xref: /dragonfly/sys/kern/kern_descrip.c (revision 10cbe914)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
72  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
73  */
74 
75 #include "opt_compat.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/malloc.h>
79 #include <sys/sysproto.h>
80 #include <sys/conf.h>
81 #include <sys/device.h>
82 #include <sys/file.h>
83 #include <sys/filedesc.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/vnode.h>
87 #include <sys/proc.h>
88 #include <sys/nlookup.h>
89 #include <sys/file.h>
90 #include <sys/stat.h>
91 #include <sys/filio.h>
92 #include <sys/fcntl.h>
93 #include <sys/unistd.h>
94 #include <sys/resourcevar.h>
95 #include <sys/event.h>
96 #include <sys/kern_syscall.h>
97 #include <sys/kcore.h>
98 #include <sys/kinfo.h>
99 #include <sys/un.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <sys/file2.h>
106 #include <sys/spinlock2.h>
107 #include <sys/mplock2.h>
108 
109 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
110 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
111 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
112 static void ffree(struct file *fp);
113 
114 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
115 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
116 		     "file desc to leader structures");
117 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
118 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
119 
120 static struct krate krate_uidinfo = { .freq = 1 };
121 
122 static	 d_open_t  fdopen;
123 #define NUMFDESC 64
124 
125 #define CDEV_MAJOR 22
126 static struct dev_ops fildesc_ops = {
127 	{ "FD", 0, 0 },
128 	.d_open =	fdopen,
129 };
130 
131 /*
132  * Descriptor management.
133  */
134 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
135 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin);
136 static int nfiles;		/* actual number of open files */
137 extern int cmask;
138 
139 /*
140  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
141  *
142  * MPSAFE - must be called with fdp->fd_spin exclusively held
143  */
144 static __inline
145 void
146 fdfixup_locked(struct filedesc *fdp, int fd)
147 {
148 	if (fd < fdp->fd_freefile) {
149 	       fdp->fd_freefile = fd;
150 	}
151 	while (fdp->fd_lastfile >= 0 &&
152 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
153 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
154 	) {
155 		--fdp->fd_lastfile;
156 	}
157 }
158 
159 /*
160  * System calls on descriptors.
161  *
162  * MPSAFE
163  */
164 int
165 sys_getdtablesize(struct getdtablesize_args *uap)
166 {
167 	struct proc *p = curproc;
168 	struct plimit *limit = p->p_limit;
169 	int dtsize;
170 
171 	spin_lock(&limit->p_spin);
172 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
173 		dtsize = INT_MAX;
174 	else
175 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
176 	spin_unlock(&limit->p_spin);
177 
178 	if (dtsize > maxfilesperproc)
179 		dtsize = maxfilesperproc;
180 	if (dtsize < minfilesperproc)
181 		dtsize = minfilesperproc;
182 	if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
183 		dtsize = maxfilesperuser;
184 	uap->sysmsg_result = dtsize;
185 	return (0);
186 }
187 
188 /*
189  * Duplicate a file descriptor to a particular value.
190  *
191  * note: keep in mind that a potential race condition exists when closing
192  * descriptors from a shared descriptor table (via rfork).
193  *
194  * MPSAFE
195  */
196 int
197 sys_dup2(struct dup2_args *uap)
198 {
199 	int error;
200 	int fd = 0;
201 
202 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
203 	uap->sysmsg_fds[0] = fd;
204 
205 	return (error);
206 }
207 
208 /*
209  * Duplicate a file descriptor.
210  *
211  * MPSAFE
212  */
213 int
214 sys_dup(struct dup_args *uap)
215 {
216 	int error;
217 	int fd = 0;
218 
219 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
220 	uap->sysmsg_fds[0] = fd;
221 
222 	return (error);
223 }
224 
225 /*
226  * MPALMOSTSAFE - acquires mplock for fp operations
227  */
228 int
229 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
230 {
231 	struct thread *td = curthread;
232 	struct proc *p = td->td_proc;
233 	struct file *fp;
234 	struct vnode *vp;
235 	u_int newmin;
236 	u_int oflags;
237 	u_int nflags;
238 	int tmp, error, flg = F_POSIX;
239 
240 	KKASSERT(p);
241 
242 	/*
243 	 * Operations on file descriptors that do not require a file pointer.
244 	 */
245 	switch (cmd) {
246 	case F_GETFD:
247 		error = fgetfdflags(p->p_fd, fd, &tmp);
248 		if (error == 0)
249 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
250 		return (error);
251 
252 	case F_SETFD:
253 		if (dat->fc_cloexec & FD_CLOEXEC)
254 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
255 		else
256 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
257 		return (error);
258 	case F_DUPFD:
259 		newmin = dat->fc_fd;
260 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
261 		return (error);
262 	default:
263 		break;
264 	}
265 
266 	/*
267 	 * Operations on file pointers
268 	 */
269 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
270 		return (EBADF);
271 
272 	get_mplock();
273 	switch (cmd) {
274 	case F_GETFL:
275 		dat->fc_flags = OFLAGS(fp->f_flag);
276 		error = 0;
277 		break;
278 
279 	case F_SETFL:
280 		oflags = fp->f_flag;
281 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
282 		nflags |= oflags & ~FCNTLFLAGS;
283 
284 		error = 0;
285 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
286 			error = EINVAL;
287 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
288 			tmp = nflags & FASYNC;
289 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
290 					 cred, NULL);
291 		}
292 		if (error == 0)
293 			fp->f_flag = nflags;
294 		break;
295 
296 	case F_GETOWN:
297 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
298 				 cred, NULL);
299 		break;
300 
301 	case F_SETOWN:
302 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
303 				 cred, NULL);
304 		break;
305 
306 	case F_SETLKW:
307 		flg |= F_WAIT;
308 		/* Fall into F_SETLK */
309 
310 	case F_SETLK:
311 		if (fp->f_type != DTYPE_VNODE) {
312 			error = EBADF;
313 			break;
314 		}
315 		vp = (struct vnode *)fp->f_data;
316 
317 		/*
318 		 * copyin/lockop may block
319 		 */
320 		if (dat->fc_flock.l_whence == SEEK_CUR)
321 			dat->fc_flock.l_start += fp->f_offset;
322 
323 		switch (dat->fc_flock.l_type) {
324 		case F_RDLCK:
325 			if ((fp->f_flag & FREAD) == 0) {
326 				error = EBADF;
327 				break;
328 			}
329 			p->p_leader->p_flag |= P_ADVLOCK;
330 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
331 			    &dat->fc_flock, flg);
332 			break;
333 		case F_WRLCK:
334 			if ((fp->f_flag & FWRITE) == 0) {
335 				error = EBADF;
336 				break;
337 			}
338 			p->p_leader->p_flag |= P_ADVLOCK;
339 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
340 			    &dat->fc_flock, flg);
341 			break;
342 		case F_UNLCK:
343 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
344 				&dat->fc_flock, F_POSIX);
345 			break;
346 		default:
347 			error = EINVAL;
348 			break;
349 		}
350 
351 		/*
352 		 * It is possible to race a close() on the descriptor while
353 		 * we were blocked getting the lock.  If this occurs the
354 		 * close might not have caught the lock.
355 		 */
356 		if (checkfdclosed(p->p_fd, fd, fp)) {
357 			dat->fc_flock.l_whence = SEEK_SET;
358 			dat->fc_flock.l_start = 0;
359 			dat->fc_flock.l_len = 0;
360 			dat->fc_flock.l_type = F_UNLCK;
361 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
362 					   F_UNLCK, &dat->fc_flock, F_POSIX);
363 		}
364 		break;
365 
366 	case F_GETLK:
367 		if (fp->f_type != DTYPE_VNODE) {
368 			error = EBADF;
369 			break;
370 		}
371 		vp = (struct vnode *)fp->f_data;
372 		/*
373 		 * copyin/lockop may block
374 		 */
375 		if (dat->fc_flock.l_type != F_RDLCK &&
376 		    dat->fc_flock.l_type != F_WRLCK &&
377 		    dat->fc_flock.l_type != F_UNLCK) {
378 			error = EINVAL;
379 			break;
380 		}
381 		if (dat->fc_flock.l_whence == SEEK_CUR)
382 			dat->fc_flock.l_start += fp->f_offset;
383 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
384 			    &dat->fc_flock, F_POSIX);
385 		break;
386 	default:
387 		error = EINVAL;
388 		break;
389 	}
390 	rel_mplock();
391 
392 	fdrop(fp);
393 	return (error);
394 }
395 
396 /*
397  * The file control system call.
398  *
399  * MPSAFE
400  */
401 int
402 sys_fcntl(struct fcntl_args *uap)
403 {
404 	union fcntl_dat dat;
405 	int error;
406 
407 	switch (uap->cmd) {
408 	case F_DUPFD:
409 		dat.fc_fd = uap->arg;
410 		break;
411 	case F_SETFD:
412 		dat.fc_cloexec = uap->arg;
413 		break;
414 	case F_SETFL:
415 		dat.fc_flags = uap->arg;
416 		break;
417 	case F_SETOWN:
418 		dat.fc_owner = uap->arg;
419 		break;
420 	case F_SETLKW:
421 	case F_SETLK:
422 	case F_GETLK:
423 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
424 			       sizeof(struct flock));
425 		if (error)
426 			return (error);
427 		break;
428 	}
429 
430 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
431 
432 	if (error == 0) {
433 		switch (uap->cmd) {
434 		case F_DUPFD:
435 			uap->sysmsg_result = dat.fc_fd;
436 			break;
437 		case F_GETFD:
438 			uap->sysmsg_result = dat.fc_cloexec;
439 			break;
440 		case F_GETFL:
441 			uap->sysmsg_result = dat.fc_flags;
442 			break;
443 		case F_GETOWN:
444 			uap->sysmsg_result = dat.fc_owner;
445 		case F_GETLK:
446 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
447 			    sizeof(struct flock));
448 			break;
449 		}
450 	}
451 
452 	return (error);
453 }
454 
455 /*
456  * Common code for dup, dup2, and fcntl(F_DUPFD).
457  *
458  * The type flag can be either DUP_FIXED or DUP_VARIABLE.  DUP_FIXED tells
459  * kern_dup() to destructively dup over an existing file descriptor if new
460  * is already open.  DUP_VARIABLE tells kern_dup() to find the lowest
461  * unused file descriptor that is greater than or equal to new.
