s_ttyvp = NULL;
1963 		vrele(info->data);
1964 	}
1965 
1966 	/*
1967 	 * Softref the fdp to prevent it from being destroyed
1968 	 */
1969 	spin_lock(&p->p_spin);
1970 	if ((fdp = p->p_fd) == NULL) {
1971 		spin_unlock(&p->p_spin);
1972 		return(0);
1973 	}
1974 	atomic_add_int(&fdp->fd_softrefs, 1);
1975 	spin_unlock(&p->p_spin);
1976 
1977 	/*
1978 	 * Locate and close any matching file descriptors, replacing
1979 	 * them with info->nfp.
1980 	 */
1981 	spin_lock(&fdp->fd_spin);
1982 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1983 		if ((fp = fdp->fd_files[n].fp) == NULL)
1984 			continue;
1985 		if (fp->f_flag & FREVOKED) {
1986 			++fdp->fd_closedcounter;
1987 			fclearcache(&fdp->fd_files[n], NULL, 0);
1988 			++fdp->fd_closedcounter;
1989 			fhold(info->nfp);
1990 			fdp->fd_files[n].fp = info->nfp;
1991 			spin_unlock(&fdp->fd_spin);
1992 			knote_fdclose(fp, fdp, n);	/* XXX */
1993 			closef(fp, p);
1994 			spin_lock(&fdp->fd_spin);
1995 		}
1996 	}
1997 	spin_unlock(&fdp->fd_spin);
1998 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1999 	return(0);
2000 }
2001 
2002 /*
2003  * falloc:
2004  *	Create a new open file structure and reserve a file decriptor
2005  *	for the process that refers to it.
2006  *
2007  *	Root creds are checked using lp, or assumed if lp is NULL.  If
2008  *	resultfd is non-NULL then lp must also be non-NULL.  No file
2009  *	descriptor is reserved (and no process context is needed) if
2010  *	resultfd is NULL.
2011  *
2012  *	A file pointer with a refcount of 1 is returned.  Note that the
2013  *	file pointer is NOT associated with the descriptor.  If falloc
2014  *	returns success, fsetfd() MUST be called to either associate the
2015  *	file pointer or clear the reservation.
2016  */
2017 int
2018 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
2019 {
2020 	static struct timeval lastfail;
2021 	static int curfail;
2022 	struct filelist_head *head;
2023 	struct file *fp;
2024 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
2025 	int error;
2026 
2027 	fp = NULL;
2028 
2029 	/*
2030 	 * Handle filetable full issues and root overfill.
2031 	 */
2032 	if (nfiles >= maxfiles - maxfilesrootres &&
2033 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
2034 		if (ppsratecheck(&lastfail, &curfail, 1)) {
2035 			kprintf("kern.maxfiles limit exceeded by uid %d, "
2036 				"please see tuning(7).\n",
2037 				cred->cr_ruid);
2038 		}
2039 		error = ENFILE;
2040 		goto done;
2041 	}
2042 
2043 	/*
2044 	 * Allocate a new file descriptor.
2045 	 */
2046 	fp = kmalloc_obj(sizeof(*fp), M_FILE, M_WAITOK|M_ZERO);
2047 	spin_init(&fp->f_spin, "falloc");
2048 	SLIST_INIT(&fp->f_klist);
2049 	fp->f_count = 1;
2050 	fp->f_ops = &badfileops;
2051 	fp->f_seqcount = 1;
2052 	fsetcred(fp, cred);
2053 	atomic_add_int(&nfiles, 1);
2054 
2055 	head = fp2filelist(fp);
2056 	spin_lock(&head->spin);
2057 	LIST_INSERT_HEAD(&head->list, fp, f_list);
2058 	spin_unlock(&head->spin);
2059 
2060 	if (resultfd) {
2061 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
2062 			fdrop(fp);
2063 			fp = NULL;
2064 		}
2065 	} else {
2066 		error = 0;
2067 	}
2068 done:
2069 	*resultfp = fp;
2070 	return (error);
2071 }
2072 
2073 /*
2074  * Check for races against a file descriptor by determining that the
2075  * file pointer is still associated with the specified file descriptor,
2076  * and a close is not currently in progress.
2077  */
2078 int
2079 checkfdclosed(thread_t td, struct filedesc *fdp, int fd, struct file *fp,
2080 	      int closedcounter)
2081 {
2082 	struct fdcache *fdc;
2083 	int error;
2084 
2085 	cpu_lfence();
2086 	if (fdp->fd_closedcounter == closedcounter)
2087 		return 0;
2088 
2089 	if (td->td_proc && td->td_proc->p_fd == fdp) {
2090 		for (fdc = &td->td_fdcache[0];
2091 		     fdc < &td->td_fdcache[NFDCACHE]; ++fdc) {
2092 			if (fdc->fd == fd && fdc->fp == fp)
2093 				return 0;
2094 		}
2095 	}
2096 
2097 	spin_lock_shared(&fdp->fd_spin);
2098 	if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
2099 		error = EBADF;
2100 	else
2101 		error = 0;
2102 	spin_unlock_shared(&fdp->fd_spin);
2103 	return (error);
2104 }
2105 
2106 /*
2107  * Associate a file pointer with a previously reserved file descriptor.
2108  * This function always succeeds.
2109  *
2110  * If fp is NULL, the file descriptor is returned to the pool.
2111  *
2112  * Caller must hold an exclusive spinlock on fdp->fd_spin.
2113  */
2114 static void
2115 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
2116 {
2117 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
2118 	KKASSERT(fdp->fd_files[fd].reserved != 0);
2119 	if (fp) {
2120 		fhold(fp);
2121 		/* fclearcache(&fdp->fd_files[fd], NULL, 0); */
2122 		fdp->fd_files[fd].fp = fp;
2123 		fdp->fd_files[fd].reserved = 0;
2124 	} else {
2125 		fdp->fd_files[fd].reserved = 0;
2126 		fdreserve_locked(fdp, fd, -1);
2127 		fdfixup_locked(fdp, fd);
2128 	}
2129 }
2130 
2131 /*
2132  * Caller must hold an exclusive spinlock on fdp->fd_spin.
2133  */
2134 void
2135 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
2136 {
2137 	spin_lock(&fdp->fd_spin);
2138 	fsetfd_locked(fdp, fp, fd);
2139 	spin_unlock(&fdp->fd_spin);
2140 }
2141 
2142 /*
2143  * Caller must hold an exclusive spinlock on fdp->fd_spin.
