xref: /dragonfly/sys/kern/kern_descrip.c (revision 267c04fd)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
68  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/sysproto.h>
76 #include <sys/conf.h>
77 #include <sys/device.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/vnode.h>
83 #include <sys/proc.h>
84 #include <sys/nlookup.h>
85 #include <sys/stat.h>
86 #include <sys/filio.h>
87 #include <sys/fcntl.h>
88 #include <sys/unistd.h>
89 #include <sys/resourcevar.h>
90 #include <sys/event.h>
91 #include <sys/kern_syscall.h>
92 #include <sys/kcore.h>
93 #include <sys/kinfo.h>
94 #include <sys/un.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <sys/file2.h>
101 #include <sys/spinlock2.h>
102 
103 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
104 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
105 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
106 static void ffree(struct file *fp);
107 
108 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
109 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
110 		     "file desc to leader structures");
111 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
112 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
113 
114 static struct krate krate_uidinfo = { .freq = 1 };
115 
116 static	 d_open_t  fdopen;
117 #define NUMFDESC 64
118 
119 #define CDEV_MAJOR 22
120 static struct dev_ops fildesc_ops = {
121 	{ "FD", 0, 0 },
122 	.d_open =	fdopen,
123 };
124 
125 /*
126  * Descriptor management.
127  */
128 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
129 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin, "filehead_spin");
130 static int nfiles;		/* actual number of open files */
131 extern int cmask;
132 
133 /*
134  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
135  *
136  * must be called with fdp->fd_spin exclusively held
137  */
138 static __inline
139 void
140 fdfixup_locked(struct filedesc *fdp, int fd)
141 {
142 	if (fd < fdp->fd_freefile) {
143 	       fdp->fd_freefile = fd;
144 	}
145 	while (fdp->fd_lastfile >= 0 &&
146 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
147 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
148 	) {
149 		--fdp->fd_lastfile;
150 	}
151 }
152 
153 /*
154  * System calls on descriptors.
155  */
156 int
157 sys_getdtablesize(struct getdtablesize_args *uap)
158 {
159 	struct proc *p = curproc;
160 	struct plimit *limit = p->p_limit;
161 	int dtsize;
162 
163 	spin_lock(&limit->p_spin);
164 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
165 		dtsize = INT_MAX;
166 	else
167 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
168 	spin_unlock(&limit->p_spin);
169 
170 	if (dtsize > maxfilesperproc)
171 		dtsize = maxfilesperproc;
172 	if (dtsize < minfilesperproc)
173 		dtsize = minfilesperproc;
174 	if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
175 		dtsize = maxfilesperuser;
176 	uap->sysmsg_result = dtsize;
177 	return (0);
178 }
179 
180 /*
181  * Duplicate a file descriptor to a particular value.
182  *
183  * note: keep in mind that a potential race condition exists when closing
184  * descriptors from a shared descriptor table (via rfork).
185  */
186 int
187 sys_dup2(struct dup2_args *uap)
188 {
189 	int error;
190 	int fd = 0;
191 
192 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
193 	uap->sysmsg_fds[0] = fd;
194 
195 	return (error);
196 }
197 
198 /*
199  * Duplicate a file descriptor.
200  */
201 int
202 sys_dup(struct dup_args *uap)
203 {
204 	int error;
205 	int fd = 0;
206 
207 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
208 	uap->sysmsg_fds[0] = fd;
209 
210 	return (error);
211 }
212 
213 /*
214  * MPALMOSTSAFE - acquires mplock for fp operations
215  */
216 int
217 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
218 {
219 	struct thread *td = curthread;
220 	struct proc *p = td->td_proc;
221 	struct file *fp;
222 	struct vnode *vp;
223 	u_int newmin;
224 	u_int oflags;
225 	u_int nflags;
226 	int tmp, error, flg = F_POSIX;
227 
228 	KKASSERT(p);
229 
230 	/*
231 	 * Operations on file descriptors that do not require a file pointer.
232 	 */
233 	switch (cmd) {
234 	case F_GETFD:
235 		error = fgetfdflags(p->p_fd, fd, &tmp);
236 		if (error == 0)
237 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
238 		return (error);
239 
240 	case F_SETFD:
241 		if (dat->fc_cloexec & FD_CLOEXEC)
242 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
243 		else
244 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
245 		return (error);
246 	case F_DUPFD:
247 		newmin = dat->fc_fd;
248 		error = kern_dup(DUP_VARIABLE | DUP_FCNTL, fd, newmin,
249 		    &dat->fc_fd);
250 		return (error);
251 	case F_DUPFD_CLOEXEC:
252 		newmin = dat->fc_fd;
253 		error = kern_dup(DUP_VARIABLE | DUP_CLOEXEC | DUP_FCNTL,
254 		    fd, newmin, &dat->fc_fd);
255 		return (error);
256 	case F_DUP2FD:
257 		newmin = dat->fc_fd;
258 		error = kern_dup(DUP_FIXED, fd, newmin, &dat->fc_fd);
259 		return (error);
260 	case F_DUP2FD_CLOEXEC:
261 		newmin = dat->fc_fd;
262 		error = kern_dup(DUP_FIXED | DUP_CLOEXEC, fd, newmin,
263 				 &dat->fc_fd);
264 		return (error);
265 	default:
266 		break;
267 	}
268 
269 	/*
270 	 * Operations on file pointers
271 	 */
272 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
273 		return (EBADF);
274 
275 	switch (cmd) {
276 	case F_GETFL:
277 		dat->fc_flags = OFLAGS(fp->f_flag);
278 		error = 0;
279 		break;
280 
281 	case F_SETFL:
282 		oflags = fp->f_flag;
283 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
284 		nflags |= oflags & ~FCNTLFLAGS;
285 
286 		error = 0;
287 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
288 			error = EINVAL;
289 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
290 			tmp = nflags & FASYNC;
291 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
292 					 cred, NULL);
293 		}
294 
295 		/*
296 		 * If no error, must be atomically set.
297 		 */
298 		while (error == 0) {
299 			oflags = fp->f_flag;
300 			cpu_ccfence();
301 			nflags = (oflags & ~FCNTLFLAGS) | (nflags & FCNTLFLAGS);
302 			if (atomic_cmpset_int(&fp->f_flag, oflags, nflags))
303 				break;
304 			cpu_pause();
305 		}
306 		break;
307 
308 	case F_GETOWN:
309 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
310 				 cred, NULL);
311 		break;
312 
313 	case F_SETOWN:
314 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
315 				 cred, NULL);
316 		break;
317 
318 	case F_SETLKW:
319 		flg |= F_WAIT;
320 		/* Fall into F_SETLK */
321 
322 	case F_SETLK:
323 		if (fp->f_type != DTYPE_VNODE) {
324 			error = EBADF;
325 			break;
326 		}
327 		vp = (struct vnode *)fp->f_data;
328 
329 		/*
330 		 * copyin/lockop may block
331 		 */
332 		if (dat->fc_flock.l_whence == SEEK_CUR)
333 			dat->fc_flock.l_start += fp->f_offset;
334 
335 		switch (dat->fc_flock.l_type) {
336 		case F_RDLCK:
337 			if ((fp->f_flag & FREAD) == 0) {
338 				error = EBADF;
339 				break;
340 			}
341 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
342 				lwkt_gettoken(&p->p_leader->p_token);
343 				p->p_leader->p_flags |= P_ADVLOCK;
344 				lwkt_reltoken(&p->p_leader->p_token);
345 			}
346 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
347 			    &dat->fc_flock, flg);
348 			break;
349 		case F_WRLCK:
350 			if ((fp->f_flag & FWRITE) == 0) {
351 				error = EBADF;
352 				break;
353 			}
354 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
355 				lwkt_gettoken(&p->p_leader->p_token);
356 				p->p_leader->p_flags |= P_ADVLOCK;
357 				lwkt_reltoken(&p->p_leader->p_token);
358 			}
359 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
360 			    &dat->fc_flock, flg);
361 			break;
362 		case F_UNLCK:
363 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
364 				&dat->fc_flock, F_POSIX);
365 			break;
366 		default:
367 			error = EINVAL;
368 			break;
369 		}
370 
371 		/*
372 		 * It is possible to race a close() on the descriptor while
373 		 * we were blocked getting the lock.  If this occurs the
374 		 * close might not have caught the lock.
375 		 */
376 		if (checkfdclosed(p->p_fd, fd, fp)) {
377 			dat->fc_flock.l_whence = SEEK_SET;
378 			dat->fc_flock.l_start = 0;
379 			dat->fc_flock.l_len = 0;
380 			dat->fc_flock.l_type = F_UNLCK;
381 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
382 					   F_UNLCK, &dat->fc_flock, F_POSIX);
383 		}
384 		break;
385 
386 	case F_GETLK:
387 		if (fp->f_type != DTYPE_VNODE) {
388 			error = EBADF;
389 			break;
390 		}
391 		vp = (struct vnode *)fp->f_data;
392 		/*
393 		 * copyin/lockop may block
394 		 */
395 		if (dat->fc_flock.l_type != F_RDLCK &&
396 		    dat->fc_flock.l_type != F_WRLCK &&
397 		    dat->fc_flock.l_type != F_UNLCK) {
398 			error = EINVAL;
399 			break;
400 		}
401 		if (dat->fc_flock.l_whence == SEEK_CUR)
402 			dat->fc_flock.l_start += fp->f_offset;
403 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
404 			    &dat->fc_flock, F_POSIX);
405 		break;
406 	default:
407 		error = EINVAL;
408 		break;
409 	}
410 
411 	fdrop(fp);
412 	return (error);
413 }
414 
415 /*
416  * The file control system call.
417  */
418 int
419 sys_fcntl(struct fcntl_args *uap)
420 {
421 	union fcntl_dat dat;
422 	int error;
423 
424 	switch (uap->cmd) {
425 	case F_DUPFD:
426 	case F_DUP2FD:
427 	case F_DUPFD_CLOEXEC:
428 	case F_DUP2FD_CLOEXEC:
429 		dat.fc_fd = uap->arg;
430 		break;
431 	case F_SETFD:
432 		dat.fc_cloexec = uap->arg;
433 		break;
434 	case F_SETFL:
435 		dat.fc_flags = uap->arg;
436 		break;
437 	case F_SETOWN:
438 		dat.fc_owner = uap->arg;
439 		break;
440 	case F_SETLKW:
441 	case F_SETLK:
442 	case F_GETLK:
443 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
444 			       sizeof(struct flock));
445 		if (error)
446 			return (error);
447 		break;
448 	}
449 
450 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
451 
452 	if (error == 0) {
453 		switch (uap->cmd) {
454 		case F_DUPFD:
455 		case F_DUP2FD:
456 		case F_DUPFD_CLOEXEC:
457 		case F_DUP2FD_CLOEXEC:
458 			uap->sysmsg_result = dat.fc_fd;
459 			break;
460 		case F_GETFD:
461 			uap->sysmsg_result = dat.fc_cloexec;
462 			break;
463 		case F_GETFL:
464 			uap->sysmsg_result = dat.fc_flags;
465 			break;
466 		case F_GETOWN:
467 			uap->sysmsg_result = dat.fc_owner;
468 			break;
469 		case F_GETLK:
470 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
471 			    sizeof(struct flock));
472 			break;
473 		}
474 	}
475 
476 	return (error);
477 }
478 
479 /*
480  * Common code for dup, dup2, and fcntl(F_DUPFD).
