xref: /dragonfly/sys/kern/kern_descrip.c (revision 31524921)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
68  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/sysproto.h>
76 #include <sys/conf.h>
77 #include <sys/device.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/vnode.h>
83 #include <sys/proc.h>
84 #include <sys/nlookup.h>
85 #include <sys/stat.h>
86 #include <sys/filio.h>
87 #include <sys/fcntl.h>
88 #include <sys/unistd.h>
89 #include <sys/resourcevar.h>
90 #include <sys/event.h>
91 #include <sys/kern_syscall.h>
92 #include <sys/kcore.h>
93 #include <sys/kinfo.h>
94 #include <sys/un.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <sys/file2.h>
101 #include <sys/spinlock2.h>
102 
103 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
104 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
105 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
106 static void ffree(struct file *fp);
107 
108 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
109 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
110 		     "file desc to leader structures");
111 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
112 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
113 
114 static struct krate krate_uidinfo = { .freq = 1 };
115 
116 static	 d_open_t  fdopen;
117 #define NUMFDESC 64
118 
119 #define CDEV_MAJOR 22
120 static struct dev_ops fildesc_ops = {
121 	{ "FD", 0, 0 },
122 	.d_open =	fdopen,
123 };
124 
125 /*
126  * Descriptor management.
127  */
128 #ifndef NFILELIST_HEADS
129 #define NFILELIST_HEADS		257	/* primary number */
130 #endif
131 
132 struct filelist_head {
133 	struct spinlock		spin;
134 	struct filelist		list;
135 } __cachealign;
136 
137 static struct filelist_head	filelist_heads[NFILELIST_HEADS];
138 
139 static int nfiles;		/* actual number of open files */
140 extern int cmask;
141 
142 struct lwkt_token revoke_token = LWKT_TOKEN_INITIALIZER(revoke_token);
143 
144 /*
145  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
146  *
147  * must be called with fdp->fd_spin exclusively held
148  */
149 static __inline
150 void
151 fdfixup_locked(struct filedesc *fdp, int fd)
152 {
153 	if (fd < fdp->fd_freefile) {
154 	       fdp->fd_freefile = fd;
155 	}
156 	while (fdp->fd_lastfile >= 0 &&
157 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
158 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
159 	) {
160 		--fdp->fd_lastfile;
161 	}
162 }
163 
164 static __inline struct filelist_head *
165 fp2filelist(const struct file *fp)
166 {
167 	u_int i;
168 
169 	i = (u_int)(uintptr_t)fp % NFILELIST_HEADS;
170 	return &filelist_heads[i];
171 }
172 
173 /*
174  * System calls on descriptors.
175  */
176 int
177 sys_getdtablesize(struct getdtablesize_args *uap)
178 {
179 	struct proc *p = curproc;
180 	struct plimit *limit = p->p_limit;
181 	int dtsize;
182 
183 	spin_lock(&limit->p_spin);
184 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
185 		dtsize = INT_MAX;
186 	else
187 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
188 	spin_unlock(&limit->p_spin);
189 
190 	if (dtsize > maxfilesperproc)
191 		dtsize = maxfilesperproc;
192 	if (dtsize < minfilesperproc)
193 		dtsize = minfilesperproc;
194 	if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
195 		dtsize = maxfilesperuser;
196 	uap->sysmsg_result = dtsize;
197 	return (0);
198 }
199 
200 /*
201  * Duplicate a file descriptor to a particular value.
202  *
203  * note: keep in mind that a potential race condition exists when closing
204  * descriptors from a shared descriptor table (via rfork).
205  */
206 int
207 sys_dup2(struct dup2_args *uap)
208 {
209 	int error;
210 	int fd = 0;
211 
212 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
213 	uap->sysmsg_fds[0] = fd;
214 
215 	return (error);
216 }
217 
218 /*
219  * Duplicate a file descriptor.
220  */
221 int
222 sys_dup(struct dup_args *uap)
223 {
224 	int error;
225 	int fd = 0;
226 
227 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
228 	uap->sysmsg_fds[0] = fd;
229 
230 	return (error);
231 }
232 
233 /*
234  * MPALMOSTSAFE - acquires mplock for fp operations
235  */
236 int
237 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
238 {
239 	struct thread *td = curthread;
240 	struct proc *p = td->td_proc;
241 	struct file *fp;
242 	struct vnode *vp;
243 	u_int newmin;
244 	u_int oflags;
245 	u_int nflags;
246 	int tmp, error, flg = F_POSIX;
247 
248 	KKASSERT(p);
249 
250 	/*
251 	 * Operations on file descriptors that do not require a file pointer.
252 	 */
253 	switch (cmd) {
254 	case F_GETFD:
255 		error = fgetfdflags(p->p_fd, fd, &tmp);
256 		if (error == 0)
257 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
258 		return (error);
259 
260 	case F_SETFD:
261 		if (dat->fc_cloexec & FD_CLOEXEC)
262 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
263 		else
264 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
265 		return (error);
266 	case F_DUPFD:
267 		newmin = dat->fc_fd;
268 		error = kern_dup(DUP_VARIABLE | DUP_FCNTL, fd, newmin,
269 		    &dat->fc_fd);
270 		return (error);
271 	case F_DUPFD_CLOEXEC:
272 		newmin = dat->fc_fd;
273 		error = kern_dup(DUP_VARIABLE | DUP_CLOEXEC | DUP_FCNTL,
274 		    fd, newmin, &dat->fc_fd);
275 		return (error);
276 	case F_DUP2FD:
277 		newmin = dat->fc_fd;
278 		error = kern_dup(DUP_FIXED, fd, newmin, &dat->fc_fd);
279 		return (error);
280 	case F_DUP2FD_CLOEXEC:
281 		newmin = dat->fc_fd;
282 		error = kern_dup(DUP_FIXED | DUP_CLOEXEC, fd, newmin,
283 				 &dat->fc_fd);
284 		return (error);
285 	default:
286 		break;
287 	}
288 
289 	/*
290 	 * Operations on file pointers
291 	 */
292 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
293 		return (EBADF);
294 
295 	switch (cmd) {
296 	case F_GETFL:
297 		dat->fc_flags = OFLAGS(fp->f_flag);
298 		error = 0;
299 		break;
300 
301 	case F_SETFL:
302 		oflags = fp->f_flag;
303 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
304 		nflags |= oflags & ~FCNTLFLAGS;
305 
306 		error = 0;
307 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
308 			error = EINVAL;
309 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
310 			tmp = nflags & FASYNC;
311 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
312 					 cred, NULL);
313 		}
314 
315 		/*
316 		 * If no error, must be atomically set.