2144  */
2145 static
2146 struct file *
2147 funsetfd_locked(struct filedesc *fdp, int fd)
2148 {
2149 	struct file *fp;
2150 
2151 	if ((unsigned)fd >= fdp->fd_nfiles)
2152 		return (NULL);
2153 	if ((fp = fdp->fd_files[fd].fp) == NULL)
2154 		return (NULL);
2155 	++fdp->fd_closedcounter;
2156 	fclearcache(&fdp->fd_files[fd], NULL, 0);
2157 	fdp->fd_files[fd].fp = NULL;
2158 	fdp->fd_files[fd].fileflags = 0;
2159 	++fdp->fd_closedcounter;
2160 
2161 	fdreserve_locked(fdp, fd, -1);
2162 	fdfixup_locked(fdp, fd);
2163 
2164 	return(fp);
2165 }
2166 
2167 /*
2168  * WARNING: May not be called before initial fsetfd().
2169  */
2170 int
2171 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
2172 {
2173 	int error;
2174 
2175 	spin_lock_shared(&fdp->fd_spin);
2176 	if (((u_int)fd) >= fdp->fd_nfiles) {
2177 		error = EBADF;
2178 	} else if (fdp->fd_files[fd].fp == NULL) {
2179 		error = EBADF;
2180 	} else {
2181 		*flagsp = fdp->fd_files[fd].fileflags;
2182 		error = 0;
2183 	}
2184 	spin_unlock_shared(&fdp->fd_spin);
2185 
2186 	return (error);
2187 }
2188 
2189 /*
2190  * WARNING: May not be called before initial fsetfd().
2191  */
2192 int
2193 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
2194 {
2195 	int error;
2196 
2197 	spin_lock(&fdp->fd_spin);
2198 	if (((u_int)fd) >= fdp->fd_nfiles) {
2199 		error = EBADF;
2200 	} else if (fdp->fd_files[fd].fp == NULL) {
2201 		error = EBADF;
2202 	} else {
2203 		fdp->fd_files[fd].fileflags |= add_flags;
2204 		error = 0;
2205 	}
2206 	spin_unlock(&fdp->fd_spin);
2207 
2208 	return (error);
2209 }
2210 
2211 /*
2212  * WARNING: May not be called before initial fsetfd().
2213  */
2214 int
2215 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
2216 {
2217 	int error;
2218 
2219 	spin_lock(&fdp->fd_spin);
2220 	if (((u_int)fd) >= fdp->fd_nfiles) {
2221 		error = EBADF;
2222 	} else if (fdp->fd_files[fd].fp == NULL) {
2223 		error = EBADF;
2224 	} else {
2225 		fdp->fd_files[fd].fileflags &= ~rem_flags;
2226 		error = 0;
2227 	}
2228 	spin_unlock(&fdp->fd_spin);
2229 
2230 	return (error);
2231 }
2232 
2233 /*
2234  * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
2235  */
2236 void
2237 fsetcred(struct file *fp, struct ucred *ncr)
2238 {
2239 	struct ucred *ocr;
2240 	struct uidinfo *uip;
2241 	struct uidcount *pup;
2242 	int cpu = mycpuid;
2243 	int count;
2244 
2245 	ocr = fp->f_cred;
2246 	if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
2247 		if (ocr) {
2248 			uip = ocr->cr_uidinfo;
2249 			pup = &uip->ui_pcpu[cpu];
2250 			atomic_add_int(&pup->pu_openfiles, -1);
2251 			if (pup->pu_openfiles < -PUP_LIMIT ||
2252 			    pup->pu_openfiles > PUP_LIMIT) {
2253 				count = atomic_swap_int(&pup->pu_openfiles, 0);
2254 				atomic_add_int(&uip->ui_openfiles, count);
2255 			}
2256 		}
2257 		if (ncr) {
2258 			uip = ncr->cr_uidinfo;
2259 			pup = &uip->ui_pcpu[cpu];
2260 			atomic_add_int(&pup->pu_openfiles, 1);
2261 			if (pup->pu_openfiles < -PUP_LIMIT ||
2262 			    pup->pu_openfiles > PUP_LIMIT) {
2263 				count = atomic_swap_int(&pup->pu_openfiles, 0);
2264 				atomic_add_int(&uip->ui_openfiles, count);
2265 			}
2266 		}
2267 	}
2268 	if (ncr)
2269 		crhold(ncr);
2270 	fp->f_cred = ncr;
2271 	if (ocr)
2272 		crfree(ocr);
2273 }
2274 
2275 /*
2276  * Free a file descriptor.
2277  */
2278 static
2279 void
2280 ffree(struct file *fp)
2281 {
2282 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
2283 	fsetcred(fp, NULL);
2284 	if (fp->f_nchandle.ncp)
2285 	    cache_drop(&fp->f_nchandle);
2286 	kfree_obj(fp, M_FILE);
2287 }
2288 
2289 /*
2290  * called from init_main, initialize filedesc0 for proc0.
2291  */
2292 void
2293 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
2294 {
2295 	p0->p_fd = fdp0;
2296 	p0->p_fdtol = NULL;
2297 	fdp0->fd_refcnt = 1;
2298 	fdp0->fd_cmask = cmask;
2299 	fdp0->fd_files = fdp0->fd_builtin_files;
2300 	fdp0->fd_nfiles = NDFILE;
2301 	fdp0->fd_lastfile = -1;
2302 	spin_init(&fdp0->fd_spin, "fdinitbootstrap");
2303 }
2304 
2305 /*
2306  * Build a new filedesc structure.
2307  */
2308 struct filedesc *
2309 fdinit(struct proc *p)
2310 {
2311 	struct filedesc *newfdp;
2312 	struct filedesc *fdp = p->p_fd;
2313 
2314 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
2315 	spin_lock(&fdp->fd_spin);
2316 	if (fdp->fd_cdir) {
2317 		newfdp->fd_cdir = fdp->fd_cdir;
2318 		vref(newfdp->fd_cdir);
2319 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
2320 	}
2321 
2322 	/*
2323 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
2324 	 * proc0, but should unconditionally exist in other processes.
2325 	 */
2326 	if (fdp->fd_rdir) {
2327 		newfdp->fd_rdir = fdp->fd_rdir;
2328 		vref(newfdp->fd_rdir);
2329 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
2330 	}
2331 	if (fdp->fd_jdir) {
2332 		newfdp->fd_jdir = fdp->fd_jdir;
2333 		vref(newfdp->fd_jdir);
2334 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
2335 	}
2336 	spin_unlock(&fdp->fd_spin);
2337 
2338 	/* Create the file descriptor table. */
2339 	newfdp->fd_refcnt = 1;
2340 	newfdp->fd_cmask = cmask;
2341 	newfdp->fd_files = newfdp->fd_builtin_files;
2342 	newfdp->fd_nfiles = NDFILE;
2343 	newfdp->fd_lastfile = -1;
2344 	spin_init(&newfdp->fd_spin, "fdinit");
2345 
2346 	return (newfdp);
2347 }
2348 
2349 /*
2350  * Share a filedesc structure.