481  *
482  * There are four type flags: DUP_FCNTL, DUP_FIXED, DUP_VARIABLE, and
483  * DUP_CLOEXEC.
484  *
485  * DUP_FCNTL is for handling EINVAL vs. EBADF differences between
486  * fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC and dup2() (per POSIX).
487  * The next two flags are mutually exclusive, and the fourth is optional.
488  * DUP_FIXED tells kern_dup() to destructively dup over an existing file
489  * descriptor if "new" is already open.  DUP_VARIABLE tells kern_dup()
490  * to find the lowest unused file descriptor that is greater than or
491  * equal to "new".  DUP_CLOEXEC, which works with either of the first
492  * two flags, sets the close-on-exec flag on the "new" file descriptor.
493  */
494 int
495 kern_dup(int flags, int old, int new, int *res)
496 {
497 	struct thread *td = curthread;
498 	struct proc *p = td->td_proc;
499 	struct filedesc *fdp = p->p_fd;
500 	struct file *fp;
501 	struct file *delfp;
502 	int oldflags;
503 	int holdleaders;
504 	int dtsize;
505 	int error, newfd;
506 
507 	/*
508 	 * Verify that we have a valid descriptor to dup from and
509 	 * possibly to dup to. When the new descriptor is out of
510 	 * bounds, fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC must
511 	 * return EINVAL, while dup2() returns EBADF in
512 	 * this case.
513 	 *
514 	 * NOTE: maxfilesperuser is not applicable to dup()
515 	 */
516 retry:
517 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
518 		dtsize = INT_MAX;
519 	else
520 		dtsize = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
521 	if (dtsize > maxfilesperproc)
522 		dtsize = maxfilesperproc;
523 	if (dtsize < minfilesperproc)
524 		dtsize = minfilesperproc;
525 
526 	if (new < 0 || new > dtsize)
527 		return (flags & DUP_FCNTL ? EINVAL : EBADF);
528 
529 	spin_lock(&fdp->fd_spin);
530 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
531 		spin_unlock(&fdp->fd_spin);
532 		return (EBADF);
533 	}
534 	if ((flags & DUP_FIXED) && old == new) {
535 		*res = new;
536 		if (flags & DUP_CLOEXEC)
537 			fdp->fd_files[new].fileflags |= UF_EXCLOSE;
538 		spin_unlock(&fdp->fd_spin);
539 		return (0);
540 	}
541 	fp = fdp->fd_files[old].fp;
542 	oldflags = fdp->fd_files[old].fileflags;
543 	fhold(fp);
544 
545 	/*
546 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
547 	 * if the requested descriptor is beyond the current table size.
548 	 *
549 	 * This can block.  Retry if the source descriptor no longer matches
550 	 * or if our expectation in the expansion case races.
551 	 *
552 	 * If we are not expanding or allocating a new decriptor, then reset
553 	 * the target descriptor to a reserved state so we have a uniform
554 	 * setup for the next code block.
555 	 */
556 	if ((flags & DUP_VARIABLE) || new >= fdp->fd_nfiles) {
557 		spin_unlock(&fdp->fd_spin);
558 		error = fdalloc(p, new, &newfd);
559 		spin_lock(&fdp->fd_spin);
560 		if (error) {
561 			spin_unlock(&fdp->fd_spin);
562 			fdrop(fp);
563 			return (error);
564 		}
565 		/*
566 		 * Check for ripout
567 		 */
568 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
569 			fsetfd_locked(fdp, NULL, newfd);
570 			spin_unlock(&fdp->fd_spin);
571 			fdrop(fp);
572 			goto retry;
573 		}
574 		/*
575 		 * Check for expansion race
576 		 */
577 		if ((flags & DUP_VARIABLE) == 0 && new != newfd) {
578 			fsetfd_locked(fdp, NULL, newfd);
579 			spin_unlock(&fdp->fd_spin);
580 			fdrop(fp);
581 			goto retry;
582 		}
583 		/*
584 		 * Check for ripout, newfd reused old (this case probably
585 		 * can't occur).
586 		 */
587 		if (old == newfd) {
588 			fsetfd_locked(fdp, NULL, newfd);
589 			spin_unlock(&fdp->fd_spin);
590 			fdrop(fp);
591 			goto retry;
592 		}
593 		new = newfd;
594 		delfp = NULL;
595 	} else {
596 		if (fdp->fd_files[new].reserved) {
597 			spin_unlock(&fdp->fd_spin);
598 			fdrop(fp);
599 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
600 			tsleep(fdp, 0, "fdres", hz);
601 			goto retry;
602 		}
603 
604 		/*
605 		 * If the target descriptor was never allocated we have
606 		 * to allocate it.  If it was we have to clean out the
607 		 * old descriptor.  delfp inherits the ref from the
608 		 * descriptor table.
609 		 */
610 		delfp = fdp->fd_files[new].fp;
611 		fdp->fd_files[new].fp = NULL;
612 		fdp->fd_files[new].reserved = 1;
613 		if (delfp == NULL) {
614 			fdreserve_locked(fdp, new, 1);
615 			if (new > fdp->fd_lastfile)
616 				fdp->fd_lastfile = new;
617 		}
618 
619 	}
620 
621 	/*
622 	 * NOTE: still holding an exclusive spinlock
623 	 */
624 
625 	/*
626 	 * If a descriptor is being overwritten we may hve to tell
627 	 * fdfree() to sleep to ensure that all relevant process
628 	 * leaders can be traversed in closef().
629 	 */
630 	if (delfp != NULL && p->p_fdtol != NULL) {
631 		fdp->fd_holdleaderscount++;
632 		holdleaders = 1;
633 	} else {
634 		holdleaders = 0;
635 	}
636 	KASSERT(delfp == NULL || (flags & DUP_FIXED),
637 		("dup() picked an open file"));
638 
639 	/*
640 	 * Duplicate the source descriptor, update lastfile.  If the new
641 	 * descriptor was not allocated and we aren't replacing an existing
642 	 * descriptor we have to mark the descriptor as being in use.
643 	 *
644 	 * The fd_files[] array inherits fp's hold reference.
645 	 */
646 	fsetfd_locked(fdp, fp, new);
647 	if ((flags & DUP_CLOEXEC) != 0)
648 		fdp->fd_files[new].fileflags = oldflags | UF_EXCLOSE;
649 	else
650 		fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
651 	spin_unlock(&fdp->fd_spin);
652 	fdrop(fp);
653 	*res = new;
654 
655 	/*
656 	 * If we dup'd over a valid file, we now own the reference to it
657 	 * and must dispose of it using closef() semantics (as if a
658 	 * close() were performed on it).
659 	 */
660 	if (delfp) {
661 		if (SLIST_FIRST(&delfp->f_klist))
662 			knote_fdclose(delfp, fdp, new);
663 		closef(delfp, p);
664 		if (holdleaders) {
665 			spin_lock(&fdp->fd_spin);
666 			fdp->fd_holdleaderscount--;
667 			if (fdp->fd_holdleaderscount == 0 &&
668 			    fdp->fd_holdleaderswakeup != 0) {
669 				fdp->fd_holdleaderswakeup = 0;
670 				spin_unlock(&fdp->fd_spin);
671 				wakeup(&fdp->fd_holdleaderscount);
672 			} else {
673 				spin_unlock(&fdp->fd_spin);
674 			}
675 		}
676 	}
677 	return (0);
678 }
679 
680 /*
681  * If sigio is on the list associated with a process or process group,
682  * disable signalling from the device, remove sigio from the list and
683  * free sigio.
684  */
685 void
686 funsetown(struct sigio **sigiop)
687 {
688 	struct pgrp *pgrp;
689 	struct proc *p;
690 	struct sigio *sigio;
691 
692 	if ((sigio = *sigiop) != NULL) {
693 		lwkt_gettoken(&sigio_token);	/* protect sigio */
694 		KKASSERT(sigiop == sigio->sio_myref);
695 		sigio = *sigiop;
696 		*sigiop = NULL;
697 		lwkt_reltoken(&sigio_token);
698 	}
699 	if (sigio == NULL)
700 		return;
701 
702 	if (sigio->sio_pgid < 0) {
703 		pgrp = sigio->sio_pgrp;
704 		sigio->sio_pgrp = NULL;
705 		lwkt_gettoken(&pgrp->pg_token);
706 		SLIST_REMOVE(&pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio);
707 		lwkt_reltoken(&pgrp->pg_token);
708 		pgrel(pgrp);
709 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
710 		p = sigio->sio_proc;
711 		sigio->sio_proc = NULL;
712 		PHOLD(p);
713 		lwkt_gettoken(&p->p_token);
714 		SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
715 		lwkt_reltoken(&p->p_token);
716 		PRELE(p);
717 	}
718 	crfree(sigio->sio_ucred);
719 	sigio->sio_ucred = NULL;
720 	kfree(sigio, M_SIGIO);
721 }
722 
723 /*
724  * Free a list of sigio structures.  Caller is responsible for ensuring
725  * that the list is MPSAFE.
726  */
727 void
728 funsetownlst(struct sigiolst *sigiolst)
729 {
730 	struct sigio *sigio;
731 
732 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
733 		funsetown(sigio->sio_myref);
734 }
735 
736 /*
737  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
738  *
739  * After permission checking, add a sigio structure to the sigio list for
740  * the process or process group.
741  */
742 int
743 fsetown(pid_t pgid, struct sigio **sigiop)
744 {
745 	struct proc *proc = NULL;
746 	struct pgrp *pgrp = NULL;
747 	struct sigio *sigio;
748 	int error;
749 
750 	if (pgid == 0) {
751 		funsetown(sigiop);
752 		return (0);
753 	}
754 
755 	if (pgid > 0) {
756 		proc = pfind(pgid);
757 		if (proc == NULL) {
758 			error = ESRCH;
759 			goto done;
760 		}
761 
762 		/*
763 		 * Policy - Don't allow a process to FSETOWN a process
764 		 * in another session.
765 		 *
766 		 * Remove this test to allow maximum flexibility or
767 		 * restrict FSETOWN to the current process or process
768 		 * group for maximum safety.
769 		 */
770 		if (proc->p_session != curproc->p_session) {
771 			error = EPERM;
772 			goto done;
773 		}
774 	} else /* if (pgid < 0) */ {
775 		pgrp = pgfind(-pgid);
776 		if (pgrp == NULL) {
777 			error = ESRCH;
778 			goto done;
779 		}
780 
781 		/*
782 		 * Policy - Don't allow a process to FSETOWN a process
783 		 * in another session.
784 		 *
785 		 * Remove this test to allow maximum flexibility or
786 		 * restrict FSETOWN to the current process or process
787 		 * group for maximum safety.