317 		 */
318 		while (error == 0) {
319 			oflags = fp->f_flag;
320 			cpu_ccfence();
321 			nflags = (oflags & ~FCNTLFLAGS) | (nflags & FCNTLFLAGS);
322 			if (atomic_cmpset_int(&fp->f_flag, oflags, nflags))
323 				break;
324 			cpu_pause();
325 		}
326 		break;
327 
328 	case F_GETOWN:
329 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
330 				 cred, NULL);
331 		break;
332 
333 	case F_SETOWN:
334 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
335 				 cred, NULL);
336 		break;
337 
338 	case F_SETLKW:
339 		flg |= F_WAIT;
340 		/* Fall into F_SETLK */
341 
342 	case F_SETLK:
343 		if (fp->f_type != DTYPE_VNODE) {
344 			error = EBADF;
345 			break;
346 		}
347 		vp = (struct vnode *)fp->f_data;
348 
349 		/*
350 		 * copyin/lockop may block
351 		 */
352 		if (dat->fc_flock.l_whence == SEEK_CUR)
353 			dat->fc_flock.l_start += fp->f_offset;
354 
355 		switch (dat->fc_flock.l_type) {
356 		case F_RDLCK:
357 			if ((fp->f_flag & FREAD) == 0) {
358 				error = EBADF;
359 				break;
360 			}
361 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
362 				lwkt_gettoken(&p->p_leader->p_token);
363 				p->p_leader->p_flags |= P_ADVLOCK;
364 				lwkt_reltoken(&p->p_leader->p_token);
365 			}
366 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
367 			    &dat->fc_flock, flg);
368 			break;
369 		case F_WRLCK:
370 			if ((fp->f_flag & FWRITE) == 0) {
371 				error = EBADF;
372 				break;
373 			}
374 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
375 				lwkt_gettoken(&p->p_leader->p_token);
376 				p->p_leader->p_flags |= P_ADVLOCK;
377 				lwkt_reltoken(&p->p_leader->p_token);
378 			}
379 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
380 			    &dat->fc_flock, flg);
381 			break;
382 		case F_UNLCK:
383 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
384 				&dat->fc_flock, F_POSIX);
385 			break;
386 		default:
387 			error = EINVAL;
388 			break;
389 		}
390 
391 		/*
392 		 * It is possible to race a close() on the descriptor while
393 		 * we were blocked getting the lock.  If this occurs the
394 		 * close might not have caught the lock.
395 		 */
396 		if (checkfdclosed(p->p_fd, fd, fp)) {
397 			dat->fc_flock.l_whence = SEEK_SET;
398 			dat->fc_flock.l_start = 0;
399 			dat->fc_flock.l_len = 0;
400 			dat->fc_flock.l_type = F_UNLCK;
401 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
402 					   F_UNLCK, &dat->fc_flock, F_POSIX);
403 		}
404 		break;
405 
406 	case F_GETLK:
407 		if (fp->f_type != DTYPE_VNODE) {
408 			error = EBADF;
409 			break;
410 		}
411 		vp = (struct vnode *)fp->f_data;
412 		/*
413 		 * copyin/lockop may block
414 		 */
415 		if (dat->fc_flock.l_type != F_RDLCK &&
416 		    dat->fc_flock.l_type != F_WRLCK &&
417 		    dat->fc_flock.l_type != F_UNLCK) {
418 			error = EINVAL;
419 			break;
420 		}
421 		if (dat->fc_flock.l_whence == SEEK_CUR)
422 			dat->fc_flock.l_start += fp->f_offset;
423 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
424 			    &dat->fc_flock, F_POSIX);
425 		break;
426 	default:
427 		error = EINVAL;
428 		break;
429 	}
430 
431 	fdrop(fp);
432 	return (error);
433 }
434 
435 /*
436  * The file control system call.
437  */
438 int
439 sys_fcntl(struct fcntl_args *uap)
440 {
441 	union fcntl_dat dat;
442 	int error;
443 
444 	switch (uap->cmd) {
445 	case F_DUPFD:
446 	case F_DUP2FD:
447 	case F_DUPFD_CLOEXEC:
448 	case F_DUP2FD_CLOEXEC:
449 		dat.fc_fd = uap->arg;
450 		break;
451 	case F_SETFD:
452 		dat.fc_cloexec = uap->arg;
453 		break;
454 	case F_SETFL:
455 		dat.fc_flags = uap->arg;
456 		break;
457 	case F_SETOWN:
458 		dat.fc_owner = uap->arg;
459 		break;
460 	case F_SETLKW:
461 	case F_SETLK:
462 	case F_GETLK:
463 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
464 			       sizeof(struct flock));
465 		if (error)
466 			return (error);
467 		break;
468 	}
469 
470 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
471 
472 	if (error == 0) {
473 		switch (uap->cmd) {
474 		case F_DUPFD:
475 		case F_DUP2FD:
476 		case F_DUPFD_CLOEXEC:
477 		case F_DUP2FD_CLOEXEC:
478 			uap->sysmsg_result = dat.fc_fd;
479 			break;
480 		case F_GETFD:
481 			uap->sysmsg_result = dat.fc_cloexec;
482 			break;
483 		case F_GETFL:
484 			uap->sysmsg_result = dat.fc_flags;
485 			break;
486 		case F_GETOWN:
487 			uap->sysmsg_result = dat.fc_owner;
488 			break;
489 		case F_GETLK:
490 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
491 			    sizeof(struct flock));
492 			break;
493 		}
494 	}
495 
496 	return (error);
497 }
498 
499 /*
500  * Common code for dup, dup2, and fcntl(F_DUPFD).
501  *
502  * There are four type flags: DUP_FCNTL, DUP_FIXED, DUP_VARIABLE, and
503  * DUP_CLOEXEC.
504  *
505  * DUP_FCNTL is for handling EINVAL vs. EBADF differences between
506  * fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC and dup2() (per POSIX).
507  * The next two flags are mutually exclusive, and the fourth is optional.
508  * DUP_FIXED tells kern_dup() to destructively dup over an existing file
509  * descriptor if "new" is already open.  DUP_VARIABLE tells kern_dup()
510  * to find the lowest unused file descriptor that is greater than or
511  * equal to "new".  DUP_CLOEXEC, which works with either of the first
512  * two flags, sets the close-on-exec flag on the "new" file descriptor.