462  *
463  * MPSAFE
464  */
465 int
466 kern_dup(enum dup_type type, int old, int new, int *res)
467 {
468 	struct thread *td = curthread;
469 	struct proc *p = td->td_proc;
470 	struct filedesc *fdp = p->p_fd;
471 	struct file *fp;
472 	struct file *delfp;
473 	int oldflags;
474 	int holdleaders;
475 	int dtsize;
476 	int error, newfd;
477 
478 	/*
479 	 * Verify that we have a valid descriptor to dup from and
480 	 * possibly to dup to.
481 	 *
482 	 * NOTE: maxfilesperuser is not applicable to dup()
483 	 */
484 retry:
485 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
486 		dtsize = INT_MAX;
487 	else
488 		dtsize = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
489 	if (dtsize > maxfilesperproc)
490 		dtsize = maxfilesperproc;
491 	if (dtsize < minfilesperproc)
492 		dtsize = minfilesperproc;
493 
494 	if (new < 0 || new > dtsize)
495 		return (EINVAL);
496 
497 	spin_lock(&fdp->fd_spin);
498 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
499 		spin_unlock(&fdp->fd_spin);
500 		return (EBADF);
501 	}
502 	if (type == DUP_FIXED && old == new) {
503 		*res = new;
504 		spin_unlock(&fdp->fd_spin);
505 		return (0);
506 	}
507 	fp = fdp->fd_files[old].fp;
508 	oldflags = fdp->fd_files[old].fileflags;
509 	fhold(fp);	/* MPSAFE - can be called with a spinlock held */
510 
511 	/*
512 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
513 	 * if the requested descriptor is beyond the current table size.
514 	 *
515 	 * This can block.  Retry if the source descriptor no longer matches
516 	 * or if our expectation in the expansion case races.
517 	 *
518 	 * If we are not expanding or allocating a new decriptor, then reset
519 	 * the target descriptor to a reserved state so we have a uniform
520 	 * setup for the next code block.
521 	 */
522 	if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
523 		spin_unlock(&fdp->fd_spin);
524 		error = fdalloc(p, new, &newfd);
525 		spin_lock(&fdp->fd_spin);
526 		if (error) {
527 			spin_unlock(&fdp->fd_spin);
528 			fdrop(fp);
529 			return (error);
530 		}
531 		/*
532 		 * Check for ripout
533 		 */
534 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
535 			fsetfd_locked(fdp, NULL, newfd);
536 			spin_unlock(&fdp->fd_spin);
537 			fdrop(fp);
538 			goto retry;
539 		}
540 		/*
541 		 * Check for expansion race
542 		 */
543 		if (type != DUP_VARIABLE && new != newfd) {
544 			fsetfd_locked(fdp, NULL, newfd);
545 			spin_unlock(&fdp->fd_spin);
546 			fdrop(fp);
547 			goto retry;
548 		}
549 		/*
550 		 * Check for ripout, newfd reused old (this case probably
551 		 * can't occur).
552 		 */
553 		if (old == newfd) {
554 			fsetfd_locked(fdp, NULL, newfd);
555 			spin_unlock(&fdp->fd_spin);
556 			fdrop(fp);
557 			goto retry;
558 		}
559 		new = newfd;
560 		delfp = NULL;
561 	} else {
562 		if (fdp->fd_files[new].reserved) {
563 			spin_unlock(&fdp->fd_spin);
564 			fdrop(fp);
565 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
566 			tsleep(fdp, 0, "fdres", hz);
567 			goto retry;
568 		}
569 
570 		/*
571 		 * If the target descriptor was never allocated we have
572 		 * to allocate it.  If it was we have to clean out the
573 		 * old descriptor.  delfp inherits the ref from the
574 		 * descriptor table.
575 		 */
576 		delfp = fdp->fd_files[new].fp;
577 		fdp->fd_files[new].fp = NULL;
578 		fdp->fd_files[new].reserved = 1;
579 		if (delfp == NULL) {
580 			fdreserve_locked(fdp, new, 1);
581 			if (new > fdp->fd_lastfile)
582 				fdp->fd_lastfile = new;
583 		}
584 
585 	}
586 
587 	/*
588 	 * NOTE: still holding an exclusive spinlock
589 	 */
590 
591 	/*
592 	 * If a descriptor is being overwritten we may hve to tell
593 	 * fdfree() to sleep to ensure that all relevant process
594 	 * leaders can be traversed in closef().
595 	 */
596 	if (delfp != NULL && p->p_fdtol != NULL) {
597 		fdp->fd_holdleaderscount++;
598 		holdleaders = 1;
599 	} else {
600 		holdleaders = 0;
601 	}
602 	KASSERT(delfp == NULL || type == DUP_FIXED,
603 		("dup() picked an open file"));
604 
605 	/*
606 	 * Duplicate the source descriptor, update lastfile.  If the new
607 	 * descriptor was not allocated and we aren't replacing an existing
608 	 * descriptor we have to mark the descriptor as being in use.
609 	 *
610 	 * The fd_files[] array inherits fp's hold reference.
611 	 */
612 	fsetfd_locked(fdp, fp, new);
613 	fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
614 	spin_unlock(&fdp->fd_spin);
615 	fdrop(fp);
616 	*res = new;
617 
618 	/*
619 	 * If we dup'd over a valid file, we now own the reference to it
620 	 * and must dispose of it using closef() semantics (as if a
621 	 * close() were performed on it).
622 	 */
623 	if (delfp) {
624 		if (SLIST_FIRST(&delfp->f_klist))
625 			knote_fdclose(delfp, fdp, new);
626 		closef(delfp, p);
627 		if (holdleaders) {
628 			spin_lock(&fdp->fd_spin);
629 			fdp->fd_holdleaderscount--;
630 			if (fdp->fd_holdleaderscount == 0 &&
631 			    fdp->fd_holdleaderswakeup != 0) {
632 				fdp->fd_holdleaderswakeup = 0;
633 				spin_unlock(&fdp->fd_spin);
634 				wakeup(&fdp->fd_holdleaderscount);
635 			} else {
636 				spin_unlock(&fdp->fd_spin);
637 			}
638 		}
639 	}
640 	return (0);
641 }
642 
643 /*
644  * If sigio is on the list associated with a process or process group,
645  * disable signalling from the device, remove sigio from the list and
646  * free sigio.
647  */
648 void
649 funsetown(struct sigio *sigio)
650 {
651 	if (sigio == NULL)
652 		return;
653 	crit_enter();
654 	*(sigio->sio_myref) = NULL;
655 	crit_exit();
656 	if (sigio->sio_pgid < 0) {
657 		SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio,
658 			     sigio, sio_pgsigio);
659 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
660 		SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio,
661 			     sigio, sio_pgsigio);
662 	}
663 	crfree(sigio->sio_ucred);
664 	kfree(sigio, M_SIGIO);
665 }
666 
667 /* Free a list of sigio structures. */
668 void
669 funsetownlst(struct sigiolst *sigiolst)
670 {
671 	struct sigio *sigio;
672 
673 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
674 		funsetown(sigio);
675 }
676 
677 /*
678  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
679  *
680  * After permission checking, add a sigio structure to the sigio list for
681  * the process or process group.
682  */
683 int
684 fsetown(pid_t pgid, struct sigio **sigiop)
685 {
686 	struct proc *proc;
687 	struct pgrp *pgrp;
688 	struct sigio *sigio;
689 
690 	if (pgid == 0) {
691 		funsetown(*sigiop);
692 		return (0);
693 	}
694 	if (pgid > 0) {
695 		proc = pfind(pgid);
696 		if (proc == NULL)
697 			return (ESRCH);
698 
699 		/*
700 		 * Policy - Don't allow a process to FSETOWN a process
701 		 * in another session.
702 		 *
703 		 * Remove this test to allow maximum flexibility or
704 		 * restrict FSETOWN to the current process or process
705 		 * group for maximum safety.
706 		 */
707 		if (proc->p_session != curproc->p_session)
708 			return (EPERM);
709 
710 		pgrp = NULL;
711 	} else /* if (pgid < 0) */ {
712 		pgrp = pgfind(-pgid);
713 		if (pgrp == NULL)
714 			return (ESRCH);
715 
716 		/*
717 		 * Policy - Don't allow a process to FSETOWN a process
718 		 * in another session.
719 		 *
720 		 * Remove this test to allow maximum flexibility or
721 		 * restrict FSETOWN to the current process or process
722 		 * group for maximum safety.
723 		 */
724 		if (pgrp->pg_session != curproc->p_session)
725 			return (EPERM);
726 
727 		proc = NULL;
728 	}
729 	funsetown(*sigiop);
730 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
731 	if (pgid > 0) {
732 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
733 		sigio->sio_proc = proc;
734 	} else {
735 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
736 		sigio->sio_pgrp = pgrp;
737 	}
738 	sigio->sio_pgid = pgid;
739 	sigio->sio_ucred = crhold(curthread->td_ucred);
740 	/* It would be convenient if p_ruid was in ucred. */
741 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
742 	sigio->sio_myref = sigiop;
743 	crit_enter();
744 	*sigiop = sigio;
745 	crit_exit();
746 	return (0);
747 }
748 
749 /*
750  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
751  */
752 pid_t
753 fgetown(struct sigio *sigio)
754 {
755 	return (sigio != NULL ? sigio->sio_pgid : 0);
756 }
757 
758 /*
759  * Close many file descriptors.
760  *
761  * MPSAFE
762  */
763 int
764 sys_closefrom(struct closefrom_args *uap)
765 {
766 	return(kern_closefrom(uap->fd));
767 }
768 
769 /*
770  * Close all file descriptors greater then or equal to fd
771  *
772  * MPSAFE
773  */
774 int
775 kern_closefrom(int fd)
776 {
777 	struct thread *td = curthread;
778 	struct proc *p = td->td_proc;
779 	struct filedesc *fdp;
780 
781 	KKASSERT(p);
782 	fdp = p->p_fd;
783 
784 	if (fd < 0)
785 		return (EINVAL);
786 
787 	/*
788 	 * NOTE: This function will skip unassociated descriptors and
789 	 * reserved descriptors that have not yet been assigned.
790 	 * fd_lastfile can change as a side effect of kern_close().
791 	 */
792 	spin_lock(&fdp->fd_spin);
793 	while (fd <= fdp->fd_lastfile) {
794 		if (fdp->fd_files[fd].fp != NULL) {
795 			spin_unlock(&fdp->fd_spin);
796 			/* ok if this races another close */
797 			if (kern_close(fd) == EINTR)
798 				return (EINTR);
799 			spin_lock(&fdp->fd_spin);
800 		}
801 		++fd;
802 	}
803 	spin_unlock(&fdp->fd_spin);
804 	return (0);
805 }
806 
807 /*
808  * Close a file descriptor.