788 		 */
789 		if (pgrp->pg_session != curproc->p_session) {
790 			error = EPERM;
791 			goto done;
792 		}
793 	}
794 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK | M_ZERO);
795 	if (pgid > 0) {
796 		KKASSERT(pgrp == NULL);
797 		lwkt_gettoken(&proc->p_token);
798 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
799 		sigio->sio_proc = proc;
800 		lwkt_reltoken(&proc->p_token);
801 	} else {
802 		KKASSERT(proc == NULL);
803 		lwkt_gettoken(&pgrp->pg_token);
804 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
805 		sigio->sio_pgrp = pgrp;
806 		lwkt_reltoken(&pgrp->pg_token);
807 		pgrp = NULL;
808 	}
809 	sigio->sio_pgid = pgid;
810 	sigio->sio_ucred = crhold(curthread->td_ucred);
811 	/* It would be convenient if p_ruid was in ucred. */
812 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
813 	sigio->sio_myref = sigiop;
814 
815 	lwkt_gettoken(&sigio_token);
816 	while (*sigiop)
817 		funsetown(sigiop);
818 	*sigiop = sigio;
819 	lwkt_reltoken(&sigio_token);
820 	error = 0;
821 done:
822 	if (pgrp)
823 		pgrel(pgrp);
824 	if (proc)
825 		PRELE(proc);
826 	return (error);
827 }
828 
829 /*
830  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
831  */
832 pid_t
833 fgetown(struct sigio **sigiop)
834 {
835 	struct sigio *sigio;
836 	pid_t own;
837 
838 	lwkt_gettoken_shared(&sigio_token);
839 	sigio = *sigiop;
840 	own = (sigio != NULL ? sigio->sio_pgid : 0);
841 	lwkt_reltoken(&sigio_token);
842 
843 	return (own);
844 }
845 
846 /*
847  * Close many file descriptors.
848  */
849 int
850 sys_closefrom(struct closefrom_args *uap)
851 {
852 	return(kern_closefrom(uap->fd));
853 }
854 
855 /*
856  * Close all file descriptors greater then or equal to fd
857  */
858 int
859 kern_closefrom(int fd)
860 {
861 	struct thread *td = curthread;
862 	struct proc *p = td->td_proc;
863 	struct filedesc *fdp;
864 
865 	KKASSERT(p);
866 	fdp = p->p_fd;
867 
868 	if (fd < 0)
869 		return (EINVAL);
870 
871 	/*
872 	 * NOTE: This function will skip unassociated descriptors and
873 	 * reserved descriptors that have not yet been assigned.
874 	 * fd_lastfile can change as a side effect of kern_close().
875 	 */
876 	spin_lock(&fdp->fd_spin);
877 	while (fd <= fdp->fd_lastfile) {
878 		if (fdp->fd_files[fd].fp != NULL) {
879 			spin_unlock(&fdp->fd_spin);
880 			/* ok if this races another close */
881 			if (kern_close(fd) == EINTR)
882 				return (EINTR);
883 			spin_lock(&fdp->fd_spin);
884 		}
885 		++fd;
886 	}
887 	spin_unlock(&fdp->fd_spin);
888 	return (0);
889 }
890 
891 /*
892  * Close a file descriptor.
893  */
894 int
895 sys_close(struct close_args *uap)
896 {
897 	return(kern_close(uap->fd));
898 }
899 
900 /*
901  * close() helper
902  */
903 int
904 kern_close(int fd)
905 {
906 	struct thread *td = curthread;
907 	struct proc *p = td->td_proc;
908 	struct filedesc *fdp;
909 	struct file *fp;
910 	int error;
911 	int holdleaders;
912 
913 	KKASSERT(p);
914 	fdp = p->p_fd;
915 
916 	spin_lock(&fdp->fd_spin);
917 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
918 		spin_unlock(&fdp->fd_spin);
919 		return (EBADF);
920 	}
921 	holdleaders = 0;
922 	if (p->p_fdtol != NULL) {
923 		/*
924 		 * Ask fdfree() to sleep to ensure that all relevant
925 		 * process leaders can be traversed in closef().
926 		 */
927 		fdp->fd_holdleaderscount++;
928 		holdleaders = 1;
929 	}
930 
931 	/*
932 	 * we now hold the fp reference that used to be owned by the descriptor
933 	 * array.
934 	 */
935 	spin_unlock(&fdp->fd_spin);
936 	if (SLIST_FIRST(&fp->f_klist))
937 		knote_fdclose(fp, fdp, fd);
938 	error = closef(fp, p);
939 	if (holdleaders) {
940 		spin_lock(&fdp->fd_spin);
941 		fdp->fd_holdleaderscount--;
942 		if (fdp->fd_holdleaderscount == 0 &&
943 		    fdp->fd_holdleaderswakeup != 0) {
944 			fdp->fd_holdleaderswakeup = 0;
945 			spin_unlock(&fdp->fd_spin);
946 			wakeup(&fdp->fd_holdleaderscount);
947 		} else {
948 			spin_unlock(&fdp->fd_spin);
949 		}
950 	}
951 	return (error);
952 }
953 
954 /*
955  * shutdown_args(int fd, int how)
956  */
957 int
958 kern_shutdown(int fd, int how)
959 {
960 	struct thread *td = curthread;
961 	struct proc *p = td->td_proc;
962 	struct file *fp;
963 	int error;
964 
965 	KKASSERT(p);
966 
967 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
968 		return (EBADF);
969 	error = fo_shutdown(fp, how);
970 	fdrop(fp);
971 
972 	return (error);
973 }
974 
975 /*
976  * MPALMOSTSAFE
977  */
978 int
979 sys_shutdown(struct shutdown_args *uap)
980 {
981 	int error;
982 
983 	error = kern_shutdown(uap->s, uap->how);
984 
985 	return (error);
986 }
987 
988 /*
989  * fstat() helper
990  */
991 int
992 kern_fstat(int fd, struct stat *ub)
993 {
994 	struct thread *td = curthread;
995 	struct proc *p = td->td_proc;
996 	struct file *fp;
997 	int error;
998 
999 	KKASSERT(p);
1000 
1001 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
1002 		return (EBADF);
1003 	error = fo_stat(fp, ub, td->td_ucred);
1004 	fdrop(fp);
1005 
1006 	return (error);
1007 }
1008 
1009 /*
1010  * Return status information about a file descriptor.
1011  */
1012 int
1013 sys_fstat(struct fstat_args *uap)
1014 {
1015 	struct stat st;
1016 	int error;
1017 
1018 	error = kern_fstat(uap->fd, &st);
1019 
1020 	if (error == 0)
1021 		error = copyout(&st, uap->sb, sizeof(st));
1022 	return (error);
1023 }
1024 
1025 /*
1026  * Return pathconf information about a file descriptor.
1027  *
1028  * MPALMOSTSAFE
1029  */
1030 int
1031 sys_fpathconf(struct fpathconf_args *uap)
1032 {
1033 	struct thread *td = curthread;
1034 	struct proc *p = td->td_proc;
1035 	struct file *fp;
1036 	struct vnode *vp;
1037 	int error = 0;
1038 
1039 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
1040 		return (EBADF);
1041 
1042 	switch (fp->f_type) {
1043 	case DTYPE_PIPE:
1044 	case DTYPE_SOCKET:
1045 		if (uap->name != _PC_PIPE_BUF) {
1046 			error = EINVAL;
1047 		} else {
1048 			uap->sysmsg_result = PIPE_BUF;
1049 			error = 0;
1050 		}
1051 		break;
1052 	case DTYPE_FIFO:
1053 	case DTYPE_VNODE:
1054 		vp = (struct vnode *)fp->f_data;
1055 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
1056 		break;
1057 	default:
1058 		error = EOPNOTSUPP;
1059 		break;
1060 	}
1061 	fdrop(fp);
1062 	return(error);
1063 }
1064 
1065 static int fdexpand;
1066 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0,
1067     "Number of times a file table has been expanded");
1068 
1069 /*
1070  * Grow the file table so it can hold through descriptor (want).
1071  *
1072  * The fdp's spinlock must be held exclusively on entry and may be held
1073  * exclusively on return.  The spinlock may be cycled by the routine.
1074  */
1075 static void
1076 fdgrow_locked(struct filedesc *fdp, int want)
1077 {
1078 	struct fdnode *newfiles;
1079 	struct fdnode *oldfiles;
1080 	int nf, extra;
1081 
1082 	nf = fdp->fd_nfiles;
1083 	do {
1084 		/* nf has to be of the form 2^n - 1 */
1085 		nf = 2 * nf + 1;
1086 	} while (nf <= want);
1087 
1088 	spin_unlock(&fdp->fd_spin);
1089 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1090 	spin_lock(&fdp->fd_spin);
1091 
1092 	/*
1093 	 * We could have raced another extend while we were not holding
1094 	 * the spinlock.
1095 	 */
1096 	if (fdp->fd_nfiles >= nf) {
1097 		spin_unlock(&fdp->fd_spin);
1098 		kfree(newfiles, M_FILEDESC);
1099 		spin_lock(&fdp->fd_spin);
1100 		return;
1101 	}
1102 	/*
1103 	 * Copy the existing ofile and ofileflags arrays
1104 	 * and zero the new portion of each array.
1105 	 */
1106 	extra = nf - fdp->fd_nfiles;
1107 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1108 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1109 
1110 	oldfiles = fdp->fd_files;
1111 	fdp->fd_files = newfiles;
1112 	fdp->fd_nfiles = nf;
1113 
1114 	if (oldfiles != fdp->fd_builtin_files) {
1115 		spin_unlock(&fdp->fd_spin);
1116 		kfree(oldfiles, M_FILEDESC);
1117 		spin_lock(&fdp->fd_spin);
1118 	}
1119 	fdexpand++;
1120 }
1121 
1122 /*
1123  * Number of nodes in right subtree, including the root.
1124  */
1125 static __inline int
1126 right_subtree_size(int n)
1127 {
1128 	return (n ^ (n | (n + 1)));
1129 }
1130 
1131 /*
1132  * Bigger ancestor.
1133  */
1134 static __inline int
1135 right_ancestor(int n)
1136 {
1137 	return (n | (n + 1));
1138 }
1139 
1140 /*
1141  * Smaller ancestor.
1142  */
1143 static __inline int
1144 left_ancestor(int n)
1145 {
1146 	return ((n & (n + 1)) - 1);
1147 }
1148 
1149 /*
1150  * Traverse the in-place binary tree buttom-up adjusting the allocation
1151  * count so scans can determine where free descriptors are located.
1152  *
1153  * caller must be holding an exclusive spinlock on fdp
1154  */
1155 static
1156 void
1157 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1158 {
1159 	while (fd >= 0) {
1160 		fdp->fd_files[fd].allocated += incr;
1161 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1162 		fd = left_ancestor(fd);
1163 	}
1164 }
1165 
1166 /*
1167  * Reserve a file descriptor for the process.  If no error occurs, the
1168  * caller MUST at some point call fsetfd() or assign a file pointer
1169  * or dispose of the reservation.