513  */
514 int
515 kern_dup(int flags, int old, int new, int *res)
516 {
517 	struct thread *td = curthread;
518 	struct proc *p = td->td_proc;
519 	struct filedesc *fdp = p->p_fd;
520 	struct file *fp;
521 	struct file *delfp;
522 	int oldflags;
523 	int holdleaders;
524 	int dtsize;
525 	int error, newfd;
526 
527 	/*
528 	 * Verify that we have a valid descriptor to dup from and
529 	 * possibly to dup to. When the new descriptor is out of
530 	 * bounds, fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC must
531 	 * return EINVAL, while dup2() returns EBADF in
532 	 * this case.
533 	 *
534 	 * NOTE: maxfilesperuser is not applicable to dup()
535 	 */
536 retry:
537 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
538 		dtsize = INT_MAX;
539 	else
540 		dtsize = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
541 	if (dtsize > maxfilesperproc)
542 		dtsize = maxfilesperproc;
543 	if (dtsize < minfilesperproc)
544 		dtsize = minfilesperproc;
545 
546 	if (new < 0 || new > dtsize)
547 		return (flags & DUP_FCNTL ? EINVAL : EBADF);
548 
549 	spin_lock(&fdp->fd_spin);
550 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
551 		spin_unlock(&fdp->fd_spin);
552 		return (EBADF);
553 	}
554 	if ((flags & DUP_FIXED) && old == new) {
555 		*res = new;
556 		if (flags & DUP_CLOEXEC)
557 			fdp->fd_files[new].fileflags |= UF_EXCLOSE;
558 		spin_unlock(&fdp->fd_spin);
559 		return (0);
560 	}
561 	fp = fdp->fd_files[old].fp;
562 	oldflags = fdp->fd_files[old].fileflags;
563 	fhold(fp);
564 
565 	/*
566 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
567 	 * if the requested descriptor is beyond the current table size.
568 	 *
569 	 * This can block.  Retry if the source descriptor no longer matches
570 	 * or if our expectation in the expansion case races.
571 	 *
572 	 * If we are not expanding or allocating a new decriptor, then reset
573 	 * the target descriptor to a reserved state so we have a uniform
574 	 * setup for the next code block.
575 	 */
576 	if ((flags & DUP_VARIABLE) || new >= fdp->fd_nfiles) {
577 		spin_unlock(&fdp->fd_spin);
578 		error = fdalloc(p, new, &newfd);
579 		spin_lock(&fdp->fd_spin);
580 		if (error) {
581 			spin_unlock(&fdp->fd_spin);
582 			fdrop(fp);
583 			return (error);
584 		}
585 		/*
586 		 * Check for ripout
587 		 */
588 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
589 			fsetfd_locked(fdp, NULL, newfd);
590 			spin_unlock(&fdp->fd_spin);
591 			fdrop(fp);
592 			goto retry;
593 		}
594 		/*
595 		 * Check for expansion race
596 		 */
597 		if ((flags & DUP_VARIABLE) == 0 && new != newfd) {
598 			fsetfd_locked(fdp, NULL, newfd);
599 			spin_unlock(&fdp->fd_spin);
600 			fdrop(fp);
601 			goto retry;
602 		}
603 		/*
604 		 * Check for ripout, newfd reused old (this case probably
605 		 * can't occur).
606 		 */
607 		if (old == newfd) {
608 			fsetfd_locked(fdp, NULL, newfd);
609 			spin_unlock(&fdp->fd_spin);
610 			fdrop(fp);
611 			goto retry;
612 		}
613 		new = newfd;
614 		delfp = NULL;
615 	} else {
616 		if (fdp->fd_files[new].reserved) {
617 			spin_unlock(&fdp->fd_spin);
618 			fdrop(fp);
619 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
620 			tsleep(fdp, 0, "fdres", hz);
621 			goto retry;
622 		}
623 
624 		/*
625 		 * If the target descriptor was never allocated we have
626 		 * to allocate it.  If it was we have to clean out the
627 		 * old descriptor.  delfp inherits the ref from the
628 		 * descriptor table.
629 		 */
630 		delfp = fdp->fd_files[new].fp;
631 		fdp->fd_files[new].fp = NULL;
632 		fdp->fd_files[new].reserved = 1;
633 		if (delfp == NULL) {
634 			fdreserve_locked(fdp, new, 1);
635 			if (new > fdp->fd_lastfile)
636 				fdp->fd_lastfile = new;
637 		}
638 
639 	}
640 
641 	/*
642 	 * NOTE: still holding an exclusive spinlock
643 	 */
644 
645 	/*
646 	 * If a descriptor is being overwritten we may hve to tell
647 	 * fdfree() to sleep to ensure that all relevant process
648 	 * leaders can be traversed in closef().
649 	 */
650 	if (delfp != NULL && p->p_fdtol != NULL) {
651 		fdp->fd_holdleaderscount++;
652 		holdleaders = 1;
653 	} else {
654 		holdleaders = 0;
655 	}
656 	KASSERT(delfp == NULL || (flags & DUP_FIXED),
657 		("dup() picked an open file"));
658 
659 	/*
660 	 * Duplicate the source descriptor, update lastfile.  If the new
661 	 * descriptor was not allocated and we aren't replacing an existing
662 	 * descriptor we have to mark the descriptor as being in use.
663 	 *
664 	 * The fd_files[] array inherits fp's hold reference.
665 	 */
666 	fsetfd_locked(fdp, fp, new);
667 	if ((flags & DUP_CLOEXEC) != 0)
668 		fdp->fd_files[new].fileflags = oldflags | UF_EXCLOSE;
669 	else
670 		fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
671 	spin_unlock(&fdp->fd_spin);
672 	fdrop(fp);
673 	*res = new;
674 
675 	/*
676 	 * If we dup'd over a valid file, we now own the reference to it
677 	 * and must dispose of it using closef() semantics (as if a
678 	 * close() were performed on it).
679 	 */
680 	if (delfp) {
681 		if (SLIST_FIRST(&delfp->f_klist))
682 			knote_fdclose(delfp, fdp, new);
683 		closef(delfp, p);
684 		if (holdleaders) {
685 			spin_lock(&fdp->fd_spin);
686 			fdp->fd_holdleaderscount--;
687 			if (fdp->fd_holdleaderscount == 0 &&
688 			    fdp->fd_holdleaderswakeup != 0) {
689 				fdp->fd_holdleaderswakeup = 0;
690 				spin_unlock(&fdp->fd_spin);
691 				wakeup(&fdp->fd_holdleaderscount);
692 			} else {
693 				spin_unlock(&fdp->fd_spin);
694 			}
695 		}
696 	}
697 	return (0);
698 }
699 
700 /*
701  * If sigio is on the list associated with a process or process group,
702  * disable signalling from the device, remove sigio from the list and
703  * free sigio.