809  *
810  * MPSAFE
811  */
812 int
813 sys_close(struct close_args *uap)
814 {
815 	return(kern_close(uap->fd));
816 }
817 
818 /*
819  * MPSAFE
820  */
821 int
822 kern_close(int fd)
823 {
824 	struct thread *td = curthread;
825 	struct proc *p = td->td_proc;
826 	struct filedesc *fdp;
827 	struct file *fp;
828 	int error;
829 	int holdleaders;
830 
831 	KKASSERT(p);
832 	fdp = p->p_fd;
833 
834 	spin_lock(&fdp->fd_spin);
835 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
836 		spin_unlock(&fdp->fd_spin);
837 		return (EBADF);
838 	}
839 	holdleaders = 0;
840 	if (p->p_fdtol != NULL) {
841 		/*
842 		 * Ask fdfree() to sleep to ensure that all relevant
843 		 * process leaders can be traversed in closef().
844 		 */
845 		fdp->fd_holdleaderscount++;
846 		holdleaders = 1;
847 	}
848 
849 	/*
850 	 * we now hold the fp reference that used to be owned by the descriptor
851 	 * array.
852 	 */
853 	spin_unlock(&fdp->fd_spin);
854 	if (SLIST_FIRST(&fp->f_klist))
855 		knote_fdclose(fp, fdp, fd);
856 	error = closef(fp, p);
857 	if (holdleaders) {
858 		spin_lock(&fdp->fd_spin);
859 		fdp->fd_holdleaderscount--;
860 		if (fdp->fd_holdleaderscount == 0 &&
861 		    fdp->fd_holdleaderswakeup != 0) {
862 			fdp->fd_holdleaderswakeup = 0;
863 			spin_unlock(&fdp->fd_spin);
864 			wakeup(&fdp->fd_holdleaderscount);
865 		} else {
866 			spin_unlock(&fdp->fd_spin);
867 		}
868 	}
869 	return (error);
870 }
871 
872 /*
873  * shutdown_args(int fd, int how)
874  */
875 int
876 kern_shutdown(int fd, int how)
877 {
878 	struct thread *td = curthread;
879 	struct proc *p = td->td_proc;
880 	struct file *fp;
881 	int error;
882 
883 	KKASSERT(p);
884 
885 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
886 		return (EBADF);
887 	error = fo_shutdown(fp, how);
888 	fdrop(fp);
889 
890 	return (error);
891 }
892 
893 /*
894  * MPALMOSTSAFE
895  */
896 int
897 sys_shutdown(struct shutdown_args *uap)
898 {
899 	int error;
900 
901 	get_mplock();
902 	error = kern_shutdown(uap->s, uap->how);
903 	rel_mplock();
904 
905 	return (error);
906 }
907 
908 /*
909  * MPSAFE
910  */
911 int
912 kern_fstat(int fd, struct stat *ub)
913 {
914 	struct thread *td = curthread;
915 	struct proc *p = td->td_proc;
916 	struct file *fp;
917 	int error;
918 
919 	KKASSERT(p);
920 
921 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
922 		return (EBADF);
923 	error = fo_stat(fp, ub, td->td_ucred);
924 	fdrop(fp);
925 
926 	return (error);
927 }
928 
929 /*
930  * Return status information about a file descriptor.
931  *
932  * MPSAFE
933  */
934 int
935 sys_fstat(struct fstat_args *uap)
936 {
937 	struct stat st;
938 	int error;
939 
940 	error = kern_fstat(uap->fd, &st);
941 
942 	if (error == 0)
943 		error = copyout(&st, uap->sb, sizeof(st));
944 	return (error);
945 }
946 
947 /*
948  * Return pathconf information about a file descriptor.
949  *
950  * MPALMOSTSAFE
951  */
952 int
953 sys_fpathconf(struct fpathconf_args *uap)
954 {
955 	struct thread *td = curthread;
956 	struct proc *p = td->td_proc;
957 	struct file *fp;
958 	struct vnode *vp;
959 	int error = 0;
960 
961 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
962 		return (EBADF);
963 
964 	switch (fp->f_type) {
965 	case DTYPE_PIPE:
966 	case DTYPE_SOCKET:
967 		if (uap->name != _PC_PIPE_BUF) {
968 			error = EINVAL;
969 		} else {
970 			uap->sysmsg_result = PIPE_BUF;
971 			error = 0;
972 		}
973 		break;
974 	case DTYPE_FIFO:
975 	case DTYPE_VNODE:
976 		vp = (struct vnode *)fp->f_data;
977 		get_mplock();
978 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
979 		rel_mplock();
980 		break;
981 	default:
982 		error = EOPNOTSUPP;
983 		break;
984 	}
985 	fdrop(fp);
986 	return(error);
987 }
988 
989 static int fdexpand;
990 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0,
991     "Number of times a file table has been expanded");
992 
993 /*
994  * Grow the file table so it can hold through descriptor (want).
995  *
996  * The fdp's spinlock must be held exclusively on entry and may be held
997  * exclusively on return.  The spinlock may be cycled by the routine.
998  *
999  * MPSAFE
1000  */
1001 static void
1002 fdgrow_locked(struct filedesc *fdp, int want)
1003 {
1004 	struct fdnode *newfiles;
1005 	struct fdnode *oldfiles;
1006 	int nf, extra;
1007 
1008 	nf = fdp->fd_nfiles;
1009 	do {
1010 		/* nf has to be of the form 2^n - 1 */
1011 		nf = 2 * nf + 1;
1012 	} while (nf <= want);
1013 
1014 	spin_unlock(&fdp->fd_spin);
1015 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1016 	spin_lock(&fdp->fd_spin);
1017 
1018 	/*
1019 	 * We could have raced another extend while we were not holding
1020 	 * the spinlock.
1021 	 */
1022 	if (fdp->fd_nfiles >= nf) {
1023 		spin_unlock(&fdp->fd_spin);
1024 		kfree(newfiles, M_FILEDESC);
1025 		spin_lock(&fdp->fd_spin);
1026 		return;
1027 	}
1028 	/*
1029 	 * Copy the existing ofile and ofileflags arrays
1030 	 * and zero the new portion of each array.
1031 	 */
1032 	extra = nf - fdp->fd_nfiles;
1033 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1034 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1035 
1036 	oldfiles = fdp->fd_files;
1037 	fdp->fd_files = newfiles;
1038 	fdp->fd_nfiles = nf;
1039 
1040 	if (oldfiles != fdp->fd_builtin_files) {
1041 		spin_unlock(&fdp->fd_spin);
1042 		kfree(oldfiles, M_FILEDESC);
1043 		spin_lock(&fdp->fd_spin);
1044 	}
1045 	fdexpand++;
1046 }
1047 
1048 /*
1049  * Number of nodes in right subtree, including the root.
1050  */
1051 static __inline int
1052 right_subtree_size(int n)
1053 {
1054 	return (n ^ (n | (n + 1)));
1055 }
1056 
1057 /*
1058  * Bigger ancestor.
1059  */
1060 static __inline int
1061 right_ancestor(int n)
1062 {
1063 	return (n | (n + 1));
1064 }
1065 
1066 /*
1067  * Smaller ancestor.
1068  */
1069 static __inline int
1070 left_ancestor(int n)
1071 {
1072 	return ((n & (n + 1)) - 1);
1073 }
1074 
1075 /*
1076  * Traverse the in-place binary tree buttom-up adjusting the allocation
1077  * count so scans can determine where free descriptors are located.
1078  *
1079  * MPSAFE - caller must be holding an exclusive spinlock on fdp
1080  */
1081 static
1082 void
1083 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1084 {
1085 	while (fd >= 0) {
1086 		fdp->fd_files[fd].allocated += incr;
1087 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1088 		fd = left_ancestor(fd);
1089 	}
1090 }
1091 
1092 /*
1093  * Reserve a file descriptor for the process.  If no error occurs, the
1094  * caller MUST at some point call fsetfd() or assign a file pointer
1095  * or dispose of the reservation.
1096  *
1097  * MPSAFE
1098  */
1099 int
1100 fdalloc(struct proc *p, int want, int *result)
1101 {
1102 	struct filedesc *fdp = p->p_fd;
1103 	struct uidinfo *uip;
1104 	int fd, rsize, rsum, node, lim;
1105 
1106 	/*
1107 	 * Check dtable size limit
1108 	 */
1109 	spin_lock(&p->p_limit->p_spin);
1110 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1111 		lim = INT_MAX;
1112 	else
1113 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1114 	spin_unlock(&p->p_limit->p_spin);
1115 
1116 	if (lim > maxfilesperproc)
1117 		lim = maxfilesperproc;
1118 	if (lim < minfilesperproc)
1119 		lim = minfilesperproc;
1120 	if (want >= lim)
1121 		return (EMFILE);
1122 
1123 	/*
1124 	 * Check that the user has not run out of descriptors (non-root only).
1125 	 * As a safety measure the dtable is allowed to have at least
1126 	 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1127 	 */
1128 	if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1129 		uip = p->p_ucred->cr_uidinfo;
1130 		if (uip->ui_openfiles > maxfilesperuser) {
1131 			krateprintf(&krate_uidinfo,
1132 				    "Warning: user %d pid %d (%s) ran out of "
1133 				    "file descriptors (%d/%d)\n",
1134 				    p->p_ucred->cr_uid, (int)p->p_pid,
1135 				    p->p_comm,
1136 				    uip->ui_openfiles, maxfilesperuser);
1137 			return(ENFILE);
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * Grow the dtable if necessary
1143 	 */
1144 	spin_lock(&fdp->fd_spin);
1145 	if (want >= fdp->fd_nfiles)
1146 		fdgrow_locked(fdp, want);
1147 
1148 	/*
1149 	 * Search for a free descriptor starting at the higher
1150 	 * of want or fd_freefile.  If that fails, consider
1151 	 * expanding the ofile array.
1152 	 *
1153 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1154 	 * count.  If we happen to see a value of 0 then we can shortcut
1155 	 * our search.  Otherwise we run through through the tree going
1156 	 * down branches we know have free descriptor(s) until we hit a
1157 	 * leaf node.  The leaf node will be free but will not necessarily
1158 	 * have an allocated field of 0.
1159 	 */
1160 retry:
1161 	/* move up the tree looking for a subtree with a free node */
1162 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1163 	     fd = right_ancestor(fd)) {
1164 		if (fdp->fd_files[fd].allocated == 0)
1165 			goto found;
1166 
1167 		rsize = right_subtree_size(fd);
1168 		if (fdp->fd_files[fd].allocated == rsize)
1169 			continue;	/* right subtree full */
1170 
1171 		/*
1172 		 * Free fd is in the right subtree of the tree rooted at fd.