1170  */
1171 int
1172 fdalloc(struct proc *p, int want, int *result)
1173 {
1174 	struct filedesc *fdp = p->p_fd;
1175 	struct uidinfo *uip;
1176 	int fd, rsize, rsum, node, lim;
1177 
1178 	/*
1179 	 * Check dtable size limit
1180 	 */
1181 	spin_lock(&p->p_limit->p_spin);
1182 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1183 		lim = INT_MAX;
1184 	else
1185 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1186 	spin_unlock(&p->p_limit->p_spin);
1187 
1188 	if (lim > maxfilesperproc)
1189 		lim = maxfilesperproc;
1190 	if (lim < minfilesperproc)
1191 		lim = minfilesperproc;
1192 	if (want >= lim)
1193 		return (EMFILE);
1194 
1195 	/*
1196 	 * Check that the user has not run out of descriptors (non-root only).
1197 	 * As a safety measure the dtable is allowed to have at least
1198 	 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1199 	 */
1200 	if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1201 		uip = p->p_ucred->cr_uidinfo;
1202 		if (uip->ui_openfiles > maxfilesperuser) {
1203 			krateprintf(&krate_uidinfo,
1204 				    "Warning: user %d pid %d (%s) ran out of "
1205 				    "file descriptors (%d/%d)\n",
1206 				    p->p_ucred->cr_uid, (int)p->p_pid,
1207 				    p->p_comm,
1208 				    uip->ui_openfiles, maxfilesperuser);
1209 			return(ENFILE);
1210 		}
1211 	}
1212 
1213 	/*
1214 	 * Grow the dtable if necessary
1215 	 */
1216 	spin_lock(&fdp->fd_spin);
1217 	if (want >= fdp->fd_nfiles)
1218 		fdgrow_locked(fdp, want);
1219 
1220 	/*
1221 	 * Search for a free descriptor starting at the higher
1222 	 * of want or fd_freefile.  If that fails, consider
1223 	 * expanding the ofile array.
1224 	 *
1225 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1226 	 * count.  If we happen to see a value of 0 then we can shortcut
1227 	 * our search.  Otherwise we run through through the tree going
1228 	 * down branches we know have free descriptor(s) until we hit a
1229 	 * leaf node.  The leaf node will be free but will not necessarily
1230 	 * have an allocated field of 0.
1231 	 */
1232 retry:
1233 	/* move up the tree looking for a subtree with a free node */
1234 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1235 	     fd = right_ancestor(fd)) {
1236 		if (fdp->fd_files[fd].allocated == 0)
1237 			goto found;
1238 
1239 		rsize = right_subtree_size(fd);
1240 		if (fdp->fd_files[fd].allocated == rsize)
1241 			continue;	/* right subtree full */
1242 
1243 		/*
1244 		 * Free fd is in the right subtree of the tree rooted at fd.
1245 		 * Call that subtree R.  Look for the smallest (leftmost)
1246 		 * subtree of R with an unallocated fd: continue moving
1247 		 * down the left branch until encountering a full left
1248 		 * subtree, then move to the right.
1249 		 */
1250 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1251 			node = fd + rsize;
1252 			rsum += fdp->fd_files[node].allocated;
1253 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1254 				fd = node;	/* move to the right */
1255 				if (fdp->fd_files[node].allocated == 0)
1256 					goto found;
1257 				rsum = 0;
1258 			}
1259 		}
1260 		goto found;
1261 	}
1262 
1263 	/*
1264 	 * No space in current array.  Expand?
1265 	 */
1266 	if (fdp->fd_nfiles >= lim) {
1267 		spin_unlock(&fdp->fd_spin);
1268 		return (EMFILE);
1269 	}
1270 	fdgrow_locked(fdp, want);
1271 	goto retry;
1272 
1273 found:
1274 	KKASSERT(fd < fdp->fd_nfiles);
1275 	if (fd > fdp->fd_lastfile)
1276 		fdp->fd_lastfile = fd;
1277 	if (want <= fdp->fd_freefile)
1278 		fdp->fd_freefile = fd;
1279 	*result = fd;
1280 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1281 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1282 	fdp->fd_files[fd].fileflags = 0;
1283 	fdp->fd_files[fd].reserved = 1;
1284 	fdreserve_locked(fdp, fd, 1);
1285 	spin_unlock(&fdp->fd_spin);
1286 	return (0);
1287 }
1288 
1289 /*
1290  * Check to see whether n user file descriptors
1291  * are available to the process p.
1292  */
1293 int
1294 fdavail(struct proc *p, int n)
1295 {
1296 	struct filedesc *fdp = p->p_fd;
1297 	struct fdnode *fdnode;
1298 	int i, lim, last;
1299 
1300 	spin_lock(&p->p_limit->p_spin);
1301 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1302 		lim = INT_MAX;
1303 	else
1304 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1305 	spin_unlock(&p->p_limit->p_spin);
1306 
1307 	if (lim > maxfilesperproc)
1308 		lim = maxfilesperproc;
1309 	if (lim < minfilesperproc)
1310 		lim = minfilesperproc;
1311 
1312 	spin_lock(&fdp->fd_spin);
1313 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1314 		spin_unlock(&fdp->fd_spin);
1315 		return (1);
1316 	}
1317 	last = min(fdp->fd_nfiles, lim);
1318 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1319 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1320 		if (fdnode->fp == NULL && --n <= 0) {
1321 			spin_unlock(&fdp->fd_spin);
1322 			return (1);
1323 		}
1324 	}
1325 	spin_unlock(&fdp->fd_spin);
1326 	return (0);
1327 }
1328 
1329 /*
1330  * Revoke open descriptors referencing (f_data, f_type)
1331  *
1332  * Any revoke executed within a prison is only able to
1333  * revoke descriptors for processes within that prison.
1334  *
1335  * Returns 0 on success or an error code.
1336  */
1337 struct fdrevoke_info {
1338 	void *data;
1339 	short type;
1340 	short unused;
1341 	int count;
1342 	int intransit;
1343 	struct ucred *cred;
1344 	struct file *nfp;
1345 };
1346 
1347 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1348 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1349 
1350 int
1351 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1352 {
1353 	struct fdrevoke_info info;
1354 	int error;
1355 
1356 	bzero(&info, sizeof(info));
1357 	info.data = f_data;
1358 	info.type = f_type;
1359 	info.cred = cred;
1360 	error = falloc(NULL, &info.nfp, NULL);
1361 	if (error)
1362 		return (error);
1363 
1364 	/*
1365 	 * Scan the file pointer table once.  dups do not dup file pointers,
1366 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1367 	 * being revoked.
1368 	 */
1369 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1370 
1371 	/*
1372 	 * If any fps were marked track down the related descriptors
1373 	 * and close them.  Any dup()s at this point will notice
1374 	 * the FREVOKED already set in the fp and do the right thing.
1375 	 *
1376 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1377 	 * socket) bumped the intransit counter and will require a
1378 	 * scan.  Races against fps leaving the socket are closed by
1379 	 * the socket code checking for FREVOKED.
1380 	 */
1381 	if (info.count)
1382 		allproc_scan(fdrevoke_proc_callback, &info);
1383 	if (info.intransit)
1384 		unp_revoke_gc(info.nfp);
1385 	fdrop(info.nfp);
1386 	return(0);
1387 }
1388 
1389 /*
1390  * Locate matching file pointers directly.
1391  *
1392  * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1393  */
1394 static int
1395 fdrevoke_check_callback(struct file *fp, void *vinfo)
1396 {
1397 	struct fdrevoke_info *info = vinfo;
1398 
1399 	/*
1400 	 * File pointers already flagged for revokation are skipped.
1401 	 */
1402 	if (fp->f_flag & FREVOKED)
1403 		return(0);
1404 
1405 	/*
1406 	 * If revoking from a prison file pointers created outside of
1407 	 * that prison, or file pointers without creds, cannot be revoked.
1408 	 */
1409 	if (info->cred->cr_prison &&
1410 	    (fp->f_cred == NULL ||
1411 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1412 		return(0);
1413 	}
1414 
1415 	/*
1416 	 * If the file pointer matches then mark it for revocation.  The
1417 	 * flag is currently only used by unp_revoke_gc().
1418 	 *
1419 	 * info->count is a heuristic and can race in a SMP environment.
1420 	 */
1421 	if (info->data == fp->f_data && info->type == fp->f_type) {
1422 		atomic_set_int(&fp->f_flag, FREVOKED);
1423 		info->count += fp->f_count;
1424 		if (fp->f_msgcount)
1425 			++info->intransit;
1426 	}
1427 	return(0);
1428 }
1429 
1430 /*
1431  * Locate matching file pointers via process descriptor tables.
1432  */
1433 static int
1434 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1435 {
1436 	struct fdrevoke_info *info = vinfo;
1437 	struct filedesc *fdp;
1438 	struct file *fp;
1439 	int n;
1440 
1441 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1442 		return(0);
1443 	if (info->cred->cr_prison &&
1444 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1445 		return(0);
1446 	}
1447 
1448 	/*
1449 	 * If the controlling terminal of the process matches the
1450 	 * vnode being revoked we clear the controlling terminal.
1451 	 *
1452 	 * The normal spec_close() may not catch this because it
1453 	 * uses curproc instead of p.
1454 	 */
1455 	if (p->p_session && info->type == DTYPE_VNODE &&
1456 	    info->data == p->p_session->s_ttyvp) {
1457 		p->p_session->s_ttyvp = NULL;
1458 		vrele(info->data);
1459 	}
1460 
1461 	/*
1462 	 * Softref the fdp to prevent it from being destroyed
1463 	 */
1464 	spin_lock(&p->p_spin);
1465 	if ((fdp = p->p_fd) == NULL) {
1466 		spin_unlock(&p->p_spin);
1467 		return(0);
1468 	}
1469 	atomic_add_int(&fdp->fd_softrefs, 1);
1470 	spin_unlock(&p->p_spin);
1471 
1472 	/*
1473 	 * Locate and close any matching file descriptors.
1474 	 */
1475 	spin_lock(&fdp->fd_spin);
1476 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1477 		if ((fp = fdp->fd_files[n].fp) == NULL)
1478 			continue;
1479 		if (fp->f_flag & FREVOKED) {
1480 			fhold(info->nfp);
1481 			fdp->fd_files[n].fp = info->nfp;
1482 			spin_unlock(&fdp->fd_spin);
1483 			knote_fdclose(fp, fdp, n);	/* XXX */
1484 			closef(fp, p);
1485 			spin_lock(&fdp->fd_spin);
1486 			--info->count;
1487 		}
1488 	}
1489 	spin_unlock(&fdp->fd_spin);
1490 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1491 	return(0);
1492 }
1493 
1494 /*
1495  * falloc:
1496  *	Create a new open file structure and reserve a file decriptor
1497  *	for the process that refers to it.
1498  *
1499  *	Root creds are checked using lp, or assumed if lp is NULL.  If
1500  *	resultfd is non-NULL then lp must also be non-NULL.  No file
1501  *	descriptor is reserved (and no process context is needed) if
1502  *	resultfd is NULL.