704  */
705 void
706 funsetown(struct sigio **sigiop)
707 {
708 	struct pgrp *pgrp;
709 	struct proc *p;
710 	struct sigio *sigio;
711 
712 	if ((sigio = *sigiop) != NULL) {
713 		lwkt_gettoken(&sigio_token);	/* protect sigio */
714 		KKASSERT(sigiop == sigio->sio_myref);
715 		sigio = *sigiop;
716 		*sigiop = NULL;
717 		lwkt_reltoken(&sigio_token);
718 	}
719 	if (sigio == NULL)
720 		return;
721 
722 	if (sigio->sio_pgid < 0) {
723 		pgrp = sigio->sio_pgrp;
724 		sigio->sio_pgrp = NULL;
725 		lwkt_gettoken(&pgrp->pg_token);
726 		SLIST_REMOVE(&pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio);
727 		lwkt_reltoken(&pgrp->pg_token);
728 		pgrel(pgrp);
729 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
730 		p = sigio->sio_proc;
731 		sigio->sio_proc = NULL;
732 		PHOLD(p);
733 		lwkt_gettoken(&p->p_token);
734 		SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
735 		lwkt_reltoken(&p->p_token);
736 		PRELE(p);
737 	}
738 	crfree(sigio->sio_ucred);
739 	sigio->sio_ucred = NULL;
740 	kfree(sigio, M_SIGIO);
741 }
742 
743 /*
744  * Free a list of sigio structures.  Caller is responsible for ensuring
745  * that the list is MPSAFE.
746  */
747 void
748 funsetownlst(struct sigiolst *sigiolst)
749 {
750 	struct sigio *sigio;
751 
752 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
753 		funsetown(sigio->sio_myref);
754 }
755 
756 /*
757  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
758  *
759  * After permission checking, add a sigio structure to the sigio list for
760  * the process or process group.
761  */
762 int
763 fsetown(pid_t pgid, struct sigio **sigiop)
764 {
765 	struct proc *proc = NULL;
766 	struct pgrp *pgrp = NULL;
767 	struct sigio *sigio;
768 	int error;
769 
770 	if (pgid == 0) {
771 		funsetown(sigiop);
772 		return (0);
773 	}
774 
775 	if (pgid > 0) {
776 		proc = pfind(pgid);
777 		if (proc == NULL) {
778 			error = ESRCH;
779 			goto done;
780 		}
781 
782 		/*
783 		 * Policy - Don't allow a process to FSETOWN a process
784 		 * in another session.
785 		 *
786 		 * Remove this test to allow maximum flexibility or
787 		 * restrict FSETOWN to the current process or process
788 		 * group for maximum safety.
789 		 */
790 		if (proc->p_session != curproc->p_session) {
791 			error = EPERM;
792 			goto done;
793 		}
794 	} else /* if (pgid < 0) */ {
795 		pgrp = pgfind(-pgid);
796 		if (pgrp == NULL) {
797 			error = ESRCH;
798 			goto done;
799 		}
800 
801 		/*
802 		 * Policy - Don't allow a process to FSETOWN a process
803 		 * in another session.
804 		 *
805 		 * Remove this test to allow maximum flexibility or
806 		 * restrict FSETOWN to the current process or process
807 		 * group for maximum safety.
808 		 */
809 		if (pgrp->pg_session != curproc->p_session) {
810 			error = EPERM;
811 			goto done;
812 		}
813 	}
814 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK | M_ZERO);
815 	if (pgid > 0) {
816 		KKASSERT(pgrp == NULL);
817 		lwkt_gettoken(&proc->p_token);
818 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
819 		sigio->sio_proc = proc;
820 		lwkt_reltoken(&proc->p_token);
821 	} else {
822 		KKASSERT(proc == NULL);
823 		lwkt_gettoken(&pgrp->pg_token);
824 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
825 		sigio->sio_pgrp = pgrp;
826 		lwkt_reltoken(&pgrp->pg_token);
827 		pgrp = NULL;
828 	}
829 	sigio->sio_pgid = pgid;
830 	sigio->sio_ucred = crhold(curthread->td_ucred);
831 	/* It would be convenient if p_ruid was in ucred. */
832 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
833 	sigio->sio_myref = sigiop;
834 
835 	lwkt_gettoken(&sigio_token);
836 	while (*sigiop)
837 		funsetown(sigiop);
838 	*sigiop = sigio;
839 	lwkt_reltoken(&sigio_token);
840 	error = 0;
841 done:
842 	if (pgrp)
843 		pgrel(pgrp);
844 	if (proc)
845 		PRELE(proc);
846 	return (error);
847 }
848 
849 /*
850  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
851  */
852 pid_t
853 fgetown(struct sigio **sigiop)
854 {
855 	struct sigio *sigio;
856 	pid_t own;
857 
858 	lwkt_gettoken_shared(&sigio_token);
859 	sigio = *sigiop;
860 	own = (sigio != NULL ? sigio->sio_pgid : 0);
861 	lwkt_reltoken(&sigio_token);
862 
863 	return (own);
864 }
865 
866 /*
867  * Close many file descriptors.
868  */
869 int
870 sys_closefrom(struct closefrom_args *uap)
871 {
872 	return(kern_closefrom(uap->fd));
873 }
874 
875 /*
876  * Close all file descriptors greater then or equal to fd
877  */
878 int
879 kern_closefrom(int fd)
880 {
881 	struct thread *td = curthread;
882 	struct proc *p = td->td_proc;
883 	struct filedesc *fdp;
884 
885 	KKASSERT(p);
886 	fdp = p->p_fd;
887 
888 	if (fd < 0)
889 		return (EINVAL);
890 
891 	/*
892 	 * NOTE: This function will skip unassociated descriptors and
893 	 * reserved descriptors that have not yet been assigned.
894 	 * fd_lastfile can change as a side effect of kern_close().