2351  */
2352 struct filedesc *
2353 fdshare(struct proc *p)
2354 {
2355 	struct filedesc *fdp;
2356 
2357 	fdp = p->p_fd;
2358 	spin_lock(&fdp->fd_spin);
2359 	fdp->fd_refcnt++;
2360 	spin_unlock(&fdp->fd_spin);
2361 	return (fdp);
2362 }
2363 
2364 /*
2365  * Copy a filedesc structure.
2366  */
2367 int
2368 fdcopy(struct proc *p, struct filedesc **fpp)
2369 {
2370 	struct filedesc *fdp = p->p_fd;
2371 	struct filedesc *newfdp;
2372 	struct fdnode *fdnode;
2373 	int i;
2374 	int ni;
2375 
2376 	/*
2377 	 * Certain daemons might not have file descriptors.
2378 	 */
2379 	if (fdp == NULL)
2380 		return (0);
2381 
2382 	/*
2383 	 * Allocate the new filedesc and fd_files[] array.  This can race
2384 	 * with operations by other threads on the fdp so we have to be
2385 	 * careful.
2386 	 */
2387 	newfdp = kmalloc(sizeof(struct filedesc),
2388 			 M_FILEDESC, M_WAITOK | M_ZERO | M_NULLOK);
2389 	if (newfdp == NULL) {
2390 		*fpp = NULL;
2391 		return (-1);
2392 	}
2393 again:
2394 	spin_lock(&fdp->fd_spin);
2395 	if (fdp->fd_lastfile < NDFILE) {
2396 		newfdp->fd_files = newfdp->fd_builtin_files;
2397 		i = NDFILE;
2398 	} else {
2399 		/*
2400 		 * We have to allocate (N^2-1) entries for our in-place
2401 		 * binary tree.  Allow the table to shrink.
2402 		 */
2403 		i = fdp->fd_nfiles;
2404 		ni = (i - 1) / 2;
2405 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
2406 			i = ni;
2407 			ni = (i - 1) / 2;
2408 		}
2409 		spin_unlock(&fdp->fd_spin);
2410 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
2411 					  M_FILEDESC, M_WAITOK | M_ZERO);
2412 
2413 		/*
2414 		 * Check for race, retry
2415 		 */
2416 		spin_lock(&fdp->fd_spin);
2417 		if (i <= fdp->fd_lastfile) {
2418 			spin_unlock(&fdp->fd_spin);
2419 			kfree(newfdp->fd_files, M_FILEDESC);
2420 			goto again;
2421 		}
2422 	}
2423 
2424 	/*
2425 	 * Dup the remaining fields. vref() and cache_hold() can be
2426 	 * safely called while holding the read spinlock on fdp.
2427 	 *
2428 	 * The read spinlock on fdp is still being held.
2429 	 *
2430 	 * NOTE: vref and cache_hold calls for the case where the vnode
2431 	 * or cache entry already has at least one ref may be called
2432 	 * while holding spin locks.
2433 	 */
2434 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
2435 		vref(newfdp->fd_cdir);
2436 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
2437 	}
2438 	/*
2439 	 * We must check for fd_rdir here, at least for now because
2440 	 * the init process is created before we have access to the
2441 	 * rootvode to take a reference to it.
2442 	 */
2443 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
2444 		vref(newfdp->fd_rdir);
2445 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
2446 	}
2447 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
2448 		vref(newfdp->fd_jdir);
2449 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
2450 	}
2451 	newfdp->fd_refcnt = 1;
2452 	newfdp->fd_nfiles = i;
2453 	newfdp->fd_lastfile = fdp->fd_lastfile;
2454 	newfdp->fd_freefile = fdp->fd_freefile;
2455 	newfdp->fd_cmask = fdp->fd_cmask;
2456 	spin_init(&newfdp->fd_spin, "fdcopy");
2457 
2458 	/*
2459 	 * Copy the descriptor table through (i).  This also copies the
2460 	 * allocation state.   Then go through and ref the file pointers
2461 	 * and clean up any KQ descriptors.
2462 	 *
2463 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
2464 	 * copied files yet we can ignore the return value from funsetfd().
2465 	 *
2466 	 * The read spinlock on fdp is still being held.
2467 	 *
2468 	 * Be sure to clean out fdnode->tdcache, otherwise bad things will
2469 	 * happen.
2470 	 */
2471 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
2472 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
2473 		fdnode = &newfdp->fd_files[i];
2474 		if (fdnode->reserved) {
2475 			fdreserve_locked(newfdp, i, -1);
2476 			fdnode->reserved = 0;
2477 			fdfixup_locked(newfdp, i);
2478 		} else if (fdnode->fp) {
2479 			bzero(&fdnode->tdcache, sizeof(fdnode->tdcache));
2480 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
2481 				(void)funsetfd_locked(newfdp, i);
2482 			} else {
2483 				fhold(fdnode->fp);
2484 			}
2485 		}
2486 	}
2487 	spin_unlock(&fdp->fd_spin);
2488 	*fpp = newfdp;
2489 	return (0);
2490 }
2491 
2492 /*
2493  * Release a filedesc structure.
2494  *
2495  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
2496  */
2497 void
2498 fdfree(struct proc *p, struct filedesc *repl)
2499 {
2500 	struct filedesc *fdp;
2501 	struct fdnode *fdnode;
2502 	int i;
2503 	struct filedesc_to_leader *fdtol;
2504 	struct file *fp;
2505 	struct vnode *vp;
2506 	struct flock lf;
2507 
2508 	/*
2509 	 * Before destroying or replacing p->p_fd we must be sure to
2510 	 * clean out the cache of the last thread, which should be
2511 	 * curthread.
2512 	 */
2513 	fexitcache(curthread);
2514 
2515 	/*
2516 	 * Certain daemons might not have file descriptors.
2517 	 */
2518 	fdp = p->p_fd;
2519 	if (fdp == NULL) {
2520 		p->p_fd = repl;
2521 		return;
2522 	}
2523 
2524 	/*
2525 	 * Severe messing around to follow.