1503  *
1504  *	A file pointer with a refcount of 1 is returned.  Note that the
1505  *	file pointer is NOT associated with the descriptor.  If falloc
1506  *	returns success, fsetfd() MUST be called to either associate the
1507  *	file pointer or clear the reservation.
1508  */
1509 int
1510 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1511 {
1512 	static struct timeval lastfail;
1513 	static int curfail;
1514 	struct file *fp;
1515 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1516 	int error;
1517 
1518 	fp = NULL;
1519 
1520 	/*
1521 	 * Handle filetable full issues and root overfill.
1522 	 */
1523 	if (nfiles >= maxfiles - maxfilesrootres &&
1524 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
1525 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1526 			kprintf("kern.maxfiles limit exceeded by uid %d, "
1527 				"please see tuning(7).\n",
1528 				cred->cr_ruid);
1529 		}
1530 		error = ENFILE;
1531 		goto done;
1532 	}
1533 
1534 	/*
1535 	 * Allocate a new file descriptor.
1536 	 */
1537 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1538 	spin_init(&fp->f_spin, "falloc");
1539 	SLIST_INIT(&fp->f_klist);
1540 	fp->f_count = 1;
1541 	fp->f_ops = &badfileops;
1542 	fp->f_seqcount = 1;
1543 	fsetcred(fp, cred);
1544 	spin_lock(&filehead_spin);
1545 	nfiles++;
1546 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1547 	spin_unlock(&filehead_spin);
1548 	if (resultfd) {
1549 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
1550 			fdrop(fp);
1551 			fp = NULL;
1552 		}
1553 	} else {
1554 		error = 0;
1555 	}
1556 done:
1557 	*resultfp = fp;
1558 	return (error);
1559 }
1560 
1561 /*
1562  * Check for races against a file descriptor by determining that the
1563  * file pointer is still associated with the specified file descriptor,
1564  * and a close is not currently in progress.
1565  */
1566 int
1567 checkfdclosed(struct filedesc *fdp, int fd, struct file *fp)
1568 {
1569 	int error;
1570 
1571 	spin_lock_shared(&fdp->fd_spin);
1572 	if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1573 		error = EBADF;
1574 	else
1575 		error = 0;
1576 	spin_unlock_shared(&fdp->fd_spin);
1577 	return (error);
1578 }
1579 
1580 /*
1581  * Associate a file pointer with a previously reserved file descriptor.
1582  * This function always succeeds.
1583  *
1584  * If fp is NULL, the file descriptor is returned to the pool.
1585  */
1586 
1587 /*
1588  * (exclusive spinlock must be held on call)
1589  */
1590 static void
1591 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1592 {
1593 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1594 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1595 	if (fp) {
1596 		fhold(fp);
1597 		fdp->fd_files[fd].fp = fp;
1598 		fdp->fd_files[fd].reserved = 0;
1599 	} else {
1600 		fdp->fd_files[fd].reserved = 0;
1601 		fdreserve_locked(fdp, fd, -1);
1602 		fdfixup_locked(fdp, fd);
1603 	}
1604 }
1605 
1606 void
1607 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
1608 {
1609 	spin_lock(&fdp->fd_spin);
1610 	fsetfd_locked(fdp, fp, fd);
1611 	spin_unlock(&fdp->fd_spin);
1612 }
1613 
1614 /*
1615  * (exclusive spinlock must be held on call)
1616  */
1617 static
1618 struct file *
1619 funsetfd_locked(struct filedesc *fdp, int fd)
1620 {
1621 	struct file *fp;
1622 
1623 	if ((unsigned)fd >= fdp->fd_nfiles)
1624 		return (NULL);
1625 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1626 		return (NULL);
1627 	fdp->fd_files[fd].fp = NULL;
1628 	fdp->fd_files[fd].fileflags = 0;
1629 
1630 	fdreserve_locked(fdp, fd, -1);
1631 	fdfixup_locked(fdp, fd);
1632 	return(fp);
1633 }
1634 
1635 /*
1636  * WARNING: May not be called before initial fsetfd().
1637  */
1638 int
1639 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1640 {
1641 	int error;
1642 
1643 	spin_lock(&fdp->fd_spin);
1644 	if (((u_int)fd) >= fdp->fd_nfiles) {
1645 		error = EBADF;
1646 	} else if (fdp->fd_files[fd].fp == NULL) {
1647 		error = EBADF;
1648 	} else {
1649 		*flagsp = fdp->fd_files[fd].fileflags;
1650 		error = 0;
1651 	}
1652 	spin_unlock(&fdp->fd_spin);
1653 	return (error);
1654 }
1655 
1656 /*
1657  * WARNING: May not be called before initial fsetfd().
1658  */
1659 int
1660 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1661 {
1662 	int error;
1663 
1664 	spin_lock(&fdp->fd_spin);
1665 	if (((u_int)fd) >= fdp->fd_nfiles) {
1666 		error = EBADF;
1667 	} else if (fdp->fd_files[fd].fp == NULL) {
1668 		error = EBADF;
1669 	} else {
1670 		fdp->fd_files[fd].fileflags |= add_flags;
1671 		error = 0;
1672 	}
1673 	spin_unlock(&fdp->fd_spin);
1674 	return (error);
1675 }
1676 
1677 /*
1678  * WARNING: May not be called before initial fsetfd().
1679  */
1680 int
1681 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1682 {
1683 	int error;
1684 
1685 	spin_lock(&fdp->fd_spin);
1686 	if (((u_int)fd) >= fdp->fd_nfiles) {
1687 		error = EBADF;
1688 	} else if (fdp->fd_files[fd].fp == NULL) {
1689 		error = EBADF;
1690 	} else {
1691 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1692 		error = 0;
1693 	}
1694 	spin_unlock(&fdp->fd_spin);
1695 	return (error);
1696 }
1697 
1698 /*
1699  * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
1700  */
1701 void
1702 fsetcred(struct file *fp, struct ucred *ncr)
1703 {
1704 	struct ucred *ocr;
1705 	struct uidinfo *uip;
1706 
1707 	ocr = fp->f_cred;
1708 	if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
1709 		if (ocr) {
1710 			uip = ocr->cr_uidinfo;
1711 			atomic_add_int(&uip->ui_openfiles, -1);
1712 		}
1713 		if (ncr) {
1714 			uip = ncr->cr_uidinfo;
1715 			atomic_add_int(&uip->ui_openfiles, 1);
1716 		}
1717 	}
1718 	if (ncr)
1719 		crhold(ncr);
1720 	fp->f_cred = ncr;
1721 	if (ocr)
1722 		crfree(ocr);
1723 }
1724 
1725 /*
1726  * Free a file descriptor.
1727  */
1728 static
1729 void
1730 ffree(struct file *fp)
1731 {
1732 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1733 	spin_lock(&filehead_spin);
1734 	LIST_REMOVE(fp, f_list);
1735 	nfiles--;
1736 	spin_unlock(&filehead_spin);
1737 	fsetcred(fp, NULL);
1738 	if (fp->f_nchandle.ncp)
1739 	    cache_drop(&fp->f_nchandle);
1740 	kfree(fp, M_FILE);
1741 }
1742 
1743 /*
1744  * called from init_main, initialize filedesc0 for proc0.
1745  */
1746 void
1747 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1748 {
1749 	p0->p_fd = fdp0;
1750 	p0->p_fdtol = NULL;
1751 	fdp0->fd_refcnt = 1;
1752 	fdp0->fd_cmask = cmask;
1753 	fdp0->fd_files = fdp0->fd_builtin_files;
1754 	fdp0->fd_nfiles = NDFILE;
1755 	fdp0->fd_lastfile = -1;
1756 	spin_init(&fdp0->fd_spin, "fdinitbootstrap");
1757 }
1758 
1759 /*
1760  * Build a new filedesc structure.
1761  */
1762 struct filedesc *
1763 fdinit(struct proc *p)
1764 {
1765 	struct filedesc *newfdp;
1766 	struct filedesc *fdp = p->p_fd;
1767 
1768 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1769 	spin_lock(&fdp->fd_spin);
1770 	if (fdp->fd_cdir) {
1771 		newfdp->fd_cdir = fdp->fd_cdir;
1772 		vref(newfdp->fd_cdir);
1773 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1774 	}
1775 
1776 	/*
1777 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1778 	 * proc0, but should unconditionally exist in other processes.
1779 	 */
1780 	if (fdp->fd_rdir) {
1781 		newfdp->fd_rdir = fdp->fd_rdir;
1782 		vref(newfdp->fd_rdir);
1783 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1784 	}
1785 	if (fdp->fd_jdir) {
1786 		newfdp->fd_jdir = fdp->fd_jdir;
1787 		vref(newfdp->fd_jdir);
1788 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1789 	}
1790 	spin_unlock(&fdp->fd_spin);
1791 
1792 	/* Create the file descriptor table. */
1793 	newfdp->fd_refcnt = 1;
1794 	newfdp->fd_cmask = cmask;
1795 	newfdp->fd_files = newfdp->fd_builtin_files;
1796 	newfdp->fd_nfiles = NDFILE;
1797 	newfdp->fd_lastfile = -1;
1798 	spin_init(&newfdp->fd_spin, "fdinit");
1799 
1800 	return (newfdp);
1801 }
1802 
1803 /*
1804  * Share a filedesc structure.
1805  */
1806 struct filedesc *
1807 fdshare(struct proc *p)
1808 {
1809 	struct filedesc *fdp;
1810 
1811 	fdp = p->p_fd;
1812 	spin_lock(&fdp->fd_spin);
1813 	fdp->fd_refcnt++;
1814 	spin_unlock(&fdp->fd_spin);
1815 	return (fdp);
1816 }
1817 
1818 /*
1819  * Copy a filedesc structure.
1820  */
1821 int
1822 fdcopy(struct proc *p, struct filedesc **fpp)
1823 {
1824 	struct filedesc *fdp = p->p_fd;
1825 	struct filedesc *newfdp;
1826 	struct fdnode *fdnode;
1827 	int i;
1828 	int ni;
1829 
1830 	/*
1831 	 * Certain daemons might not have file descriptors.
1832 	 */
1833 	if (fdp == NULL)
1834 		return (0);
1835 
1836 	/*
1837 	 * Allocate the new filedesc and fd_files[] array.  This can race
1838 	 * with operations by other threads on the fdp so we have to be
1839 	 * careful.
1840 	 */
1841 	newfdp = kmalloc(sizeof(struct filedesc),
1842 			 M_FILEDESC, M_WAITOK | M_ZERO | M_NULLOK);
1843 	if (newfdp == NULL) {
1844 		*fpp = NULL;
1845 		return (-1);
1846 	}
1847 again:
1848 	spin_lock(&fdp->fd_spin);
1849 	if (fdp->fd_lastfile < NDFILE) {
1850 		newfdp->fd_files = newfdp->fd_builtin_files;
1851 		i = NDFILE;
1852 	} else {
1853 		/*
1854 		 * We have to allocate (N^2-1) entries for our in-place
1855 		 * binary tree.  Allow the table to shrink.