895 	 */
896 	spin_lock(&fdp->fd_spin);
897 	while (fd <= fdp->fd_lastfile) {
898 		if (fdp->fd_files[fd].fp != NULL) {
899 			spin_unlock(&fdp->fd_spin);
900 			/* ok if this races another close */
901 			if (kern_close(fd) == EINTR)
902 				return (EINTR);
903 			spin_lock(&fdp->fd_spin);
904 		}
905 		++fd;
906 	}
907 	spin_unlock(&fdp->fd_spin);
908 	return (0);
909 }
910 
911 /*
912  * Close a file descriptor.
913  */
914 int
915 sys_close(struct close_args *uap)
916 {
917 	return(kern_close(uap->fd));
918 }
919 
920 /*
921  * close() helper
922  */
923 int
924 kern_close(int fd)
925 {
926 	struct thread *td = curthread;
927 	struct proc *p = td->td_proc;
928 	struct filedesc *fdp;
929 	struct file *fp;
930 	int error;
931 	int holdleaders;
932 
933 	KKASSERT(p);
934 	fdp = p->p_fd;
935 
936 	spin_lock(&fdp->fd_spin);
937 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
938 		spin_unlock(&fdp->fd_spin);
939 		return (EBADF);
940 	}
941 	holdleaders = 0;
942 	if (p->p_fdtol != NULL) {
943 		/*
944 		 * Ask fdfree() to sleep to ensure that all relevant
945 		 * process leaders can be traversed in closef().
946 		 */
947 		fdp->fd_holdleaderscount++;
948 		holdleaders = 1;
949 	}
950 
951 	/*
952 	 * we now hold the fp reference that used to be owned by the descriptor
953 	 * array.
954 	 */
955 	spin_unlock(&fdp->fd_spin);
956 	if (SLIST_FIRST(&fp->f_klist))
957 		knote_fdclose(fp, fdp, fd);
958 	error = closef(fp, p);
959 	if (holdleaders) {
960 		spin_lock(&fdp->fd_spin);
961 		fdp->fd_holdleaderscount--;
962 		if (fdp->fd_holdleaderscount == 0 &&
963 		    fdp->fd_holdleaderswakeup != 0) {
964 			fdp->fd_holdleaderswakeup = 0;
965 			spin_unlock(&fdp->fd_spin);
966 			wakeup(&fdp->fd_holdleaderscount);
967 		} else {
968 			spin_unlock(&fdp->fd_spin);
969 		}
970 	}
971 	return (error);
972 }
973 
974 /*
975  * shutdown_args(int fd, int how)
976  */
977 int
978 kern_shutdown(int fd, int how)
979 {
980 	struct thread *td = curthread;
981 	struct proc *p = td->td_proc;
982 	struct file *fp;
983 	int error;
984 
985 	KKASSERT(p);
986 
987 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
988 		return (EBADF);
989 	error = fo_shutdown(fp, how);
990 	fdrop(fp);
991 
992 	return (error);
993 }
994 
995 /*
996  * MPALMOSTSAFE
997  */
998 int
999 sys_shutdown(struct shutdown_args *uap)
1000 {
1001 	int error;
1002 
1003 	error = kern_shutdown(uap->s, uap->how);
1004 
1005 	return (error);
1006 }
1007 
1008 /*
1009  * fstat() helper
1010  */
1011 int
1012 kern_fstat(int fd, struct stat *ub)
1013 {
1014 	struct thread *td = curthread;
1015 	struct proc *p = td->td_proc;
1016 	struct file *fp;
1017 	int error;
1018 
1019 	KKASSERT(p);
1020 
1021 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
1022 		return (EBADF);
1023 	error = fo_stat(fp, ub, td->td_ucred);
1024 	fdrop(fp);
1025 
1026 	return (error);
1027 }
1028 
1029 /*
1030  * Return status information about a file descriptor.
1031  */
1032 int
1033 sys_fstat(struct fstat_args *uap)
1034 {
1035 	struct stat st;
1036 	int error;
1037 
1038 	error = kern_fstat(uap->fd, &st);
1039 
1040 	if (error == 0)
1041 		error = copyout(&st, uap->sb, sizeof(st));
1042 	return (error);
1043 }
1044 
1045 /*
1046  * Return pathconf information about a file descriptor.
1047  *
1048  * MPALMOSTSAFE
1049  */
1050 int
1051 sys_fpathconf(struct fpathconf_args *uap)
1052 {
1053 	struct thread *td = curthread;
1054 	struct proc *p = td->td_proc;
1055 	struct file *fp;
1056 	struct vnode *vp;
1057 	int error = 0;
1058 
1059 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
1060 		return (EBADF);
1061 
1062 	switch (fp->f_type) {
1063 	case DTYPE_PIPE:
1064 	case DTYPE_SOCKET:
1065 		if (uap->name != _PC_PIPE_BUF) {
1066 			error = EINVAL;
1067 		} else {
1068 			uap->sysmsg_result = PIPE_BUF;
1069 			error = 0;
1070 		}
1071 		break;
1072 	case DTYPE_FIFO:
1073 	case DTYPE_VNODE:
1074 		vp = (struct vnode *)fp->f_data;
1075 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
1076 		break;
1077 	default:
1078 		error = EOPNOTSUPP;
1079 		break;
1080 	}
1081 	fdrop(fp);
1082 	return(error);
1083 }
1084 
1085 static int fdexpand;
1086 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0,
1087     "Number of times a file table has been expanded");
1088 
1089 /*
1090  * Grow the file table so it can hold through descriptor (want).
1091  *
1092  * The fdp's spinlock must be held exclusively on entry and may be held
1093  * exclusively on return.  The spinlock may be cycled by the routine.
1094  */
1095 static void
1096 fdgrow_locked(struct filedesc *fdp, int want)
1097 {
1098 	struct fdnode *newfiles;
1099 	struct fdnode *oldfiles;
1100 	int nf, extra;
1101 
1102 	nf = fdp->fd_nfiles;
1103 	do {
1104 		/* nf has to be of the form 2^n - 1 */
1105 		nf = 2 * nf + 1;
1106 	} while (nf <= want);
1107 
1108 	spin_unlock(&fdp->fd_spin);
1109 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1110 	spin_lock(&fdp->fd_spin);
1111 
1112 	/*
1113 	 * We could have raced another extend while we were not holding
1114 	 * the spinlock.
1115 	 */
1116 	if (fdp->fd_nfiles >= nf) {
1117 		spin_unlock(&fdp->fd_spin);
1118 		kfree(newfiles, M_FILEDESC);
1119 		spin_lock(&fdp->fd_spin);
1120 		return;
1121 	}
1122 	/*
1123 	 * Copy the existing ofile and ofileflags arrays
1124 	 * and zero the new portion of each array.