2526 	 */
2527 	spin_lock(&fdp->fd_spin);
2528 
2529 	/* Check for special need to clear POSIX style locks */
2530 	fdtol = p->p_fdtol;
2531 	if (fdtol != NULL) {
2532 		KASSERT(fdtol->fdl_refcount > 0,
2533 			("filedesc_to_refcount botch: fdl_refcount=%d",
2534 			 fdtol->fdl_refcount));
2535 		if (fdtol->fdl_refcount == 1 && p->p_leader->p_advlock_flag) {
2536 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
2537 				fdnode = &fdp->fd_files[i];
2538 				if (fdnode->fp == NULL ||
2539 				    fdnode->fp->f_type != DTYPE_VNODE) {
2540 					continue;
2541 				}
2542 				fp = fdnode->fp;
2543 				fhold(fp);
2544 				spin_unlock(&fdp->fd_spin);
2545 
2546 				lf.l_whence = SEEK_SET;
2547 				lf.l_start = 0;
2548 				lf.l_len = 0;
2549 				lf.l_type = F_UNLCK;
2550 				vp = (struct vnode *)fp->f_data;
2551 				VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
2552 					    F_UNLCK, &lf, F_POSIX);
2553 				fdrop(fp);
2554 				spin_lock(&fdp->fd_spin);
2555 			}
2556 		}
2557 	retry:
2558 		if (fdtol->fdl_refcount == 1) {
2559 			if (fdp->fd_holdleaderscount > 0 &&
2560 			    p->p_leader->p_advlock_flag) {
2561 				/*
2562 				 * close() or do_dup() has cleared a reference
2563 				 * in a shared file descriptor table.
2564 				 */
2565 				fdp->fd_holdleaderswakeup = 1;
2566 				ssleep(&fdp->fd_holdleaderscount,
2567 				       &fdp->fd_spin, 0, "fdlhold", 0);
2568 				goto retry;
2569 			}
2570 			if (fdtol->fdl_holdcount > 0) {
2571 				/*
2572 				 * Ensure that fdtol->fdl_leader
2573 				 * remains valid in closef().
2574 				 */
2575 				fdtol->fdl_wakeup = 1;
2576 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
2577 				goto retry;
2578 			}
2579 		}
2580 		fdtol->fdl_refcount--;
2581 		if (fdtol->fdl_refcount == 0 &&
2582 		    fdtol->fdl_holdcount == 0) {
2583 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2584 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2585 		} else {
2586 			fdtol = NULL;
2587 		}
2588 		p->p_fdtol = NULL;
2589 		if (fdtol != NULL) {
2590 			spin_unlock(&fdp->fd_spin);
2591 			kfree(fdtol, M_FILEDESC_TO_LEADER);
2592 			spin_lock(&fdp->fd_spin);
2593 		}
2594 	}
2595 	if (--fdp->fd_refcnt > 0) {
2596 		spin_unlock(&fdp->fd_spin);
2597 		spin_lock(&p->p_spin);
2598 		p->p_fd = repl;
2599 		spin_unlock(&p->p_spin);
2600 		return;
2601 	}
2602 
2603 	/*
2604 	 * Even though we are the last reference to the structure allproc
2605 	 * scans may still reference the structure.  Maintain proper
2606 	 * locks until we can replace p->p_fd.
2607 	 *
2608 	 * Also note that kqueue's closef still needs to reference the
2609 	 * fdp via p->p_fd, so we have to close the descriptors before
2610 	 * we replace p->p_fd.
2611 	 */
2612 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
2613 		if (fdp->fd_files[i].fp) {
2614 			fp = funsetfd_locked(fdp, i);
2615 			if (fp) {
2616 				spin_unlock(&fdp->fd_spin);
2617 				if (SLIST_FIRST(&fp->f_klist))
2618 					knote_fdclose(fp, fdp, i);
2619 				closef(fp, p);
2620 				spin_lock(&fdp->fd_spin);
2621 			}
2622 		}
2623 	}
2624 	spin_unlock(&fdp->fd_spin);
2625 
2626 	/*
2627 	 * Interlock against an allproc scan operations (typically frevoke).
2628 	 */
2629 	spin_lock(&p->p_spin);
2630 	p->p_fd = repl;
2631 	spin_unlock(&p->p_spin);
2632 
2633 	/*
2634 	 * Wait for any softrefs to go away.  This race rarely occurs so
2635 	 * we can use a non-critical-path style poll/sleep loop.  The
2636 	 * race only occurs against allproc scans.
2637 	 *
2638 	 * No new softrefs can occur with the fdp disconnected from the
2639 	 * process.
2640 	 */
2641 	if (fdp->fd_softrefs) {
2642 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2643 		while (fdp->fd_softrefs)
2644 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2645 	}
2646 
2647 	if (fdp->fd_files != fdp->fd_builtin_files)
2648 		kfree(fdp->fd_files, M_FILEDESC);
2649 	if (fdp->fd_cdir) {
2650 		cache_drop(&fdp->fd_ncdir);
2651 		vrele(fdp->fd_cdir);
2652 	}
2653 	if (fdp->fd_rdir) {
2654 		cache_drop(&fdp->fd_nrdir);
2655 		vrele(fdp->fd_rdir);
2656 	}
2657 	if (fdp->fd_jdir) {
2658 		cache_drop(&fdp->fd_njdir);
2659 		vrele(fdp->fd_jdir);
2660 	}
2661 	kfree(fdp, M_FILEDESC);
2662 }
2663 
2664 /*
2665  * Retrieve and reference the file pointer associated with a descriptor.
2666  *
2667  * td must be the current thread.
2668  */
2669 struct file *
2670 holdfp(thread_t td, int fd, int flag)
2671 {
2672 	struct file *fp;
2673 
2674 	fp = _holdfp_cache(td, fd);
2675 	if (fp) {
2676 		if ((fp->f_flag & flag) == 0 && flag != -1) {
2677 			fdrop(fp);
2678 			fp = NULL;
2679 		}
2680 	}
2681 	return fp;
2682 }
2683 
2684 /*
2685  * holdsock() - load the struct file pointer associated
2686  * with a socket into *fpp.  If an error occurs, non-zero
2687  * will be returned and *fpp will be set to NULL.
2688  *
2689  * td must be the current thread.
2690  */
2691 int
2692 holdsock(thread_t td, int fd, struct file **fpp)
2693 {
2694 	struct file *fp;
2695 	int error;
2696 
2697 	/*
2698 	 * Lockless shortcut
2699 	 */
2700 	fp = _holdfp_cache(td, fd);
2701 	if (fp) {
2702 		if (fp->f_type != DTYPE_SOCKET) {
2703 			fdrop(fp);
2704 			fp = NULL;
2705 			error = ENOTSOCK;
2706 		} else {
2707 			error = 0;
2708 		}
2709 	} else {
2710 		error = EBADF;
2711 	}
2712 	*fpp = fp;
2713 
2714 	return (error);
2715 }
2716 
2717 /*
2718  * Convert a user file descriptor to a held file pointer.