1856 		 */
1857 		i = fdp->fd_nfiles;
1858 		ni = (i - 1) / 2;
1859 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1860 			i = ni;
1861 			ni = (i - 1) / 2;
1862 		}
1863 		spin_unlock(&fdp->fd_spin);
1864 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1865 					  M_FILEDESC, M_WAITOK | M_ZERO);
1866 
1867 		/*
1868 		 * Check for race, retry
1869 		 */
1870 		spin_lock(&fdp->fd_spin);
1871 		if (i <= fdp->fd_lastfile) {
1872 			spin_unlock(&fdp->fd_spin);
1873 			kfree(newfdp->fd_files, M_FILEDESC);
1874 			goto again;
1875 		}
1876 	}
1877 
1878 	/*
1879 	 * Dup the remaining fields. vref() and cache_hold() can be
1880 	 * safely called while holding the read spinlock on fdp.
1881 	 *
1882 	 * The read spinlock on fdp is still being held.
1883 	 *
1884 	 * NOTE: vref and cache_hold calls for the case where the vnode
1885 	 * or cache entry already has at least one ref may be called
1886 	 * while holding spin locks.
1887 	 */
1888 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1889 		vref(newfdp->fd_cdir);
1890 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1891 	}
1892 	/*
1893 	 * We must check for fd_rdir here, at least for now because
1894 	 * the init process is created before we have access to the
1895 	 * rootvode to take a reference to it.
1896 	 */
1897 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1898 		vref(newfdp->fd_rdir);
1899 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1900 	}
1901 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1902 		vref(newfdp->fd_jdir);
1903 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1904 	}
1905 	newfdp->fd_refcnt = 1;
1906 	newfdp->fd_nfiles = i;
1907 	newfdp->fd_lastfile = fdp->fd_lastfile;
1908 	newfdp->fd_freefile = fdp->fd_freefile;
1909 	newfdp->fd_cmask = fdp->fd_cmask;
1910 	spin_init(&newfdp->fd_spin, "fdcopy");
1911 
1912 	/*
1913 	 * Copy the descriptor table through (i).  This also copies the
1914 	 * allocation state.   Then go through and ref the file pointers
1915 	 * and clean up any KQ descriptors.
1916 	 *
1917 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1918 	 * copied files yet we can ignore the return value from funsetfd().
1919 	 *
1920 	 * The read spinlock on fdp is still being held.
1921 	 */
1922 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1923 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1924 		fdnode = &newfdp->fd_files[i];
1925 		if (fdnode->reserved) {
1926 			fdreserve_locked(newfdp, i, -1);
1927 			fdnode->reserved = 0;
1928 			fdfixup_locked(newfdp, i);
1929 		} else if (fdnode->fp) {
1930 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1931 				(void)funsetfd_locked(newfdp, i);
1932 			} else {
1933 				fhold(fdnode->fp);
1934 			}
1935 		}
1936 	}
1937 	spin_unlock(&fdp->fd_spin);
1938 	*fpp = newfdp;
1939 	return (0);
1940 }
1941 
1942 /*
1943  * Release a filedesc structure.
1944  *
1945  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1946  */
1947 void
1948 fdfree(struct proc *p, struct filedesc *repl)
1949 {
1950 	struct filedesc *fdp;
1951 	struct fdnode *fdnode;
1952 	int i;
1953 	struct filedesc_to_leader *fdtol;
1954 	struct file *fp;
1955 	struct vnode *vp;
1956 	struct flock lf;
1957 
1958 	/*
1959 	 * Certain daemons might not have file descriptors.
1960 	 */
1961 	fdp = p->p_fd;
1962 	if (fdp == NULL) {
1963 		p->p_fd = repl;
1964 		return;
1965 	}
1966 
1967 	/*
1968 	 * Severe messing around to follow.
1969 	 */
1970 	spin_lock(&fdp->fd_spin);
1971 
1972 	/* Check for special need to clear POSIX style locks */
1973 	fdtol = p->p_fdtol;
1974 	if (fdtol != NULL) {
1975 		KASSERT(fdtol->fdl_refcount > 0,
1976 			("filedesc_to_refcount botch: fdl_refcount=%d",
1977 			 fdtol->fdl_refcount));
1978 		if (fdtol->fdl_refcount == 1 &&
1979 		    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
1980 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
1981 				fdnode = &fdp->fd_files[i];
1982 				if (fdnode->fp == NULL ||
1983 				    fdnode->fp->f_type != DTYPE_VNODE) {
1984 					continue;
1985 				}
1986 				fp = fdnode->fp;
1987 				fhold(fp);
1988 				spin_unlock(&fdp->fd_spin);
1989 
1990 				lf.l_whence = SEEK_SET;
1991 				lf.l_start = 0;
1992 				lf.l_len = 0;
1993 				lf.l_type = F_UNLCK;
1994 				vp = (struct vnode *)fp->f_data;
1995 				(void) VOP_ADVLOCK(vp,
1996 						   (caddr_t)p->p_leader,
1997 						   F_UNLCK,
1998 						   &lf,
1999 						   F_POSIX);
2000 				fdrop(fp);
2001 				spin_lock(&fdp->fd_spin);
2002 			}
2003 		}
2004 	retry:
2005 		if (fdtol->fdl_refcount == 1) {
2006 			if (fdp->fd_holdleaderscount > 0 &&
2007 			    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
2008 				/*
2009 				 * close() or do_dup() has cleared a reference
2010 				 * in a shared file descriptor table.
2011 				 */
2012 				fdp->fd_holdleaderswakeup = 1;
2013 				ssleep(&fdp->fd_holdleaderscount,
2014 				       &fdp->fd_spin, 0, "fdlhold", 0);
2015 				goto retry;
2016 			}
2017 			if (fdtol->fdl_holdcount > 0) {
2018 				/*
2019 				 * Ensure that fdtol->fdl_leader
2020 				 * remains valid in closef().
2021 				 */
2022 				fdtol->fdl_wakeup = 1;
2023 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
2024 				goto retry;
2025 			}
2026 		}
2027 		fdtol->fdl_refcount--;
2028 		if (fdtol->fdl_refcount == 0 &&
2029 		    fdtol->fdl_holdcount == 0) {
2030 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2031 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2032 		} else {
2033 			fdtol = NULL;
2034 		}
2035 		p->p_fdtol = NULL;
2036 		if (fdtol != NULL) {
2037 			spin_unlock(&fdp->fd_spin);
2038 			kfree(fdtol, M_FILEDESC_TO_LEADER);
2039 			spin_lock(&fdp->fd_spin);
2040 		}
2041 	}
2042 	if (--fdp->fd_refcnt > 0) {
2043 		spin_unlock(&fdp->fd_spin);
2044 		spin_lock(&p->p_spin);
2045 		p->p_fd = repl;
2046 		spin_unlock(&p->p_spin);
2047 		return;
2048 	}
2049 
2050 	/*
2051 	 * Even though we are the last reference to the structure allproc
2052 	 * scans may still reference the structure.  Maintain proper
2053 	 * locks until we can replace p->p_fd.
2054 	 *
2055 	 * Also note that kqueue's closef still needs to reference the
2056 	 * fdp via p->p_fd, so we have to close the descriptors before
2057 	 * we replace p->p_fd.
2058 	 */
2059 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
2060 		if (fdp->fd_files[i].fp) {
2061 			fp = funsetfd_locked(fdp, i);
2062 			if (fp) {
2063 				spin_unlock(&fdp->fd_spin);
2064 				if (SLIST_FIRST(&fp->f_klist))
2065 					knote_fdclose(fp, fdp, i);
2066 				closef(fp, p);
2067 				spin_lock(&fdp->fd_spin);
2068 			}
2069 		}
2070 	}
2071 	spin_unlock(&fdp->fd_spin);
2072 
2073 	/*
2074 	 * Interlock against an allproc scan operations (typically frevoke).
2075 	 */
2076 	spin_lock(&p->p_spin);
2077 	p->p_fd = repl;
2078 	spin_unlock(&p->p_spin);
2079 
2080 	/*
2081 	 * Wait for any softrefs to go away.  This race rarely occurs so
2082 	 * we can use a non-critical-path style poll/sleep loop.  The
2083 	 * race only occurs against allproc scans.
2084 	 *
2085 	 * No new softrefs can occur with the fdp disconnected from the
2086 	 * process.
2087 	 */
2088 	if (fdp->fd_softrefs) {
2089 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2090 		while (fdp->fd_softrefs)
2091 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2092 	}
2093 
2094 	if (fdp->fd_files != fdp->fd_builtin_files)
2095 		kfree(fdp->fd_files, M_FILEDESC);
2096 	if (fdp->fd_cdir) {
2097 		cache_drop(&fdp->fd_ncdir);
2098 		vrele(fdp->fd_cdir);
2099 	}
2100 	if (fdp->fd_rdir) {
2101 		cache_drop(&fdp->fd_nrdir);
2102 		vrele(fdp->fd_rdir);
2103 	}
2104 	if (fdp->fd_jdir) {
2105 		cache_drop(&fdp->fd_njdir);
2106 		vrele(fdp->fd_jdir);
2107 	}
2108 	kfree(fdp, M_FILEDESC);
2109 }
2110 
2111 /*
2112  * Retrieve and reference the file pointer associated with a descriptor.
2113  */
2114 struct file *
2115 holdfp(struct filedesc *fdp, int fd, int flag)
2116 {
2117 	struct file* fp;
2118 
2119 	spin_lock_shared(&fdp->fd_spin);
2120 	if (((u_int)fd) >= fdp->fd_nfiles) {
2121 		fp = NULL;
2122 		goto done;
2123 	}
2124 	if ((fp = fdp->fd_files[fd].fp) == NULL)
2125 		goto done;
2126 	if ((fp->f_flag & flag) == 0 && flag != -1) {
2127 		fp = NULL;
2128 		goto done;
2129 	}
2130 	fhold(fp);
2131 done:
2132 	spin_unlock_shared(&fdp->fd_spin);
2133 	return (fp);
2134 }
2135 
2136 /*
2137  * holdsock() - load the struct file pointer associated
2138  * with a socket into *fpp.  If an error occurs, non-zero
2139  * will be returned and *fpp will be set to NULL.
2140  */
2141 int
2142 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2143 {
2144 	struct file *fp;
2145 	int error;
2146 
2147 	spin_lock_shared(&fdp->fd_spin);
2148 	if ((unsigned)fd >= fdp->fd_nfiles) {
2149 		error = EBADF;
2150 		fp = NULL;
2151 		goto done;
2152 	}
2153 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2154 		error = EBADF;
2155 		goto done;
2156 	}
2157 	if (fp->f_type != DTYPE_SOCKET) {
2158 		error = ENOTSOCK;
2159 		goto done;
2160 	}
2161 	fhold(fp);
2162 	error = 0;
2163 done:
2164 	spin_unlock_shared(&fdp->fd_spin);
2165 	*fpp = fp;
2166 	return (error);
2167 }
2168 
2169 /*
2170  * Convert a user file descriptor to a held file pointer.