1125 	 */
1126 	extra = nf - fdp->fd_nfiles;
1127 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1128 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1129 
1130 	oldfiles = fdp->fd_files;
1131 	fdp->fd_files = newfiles;
1132 	fdp->fd_nfiles = nf;
1133 
1134 	if (oldfiles != fdp->fd_builtin_files) {
1135 		spin_unlock(&fdp->fd_spin);
1136 		kfree(oldfiles, M_FILEDESC);
1137 		spin_lock(&fdp->fd_spin);
1138 	}
1139 	fdexpand++;
1140 }
1141 
1142 /*
1143  * Number of nodes in right subtree, including the root.
1144  */
1145 static __inline int
1146 right_subtree_size(int n)
1147 {
1148 	return (n ^ (n | (n + 1)));
1149 }
1150 
1151 /*
1152  * Bigger ancestor.
1153  */
1154 static __inline int
1155 right_ancestor(int n)
1156 {
1157 	return (n | (n + 1));
1158 }
1159 
1160 /*
1161  * Smaller ancestor.
1162  */
1163 static __inline int
1164 left_ancestor(int n)
1165 {
1166 	return ((n & (n + 1)) - 1);
1167 }
1168 
1169 /*
1170  * Traverse the in-place binary tree buttom-up adjusting the allocation
1171  * count so scans can determine where free descriptors are located.
1172  *
1173  * caller must be holding an exclusive spinlock on fdp
1174  */
1175 static
1176 void
1177 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1178 {
1179 	while (fd >= 0) {
1180 		fdp->fd_files[fd].allocated += incr;
1181 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1182 		fd = left_ancestor(fd);
1183 	}
1184 }
1185 
1186 /*
1187  * Reserve a file descriptor for the process.  If no error occurs, the
1188  * caller MUST at some point call fsetfd() or assign a file pointer
1189  * or dispose of the reservation.
1190  */
1191 int
1192 fdalloc(struct proc *p, int want, int *result)
1193 {
1194 	struct filedesc *fdp = p->p_fd;
1195 	struct uidinfo *uip;
1196 	int fd, rsize, rsum, node, lim;
1197 
1198 	/*
1199 	 * Check dtable size limit
1200 	 */
1201 	spin_lock(&p->p_limit->p_spin);
1202 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1203 		lim = INT_MAX;
1204 	else
1205 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1206 	spin_unlock(&p->p_limit->p_spin);
1207 
1208 	if (lim > maxfilesperproc)
1209 		lim = maxfilesperproc;
1210 	if (lim < minfilesperproc)
1211 		lim = minfilesperproc;
1212 	if (want >= lim)
1213 		return (EMFILE);
1214 
1215 	/*
1216 	 * Check that the user has not run out of descriptors (non-root only).
1217 	 * As a safety measure the dtable is allowed to have at least
1218 	 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1219 	 */
1220 	if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1221 		uip = p->p_ucred->cr_uidinfo;
1222 		if (uip->ui_openfiles > maxfilesperuser) {
1223 			krateprintf(&krate_uidinfo,
1224 				    "Warning: user %d pid %d (%s) ran out of "
1225 				    "file descriptors (%d/%d)\n",
1226 				    p->p_ucred->cr_uid, (int)p->p_pid,
1227 				    p->p_comm,
1228 				    uip->ui_openfiles, maxfilesperuser);
1229 			return(ENFILE);
1230 		}
1231 	}
1232 
1233 	/*
1234 	 * Grow the dtable if necessary
1235 	 */
1236 	spin_lock(&fdp->fd_spin);
1237 	if (want >= fdp->fd_nfiles)
1238 		fdgrow_locked(fdp, want);
1239 
1240 	/*
1241 	 * Search for a free descriptor starting at the higher
1242 	 * of want or fd_freefile.  If that fails, consider
1243 	 * expanding the ofile array.
1244 	 *
1245 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1246 	 * count.  If we happen to see a value of 0 then we can shortcut
1247 	 * our search.  Otherwise we run through through the tree going
1248 	 * down branches we know have free descriptor(s) until we hit a
1249 	 * leaf node.  The leaf node will be free but will not necessarily
1250 	 * have an allocated field of 0.
1251 	 */
1252 retry:
1253 	/* move up the tree looking for a subtree with a free node */
1254 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1255 	     fd = right_ancestor(fd)) {
1256 		if (fdp->fd_files[fd].allocated == 0)
1257 			goto found;
1258 
1259 		rsize = right_subtree_size(fd);
1260 		if (fdp->fd_files[fd].allocated == rsize)
1261 			continue;	/* right subtree full */
1262 
1263 		/*
1264 		 * Free fd is in the right subtree of the tree rooted at fd.
1265 		 * Call that subtree R.  Look for the smallest (leftmost)
1266 		 * subtree of R with an unallocated fd: continue moving
1267 		 * down the left branch until encountering a full left
1268 		 * subtree, then move to the right.
1269 		 */
1270 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1271 			node = fd + rsize;
1272 			rsum += fdp->fd_files[node].allocated;
1273 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1274 				fd = node;	/* move to the right */
1275 				if (fdp->fd_files[node].allocated == 0)
1276 					goto found;
1277 				rsum = 0;
1278 			}
1279 		}
1280 		goto found;
1281 	}
1282 
1283 	/*
1284 	 * No space in current array.  Expand?
1285 	 */
1286 	if (fdp->fd_nfiles >= lim) {
1287 		spin_unlock(&fdp->fd_spin);
1288 		return (EMFILE);
1289 	}
1290 	fdgrow_locked(fdp, want);
1291 	goto retry;
1292 
1293 found:
1294 	KKASSERT(fd < fdp->fd_nfiles);
1295 	if (fd > fdp->fd_lastfile)
1296 		fdp->fd_lastfile = fd;
1297 	if (want <= fdp->fd_freefile)
1298 		fdp->fd_freefile = fd;
1299 	*result = fd;
1300 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1301 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1302 	fdp->fd_files[fd].fileflags = 0;
1303 	fdp->fd_files[fd].reserved = 1;
1304 	fdreserve_locked(fdp, fd, 1);
1305 	spin_unlock(&fdp->fd_spin);
1306 	return (0);
1307 }
1308 
1309 /*
1310  * Check to see whether n user file descriptors
1311  * are available to the process p.