1173 		 * Call that subtree R.  Look for the smallest (leftmost)
1174 		 * subtree of R with an unallocated fd: continue moving
1175 		 * down the left branch until encountering a full left
1176 		 * subtree, then move to the right.
1177 		 */
1178 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1179 			node = fd + rsize;
1180 			rsum += fdp->fd_files[node].allocated;
1181 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1182 				fd = node;	/* move to the right */
1183 				if (fdp->fd_files[node].allocated == 0)
1184 					goto found;
1185 				rsum = 0;
1186 			}
1187 		}
1188 		goto found;
1189 	}
1190 
1191 	/*
1192 	 * No space in current array.  Expand?
1193 	 */
1194 	if (fdp->fd_nfiles >= lim) {
1195 		spin_unlock(&fdp->fd_spin);
1196 		return (EMFILE);
1197 	}
1198 	fdgrow_locked(fdp, want);
1199 	goto retry;
1200 
1201 found:
1202 	KKASSERT(fd < fdp->fd_nfiles);
1203 	if (fd > fdp->fd_lastfile)
1204 		fdp->fd_lastfile = fd;
1205 	if (want <= fdp->fd_freefile)
1206 		fdp->fd_freefile = fd;
1207 	*result = fd;
1208 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1209 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1210 	fdp->fd_files[fd].fileflags = 0;
1211 	fdp->fd_files[fd].reserved = 1;
1212 	fdreserve_locked(fdp, fd, 1);
1213 	spin_unlock(&fdp->fd_spin);
1214 	return (0);
1215 }
1216 
1217 /*
1218  * Check to see whether n user file descriptors
1219  * are available to the process p.
1220  *
1221  * MPSAFE
1222  */
1223 int
1224 fdavail(struct proc *p, int n)
1225 {
1226 	struct filedesc *fdp = p->p_fd;
1227 	struct fdnode *fdnode;
1228 	int i, lim, last;
1229 
1230 	spin_lock(&p->p_limit->p_spin);
1231 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1232 		lim = INT_MAX;
1233 	else
1234 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1235 	spin_unlock(&p->p_limit->p_spin);
1236 
1237 	if (lim > maxfilesperproc)
1238 		lim = maxfilesperproc;
1239 	if (lim < minfilesperproc)
1240 		lim = minfilesperproc;
1241 
1242 	spin_lock(&fdp->fd_spin);
1243 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1244 		spin_unlock(&fdp->fd_spin);
1245 		return (1);
1246 	}
1247 	last = min(fdp->fd_nfiles, lim);
1248 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1249 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1250 		if (fdnode->fp == NULL && --n <= 0) {
1251 			spin_unlock(&fdp->fd_spin);
1252 			return (1);
1253 		}
1254 	}
1255 	spin_unlock(&fdp->fd_spin);
1256 	return (0);
1257 }
1258 
1259 /*
1260  * Revoke open descriptors referencing (f_data, f_type)
1261  *
1262  * Any revoke executed within a prison is only able to
1263  * revoke descriptors for processes within that prison.
1264  *
1265  * Returns 0 on success or an error code.
1266  */
1267 struct fdrevoke_info {
1268 	void *data;
1269 	short type;
1270 	short unused;
1271 	int count;
1272 	int intransit;
1273 	struct ucred *cred;
1274 	struct file *nfp;
1275 };
1276 
1277 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1278 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1279 
1280 int
1281 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1282 {
1283 	struct fdrevoke_info info;
1284 	int error;
1285 
1286 	bzero(&info, sizeof(info));
1287 	info.data = f_data;
1288 	info.type = f_type;
1289 	info.cred = cred;
1290 	error = falloc(NULL, &info.nfp, NULL);
1291 	if (error)
1292 		return (error);
1293 
1294 	/*
1295 	 * Scan the file pointer table once.  dups do not dup file pointers,
1296 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1297 	 * being revoked.
1298 	 */
1299 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1300 
1301 	/*
1302 	 * If any fps were marked track down the related descriptors
1303 	 * and close them.  Any dup()s at this point will notice
1304 	 * the FREVOKED already set in the fp and do the right thing.
1305 	 *
1306 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1307 	 * socket) bumped the intransit counter and will require a
1308 	 * scan.  Races against fps leaving the socket are closed by
1309 	 * the socket code checking for FREVOKED.
1310 	 */
1311 	if (info.count)
1312 		allproc_scan(fdrevoke_proc_callback, &info);
1313 	if (info.intransit)
1314 		unp_revoke_gc(info.nfp);
1315 	fdrop(info.nfp);
1316 	return(0);
1317 }
1318 
1319 /*
1320  * Locate matching file pointers directly.
1321  *
1322  * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1323  */
1324 static int
1325 fdrevoke_check_callback(struct file *fp, void *vinfo)
1326 {
1327 	struct fdrevoke_info *info = vinfo;
1328 
1329 	/*
1330 	 * File pointers already flagged for revokation are skipped.
1331 	 */
1332 	if (fp->f_flag & FREVOKED)
1333 		return(0);
1334 
1335 	/*
1336 	 * If revoking from a prison file pointers created outside of
1337 	 * that prison, or file pointers without creds, cannot be revoked.
1338 	 */
1339 	if (info->cred->cr_prison &&
1340 	    (fp->f_cred == NULL ||
1341 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1342 		return(0);
1343 	}
1344 
1345 	/*
1346 	 * If the file pointer matches then mark it for revocation.  The
1347 	 * flag is currently only used by unp_revoke_gc().
1348 	 *
1349 	 * info->count is a heuristic and can race in a SMP environment.
1350 	 */
1351 	if (info->data == fp->f_data && info->type == fp->f_type) {
1352 		atomic_set_int(&fp->f_flag, FREVOKED);
1353 		info->count += fp->f_count;
1354 		if (fp->f_msgcount)
1355 			++info->intransit;
1356 	}
1357 	return(0);
1358 }
1359 
1360 /*
1361  * Locate matching file pointers via process descriptor tables.
1362  */
1363 static int
1364 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1365 {
1366 	struct fdrevoke_info *info = vinfo;
1367 	struct filedesc *fdp;
1368 	struct file *fp;
1369 	int n;
1370 
1371 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1372 		return(0);
1373 	if (info->cred->cr_prison &&
1374 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1375 		return(0);
1376 	}
1377 
1378 	/*
1379 	 * If the controlling terminal of the process matches the
1380 	 * vnode being revoked we clear the controlling terminal.
1381 	 *
1382 	 * The normal spec_close() may not catch this because it
1383 	 * uses curproc instead of p.
1384 	 */
1385 	if (p->p_session && info->type == DTYPE_VNODE &&
1386 	    info->data == p->p_session->s_ttyvp) {
1387 		p->p_session->s_ttyvp = NULL;
1388 		vrele(info->data);
1389 	}
1390 
1391 	/*
1392 	 * Softref the fdp to prevent it from being destroyed
1393 	 */
1394 	spin_lock(&p->p_spin);
1395 	if ((fdp = p->p_fd) == NULL) {
1396 		spin_unlock(&p->p_spin);
1397 		return(0);
1398 	}
1399 	atomic_add_int(&fdp->fd_softrefs, 1);
1400 	spin_unlock(&p->p_spin);
1401 
1402 	/*
1403 	 * Locate and close any matching file descriptors.
1404 	 */
1405 	spin_lock(&fdp->fd_spin);
1406 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1407 		if ((fp = fdp->fd_files[n].fp) == NULL)
1408 			continue;
1409 		if (fp->f_flag & FREVOKED) {
1410 			fhold(info->nfp);
1411 			fdp->fd_files[n].fp = info->nfp;
1412 			spin_unlock(&fdp->fd_spin);
1413 			knote_fdclose(fp, fdp, n);	/* XXX */
1414 			closef(fp, p);
1415 			spin_lock(&fdp->fd_spin);
1416 			--info->count;
1417 		}
1418 	}
1419 	spin_unlock(&fdp->fd_spin);
1420 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1421 	return(0);
1422 }
1423 
1424 /*
1425  * falloc:
1426  *	Create a new open file structure and reserve a file decriptor
1427  *	for the process that refers to it.
1428  *
1429  *	Root creds are checked using lp, or assumed if lp is NULL.  If
1430  *	resultfd is non-NULL then lp must also be non-NULL.  No file
1431  *	descriptor is reserved (and no process context is needed) if
1432  *	resultfd is NULL.
1433  *
1434  *	A file pointer with a refcount of 1 is returned.  Note that the
1435  *	file pointer is NOT associated with the descriptor.  If falloc
1436  *	returns success, fsetfd() MUST be called to either associate the
1437  *	file pointer or clear the reservation.
1438  *
1439  * MPSAFE
1440  */
1441 int
1442 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1443 {
1444 	static struct timeval lastfail;
1445 	static int curfail;
1446 	struct file *fp;
1447 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1448 	int error;
1449 
1450 	fp = NULL;
1451 
1452 	/*
1453 	 * Handle filetable full issues and root overfill.
1454 	 */
1455 	if (nfiles >= maxfiles - maxfilesrootres &&
1456 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
1457 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1458 			kprintf("kern.maxfiles limit exceeded by uid %d, "
1459 				"please see tuning(7).\n",
1460 				cred->cr_ruid);
1461 		}
1462 		error = ENFILE;
1463 		goto done;
1464 	}
1465 
1466 	/*
1467 	 * Allocate a new file descriptor.
1468 	 */
1469 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1470 	spin_init(&fp->f_spin);
1471 	SLIST_INIT(&fp->f_klist);
1472 	fp->f_count = 1;
1473 	fp->f_ops = &badfileops;
1474 	fp->f_seqcount = 1;
1475 	fsetcred(fp, cred);
1476 	spin_lock(&filehead_spin);
1477 	nfiles++;
1478 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1479 	spin_unlock(&filehead_spin);
1480 	if (resultfd) {
1481 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
1482 			fdrop(fp);
1483 			fp = NULL;
1484 		}
1485 	} else {
1486 		error = 0;
1487 	}
1488 done:
1489 	*resultfp = fp;
1490 	return (error);
1491 }
1492 
1493 /*
1494  * Check for races against a file descriptor by determining that the
1495  * file pointer is still associated with the specified file descriptor,
1496  * and a close is not currently in progress.