2171  */
2172 int
2173 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2174 {
2175 	struct file *fp;
2176 	int error;
2177 
2178 	spin_lock_shared(&fdp->fd_spin);
2179 	if ((unsigned)fd >= fdp->fd_nfiles) {
2180 		error = EBADF;
2181 		fp = NULL;
2182 		goto done;
2183 	}
2184 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2185 		error = EBADF;
2186 		goto done;
2187 	}
2188 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2189 		fp = NULL;
2190 		error = EINVAL;
2191 		goto done;
2192 	}
2193 	fhold(fp);
2194 	error = 0;
2195 done:
2196 	spin_unlock_shared(&fdp->fd_spin);
2197 	*fpp = fp;
2198 	return (error);
2199 }
2200 
2201 /*
2202  * For setugid programs, we don't want to people to use that setugidness
2203  * to generate error messages which write to a file which otherwise would
2204  * otherwise be off-limits to the process.
2205  *
2206  * This is a gross hack to plug the hole.  A better solution would involve
2207  * a special vop or other form of generalized access control mechanism.  We
2208  * go ahead and just reject all procfs file systems accesses as dangerous.
2209  *
2210  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2211  * sufficient.  We also don't for check setugidness since we know we are.
2212  */
2213 static int
2214 is_unsafe(struct file *fp)
2215 {
2216 	if (fp->f_type == DTYPE_VNODE &&
2217 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2218 		return (1);
2219 	return (0);
2220 }
2221 
2222 /*
2223  * Make this setguid thing safe, if at all possible.
2224  *
2225  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2226  */
2227 void
2228 setugidsafety(struct proc *p)
2229 {
2230 	struct filedesc *fdp = p->p_fd;
2231 	int i;
2232 
2233 	/* Certain daemons might not have file descriptors. */
2234 	if (fdp == NULL)
2235 		return;
2236 
2237 	/*
2238 	 * note: fdp->fd_files may be reallocated out from under us while
2239 	 * we are blocked in a close.  Be careful!
2240 	 */
2241 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2242 		if (i > 2)
2243 			break;
2244 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2245 			struct file *fp;
2246 
2247 			/*
2248 			 * NULL-out descriptor prior to close to avoid
2249 			 * a race while close blocks.
2250 			 */
2251 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2252 				knote_fdclose(fp, fdp, i);
2253 				closef(fp, p);
2254 			}
2255 		}
2256 	}
2257 }
2258 
2259 /*
2260  * Close any files on exec?
2261  *
2262  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2263  */
2264 void
2265 fdcloseexec(struct proc *p)
2266 {
2267 	struct filedesc *fdp = p->p_fd;
2268 	int i;
2269 
2270 	/* Certain daemons might not have file descriptors. */
2271 	if (fdp == NULL)
2272 		return;
2273 
2274 	/*
2275 	 * We cannot cache fd_files since operations may block and rip
2276 	 * them out from under us.
2277 	 */
2278 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2279 		if (fdp->fd_files[i].fp != NULL &&
2280 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2281 			struct file *fp;
2282 
2283 			/*
2284 			 * NULL-out descriptor prior to close to avoid
2285 			 * a race while close blocks.
2286 			 */
2287 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2288 				knote_fdclose(fp, fdp, i);
2289 				closef(fp, p);
2290 			}
2291 		}
2292 	}
2293 }
2294 
2295 /*
2296  * It is unsafe for set[ug]id processes to be started with file
2297  * descriptors 0..2 closed, as these descriptors are given implicit
2298  * significance in the Standard C library.  fdcheckstd() will create a
2299  * descriptor referencing /dev/null for each of stdin, stdout, and
2300  * stderr that is not already open.
2301  *
2302  * NOT MPSAFE - calls falloc, vn_open, etc
2303  */
2304 int
2305 fdcheckstd(struct lwp *lp)
2306 {
2307 	struct nlookupdata nd;
2308 	struct filedesc *fdp;
2309 	struct file *fp;
2310 	int retval;
2311 	int i, error, flags, devnull;
2312 
2313 	fdp = lp->lwp_proc->p_fd;
2314 	if (fdp == NULL)
2315 		return (0);
2316 	devnull = -1;
2317 	error = 0;
2318 	for (i = 0; i < 3; i++) {
2319 		if (fdp->fd_files[i].fp != NULL)
2320 			continue;
2321 		if (devnull < 0) {
2322 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2323 				break;
2324 
2325 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2326 						NLC_FOLLOW|NLC_LOCKVP);
2327 			flags = FREAD | FWRITE;
2328 			if (error == 0)
2329 				error = vn_open(&nd, fp, flags, 0);
2330 			if (error == 0)
2331 				fsetfd(fdp, fp, devnull);
2332 			else
2333 				fsetfd(fdp, NULL, devnull);
2334 			fdrop(fp);
2335 			nlookup_done(&nd);
2336 			if (error)
2337 				break;
2338 			KKASSERT(i == devnull);
2339 		} else {
2340 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2341 			if (error != 0)
2342 				break;
2343 		}
2344 	}
2345 	return (error);
2346 }
2347 
2348 /*
2349  * Internal form of close.
2350  * Decrement reference count on file structure.
2351  * Note: td and/or p may be NULL when closing a file
2352  * that was being passed in a message.
2353  *
2354  * MPALMOSTSAFE - acquires mplock for VOP operations
2355  */
2356 int
2357 closef(struct file *fp, struct proc *p)
2358 {
2359 	struct vnode *vp;
2360 	struct flock lf;
2361 	struct filedesc_to_leader *fdtol;
2362 
2363 	if (fp == NULL)
2364 		return (0);
2365 
2366 	/*
2367 	 * POSIX record locking dictates that any close releases ALL
2368 	 * locks owned by this process.  This is handled by setting
2369 	 * a flag in the unlock to free ONLY locks obeying POSIX
2370 	 * semantics, and not to free BSD-style file locks.
2371 	 * If the descriptor was in a message, POSIX-style locks
2372 	 * aren't passed with the descriptor.
2373 	 */
2374 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2375 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2376 	) {
2377 		if ((p->p_leader->p_flags & P_ADVLOCK) != 0) {
2378 			lf.l_whence = SEEK_SET;
2379 			lf.l_start = 0;
2380 			lf.l_len = 0;
2381 			lf.l_type = F_UNLCK;
2382 			vp = (struct vnode *)fp->f_data;
2383 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2384 					   &lf, F_POSIX);
2385 		}
2386 		fdtol = p->p_fdtol;
2387 		if (fdtol != NULL) {
2388 			lwkt_gettoken(&p->p_token);
2389 			/*
2390 			 * Handle special case where file descriptor table
2391 			 * is shared between multiple process leaders.
2392 			 */
2393 			for (fdtol = fdtol->fdl_next;
2394 			     fdtol != p->p_fdtol;
2395 			     fdtol = fdtol->fdl_next) {
2396 				if ((fdtol->fdl_leader->p_flags &
2397 				     P_ADVLOCK) == 0)
2398 					continue;
2399 				fdtol->fdl_holdcount++;
2400 				lf.l_whence = SEEK_SET;
2401 				lf.l_start = 0;
2402 				lf.l_len = 0;
2403 				lf.l_type = F_UNLCK;
2404 				vp = (struct vnode *)fp->f_data;
2405 				(void) VOP_ADVLOCK(vp,
2406 						   (caddr_t)fdtol->fdl_leader,
2407 						   F_UNLCK, &lf, F_POSIX);
2408 				fdtol->fdl_holdcount--;
2409 				if (fdtol->fdl_holdcount == 0 &&
2410 				    fdtol->fdl_wakeup != 0) {
2411 					fdtol->fdl_wakeup = 0;
2412 					wakeup(fdtol);
2413 				}
2414 			}
2415 			lwkt_reltoken(&p->p_token);
2416 		}
2417 	}
2418 	return (fdrop(fp));
2419 }
2420 
2421 /*
2422  * fhold() can only be called if f_count is already at least 1 (i.e. the
2423  * caller of fhold() already has a reference to the file pointer in some
2424  * manner or other).
2425  *
2426  * f_count is not spin-locked.  Instead, atomic ops are used for
2427  * incrementing, decrementing, and handling the 1->0 transition.
2428  */
2429 void
2430 fhold(struct file *fp)
2431 {
2432 	atomic_add_int(&fp->f_count, 1);
2433 }
2434 
2435 /*
2436  * fdrop() - drop a reference to a descriptor
2437  *
2438  * MPALMOSTSAFE - acquires mplock for final close sequence
2439  */
2440 int
2441 fdrop(struct file *fp)
2442 {
2443 	struct flock lf;
2444 	struct vnode *vp;
2445 	int error;
2446 
2447 	/*
2448 	 * A combined fetch and subtract is needed to properly detect
2449 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2450 	 * count of 2 might both try to run the 1->0 code.
2451 	 */
2452 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2453 		return (0);
2454 
2455 	KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
2456 
2457 	/*
2458 	 * The last reference has gone away, we own the fp structure free
2459 	 * and clear.
2460 	 */
2461 	if (fp->f_count < 0)
2462 		panic("fdrop: count < 0");
2463 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2464 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2465 	) {
2466 		lf.l_whence = SEEK_SET;
2467 		lf.l_start = 0;
2468 		lf.l_len = 0;
2469 		lf.l_type = F_UNLCK;
2470 		vp = (struct vnode *)fp->f_data;
2471 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2472 	}
2473 	if (fp->f_ops != &badfileops)
2474 		error = fo_close(fp);
2475 	else
2476 		error = 0;
2477 	ffree(fp);
2478 	return (error);
2479 }
2480 
2481 /*
2482  * Apply an advisory lock on a file descriptor.
2483  *
2484  * Just attempt to get a record lock of the requested type on
2485  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2486  *
2487  * MPALMOSTSAFE
2488  */
2489 int
2490 sys_flock(struct flock_args *uap)
2491 {
2492 	struct proc *p = curproc;
2493 	struct file *fp;
2494 	struct vnode *vp;
2495 	struct flock lf;
2496 	int error;
2497 
2498 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2499 		return (EBADF);
2500 	if (fp->f_type != DTYPE_VNODE) {
2501 		error = EOPNOTSUPP;
2502 		goto done;
2503 	}
2504 	vp = (struct vnode *)fp->f_data;
2505 	lf.l_whence = SEEK_SET;
2506 	lf.l_start = 0;
2507 	lf.l_len = 0;
2508 	if (uap->how & LOCK_UN) {
2509 		lf.l_type = F_UNLCK;
2510 		atomic_clear_int(&fp->f_flag, FHASLOCK); /* race ok */
2511 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2512 		goto done;
2513 	}
2514 	if (uap->how & LOCK_EX)
2515 		lf.l_type = F_WRLCK;
2516 	else if (uap->how & LOCK_SH)
2517 		lf.l_type = F_RDLCK;
2518 	else {
2519 		error = EBADF;
2520 		goto done;
2521 	}
2522 	if (uap->how & LOCK_NB)
2523 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2524 	else
2525 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2526 	atomic_set_int(&fp->f_flag, FHASLOCK);	/* race ok */
2527 done:
2528 	fdrop(fp);
2529 	return (error);
2530 }
2531 
2532 /*
2533  * File Descriptor pseudo-device driver (/dev/fd/).