1312  */
1313 int
1314 fdavail(struct proc *p, int n)
1315 {
1316 	struct filedesc *fdp = p->p_fd;
1317 	struct fdnode *fdnode;
1318 	int i, lim, last;
1319 
1320 	spin_lock(&p->p_limit->p_spin);
1321 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1322 		lim = INT_MAX;
1323 	else
1324 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1325 	spin_unlock(&p->p_limit->p_spin);
1326 
1327 	if (lim > maxfilesperproc)
1328 		lim = maxfilesperproc;
1329 	if (lim < minfilesperproc)
1330 		lim = minfilesperproc;
1331 
1332 	spin_lock(&fdp->fd_spin);
1333 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1334 		spin_unlock(&fdp->fd_spin);
1335 		return (1);
1336 	}
1337 	last = min(fdp->fd_nfiles, lim);
1338 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1339 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1340 		if (fdnode->fp == NULL && --n <= 0) {
1341 			spin_unlock(&fdp->fd_spin);
1342 			return (1);
1343 		}
1344 	}
1345 	spin_unlock(&fdp->fd_spin);
1346 	return (0);
1347 }
1348 
1349 /*
1350  * Revoke open descriptors referencing (f_data, f_type)
1351  *
1352  * Any revoke executed within a prison is only able to
1353  * revoke descriptors for processes within that prison.
1354  *
1355  * Returns 0 on success or an error code.
1356  */
1357 struct fdrevoke_info {
1358 	void *data;
1359 	short type;
1360 	short unused;
1361 	int found;
1362 	struct ucred *cred;
1363 	struct file *nfp;
1364 };
1365 
1366 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1367 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1368 
1369 int
1370 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1371 {
1372 	struct fdrevoke_info info;
1373 	int error;
1374 
1375 	bzero(&info, sizeof(info));
1376 	info.data = f_data;
1377 	info.type = f_type;
1378 	info.cred = cred;
1379 	error = falloc(NULL, &info.nfp, NULL);
1380 	if (error)
1381 		return (error);
1382 
1383 	/*
1384 	 * Scan the file pointer table once.  dups do not dup file pointers,
1385 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1386 	 * being revoked.
1387 	 *
1388 	 * Any fps sent over unix-domain sockets will be revoked by the
1389 	 * socket code checking for FREVOKED when the fps are externialized.
1390 	 * revoke_token is used to make sure that fps marked FREVOKED and
1391 	 * externalized will be picked up by the following allproc_scan().
1392 	 */
1393 	lwkt_gettoken(&revoke_token);
1394 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1395 	lwkt_reltoken(&revoke_token);
1396 
1397 	/*
1398 	 * If any fps were marked track down the related descriptors
1399 	 * and close them.  Any dup()s at this point will notice
1400 	 * the FREVOKED already set in the fp and do the right thing.
1401 	 */
1402 	if (info.found)
1403 		allproc_scan(fdrevoke_proc_callback, &info);
1404 	fdrop(info.nfp);
1405 	return(0);
1406 }
1407 
1408 /*
1409  * Locate matching file pointers directly.
1410  *
1411  * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1412  */
1413 static int
1414 fdrevoke_check_callback(struct file *fp, void *vinfo)
1415 {
1416 	struct fdrevoke_info *info = vinfo;
1417 
1418 	/*
1419 	 * File pointers already flagged for revokation are skipped.
1420 	 */
1421 	if (fp->f_flag & FREVOKED)
1422 		return(0);
1423 
1424 	/*
1425 	 * If revoking from a prison file pointers created outside of
1426 	 * that prison, or file pointers without creds, cannot be revoked.
1427 	 */
1428 	if (info->cred->cr_prison &&
1429 	    (fp->f_cred == NULL ||
1430 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1431 		return(0);
1432 	}
1433 
1434 	/*
1435 	 * If the file pointer matches then mark it for revocation.  The
1436 	 * flag is currently only used by unp_revoke_gc().
1437 	 *
1438 	 * info->found is a heuristic and can race in a SMP environment.
1439 	 */
1440 	if (info->data == fp->f_data && info->type == fp->f_type) {
1441 		atomic_set_int(&fp->f_flag, FREVOKED);
1442 		info->found = 1;
1443 	}
1444 	return(0);
1445 }
1446 
1447 /*
1448  * Locate matching file pointers via process descriptor tables.
1449  */
1450 static int
1451 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1452 {
1453 	struct fdrevoke_info *info = vinfo;
1454 	struct filedesc *fdp;
1455 	struct file *fp;
1456 	int n;
1457 
1458 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1459 		return(0);
1460 	if (info->cred->cr_prison &&
1461 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1462 		return(0);
1463 	}
1464 
1465 	/*
1466 	 * If the controlling terminal of the process matches the
1467 	 * vnode being revoked we clear the controlling terminal.
1468 	 *
1469 	 * The normal spec_close() may not catch this because it
1470 	 * uses curproc instead of p.
1471 	 */
1472 	if (p->p_session && info->type == DTYPE_VNODE &&
1473 	    info->data == p->p_session->s_ttyvp) {
1474 		p->p_session->s_ttyvp = NULL;
1475 		vrele(info->data);
1476 	}
1477 
1478 	/*
1479 	 * Softref the fdp to prevent it from being destroyed
1480 	 */
1481 	spin_lock(&p->p_spin);
1482 	if ((fdp = p->p_fd) == NULL) {
1483 		spin_unlock(&p->p_spin);
1484 		return(0);
1485 	}
1486 	atomic_add_int(&fdp->fd_softrefs, 1);
1487 	spin_unlock(&p->p_spin);
1488 
1489 	/*
1490 	 * Locate and close any matching file descriptors.
1491 	 */
1492 	spin_lock(&fdp->fd_spin);
1493 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1494 		if ((fp = fdp->fd_files[n].fp) == NULL)
1495 			continue;
1496 		if (fp->f_flag & FREVOKED) {
1497 			fhold(info->nfp);
1498 			fdp->fd_files[n].fp = info->nfp;
1499 			spin_unlock(&fdp->fd_spin);
1500 			knote_fdclose(fp, fdp, n);	/* XXX */
1501 			closef(fp, p);
1502 			spin_lock(&fdp->fd_spin);
1503 		}
1504 	}
1505 	spin_unlock(&fdp->fd_spin);
1506 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1507 	return(0);
1508 }
1509 
1510 /*
1511  * falloc:
1512  *	Create a new open file structure and reserve a file decriptor
1513  *	for the process that refers to it.
1514  *
1515  *	Root creds are checked using lp, or assumed if lp is NULL.  If
1516  *	resultfd is non-NULL then lp must also be non-NULL.  No file
1517  *	descriptor is reserved (and no process context is needed) if
1518  *	resultfd is NULL.