2719  *
2720  * td must be the current thread.
2721  */
2722 int
2723 holdvnode(thread_t td, int fd, struct file **fpp)
2724 {
2725 	struct file *fp;
2726 	int error;
2727 
2728 	fp = _holdfp_cache(td, fd);
2729 	if (fp) {
2730 		if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2731 			fdrop(fp);
2732 			fp = NULL;
2733 			error = EINVAL;
2734 		} else {
2735 			error = 0;
2736 		}
2737 	} else {
2738 		error = EBADF;
2739 	}
2740 	*fpp = fp;
2741 
2742 	return (error);
2743 }
2744 
2745 /*
2746  * Convert a user file descriptor to a held file pointer.
2747  *
2748  * td must be the current thread.
2749  */
2750 int
2751 holdvnode2(thread_t td, int fd, struct file **fpp, char *fflagsp)
2752 {
2753 	struct file *fp;
2754 	int error;
2755 
2756 	fp = _holdfp2(td, fd, fflagsp);
2757 	if (fp) {
2758 		if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2759 			fdrop(fp);
2760 			fp = NULL;
2761 			error = EINVAL;
2762 		} else {
2763 			error = 0;
2764 		}
2765 	} else {
2766 		error = EBADF;
2767 	}
2768 	*fpp = fp;
2769 
2770 	return (error);
2771 }
2772 
2773 /*
2774  * For setugid programs, we don't want to people to use that setugidness
2775  * to generate error messages which write to a file which otherwise would
2776  * otherwise be off-limits to the process.
2777  *
2778  * This is a gross hack to plug the hole.  A better solution would involve
2779  * a special vop or other form of generalized access control mechanism.  We
2780  * go ahead and just reject all procfs file systems accesses as dangerous.
2781  *
2782  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2783  * sufficient.  We also don't for check setugidness since we know we are.
2784  */
2785 static int
2786 is_unsafe(struct file *fp)
2787 {
2788 	if (fp->f_type == DTYPE_VNODE &&
2789 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2790 		return (1);
2791 	return (0);
2792 }
2793 
2794 /*
2795  * Make this setguid thing safe, if at all possible.
2796  *
2797  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2798  */
2799 void
2800 setugidsafety(struct proc *p)
2801 {
2802 	struct filedesc *fdp = p->p_fd;
2803 	int i;
2804 
2805 	/* Certain daemons might not have file descriptors. */
2806 	if (fdp == NULL)
2807 		return;
2808 
2809 	/*
2810 	 * note: fdp->fd_files may be reallocated out from under us while
2811 	 * we are blocked in a close.  Be careful!
2812 	 */
2813 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2814 		if (i > 2)
2815 			break;
2816 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2817 			struct file *fp;
2818 
2819 			/*
2820 			 * NULL-out descriptor prior to close to avoid
2821 			 * a race while close blocks.
2822 			 */
2823 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2824 				knote_fdclose(fp, fdp, i);
2825 				closef(fp, p);
2826 			}
2827 		}
2828 	}
2829 }
2830 
2831 /*
2832  * Close all CLOEXEC files on exec.
2833  *
2834  * Only a single thread remains for the current process.
2835  *
2836  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2837  */
2838 void
2839 fdcloseexec(struct proc *p)
2840 {
2841 	struct filedesc *fdp = p->p_fd;
2842 	int i;
2843 
2844 	/* Certain daemons might not have file descriptors. */
2845 	if (fdp == NULL)
2846 		return;
2847 
2848 	/*
2849 	 * We cannot cache fd_files since operations may block and rip
2850 	 * them out from under us.
2851 	 */
2852 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2853 		if (fdp->fd_files[i].fp != NULL &&
2854 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2855 			struct file *fp;
2856 
2857 			/*
2858 			 * NULL-out descriptor prior to close to avoid
2859 			 * a race while close blocks.
2860 			 *
2861 			 * (funsetfd*() also clears the fd cache)
2862 			 */
2863 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2864 				knote_fdclose(fp, fdp, i);
2865 				closef(fp, p);
2866 			}
2867 		}
2868 	}
2869 }
2870 
2871 /*
2872  * It is unsafe for set[ug]id processes to be started with file
2873  * descriptors 0..2 closed, as these descriptors are given implicit
2874  * significance in the Standard C library.  fdcheckstd() will create a
2875  * descriptor referencing /dev/null for each of stdin, stdout, and
2876  * stderr that is not already open.
2877  *
2878  * NOT MPSAFE - calls falloc, vn_open, etc
2879  */
2880 int
2881 fdcheckstd(struct lwp *lp)
2882 {
2883 	struct nlookupdata nd;
2884 	struct filedesc *fdp;
2885 	struct file *fp;
2886 	int retval;
2887 	int i, error, flags, devnull;
2888 
2889 	fdp = lp->lwp_proc->p_fd;
2890 	if (fdp == NULL)
2891 		return (0);
2892 	devnull = -1;
2893 	error = 0;
2894 	for (i = 0; i < 3; i++) {
2895 		if (fdp->fd_files[i].fp != NULL)
2896 			continue;
2897 		if (devnull < 0) {
2898 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2899 				break;
2900 
2901 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2902 						NLC_FOLLOW|NLC_LOCKVP);
2903 			flags = FREAD | FWRITE;
2904 			if (error == 0)
2905 				error = vn_open(&nd, &fp, flags, 0);
2906 			if (error == 0)
2907 				fsetfd(fdp, fp, devnull);
2908 			else
2909 				fsetfd(fdp, NULL, devnull);
2910 			fdrop(fp);
2911 			nlookup_done(&nd);
2912 			if (error)
2913 				break;
2914 			KKASSERT(i == devnull);
2915 		} else {
2916 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2917 			if (error != 0)
2918 				break;
2919 		}
2920 	}
2921 	return (error);
2922 }
2923 
2924 /*
2925  * Internal form of close.
2926  * Decrement reference count on file structure.
2927  * Note: td and/or p may be NULL when closing a file
2928  * that was being passed in a message.
2929  *
2930  * MPALMOSTSAFE - acquires mplock for VOP operations
2931  */
2932 int
2933 closef(struct file *fp, struct proc *p)
2934 {
2935 	struct vnode *vp;
2936 	struct flock lf;
2937 	struct filedesc_to_leader *fdtol;
2938 
2939 	if (fp == NULL)
2940 		return (0);
2941 
2942 	/*
2943 	 * POSIX record locking dictates that any close releases ALL
2944 	 * locks owned by this process.  This is handled by setting
2945 	 * a flag in the unlock to free ONLY locks obeying POSIX
2946 	 * semantics, and not to free BSD-style file locks.