1497  *
1498  * MPSAFE
1499  */
1500 int
1501 checkfdclosed(struct filedesc *fdp, int fd, struct file *fp)
1502 {
1503 	int error;
1504 
1505 	spin_lock(&fdp->fd_spin);
1506 	if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1507 		error = EBADF;
1508 	else
1509 		error = 0;
1510 	spin_unlock(&fdp->fd_spin);
1511 	return (error);
1512 }
1513 
1514 /*
1515  * Associate a file pointer with a previously reserved file descriptor.
1516  * This function always succeeds.
1517  *
1518  * If fp is NULL, the file descriptor is returned to the pool.
1519  */
1520 
1521 /*
1522  * MPSAFE (exclusive spinlock must be held on call)
1523  */
1524 static void
1525 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1526 {
1527 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1528 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1529 	if (fp) {
1530 		fhold(fp);
1531 		fdp->fd_files[fd].fp = fp;
1532 		fdp->fd_files[fd].reserved = 0;
1533 	} else {
1534 		fdp->fd_files[fd].reserved = 0;
1535 		fdreserve_locked(fdp, fd, -1);
1536 		fdfixup_locked(fdp, fd);
1537 	}
1538 }
1539 
1540 /*
1541  * MPSAFE
1542  */
1543 void
1544 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
1545 {
1546 	spin_lock(&fdp->fd_spin);
1547 	fsetfd_locked(fdp, fp, fd);
1548 	spin_unlock(&fdp->fd_spin);
1549 }
1550 
1551 /*
1552  * MPSAFE (exclusive spinlock must be held on call)
1553  */
1554 static
1555 struct file *
1556 funsetfd_locked(struct filedesc *fdp, int fd)
1557 {
1558 	struct file *fp;
1559 
1560 	if ((unsigned)fd >= fdp->fd_nfiles)
1561 		return (NULL);
1562 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1563 		return (NULL);
1564 	fdp->fd_files[fd].fp = NULL;
1565 	fdp->fd_files[fd].fileflags = 0;
1566 
1567 	fdreserve_locked(fdp, fd, -1);
1568 	fdfixup_locked(fdp, fd);
1569 	return(fp);
1570 }
1571 
1572 /*
1573  * MPSAFE
1574  */
1575 int
1576 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1577 {
1578 	int error;
1579 
1580 	spin_lock(&fdp->fd_spin);
1581 	if (((u_int)fd) >= fdp->fd_nfiles) {
1582 		error = EBADF;
1583 	} else if (fdp->fd_files[fd].fp == NULL) {
1584 		error = EBADF;
1585 	} else {
1586 		*flagsp = fdp->fd_files[fd].fileflags;
1587 		error = 0;
1588 	}
1589 	spin_unlock(&fdp->fd_spin);
1590 	return (error);
1591 }
1592 
1593 /*
1594  * MPSAFE
1595  */
1596 int
1597 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1598 {
1599 	int error;
1600 
1601 	spin_lock(&fdp->fd_spin);
1602 	if (((u_int)fd) >= fdp->fd_nfiles) {
1603 		error = EBADF;
1604 	} else if (fdp->fd_files[fd].fp == NULL) {
1605 		error = EBADF;
1606 	} else {
1607 		fdp->fd_files[fd].fileflags |= add_flags;
1608 		error = 0;
1609 	}
1610 	spin_unlock(&fdp->fd_spin);
1611 	return (error);
1612 }
1613 
1614 /*
1615  * MPSAFE
1616  */
1617 int
1618 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1619 {
1620 	int error;
1621 
1622 	spin_lock(&fdp->fd_spin);
1623 	if (((u_int)fd) >= fdp->fd_nfiles) {
1624 		error = EBADF;
1625 	} else if (fdp->fd_files[fd].fp == NULL) {
1626 		error = EBADF;
1627 	} else {
1628 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1629 		error = 0;
1630 	}
1631 	spin_unlock(&fdp->fd_spin);
1632 	return (error);
1633 }
1634 
1635 /*
1636  * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
1637  */
1638 void
1639 fsetcred(struct file *fp, struct ucred *ncr)
1640 {
1641 	struct ucred *ocr;
1642 	struct uidinfo *uip;
1643 
1644 	ocr = fp->f_cred;
1645 	if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
1646 		if (ocr) {
1647 			uip = ocr->cr_uidinfo;
1648 			atomic_add_int(&uip->ui_openfiles, -1);
1649 		}
1650 		if (ncr) {
1651 			uip = ncr->cr_uidinfo;
1652 			atomic_add_int(&uip->ui_openfiles, 1);
1653 		}
1654 	}
1655 	if (ncr)
1656 		crhold(ncr);
1657 	fp->f_cred = ncr;
1658 	if (ocr)
1659 		crfree(ocr);
1660 }
1661 
1662 /*
1663  * Free a file descriptor.
1664  */
1665 static
1666 void
1667 ffree(struct file *fp)
1668 {
1669 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1670 	spin_lock(&filehead_spin);
1671 	LIST_REMOVE(fp, f_list);
1672 	nfiles--;
1673 	spin_unlock(&filehead_spin);
1674 	fsetcred(fp, NULL);
1675 	if (fp->f_nchandle.ncp)
1676 	    cache_drop(&fp->f_nchandle);
1677 	kfree(fp, M_FILE);
1678 }
1679 
1680 /*
1681  * called from init_main, initialize filedesc0 for proc0.
1682  */
1683 void
1684 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1685 {
1686 	p0->p_fd = fdp0;
1687 	p0->p_fdtol = NULL;
1688 	fdp0->fd_refcnt = 1;
1689 	fdp0->fd_cmask = cmask;
1690 	fdp0->fd_files = fdp0->fd_builtin_files;
1691 	fdp0->fd_nfiles = NDFILE;
1692 	fdp0->fd_lastfile = -1;
1693 	spin_init(&fdp0->fd_spin);
1694 }
1695 
1696 /*
1697  * Build a new filedesc structure.
1698  *
1699  * NOT MPSAFE (vref)
1700  */
1701 struct filedesc *
1702 fdinit(struct proc *p)
1703 {
1704 	struct filedesc *newfdp;
1705 	struct filedesc *fdp = p->p_fd;
1706 
1707 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1708 	spin_lock(&fdp->fd_spin);
1709 	if (fdp->fd_cdir) {
1710 		newfdp->fd_cdir = fdp->fd_cdir;
1711 		vref(newfdp->fd_cdir);
1712 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1713 	}
1714 
1715 	/*
1716 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1717 	 * proc0, but should unconditionally exist in other processes.
1718 	 */
1719 	if (fdp->fd_rdir) {
1720 		newfdp->fd_rdir = fdp->fd_rdir;
1721 		vref(newfdp->fd_rdir);
1722 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1723 	}
1724 	if (fdp->fd_jdir) {
1725 		newfdp->fd_jdir = fdp->fd_jdir;
1726 		vref(newfdp->fd_jdir);
1727 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1728 	}
1729 	spin_unlock(&fdp->fd_spin);
1730 
1731 	/* Create the file descriptor table. */
1732 	newfdp->fd_refcnt = 1;
1733 	newfdp->fd_cmask = cmask;
1734 	newfdp->fd_files = newfdp->fd_builtin_files;
1735 	newfdp->fd_nfiles = NDFILE;
1736 	newfdp->fd_lastfile = -1;
1737 	spin_init(&newfdp->fd_spin);
1738 
1739 	return (newfdp);
1740 }
1741 
1742 /*
1743  * Share a filedesc structure.
1744  *
1745  * MPSAFE
1746  */
1747 struct filedesc *
1748 fdshare(struct proc *p)
1749 {
1750 	struct filedesc *fdp;
1751 
1752 	fdp = p->p_fd;
1753 	spin_lock(&fdp->fd_spin);
1754 	fdp->fd_refcnt++;
1755 	spin_unlock(&fdp->fd_spin);
1756 	return (fdp);
1757 }
1758 
1759 /*
1760  * Copy a filedesc structure.
1761  *
1762  * MPSAFE
1763  */
1764 struct filedesc *
1765 fdcopy(struct proc *p)
1766 {
1767 	struct filedesc *fdp = p->p_fd;
1768 	struct filedesc *newfdp;
1769 	struct fdnode *fdnode;
1770 	int i;
1771 	int ni;
1772 
1773 	/*
1774 	 * Certain daemons might not have file descriptors.
1775 	 */
1776 	if (fdp == NULL)
1777 		return (NULL);
1778 
1779 	/*
1780 	 * Allocate the new filedesc and fd_files[] array.  This can race
1781 	 * with operations by other threads on the fdp so we have to be
1782 	 * careful.
1783 	 */
1784 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK | M_ZERO);
1785 again:
1786 	spin_lock(&fdp->fd_spin);
1787 	if (fdp->fd_lastfile < NDFILE) {
1788 		newfdp->fd_files = newfdp->fd_builtin_files;
1789 		i = NDFILE;
1790 	} else {
1791 		/*
1792 		 * We have to allocate (N^2-1) entries for our in-place
1793 		 * binary tree.  Allow the table to shrink.
1794 		 */
1795 		i = fdp->fd_nfiles;
1796 		ni = (i - 1) / 2;
1797 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1798 			i = ni;
1799 			ni = (i - 1) / 2;
1800 		}
1801 		spin_unlock(&fdp->fd_spin);
1802 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1803 					  M_FILEDESC, M_WAITOK | M_ZERO);
1804 
1805 		/*
1806 		 * Check for race, retry
1807 		 */
1808 		spin_lock(&fdp->fd_spin);
1809 		if (i <= fdp->fd_lastfile) {
1810 			spin_unlock(&fdp->fd_spin);
1811 			kfree(newfdp->fd_files, M_FILEDESC);
1812 			goto again;
1813 		}
1814 	}
1815 
1816 	/*
1817 	 * Dup the remaining fields. vref() and cache_hold() can be
1818 	 * safely called while holding the read spinlock on fdp.
1819 	 *
1820 	 * The read spinlock on fdp is still being held.
1821 	 *
1822 	 * NOTE: vref and cache_hold calls for the case where the vnode
1823 	 * or cache entry already has at least one ref may be called
1824 	 * while holding spin locks.
1825 	 */
1826 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1827 		vref(newfdp->fd_cdir);
1828 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1829 	}
1830 	/*
1831 	 * We must check for fd_rdir here, at least for now because
1832 	 * the init process is created before we have access to the
1833 	 * rootvode to take a reference to it.