2534  *
2535  * Opening minor device N dup()s the file (if any) connected to file
2536  * descriptor N belonging to the calling process.  Note that this driver
2537  * consists of only the ``open()'' routine, because all subsequent
2538  * references to this file will be direct to the other driver.
2539  */
2540 static int
2541 fdopen(struct dev_open_args *ap)
2542 {
2543 	thread_t td = curthread;
2544 
2545 	KKASSERT(td->td_lwp != NULL);
2546 
2547 	/*
2548 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2549 	 * the file descriptor being sought for duplication. The error
2550 	 * return ensures that the vnode for this device will be released
2551 	 * by vn_open. Open will detect this special error and take the
2552 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2553 	 * will simply report the error.
2554 	 */
2555 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2556 	return (ENODEV);
2557 }
2558 
2559 /*
2560  * The caller has reserved the file descriptor dfd for us.  On success we
2561  * must fsetfd() it.  On failure the caller will clean it up.
2562  */
2563 int
2564 dupfdopen(struct filedesc *fdp, int dfd, int sfd, int mode, int error)
2565 {
2566 	struct file *wfp;
2567 	struct file *xfp;
2568 	int werror;
2569 
2570 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2571 		return (EBADF);
2572 
2573 	/*
2574 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2575 	 * will dup a dummy descriptor instead of the real one.
2576 	 */
2577 	if (wfp->f_flag & FREVOKED) {
2578 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2579 		fdrop(wfp);
2580 		wfp = NULL;
2581 		werror = falloc(NULL, &wfp, NULL);
2582 		if (werror)
2583 			return (werror);
2584 	}
2585 
2586 	/*
2587 	 * There are two cases of interest here.
2588 	 *
2589 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2590 	 *
2591 	 * For ENXIO steal away the file structure from sfd and store it
2592 	 * dfd.  sfd is effectively closed by this operation.
2593 	 *
2594 	 * Any other error code is just returned.
2595 	 */
2596 	switch (error) {
2597 	case ENODEV:
2598 		/*
2599 		 * Check that the mode the file is being opened for is a
2600 		 * subset of the mode of the existing descriptor.
2601 		 */
2602 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2603 			error = EACCES;
2604 			break;
2605 		}
2606 		spin_lock(&fdp->fd_spin);
2607 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2608 		fsetfd_locked(fdp, wfp, dfd);
2609 		spin_unlock(&fdp->fd_spin);
2610 		error = 0;
2611 		break;
2612 	case ENXIO:
2613 		/*
2614 		 * Steal away the file pointer from dfd, and stuff it into indx.
2615 		 */
2616 		spin_lock(&fdp->fd_spin);
2617 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2618 		fsetfd(fdp, wfp, dfd);
2619 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
2620 			spin_unlock(&fdp->fd_spin);
2621 			fdrop(xfp);
2622 		} else {
2623 			spin_unlock(&fdp->fd_spin);
2624 		}
2625 		error = 0;
2626 		break;
2627 	default:
2628 		break;
2629 	}
2630 	fdrop(wfp);
2631 	return (error);
2632 }
2633 
2634 /*
2635  * NOT MPSAFE - I think these refer to a common file descriptor table
2636  * and we need to spinlock that to link fdtol in.
2637  */
2638 struct filedesc_to_leader *
2639 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2640 			 struct proc *leader)
2641 {
2642 	struct filedesc_to_leader *fdtol;
2643 
2644 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2645 			M_FILEDESC_TO_LEADER, M_WAITOK | M_ZERO);
2646 	fdtol->fdl_refcount = 1;
2647 	fdtol->fdl_holdcount = 0;
2648 	fdtol->fdl_wakeup = 0;
2649 	fdtol->fdl_leader = leader;
2650 	if (old != NULL) {
2651 		fdtol->fdl_next = old->fdl_next;
2652 		fdtol->fdl_prev = old;
2653 		old->fdl_next = fdtol;
2654 		fdtol->fdl_next->fdl_prev = fdtol;
2655 	} else {
2656 		fdtol->fdl_next = fdtol;
2657 		fdtol->fdl_prev = fdtol;
2658 	}
2659 	return fdtol;
2660 }
2661 
2662 /*
2663  * Scan all file pointers in the system.  The callback is made with
2664  * the master list spinlock held exclusively.
2665  */
2666 void
2667 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2668 {
2669 	struct file *fp;
2670 	int res;
2671 
2672 	spin_lock(&filehead_spin);
2673 	LIST_FOREACH(fp, &filehead, f_list) {
2674 		res = callback(fp, data);
2675 		if (res < 0)
2676 			break;
2677 	}
2678 	spin_unlock(&filehead_spin);
2679 }
2680 
2681 /*
2682  * Get file structures.
2683  *
2684  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2685  */
2686 
2687 struct sysctl_kern_file_info {
2688 	int count;
2689 	int error;
2690 	struct sysctl_req *req;
2691 };
2692 
2693 static int sysctl_kern_file_callback(struct proc *p, void *data);
2694 
2695 static int
2696 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2697 {
2698 	struct sysctl_kern_file_info info;
2699 
2700 	/*
2701 	 * Note: because the number of file descriptors is calculated
2702 	 * in different ways for sizing vs returning the data,
2703 	 * there is information leakage from the first loop.  However,
2704 	 * it is of a similar order of magnitude to the leakage from
2705 	 * global system statistics such as kern.openfiles.
2706 	 *
2707 	 * When just doing a count, note that we cannot just count
2708 	 * the elements and add f_count via the filehead list because
2709 	 * threaded processes share their descriptor table and f_count might
2710 	 * still be '1' in that case.
2711 	 *
2712 	 * Since the SYSCTL op can block, we must hold the process to
2713 	 * prevent it being ripped out from under us either in the
2714 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2715 	 * process may be in varying states of disrepair.  If the process
2716 	 * is in SZOMB we may have caught it just as it is being removed
2717 	 * from the allproc list, we must skip it in that case to maintain
2718 	 * an unbroken chain through the allproc list.
2719 	 */
2720 	info.count = 0;
2721 	info.error = 0;
2722 	info.req = req;
2723 	allproc_scan(sysctl_kern_file_callback, &info);
2724 
2725 	/*
2726 	 * When just calculating the size, overestimate a bit to try to
2727 	 * prevent system activity from causing the buffer-fill call
2728 	 * to fail later on.
2729 	 */
2730 	if (req->oldptr == NULL) {
2731 		info.count = (info.count + 16) + (info.count / 10);
2732 		info.error = SYSCTL_OUT(req, NULL,
2733 					info.count * sizeof(struct kinfo_file));
2734 	}
2735 	return (info.error);
2736 }
2737 
2738 static int
2739 sysctl_kern_file_callback(struct proc *p, void *data)
2740 {
2741 	struct sysctl_kern_file_info *info = data;
2742 	struct kinfo_file kf;
2743 	struct filedesc *fdp;
2744 	struct file *fp;
2745 	uid_t uid;
2746 	int n;
2747 
2748 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2749 		return(0);
2750 	if (!(PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0))
2751 		return(0);
2752 
2753 	/*
2754 	 * Softref the fdp to prevent it from being destroyed
2755 	 */
2756 	spin_lock(&p->p_spin);
2757 	if ((fdp = p->p_fd) == NULL) {
2758 		spin_unlock(&p->p_spin);
2759 		return(0);
2760 	}
2761 	atomic_add_int(&fdp->fd_softrefs, 1);
2762 	spin_unlock(&p->p_spin);
2763 
2764 	/*
2765 	 * The fdp's own spinlock prevents the contents from being
2766 	 * modified.
2767 	 */
2768 	spin_lock_shared(&fdp->fd_spin);
2769 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2770 		if ((fp = fdp->fd_files[n].fp) == NULL)
2771 			continue;
2772 		if (info->req->oldptr == NULL) {
2773 			++info->count;
2774 		} else {
2775 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2776 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2777 			spin_unlock_shared(&fdp->fd_spin);
2778 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2779 			spin_lock_shared(&fdp->fd_spin);
2780 			if (info->error)
2781 				break;
2782 		}
2783 	}
2784 	spin_unlock_shared(&fdp->fd_spin);
2785 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2786 	if (info->error)
2787 		return(-1);
2788 	return(0);
2789 }
2790 
2791 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2792     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2793 
2794 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
2795     &minfilesperproc, 0, "Minimum files allowed open per process");
2796 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2797     &maxfilesperproc, 0, "Maximum files allowed open per process");
2798 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
2799     &maxfilesperuser, 0, "Maximum files allowed open per user");
2800 
2801 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2802     &maxfiles, 0, "Maximum number of files");
2803 
2804 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2805     &maxfilesrootres, 0, "Descriptors reserved for root use");
2806 
2807 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2808 	&nfiles, 0, "System-wide number of open files");
2809 
2810 static void
2811 fildesc_drvinit(void *unused)
2812 {
2813 	int fd;
2814 
2815 	for (fd = 0; fd < NUMFDESC; fd++) {
2816 		make_dev(&fildesc_ops, fd,
2817 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2818 	}
2819 
2820 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2821 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2822 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2823 }
2824 
2825 struct fileops badfileops = {
2826 	.fo_read = badfo_readwrite,
2827 	.fo_write = badfo_readwrite,
2828 	.fo_ioctl = badfo_ioctl,
2829 	.fo_kqfilter = badfo_kqfilter,
2830 	.fo_stat = badfo_stat,
2831 	.fo_close = badfo_close,
2832 	.fo_shutdown = badfo_shutdown
2833 };
2834 
2835 int
2836 badfo_readwrite(
2837 	struct file *fp,
2838 	struct uio *uio,
2839 	struct ucred *cred,
2840 	int flags
2841 ) {
2842 	return (EBADF);
2843 }
2844 
2845 int
2846 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2847 	    struct ucred *cred, struct sysmsg *msgv)
2848 {
2849 	return (EBADF);
2850 }
2851 
2852 /*
2853  * Must return an error to prevent registration, typically
2854  * due to a revoked descriptor (file_filtops assigned).
2855  */
2856 int
2857 badfo_kqfilter(struct file *fp, struct knote *kn)
2858 {
2859 	return (EOPNOTSUPP);
2860 }
2861 
2862 int
2863 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2864 {
2865 	return (EBADF);
2866 }
2867 
2868 int
2869 badfo_close(struct file *fp)
2870 {
2871 	return (EBADF);
2872 }
2873 
2874 int
2875 badfo_shutdown(struct file *fp, int how)
2876 {
2877 	return (EBADF);
2878 }
2879 
2880 int
2881 nofo_shutdown(struct file *fp, int how)
2882 {
2883 	return (EOPNOTSUPP);
2884 }
2885 
2886 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR,
2887     fildesc_drvinit,NULL);
2888