2947 	 * If the descriptor was in a message, POSIX-style locks
2948 	 * aren't passed with the descriptor.
2949 	 */
2950 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2951 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2952 	) {
2953 		if (p->p_leader->p_advlock_flag) {
2954 			lf.l_whence = SEEK_SET;
2955 			lf.l_start = 0;
2956 			lf.l_len = 0;
2957 			lf.l_type = F_UNLCK;
2958 			vp = (struct vnode *)fp->f_data;
2959 			VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2960 				    &lf, F_POSIX);
2961 		}
2962 		fdtol = p->p_fdtol;
2963 		if (fdtol != NULL) {
2964 			lwkt_gettoken(&p->p_token);
2965 
2966 			/*
2967 			 * Handle special case where file descriptor table
2968 			 * is shared between multiple process leaders.
2969 			 */
2970 			for (fdtol = fdtol->fdl_next;
2971 			     fdtol != p->p_fdtol;
2972 			     fdtol = fdtol->fdl_next) {
2973 				if (fdtol->fdl_leader->p_advlock_flag == 0)
2974 					continue;
2975 				fdtol->fdl_holdcount++;
2976 				lf.l_whence = SEEK_SET;
2977 				lf.l_start = 0;
2978 				lf.l_len = 0;
2979 				lf.l_type = F_UNLCK;
2980 				vp = (struct vnode *)fp->f_data;
2981 				VOP_ADVLOCK(vp, (caddr_t)fdtol->fdl_leader,
2982 					    F_UNLCK, &lf, F_POSIX);
2983 				fdtol->fdl_holdcount--;
2984 				if (fdtol->fdl_holdcount == 0 &&
2985 				    fdtol->fdl_wakeup != 0) {
2986 					fdtol->fdl_wakeup = 0;
2987 					wakeup(fdtol);
2988 				}
2989 			}
2990 			lwkt_reltoken(&p->p_token);
2991 		}
2992 	}
2993 	return (fdrop(fp));
2994 }
2995 
2996 /*
2997  * fhold() can only be called if f_count is already at least 1 (i.e. the
2998  * caller of fhold() already has a reference to the file pointer in some
2999  * manner or other).
3000  *
3001  * Atomic ops are used for incrementing and decrementing f_count before
3002  * the 1->0 transition.  f_count 1->0 transition is special, see the
3003  * comment in fdrop().
3004  */
3005 void
3006 fhold(struct file *fp)
3007 {
3008 	/* 0->1 transition will never work */
3009 	KASSERT(fp->f_count > 0, ("fhold: invalid f_count %d", fp->f_count));
3010 	atomic_add_int(&fp->f_count, 1);
3011 }
3012 
3013 /*
3014  * fdrop() - drop a reference to a descriptor
3015  */
3016 int
3017 fdrop(struct file *fp)
3018 {
3019 	struct flock lf;
3020 	struct vnode *vp;
3021 	int error, do_free = 0;
3022 
3023 	/*
3024 	 * NOTE:
3025 	 * Simple atomic_fetchadd_int(f_count, -1) here will cause use-
3026 	 * after-free or double free (due to f_count 0->1 transition), if
3027 	 * fhold() is called on the fps found through filehead iteration.
3028 	 */
3029 	for (;;) {
3030 		int count = fp->f_count;
3031 
3032 		cpu_ccfence();
3033 		KASSERT(count > 0, ("fdrop: invalid f_count %d", count));
3034 		if (count == 1) {
3035 			struct filelist_head *head = fp2filelist(fp);
3036 
3037 			/*
3038 			 * About to drop the last reference, hold the
3039 			 * filehead spin lock and drop it, so that no
3040 			 * one could see this fp through filehead anymore,
3041 			 * let alone fhold() this fp.
3042 			 */
3043 			spin_lock(&head->spin);
3044 			if (atomic_cmpset_int(&fp->f_count, count, 0)) {
3045 				LIST_REMOVE(fp, f_list);
3046 				spin_unlock(&head->spin);
3047 				atomic_subtract_int(&nfiles, 1);
3048 				do_free = 1; /* free this fp */
3049 				break;
3050 			}
3051 			spin_unlock(&head->spin);
3052 			/* retry */
3053 		} else if (atomic_cmpset_int(&fp->f_count, count, count - 1)) {
3054 			break;
3055 		}
3056 		/* retry */
3057 	}
3058 	if (!do_free)
3059 		return (0);
3060 
3061 	KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
3062 
3063 	/*
3064 	 * The last reference has gone away, we own the fp structure free
3065 	 * and clear.
3066 	 */
3067 	if (fp->f_count < 0)
3068 		panic("fdrop: count < 0");
3069 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
3070 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
3071 	) {
3072 		lf.l_whence = SEEK_SET;
3073 		lf.l_start = 0;
3074 		lf.l_len = 0;
3075 		lf.l_type = F_UNLCK;
3076 		vp = (struct vnode *)fp->f_data;
3077 		VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
3078 	}
3079 	if (fp->f_ops != &badfileops)
3080 		error = fo_close(fp);
3081 	else
3082 		error = 0;
3083 	ffree(fp);
3084 	return (error);
3085 }
3086 
3087 /*
3088  * Apply an advisory lock on a file descriptor.
3089  *
3090  * Just attempt to get a record lock of the requested type on
3091  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
3092  *
3093  * MPALMOSTSAFE
3094  */
3095 int
3096 sys_flock(struct sysmsg *sysmsg, const struct flock_args *uap)
3097 {
3098 	thread_t td = curthread;
3099 	struct file *fp;
3100 	struct vnode *vp;
3101 	struct flock lf;
3102 	int error;
3103 
3104 	if ((fp = holdfp(td, uap->fd, -1)) == NULL)
3105 		return (EBADF);
3106 	if (fp->f_type != DTYPE_VNODE) {
3107 		error = EOPNOTSUPP;
3108 		goto done;
3109 	}
3110 	vp = (struct vnode *)fp->f_data;
3111 	lf.l_whence = SEEK_SET;
3112 	lf.l_start = 0;
3113 	lf.l_len = 0;
3114 	if (uap->how & LOCK_UN) {
3115 		lf.l_type = F_UNLCK;
3116 		atomic_clear_int(&fp->f_flag, FHASLOCK); /* race ok */
3117 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
3118 		goto done;
3119 	}
3120 	if (uap->how & LOCK_EX)
3121 		lf.l_type = F_WRLCK;
3122 	else if (uap->how & LOCK_SH)
3123 		lf.l_type = F_RDLCK;
3124 	else {
3125 		error = EBADF;
3126 		goto done;
3127 	}
3128 	if (uap->how & LOCK_NB)
3129 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
3130 	else
3131 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
3132 	atomic_set_int(&fp->f_flag, FHASLOCK);	/* race ok */
3133 done:
3134 	fdrop(fp);
3135 	return (error);
3136 }
3137 
3138 /*
3139  * File Descriptor pseudo-device driver ( /dev/fd/N ).