1834 	 */
1835 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1836 		vref(newfdp->fd_rdir);
1837 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1838 	}
1839 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1840 		vref(newfdp->fd_jdir);
1841 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1842 	}
1843 	newfdp->fd_refcnt = 1;
1844 	newfdp->fd_nfiles = i;
1845 	newfdp->fd_lastfile = fdp->fd_lastfile;
1846 	newfdp->fd_freefile = fdp->fd_freefile;
1847 	newfdp->fd_cmask = fdp->fd_cmask;
1848 	spin_init(&newfdp->fd_spin);
1849 
1850 	/*
1851 	 * Copy the descriptor table through (i).  This also copies the
1852 	 * allocation state.   Then go through and ref the file pointers
1853 	 * and clean up any KQ descriptors.
1854 	 *
1855 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1856 	 * copied files yet we can ignore the return value from funsetfd().
1857 	 *
1858 	 * The read spinlock on fdp is still being held.
1859 	 */
1860 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1861 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1862 		fdnode = &newfdp->fd_files[i];
1863 		if (fdnode->reserved) {
1864 			fdreserve_locked(newfdp, i, -1);
1865 			fdnode->reserved = 0;
1866 			fdfixup_locked(newfdp, i);
1867 		} else if (fdnode->fp) {
1868 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1869 				(void)funsetfd_locked(newfdp, i);
1870 			} else {
1871 				fhold(fdnode->fp);
1872 			}
1873 		}
1874 	}
1875 	spin_unlock(&fdp->fd_spin);
1876 	return (newfdp);
1877 }
1878 
1879 /*
1880  * Release a filedesc structure.
1881  *
1882  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1883  */
1884 void
1885 fdfree(struct proc *p, struct filedesc *repl)
1886 {
1887 	struct filedesc *fdp;
1888 	struct fdnode *fdnode;
1889 	int i;
1890 	struct filedesc_to_leader *fdtol;
1891 	struct file *fp;
1892 	struct vnode *vp;
1893 	struct flock lf;
1894 
1895 	/*
1896 	 * Certain daemons might not have file descriptors.
1897 	 */
1898 	fdp = p->p_fd;
1899 	if (fdp == NULL) {
1900 		p->p_fd = repl;
1901 		return;
1902 	}
1903 
1904 	/*
1905 	 * Severe messing around to follow.
1906 	 */
1907 	spin_lock(&fdp->fd_spin);
1908 
1909 	/* Check for special need to clear POSIX style locks */
1910 	fdtol = p->p_fdtol;
1911 	if (fdtol != NULL) {
1912 		KASSERT(fdtol->fdl_refcount > 0,
1913 			("filedesc_to_refcount botch: fdl_refcount=%d",
1914 			 fdtol->fdl_refcount));
1915 		if (fdtol->fdl_refcount == 1 &&
1916 		    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1917 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
1918 				fdnode = &fdp->fd_files[i];
1919 				if (fdnode->fp == NULL ||
1920 				    fdnode->fp->f_type != DTYPE_VNODE) {
1921 					continue;
1922 				}
1923 				fp = fdnode->fp;
1924 				fhold(fp);
1925 				spin_unlock(&fdp->fd_spin);
1926 
1927 				lf.l_whence = SEEK_SET;
1928 				lf.l_start = 0;
1929 				lf.l_len = 0;
1930 				lf.l_type = F_UNLCK;
1931 				vp = (struct vnode *)fp->f_data;
1932 				(void) VOP_ADVLOCK(vp,
1933 						   (caddr_t)p->p_leader,
1934 						   F_UNLCK,
1935 						   &lf,
1936 						   F_POSIX);
1937 				fdrop(fp);
1938 				spin_lock(&fdp->fd_spin);
1939 			}
1940 		}
1941 	retry:
1942 		if (fdtol->fdl_refcount == 1) {
1943 			if (fdp->fd_holdleaderscount > 0 &&
1944 			    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1945 				/*
1946 				 * close() or do_dup() has cleared a reference
1947 				 * in a shared file descriptor table.
1948 				 */
1949 				fdp->fd_holdleaderswakeup = 1;
1950 				ssleep(&fdp->fd_holdleaderscount,
1951 				       &fdp->fd_spin, 0, "fdlhold", 0);
1952 				goto retry;
1953 			}
1954 			if (fdtol->fdl_holdcount > 0) {
1955 				/*
1956 				 * Ensure that fdtol->fdl_leader
1957 				 * remains valid in closef().
1958 				 */
1959 				fdtol->fdl_wakeup = 1;
1960 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
1961 				goto retry;
1962 			}
1963 		}
1964 		fdtol->fdl_refcount--;
1965 		if (fdtol->fdl_refcount == 0 &&
1966 		    fdtol->fdl_holdcount == 0) {
1967 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
1968 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
1969 		} else {
1970 			fdtol = NULL;
1971 		}
1972 		p->p_fdtol = NULL;
1973 		if (fdtol != NULL) {
1974 			spin_unlock(&fdp->fd_spin);
1975 			kfree(fdtol, M_FILEDESC_TO_LEADER);
1976 			spin_lock(&fdp->fd_spin);
1977 		}
1978 	}
1979 	if (--fdp->fd_refcnt > 0) {
1980 		spin_unlock(&fdp->fd_spin);
1981 		spin_lock(&p->p_spin);
1982 		p->p_fd = repl;
1983 		spin_unlock(&p->p_spin);
1984 		return;
1985 	}
1986 
1987 	/*
1988 	 * Even though we are the last reference to the structure allproc
1989 	 * scans may still reference the structure.  Maintain proper
1990 	 * locks until we can replace p->p_fd.
1991 	 *
1992 	 * Also note that kqueue's closef still needs to reference the
1993 	 * fdp via p->p_fd, so we have to close the descriptors before
1994 	 * we replace p->p_fd.
1995 	 */
1996 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
1997 		if (fdp->fd_files[i].fp) {
1998 			fp = funsetfd_locked(fdp, i);
1999 			if (fp) {
2000 				spin_unlock(&fdp->fd_spin);
2001 				if (SLIST_FIRST(&fp->f_klist))
2002 					knote_fdclose(fp, fdp, i);
2003 				closef(fp, p);
2004 				spin_lock(&fdp->fd_spin);
2005 			}
2006 		}
2007 	}
2008 	spin_unlock(&fdp->fd_spin);
2009 
2010 	/*
2011 	 * Interlock against an allproc scan operations (typically frevoke).
2012 	 */
2013 	spin_lock(&p->p_spin);
2014 	p->p_fd = repl;
2015 	spin_unlock(&p->p_spin);
2016 
2017 	/*
2018 	 * Wait for any softrefs to go away.  This race rarely occurs so
2019 	 * we can use a non-critical-path style poll/sleep loop.  The
2020 	 * race only occurs against allproc scans.
2021 	 *
2022 	 * No new softrefs can occur with the fdp disconnected from the
2023 	 * process.
2024 	 */
2025 	if (fdp->fd_softrefs) {
2026 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2027 		while (fdp->fd_softrefs)
2028 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2029 	}
2030 
2031 	if (fdp->fd_files != fdp->fd_builtin_files)
2032 		kfree(fdp->fd_files, M_FILEDESC);
2033 	if (fdp->fd_cdir) {
2034 		cache_drop(&fdp->fd_ncdir);
2035 		vrele(fdp->fd_cdir);
2036 	}
2037 	if (fdp->fd_rdir) {
2038 		cache_drop(&fdp->fd_nrdir);
2039 		vrele(fdp->fd_rdir);
2040 	}
2041 	if (fdp->fd_jdir) {
2042 		cache_drop(&fdp->fd_njdir);
2043 		vrele(fdp->fd_jdir);
2044 	}
2045 	kfree(fdp, M_FILEDESC);
2046 }
2047 
2048 /*
2049  * Retrieve and reference the file pointer associated with a descriptor.
2050  *
2051  * MPSAFE
2052  */
2053 struct file *
2054 holdfp(struct filedesc *fdp, int fd, int flag)
2055 {
2056 	struct file* fp;
2057 
2058 	spin_lock(&fdp->fd_spin);
2059 	if (((u_int)fd) >= fdp->fd_nfiles) {
2060 		fp = NULL;
2061 		goto done;
2062 	}
2063 	if ((fp = fdp->fd_files[fd].fp) == NULL)
2064 		goto done;
2065 	if ((fp->f_flag & flag) == 0 && flag != -1) {
2066 		fp = NULL;
2067 		goto done;
2068 	}
2069 	fhold(fp);
2070 done:
2071 	spin_unlock(&fdp->fd_spin);
2072 	return (fp);
2073 }
2074 
2075 /*
2076  * holdsock() - load the struct file pointer associated
2077  * with a socket into *fpp.  If an error occurs, non-zero
2078  * will be returned and *fpp will be set to NULL.
2079  *
2080  * MPSAFE
2081  */
2082 int
2083 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2084 {
2085 	struct file *fp;
2086 	int error;
2087 
2088 	spin_lock(&fdp->fd_spin);
2089 	if ((unsigned)fd >= fdp->fd_nfiles) {
2090 		error = EBADF;
2091 		fp = NULL;
2092 		goto done;
2093 	}
2094 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2095 		error = EBADF;
2096 		goto done;
2097 	}
2098 	if (fp->f_type != DTYPE_SOCKET) {
2099 		error = ENOTSOCK;
2100 		goto done;
2101 	}
2102 	fhold(fp);
2103 	error = 0;
2104 done:
2105 	spin_unlock(&fdp->fd_spin);
2106 	*fpp = fp;
2107 	return (error);
2108 }
2109 
2110 /*
2111  * Convert a user file descriptor to a held file pointer.
2112  *
2113  * MPSAFE
2114  */
2115 int
2116 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2117 {
2118 	struct file *fp;
2119 	int error;
2120 
2121 	spin_lock(&fdp->fd_spin);
2122 	if ((unsigned)fd >= fdp->fd_nfiles) {
2123 		error = EBADF;
2124 		fp = NULL;
2125 		goto done;
2126 	}
2127 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2128 		error = EBADF;
2129 		goto done;
2130 	}
2131 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2132 		fp = NULL;
2133 		error = EINVAL;
2134 		goto done;
2135 	}
2136 	fhold(fp);
2137 	error = 0;
2138 done:
2139 	spin_unlock(&fdp->fd_spin);
2140 	*fpp = fp;
2141 	return (error);
2142 }
2143 
2144 /*
2145  * For setugid programs, we don't want to people to use that setugidness
2146  * to generate error messages which write to a file which otherwise would
2147  * otherwise be off-limits to the process.
2148  *
2149  * This is a gross hack to plug the hole.  A better solution would involve
2150  * a special vop or other form of generalized access control mechanism.  We
2151  * go ahead and just reject all procfs file systems accesses as dangerous.
2152  *
2153  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2154  * sufficient.  We also don't for check setugidness since we know we are.
2155  */
2156 static int
2157 is_unsafe(struct file *fp)
2158 {
2159 	if (fp->f_type == DTYPE_VNODE &&
2160 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2161 		return (1);
2162 	return (0);
2163 }
2164 
2165 /*
2166  * Make this setguid thing safe, if at all possible.
2167  *
2168  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2169  */
2170 void
2171 setugidsafety(struct proc *p)
2172 {
2173 	struct filedesc *fdp = p->p_fd;
2174 	int i;
2175 
2176 	/* Certain daemons might not have file descriptors. */
2177 	if (fdp == NULL)
2178 		return;
2179 
2180 	/*
2181 	 * note: fdp->fd_files may be reallocated out from under us while
2182 	 * we are blocked in a close.  Be careful!
2183 	 */
2184 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2185 		if (i > 2)
2186 			break;
2187 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2188 			struct file *fp;
2189 
2190 			/*
2191 			 * NULL-out descriptor prior to close to avoid
2192 			 * a race while close blocks.
2193 			 */
2194 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2195 				knote_fdclose(fp, fdp, i);
2196 				closef(fp, p);
2197 			}
2198 		}
2199 	}
2200 }
2201 
2202 /*
2203  * Close any files on exec?
2204  *
2205  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2206  */
2207 void
2208 fdcloseexec(struct proc *p)
2209 {
2210 	struct filedesc *fdp = p->p_fd;
2211 	int i;
2212 
2213 	/* Certain daemons might not have file descriptors. */
2214 	if (fdp == NULL)
2215 		return;
2216 
2217 	/*
2218 	 * We cannot cache fd_files since operations may block and rip
2219 	 * them out from under us.
2220 	 */
2221 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2222 		if (fdp->fd_files[i].fp != NULL &&
2223 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2224 			struct file *fp;
2225 
2226 			/*
2227 			 * NULL-out descriptor prior to close to avoid
2228 			 * a race while close blocks.
2229 			 */
2230 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2231 				knote_fdclose(fp, fdp, i);
2232 				closef(fp, p);
2233 			}
2234 		}
2235 	}
2236 }
2237 
2238 /*
2239  * It is unsafe for set[ug]id processes to be started with file
2240  * descriptors 0..2 closed, as these descriptors are given implicit
2241  * significance in the Standard C library.  fdcheckstd() will create a
2242  * descriptor referencing /dev/null for each of stdin, stdout, and
2243  * stderr that is not already open.
2244  *
2245  * NOT MPSAFE - calls falloc, vn_open, etc
2246  */
2247 int
2248 fdcheckstd(struct lwp *lp)
2249 {
2250 	struct nlookupdata nd;
2251 	struct filedesc *fdp;
2252 	struct file *fp;
2253 	int retval;
2254 	int i, error, flags, devnull;
2255 
2256 	fdp = lp->lwp_proc->p_fd;
2257 	if (fdp == NULL)
2258 		return (0);
2259 	devnull = -1;
2260 	error = 0;
2261 	for (i = 0; i < 3; i++) {
2262 		if (fdp->fd_files[i].fp != NULL)
2263 			continue;
2264 		if (devnull < 0) {
2265 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2266 				break;
2267 
2268 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2269 						NLC_FOLLOW|NLC_LOCKVP);
2270 			flags = FREAD | FWRITE;
2271 			if (error == 0)
2272 				error = vn_open(&nd, fp, flags, 0);
2273 			if (error == 0)
2274 				fsetfd(fdp, fp, devnull);
2275 			else
2276 				fsetfd(fdp, NULL, devnull);
2277 			fdrop(fp);
2278 			nlookup_done(&nd);
2279 			if (error)
2280 				break;
2281 			KKASSERT(i == devnull);
2282 		} else {
2283 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2284 			if (error != 0)
2285 				break;
2286 		}
2287 	}
2288 	return (error);
2289 }
2290 
2291 /*
2292  * Internal form of close.
2293  * Decrement reference count on file structure.
2294  * Note: td and/or p may be NULL when closing a file
2295  * that was being passed in a message.
2296  *
2297  * MPALMOSTSAFE - acquires mplock for VOP operations
2298  */
2299 int
2300 closef(struct file *fp, struct proc *p)
2301 {
2302 	struct vnode *vp;
2303 	struct flock lf;
2304 	struct filedesc_to_leader *fdtol;
2305 
2306 	if (fp == NULL)
2307 		return (0);
2308 
2309 	/*
2310 	 * POSIX record locking dictates that any close releases ALL
2311 	 * locks owned by this process.  This is handled by setting
2312 	 * a flag in the unlock to free ONLY locks obeying POSIX
2313 	 * semantics, and not to free BSD-style file locks.
2314 	 * If the descriptor was in a message, POSIX-style locks
2315 	 * aren't passed with the descriptor.
2316 	 */
2317 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2318 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2319 	) {
2320 		get_mplock();
2321 		if ((p->p_leader->p_flag & P_ADVLOCK) != 0) {
2322 			lf.l_whence = SEEK_SET;
2323 			lf.l_start = 0;
2324 			lf.l_len = 0;
2325 			lf.l_type = F_UNLCK;
2326 			vp = (struct vnode *)fp->f_data;
2327 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2328 					   &lf, F_POSIX);
2329 		}
2330 		fdtol = p->p_fdtol;
2331 		if (fdtol != NULL) {
2332 			/*
2333 			 * Handle special case where file descriptor table
2334 			 * is shared between multiple process leaders.
2335 			 */
2336 			for (fdtol = fdtol->fdl_next;
2337 			     fdtol != p->p_fdtol;
2338 			     fdtol = fdtol->fdl_next) {
2339 				if ((fdtol->fdl_leader->p_flag &
2340 				     P_ADVLOCK) == 0)
2341 					continue;
2342 				fdtol->fdl_holdcount++;
2343 				lf.l_whence = SEEK_SET;
2344 				lf.l_start = 0;
2345 				lf.l_len = 0;
2346 				lf.l_type = F_UNLCK;
2347 				vp = (struct vnode *)fp->f_data;
2348 				(void) VOP_ADVLOCK(vp,
2349 						   (caddr_t)fdtol->fdl_leader,
2350 						   F_UNLCK, &lf, F_POSIX);
2351 				fdtol->fdl_holdcount--;
2352 				if (fdtol->fdl_holdcount == 0 &&
2353 				    fdtol->fdl_wakeup != 0) {
2354 					fdtol->fdl_wakeup = 0;
2355 					wakeup(fdtol);
2356 				}
2357 			}
2358 		}
2359 		rel_mplock();
2360 	}
2361 	return (fdrop(fp));
2362 }
2363 
2364 /*
2365  * MPSAFE
2366  *
2367  * fhold() can only be called if f_count is already at least 1 (i.e. the
2368  * caller of fhold() already has a reference to the file pointer in some
2369  * manner or other).
2370  *
2371  * f_count is not spin-locked.  Instead, atomic ops are used for
2372  * incrementing, decrementing, and handling the 1->0 transition.
2373  */
2374 void
2375 fhold(struct file *fp)
2376 {
2377 	atomic_add_int(&fp->f_count, 1);
2378 }
2379 
2380 /*
2381  * fdrop() - drop a reference to a descriptor
2382  *
2383  * MPALMOSTSAFE - acquires mplock for final close sequence
2384  */
2385 int
2386 fdrop(struct file *fp)
2387 {
2388 	struct flock lf;
2389 	struct vnode *vp;
2390 	int error;
2391 
2392 	/*
2393 	 * A combined fetch and subtract is needed to properly detect
2394 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2395 	 * count of 2 might both try to run the 1->0 code.
2396 	 */
2397 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2398 		return (0);
2399 
2400 	KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
2401 	get_mplock();
2402 
2403 	/*
2404 	 * The last reference has gone away, we own the fp structure free
2405 	 * and clear.
2406 	 */
2407 	if (fp->f_count < 0)
2408 		panic("fdrop: count < 0");
2409 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2410 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2411 	) {
2412 		lf.l_whence = SEEK_SET;
2413 		lf.l_start = 0;
2414 		lf.l_len = 0;
2415 		lf.l_type = F_UNLCK;
2416 		vp = (struct vnode *)fp->f_data;
2417 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2418 	}
2419 	if (fp->f_ops != &badfileops)
2420 		error = fo_close(fp);
2421 	else
2422 		error = 0;
2423 	ffree(fp);
2424 	rel_mplock();
2425 	return (error);
2426 }
2427 
2428 /*
2429  * Apply an advisory lock on a file descriptor.
2430  *
2431  * Just attempt to get a record lock of the requested type on
2432  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2433  *
2434  * MPALMOSTSAFE
2435  */
2436 int
2437 sys_flock(struct flock_args *uap)
2438 {
2439 	struct proc *p = curproc;
2440 	struct file *fp;
2441 	struct vnode *vp;
2442 	struct flock lf;
2443 	int error;
2444 
2445 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2446 		return (EBADF);
2447 	get_mplock();
2448 	if (fp->f_type != DTYPE_VNODE) {
2449 		error = EOPNOTSUPP;
2450 		goto done;
2451 	}
2452 	vp = (struct vnode *)fp->f_data;
2453 	lf.l_whence = SEEK_SET;
2454 	lf.l_start = 0;
2455 	lf.l_len = 0;
2456 	if (uap->how & LOCK_UN) {
2457 		lf.l_type = F_UNLCK;
2458 		fp->f_flag &= ~FHASLOCK;
2459 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2460 		goto done;
2461 	}
2462 	if (uap->how & LOCK_EX)
2463 		lf.l_type = F_WRLCK;
2464 	else if (uap->how & LOCK_SH)
2465 		lf.l_type = F_RDLCK;
2466 	else {
2467 		error = EBADF;
2468 		goto done;
2469 	}
2470 	fp->f_flag |= FHASLOCK;
2471 	if (uap->how & LOCK_NB)
2472 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2473 	else
2474 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2475 done:
2476 	rel_mplock();
2477 	fdrop(fp);
2478 	return (error);
2479 }
2480 
2481 /*
2482  * File Descriptor pseudo-device driver (/dev/fd/).
2483  *
2484  * Opening minor device N dup()s the file (if any) connected to file
2485  * descriptor N belonging to the calling process.  Note that this driver
2486  * consists of only the ``open()'' routine, because all subsequent
2487  * references to this file will be direct to the other driver.