3140  *
3141  * This interface is now a bit more linux-compatible and attempts to not
3142  * share seek positions by not sharing the fp of the descriptor when
3143  * possible.
3144  *
3145  * Probably a good idea anyhow, but now particularly important for
3146  * fexecve() which uses /dev/fd/N.
3147  *
3148  * The original interface effectively dup()d the descriptor.
3149  */
3150 static int
3151 fdopen(struct dev_open_args *ap)
3152 {
3153 	struct file *wfp;
3154 	thread_t td;
3155 	int error;
3156 	int sfd;
3157 
3158 	td = curthread;
3159 	KKASSERT(td->td_lwp != NULL);
3160 
3161 	/*
3162 	 * Get the fp for /dev/fd/N
3163 	 */
3164 	sfd = minor(ap->a_head.a_dev);
3165 	if ((wfp = holdfp(td, sfd, -1)) == NULL)
3166 		return (EBADF);
3167 
3168 	/*
3169 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
3170 	 * will dup a dummy descriptor instead of the real one.
3171 	 */
3172 	if (wfp->f_flag & FREVOKED) {
3173 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
3174 		fdrop(wfp);
3175 		wfp = NULL;
3176 		error = falloc(NULL, &wfp, NULL);
3177 		if (error)
3178 			return (error);
3179 	}
3180 
3181 	/*
3182 	 * Check that the mode the file is being opened for is a
3183 	 * subset of the mode of the existing descriptor.
3184 	 */
3185 	if (ap->a_fpp == NULL) {
3186 		fdrop(wfp);
3187 		return EINVAL;
3188 	}
3189 	if (((ap->a_oflags & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
3190 		fdrop(wfp);
3191 		return EACCES;
3192 	}
3193 	if (wfp->f_type == DTYPE_VNODE && wfp->f_data) {
3194 		/*
3195 		 * If wfp is a vnode create a new fp so things like the
3196 		 * seek position (etc) are not shared with the original.
3197 		 *
3198 		 * Don't try to call VOP_OPEN().  Adjust the open-count
3199 		 * ourselves.
3200 		 */
3201 		struct vnode *vp;
3202 		struct file *fp;
3203 
3204 		vp = wfp->f_data;
3205                 fp = *ap->a_fpp;
3206 
3207 		/*
3208 		 * Yah... this wouldn't be good.
3209 		 */
3210 		if ((ap->a_oflags & (FWRITE|O_TRUNC)) && vp->v_type == VDIR) {
3211 			fdrop(wfp);
3212 			return EISDIR;
3213 		}
3214 
3215 		/*
3216 		 * Setup the new fp and simulate an open(), but for now do
3217 		 * not actually call VOP_OPEN() though we probably could.
3218 		 */
3219 		fp->f_type = DTYPE_VNODE;
3220                 /* retain flags not to be copied */
3221                 fp->f_flag = (fp->f_flag & ~FMASK) | (ap->a_oflags & FMASK);
3222                 fp->f_ops = &vnode_fileops;
3223                 fp->f_data = vp;
3224                 vref(vp);
3225 
3226 		if (ap->a_oflags & FWRITE)
3227 			atomic_add_int(&vp->v_writecount, 1);
3228 		KKASSERT(vp->v_opencount >= 0 && vp->v_opencount != INT_MAX);
3229 		atomic_add_int(&vp->v_opencount, 1);
3230 		fdrop(wfp);
3231 	} else {
3232 		/*
3233 		 * If wfp is not a vnode we have to share it directly.
3234 		 */
3235 		fdrop(*ap->a_fpp);
3236 		*ap->a_fpp = wfp;	/* transfer hold count */
3237 	}
3238 	return EALREADY;
3239 }
3240 
3241 /*
3242  * NOT MPSAFE - I think these refer to a common file descriptor table
3243  * and we need to spinlock that to link fdtol in.
3244  */
3245 struct filedesc_to_leader *
3246 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
3247 			 struct proc *leader)
3248 {
3249 	struct filedesc_to_leader *fdtol;
3250 
3251 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
3252 			M_FILEDESC_TO_LEADER, M_WAITOK | M_ZERO);
3253 	fdtol->fdl_refcount = 1;
3254 	fdtol->fdl_holdcount = 0;
3255 	fdtol->fdl_wakeup = 0;
3256 	fdtol->fdl_leader = leader;
3257 	if (old != NULL) {
3258 		fdtol->fdl_next = old->fdl_next;
3259 		fdtol->fdl_prev = old;
3260 		old->fdl_next = fdtol;
3261 		fdtol->fdl_next->fdl_prev = fdtol;
3262 	} else {
3263 		fdtol->fdl_next = fdtol;
3264 		fdtol->fdl_prev = fdtol;
3265 	}
3266 	return fdtol;
3267 }
3268 
3269 /*
3270  * Scan all file pointers in the system.  The callback is made with
3271  * the master list spinlock held exclusively.
3272  */
3273 void
3274 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
3275 {
3276 	int i;
3277 
3278 	for (i = 0; i < NFILELIST_HEADS; ++i) {
3279 		struct filelist_head *head = &filelist_heads[i];
3280 		struct file *fp;
3281 
3282 		spin_lock(&head->spin);
3283 		LIST_FOREACH(fp, &head->list, f_list) {
3284 			int res;
3285 
3286 			res = callback(fp, data);
3287 			if (res < 0)
3288 				break;
3289 		}
3290 		spin_unlock(&head->spin);
3291 	}
3292 }
3293 
3294 /*
3295  * Get file structures.
3296  *
3297  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
3298  */
3299 
3300 struct sysctl_kern_file_info {
3301 	int count;
3302 	int error;
3303 	struct sysctl_req *req;
3304 };
3305 
3306 static int sysctl_kern_file_callback(struct proc *p, void *data);
3307 
3308 static int
3309 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
3310 {
3311 	struct sysctl_kern_file_info info;
3312 
3313 	/*
3314 	 * Note: because the number of file descriptors is calculated
3315 	 * in different ways for sizing vs returning the data,
3316 	 * there is information leakage from the first loop.  However,
3317 	 * it is of a similar order of magnitude to the leakage from
3318 	 * global system statistics such as kern.openfiles.
3319 	 *
3320 	 * When just doing a count, note that we cannot just count
3321 	 * the elements and add f_count via the filehead list because
3322 	 * threaded processes share their descriptor table and f_count might
3323 	 * still be '1' in that case.
3324 	 *
3325 	 * Since the SYSCTL op can block, we must hold the process to
3326 	 * prevent it being ripped out from under us either in the
3327 	 * file descriptor loop or in the greater LIST_FOREACH.  The
3328 	 * process may be in varying states of disrepair.  If the process
3329 	 * is in SZOMB we may have caught it just as it is being removed
3330 	 * from the allproc list, we must skip it in that case to maintain
3331 	 * an unbroken chain through the allproc list.
3332 	 */
3333 	info.count = 0;
3334 	info.error = 0;
3335 	info.req = req;
3336 	allproc_scan(sysctl_kern_file_callback, &info, 0);
3337 
3338 	/*
3339 	 * When just calculating the size, overestimate a bit to try to
3340 	 * prevent system activity from causing the buffer-fill call
3341 	 * to fail later on.
3342 	 */
3343 	if (req->oldptr == NULL) {
3344 		info.count = (info.count + 16) + (info.count / 10);
3345 		info.error = SYSCTL_OUT(req, NULL,
3346 					info.count * sizeof(struct kinfo_file));
3347 	}
3348 	return (info.error);
3349 }
3350 
3351 static int
3352 sysctl_kern_file_callback(struct proc *p, void *data)
3353 {
3354 	struct sysctl_kern_file_info *info = data;
3355 	struct kinfo_file kf;
3356 	struct filedesc *fdp;
3357 	struct file *fp;
3358 	uid_t uid;
3359 	int n;
3360 
3361 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
3362 		return(0);
3363 	if (!(PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0))
3364 		return(0);
3365 
3366 	/*
3367 	 * Softref the fdp to prevent it from being destroyed
3368 	 */
3369 	spin_lock(&p->p_spin);
3370 	if ((fdp = p->p_fd) == NULL) {
3371 		spin_unlock(&p->p_spin);
3372 		return(0);
3373 	}
3374 	atomic_add_int(&fdp->fd_softrefs, 1);
3375 	spin_unlock(&p->p_spin);
3376 
3377 	/*
3378 	 * The fdp's own spinlock prevents the contents from being
3379 	 * modified.
3380 	 */
3381 	spin_lock_shared(&fdp->fd_spin);
3382 	for (n = 0; n < fdp->fd_nfiles; ++n) {
3383 		if ((fp = fdp->fd_files[n].fp) == NULL)
3384 			continue;
3385 		if (info->req->oldptr == NULL) {
3386 			++info->count;
3387 		} else {
3388 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
3389 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
3390 			spin_unlock_shared(&fdp->fd_spin);
3391 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
3392 			spin_lock_shared(&fdp->fd_spin);
3393 			if (info->error)
3394 				break;
3395 		}
3396 	}
3397 	spin_unlock_shared(&fdp->fd_spin);
3398 	atomic_subtract_int(&fdp->fd_softrefs, 1);
3399 	if (info->error)
3400 		return(-1);
3401 	return(0);
3402 }
3403 
3404 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
3405     0, 0, sysctl_kern_file, "S,file", "Entire file table");
3406 
3407 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
3408     &minfilesperproc, 0, "Minimum files allowed open per process");
3409 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
3410     &maxfilesperproc, 0, "Maximum files allowed open per process");
3411 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
3412     &maxfilesperuser, 0, "Maximum files allowed open per user");
3413 
3414 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
3415     &maxfiles, 0, "Maximum number of files");
3416 
3417 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
3418     &maxfilesrootres, 0, "Descriptors reserved for root use");
3419 
3420 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
3421 	&nfiles, 0, "System-wide number of open files");
3422 
3423 static void
3424 fildesc_drvinit(void *unused)
3425 {
3426 	int fd;
3427 
3428 	for (fd = 0; fd < NUMFDESC; fd++) {
3429 		make_dev(&fildesc_ops, fd,
3430 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
3431 	}
3432 
3433 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
3434 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
3435 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
3436 }
3437 
3438 struct fileops badfileops = {
3439 	.fo_read = badfo_readwrite,
3440 	.fo_write = badfo_readwrite,
3441 	.fo_ioctl = badfo_ioctl,
3442 	.fo_kqfilter = badfo_kqfilter,
3443 	.fo_stat = badfo_stat,
3444 	.fo_close = badfo_close,
3445 	.fo_shutdown = badfo_shutdown
3446 };
3447 
3448 int
3449 badfo_readwrite(
3450 	struct file *fp,
3451 	struct uio *uio,
3452 	struct ucred *cred,
3453 	int flags
3454 ) {
3455 	return (EBADF);
3456 }
3457 
3458 int
3459 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
3460 	    struct ucred *cred, struct sysmsg *msgv)
3461 {
3462 	return (EBADF);
3463 }
3464 
3465 /*
3466  * Must return an error to prevent registration, typically
3467  * due to a revoked descriptor (file_filtops assigned).
3468  */
3469 int
3470 badfo_kqfilter(struct file *fp, struct knote *kn)
3471 {
3472 	return (EOPNOTSUPP);
3473 }
3474 
3475 int
3476 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
3477 {
3478 	return (EBADF);
3479 }
3480 
3481 int
3482 badfo_close(struct file *fp)
3483 {
3484 	return (EBADF);
3485 }
3486 
3487 int
3488 badfo_shutdown(struct file *fp, int how)
3489 {
3490 	return (EBADF);
3491 }
3492 
3493 int
3494 nofo_shutdown(struct file *fp, int how)
3495 {
3496 	return (EOPNOTSUPP);
3497 }
3498 
3499 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR,
3500     fildesc_drvinit,NULL);
3501 
3502 static void
3503 filelist_heads_init(void *arg __unused)
3504 {
3505 	int i;
3506 
3507 	for (i = 0; i < NFILELIST_HEADS; ++i) {
3508 		struct filelist_head *head = &filelist_heads[i];
3509 
3510 		spin_init(&head->spin, "filehead_spin");
3511 		LIST_INIT(&head->list);
3512 	}
3513 }
3514 
3515 SYSINIT(filelistheads, SI_BOOT1_LOCK, SI_ORDER_ANY, filelist_heads_init, NULL);
3516