2488  */
2489 static int
2490 fdopen(struct dev_open_args *ap)
2491 {
2492 	thread_t td = curthread;
2493 
2494 	KKASSERT(td->td_lwp != NULL);
2495 
2496 	/*
2497 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2498 	 * the file descriptor being sought for duplication. The error
2499 	 * return ensures that the vnode for this device will be released
2500 	 * by vn_open. Open will detect this special error and take the
2501 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2502 	 * will simply report the error.
2503 	 */
2504 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2505 	return (ENODEV);
2506 }
2507 
2508 /*
2509  * The caller has reserved the file descriptor dfd for us.  On success we
2510  * must fsetfd() it.  On failure the caller will clean it up.
2511  *
2512  * MPSAFE
2513  */
2514 int
2515 dupfdopen(struct filedesc *fdp, int dfd, int sfd, int mode, int error)
2516 {
2517 	struct file *wfp;
2518 	struct file *xfp;
2519 	int werror;
2520 
2521 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2522 		return (EBADF);
2523 
2524 	/*
2525 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2526 	 * will dup a dummy descriptor instead of the real one.
2527 	 */
2528 	if (wfp->f_flag & FREVOKED) {
2529 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2530 		fdrop(wfp);
2531 		wfp = NULL;
2532 		werror = falloc(NULL, &wfp, NULL);
2533 		if (werror)
2534 			return (werror);
2535 	}
2536 
2537 	/*
2538 	 * There are two cases of interest here.
2539 	 *
2540 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2541 	 *
2542 	 * For ENXIO steal away the file structure from sfd and store it
2543 	 * dfd.  sfd is effectively closed by this operation.
2544 	 *
2545 	 * Any other error code is just returned.
2546 	 */
2547 	switch (error) {
2548 	case ENODEV:
2549 		/*
2550 		 * Check that the mode the file is being opened for is a
2551 		 * subset of the mode of the existing descriptor.
2552 		 */
2553 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2554 			error = EACCES;
2555 			break;
2556 		}
2557 		spin_lock(&fdp->fd_spin);
2558 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2559 		fsetfd_locked(fdp, wfp, dfd);
2560 		spin_unlock(&fdp->fd_spin);
2561 		error = 0;
2562 		break;
2563 	case ENXIO:
2564 		/*
2565 		 * Steal away the file pointer from dfd, and stuff it into indx.
2566 		 */
2567 		spin_lock(&fdp->fd_spin);
2568 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2569 		fsetfd(fdp, wfp, dfd);
2570 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
2571 			spin_unlock(&fdp->fd_spin);
2572 			fdrop(xfp);
2573 		} else {
2574 			spin_unlock(&fdp->fd_spin);
2575 		}
2576 		error = 0;
2577 		break;
2578 	default:
2579 		break;
2580 	}
2581 	fdrop(wfp);
2582 	return (error);
2583 }
2584 
2585 /*
2586  * NOT MPSAFE - I think these refer to a common file descriptor table
2587  * and we need to spinlock that to link fdtol in.
2588  */
2589 struct filedesc_to_leader *
2590 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2591 			 struct proc *leader)
2592 {
2593 	struct filedesc_to_leader *fdtol;
2594 
2595 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2596 			M_FILEDESC_TO_LEADER, M_WAITOK);
2597 	fdtol->fdl_refcount = 1;
2598 	fdtol->fdl_holdcount = 0;
2599 	fdtol->fdl_wakeup = 0;
2600 	fdtol->fdl_leader = leader;
2601 	if (old != NULL) {
2602 		fdtol->fdl_next = old->fdl_next;
2603 		fdtol->fdl_prev = old;
2604 		old->fdl_next = fdtol;
2605 		fdtol->fdl_next->fdl_prev = fdtol;
2606 	} else {
2607 		fdtol->fdl_next = fdtol;
2608 		fdtol->fdl_prev = fdtol;
2609 	}
2610 	return fdtol;
2611 }
2612 
2613 /*
2614  * Scan all file pointers in the system.  The callback is made with
2615  * the master list spinlock held exclusively.
2616  *
2617  * MPSAFE
2618  */
2619 void
2620 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2621 {
2622 	struct file *fp;
2623 	int res;
2624 
2625 	spin_lock(&filehead_spin);
2626 	LIST_FOREACH(fp, &filehead, f_list) {
2627 		res = callback(fp, data);
2628 		if (res < 0)
2629 			break;
2630 	}
2631 	spin_unlock(&filehead_spin);
2632 }
2633 
2634 /*
2635  * Get file structures.
2636  *
2637  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2638  */
2639 
2640 struct sysctl_kern_file_info {
2641 	int count;
2642 	int error;
2643 	struct sysctl_req *req;
2644 };
2645 
2646 static int sysctl_kern_file_callback(struct proc *p, void *data);
2647 
2648 static int
2649 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2650 {
2651 	struct sysctl_kern_file_info info;
2652 
2653 	/*
2654 	 * Note: because the number of file descriptors is calculated
2655 	 * in different ways for sizing vs returning the data,
2656 	 * there is information leakage from the first loop.  However,
2657 	 * it is of a similar order of magnitude to the leakage from
2658 	 * global system statistics such as kern.openfiles.
2659 	 *
2660 	 * When just doing a count, note that we cannot just count
2661 	 * the elements and add f_count via the filehead list because
2662 	 * threaded processes share their descriptor table and f_count might
2663 	 * still be '1' in that case.
2664 	 *
2665 	 * Since the SYSCTL op can block, we must hold the process to
2666 	 * prevent it being ripped out from under us either in the
2667 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2668 	 * process may be in varying states of disrepair.  If the process
2669 	 * is in SZOMB we may have caught it just as it is being removed
2670 	 * from the allproc list, we must skip it in that case to maintain
2671 	 * an unbroken chain through the allproc list.
2672 	 */
2673 	info.count = 0;
2674 	info.error = 0;
2675 	info.req = req;
2676 	allproc_scan(sysctl_kern_file_callback, &info);
2677 
2678 	/*
2679 	 * When just calculating the size, overestimate a bit to try to
2680 	 * prevent system activity from causing the buffer-fill call
2681 	 * to fail later on.
2682 	 */
2683 	if (req->oldptr == NULL) {
2684 		info.count = (info.count + 16) + (info.count / 10);
2685 		info.error = SYSCTL_OUT(req, NULL,
2686 					info.count * sizeof(struct kinfo_file));
2687 	}
2688 	return (info.error);
2689 }
2690 
2691 static int
2692 sysctl_kern_file_callback(struct proc *p, void *data)
2693 {
2694 	struct sysctl_kern_file_info *info = data;
2695 	struct kinfo_file kf;
2696 	struct filedesc *fdp;
2697 	struct file *fp;
2698 	uid_t uid;
2699 	int n;
2700 
2701 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2702 		return(0);
2703 	if (!PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0)
2704 		return(0);
2705 
2706 	/*
2707 	 * Softref the fdp to prevent it from being destroyed
2708 	 */
2709 	spin_lock(&p->p_spin);
2710 	if ((fdp = p->p_fd) == NULL) {
2711 		spin_unlock(&p->p_spin);
2712 		return(0);
2713 	}
2714 	atomic_add_int(&fdp->fd_softrefs, 1);
2715 	spin_unlock(&p->p_spin);
2716 
2717 	/*
2718 	 * The fdp's own spinlock prevents the contents from being
2719 	 * modified.
2720 	 */
2721 	spin_lock(&fdp->fd_spin);
2722 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2723 		if ((fp = fdp->fd_files[n].fp) == NULL)
2724 			continue;
2725 		if (info->req->oldptr == NULL) {
2726 			++info->count;
2727 		} else {
2728 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2729 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2730 			spin_unlock(&fdp->fd_spin);
2731 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2732 			spin_lock(&fdp->fd_spin);
2733 			if (info->error)
2734 				break;
2735 		}
2736 	}
2737 	spin_unlock(&fdp->fd_spin);
2738 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2739 	if (info->error)
2740 		return(-1);
2741 	return(0);
2742 }
2743 
2744 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2745     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2746 
2747 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
2748     &minfilesperproc, 0, "Minimum files allowed open per process");
2749 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2750     &maxfilesperproc, 0, "Maximum files allowed open per process");
2751 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
2752     &maxfilesperuser, 0, "Maximum files allowed open per user");
2753 
2754 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2755     &maxfiles, 0, "Maximum number of files");
2756 
2757 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2758     &maxfilesrootres, 0, "Descriptors reserved for root use");
2759 
2760 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2761 	&nfiles, 0, "System-wide number of open files");
2762 
2763 static void
2764 fildesc_drvinit(void *unused)
2765 {
2766 	int fd;
2767 
2768 	for (fd = 0; fd < NUMFDESC; fd++) {
2769 		make_dev(&fildesc_ops, fd,
2770 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2771 	}
2772 
2773 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2774 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2775 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2776 }
2777 
2778 /*
2779  * MPSAFE
2780  */
2781 struct fileops badfileops = {
2782 	.fo_read = badfo_readwrite,
2783 	.fo_write = badfo_readwrite,
2784 	.fo_ioctl = badfo_ioctl,
2785 	.fo_kqfilter = badfo_kqfilter,
2786 	.fo_stat = badfo_stat,
2787 	.fo_close = badfo_close,
2788 	.fo_shutdown = badfo_shutdown
2789 };
2790 
2791 int
2792 badfo_readwrite(
2793 	struct file *fp,
2794 	struct uio *uio,
2795 	struct ucred *cred,
2796 	int flags
2797 ) {
2798 	return (EBADF);
2799 }
2800 
2801 int
2802 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2803 	    struct ucred *cred, struct sysmsg *msgv)
2804 {
2805 	return (EBADF);
2806 }
2807 
2808 /*
2809  * Must return an error to prevent registration, typically
2810  * due to a revoked descriptor (file_filtops assigned).
2811  */
2812 int
2813 badfo_kqfilter(struct file *fp, struct knote *kn)
2814 {
2815 	return (EOPNOTSUPP);
2816 }
2817 
2818 /*
2819  * MPSAFE
2820  */
2821 int
2822 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2823 {
2824 	return (EBADF);
2825 }
2826 
2827 /*
2828  * MPSAFE
2829  */
2830 int
2831 badfo_close(struct file *fp)
2832 {
2833 	return (EBADF);
2834 }
2835 
2836 /*
2837  * MPSAFE
2838  */
2839 int
2840 badfo_shutdown(struct file *fp, int how)
2841 {
2842 	return (EBADF);
2843 }
2844 
2845 /*
2846  * MPSAFE
2847  */
2848 int
2849 nofo_shutdown(struct file *fp, int how)
2850 {
2851 	return (EOPNOTSUPP);
2852 }
2853 
2854 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2855 					fildesc_drvinit,NULL)
2856