1519  *
1520  *	A file pointer with a refcount of 1 is returned.  Note that the
1521  *	file pointer is NOT associated with the descriptor.  If falloc
1522  *	returns success, fsetfd() MUST be called to either associate the
1523  *	file pointer or clear the reservation.
1524  */
1525 int
1526 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1527 {
1528 	static struct timeval lastfail;
1529 	static int curfail;
1530 	struct filelist_head *head;
1531 	struct file *fp;
1532 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1533 	int error;
1534 
1535 	fp = NULL;
1536 
1537 	/*
1538 	 * Handle filetable full issues and root overfill.
1539 	 */
1540 	if (nfiles >= maxfiles - maxfilesrootres &&
1541 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
1542 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1543 			kprintf("kern.maxfiles limit exceeded by uid %d, "
1544 				"please see tuning(7).\n",
1545 				cred->cr_ruid);
1546 		}
1547 		error = ENFILE;
1548 		goto done;
1549 	}
1550 
1551 	/*
1552 	 * Allocate a new file descriptor.
1553 	 */
1554 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1555 	spin_init(&fp->f_spin, "falloc");
1556 	SLIST_INIT(&fp->f_klist);
1557 	fp->f_count = 1;
1558 	fp->f_ops = &badfileops;
1559 	fp->f_seqcount = 1;
1560 	fsetcred(fp, cred);
1561 	atomic_add_int(&nfiles, 1);
1562 
1563 	head = fp2filelist(fp);
1564 	spin_lock(&head->spin);
1565 	LIST_INSERT_HEAD(&head->list, fp, f_list);
1566 	spin_unlock(&head->spin);
1567 
1568 	if (resultfd) {
1569 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
1570 			fdrop(fp);
1571 			fp = NULL;
1572 		}
1573 	} else {
1574 		error = 0;
1575 	}
1576 done:
1577 	*resultfp = fp;
1578 	return (error);
1579 }
1580 
1581 /*
1582  * Check for races against a file descriptor by determining that the
1583  * file pointer is still associated with the specified file descriptor,
1584  * and a close is not currently in progress.
1585  */
1586 int
1587 checkfdclosed(struct filedesc *fdp, int fd, struct file *fp)
1588 {
1589 	int error;
1590 
1591 	spin_lock_shared(&fdp->fd_spin);
1592 	if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1593 		error = EBADF;
1594 	else
1595 		error = 0;
1596 	spin_unlock_shared(&fdp->fd_spin);
1597 	return (error);
1598 }
1599 
1600 /*
1601  * Associate a file pointer with a previously reserved file descriptor.
1602  * This function always succeeds.
1603  *
1604  * If fp is NULL, the file descriptor is returned to the pool.
1605  */
1606 
1607 /*
1608  * (exclusive spinlock must be held on call)
1609  */
1610 static void
1611 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1612 {
1613 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1614 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1615 	if (fp) {
1616 		fhold(fp);
1617 		fdp->fd_files[fd].fp = fp;
1618 		fdp->fd_files[fd].reserved = 0;
1619 	} else {
1620 		fdp->fd_files[fd].reserved = 0;
1621 		fdreserve_locked(fdp, fd, -1);
1622 		fdfixup_locked(fdp, fd);
1623 	}
1624 }
1625 
1626 void
1627 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
1628 {
1629 	spin_lock(&fdp->fd_spin);
1630 	fsetfd_locked(fdp, fp, fd);
1631 	spin_unlock(&fdp->fd_spin);
1632 }
1633 
1634 /*
1635  * (exclusive spinlock must be held on call)
1636  */
1637 static
1638 struct file *
1639 funsetfd_locked(struct filedesc *fdp, int fd)
1640 {
1641 	struct file *fp;
1642 
1643 	if ((unsigned)fd >= fdp->fd_nfiles)
1644 		return (NULL);
1645 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1646 		return (NULL);
1647 	fdp->fd_files[fd].fp = NULL;
1648 	fdp->fd_files[fd].fileflags = 0;
1649 
1650 	fdreserve_locked(fdp, fd, -1);
1651 	fdfixup_locked(fdp, fd);
1652 	return(fp);
1653 }
1654 
1655 /*
1656  * WARNING: May not be called before initial fsetfd().
1657  */
1658 int
1659 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1660 {
1661 	int error;
1662 
1663 	spin_lock(&fdp->fd_spin);
1664 	if (((u_int)fd) >= fdp->fd_nfiles) {
1665 		error = EBADF;
1666 	} else if (fdp->fd_files[fd].fp == NULL) {
1667 		error = EBADF;
1668 	} else {
1669 		*flagsp = fdp->fd_files[fd].fileflags;
1670 		error = 0;
1671 	}
1672 	spin_unlock(&fdp->fd_spin);
1673 	return (error);
1674 }
1675 
1676 /*
1677  * WARNING: May not be called before initial fsetfd().
1678  */
1679 int
1680 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1681 {
1682 	int error;
1683 
1684 	spin_lock(&fdp->fd_spin);
1685 	if (((u_int)fd) >= fdp->fd_nfiles) {
1686 		error = EBADF;
1687 	} else if (fdp->fd_files[fd].fp == NULL) {
1688 		error = EBADF;
1689 	} else {
1690 		fdp->fd_files[fd].fileflags |= add_flags;
1691 		error = 0;
1692 	}
1693 	spin_unlock(&fdp->fd_spin);
1694 	return (error);
1695 }
1696 
1697 /*
1698  * WARNING: May not be called before initial fsetfd().
1699  */
1700 int
1701 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1702 {
1703 	int error;
1704 
1705 	spin_lock(&fdp->fd_spin);
1706 	if (((u_int)fd) >= fdp->fd_nfiles) {
1707 		error = EBADF;
1708 	} else if (fdp->fd_files[fd].fp == NULL) {
1709 		error = EBADF;
1710 	} else {
1711 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1712 		error = 0;
1713 	}
1714 	spin_unlock(&fdp->fd_spin);
1715 	return (error);
1716 }
1717 
1718 /*
1719  * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
1720  */
1721 void
1722 fsetcred(struct file *fp, struct ucred *ncr)
1723 {
1724 	struct ucred *ocr;
1725 	struct uidinfo *uip;
1726 
1727 	ocr = fp->f_cred;
1728 	if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
1729 		if (ocr) {
1730 			uip = ocr->cr_uidinfo;
1731 			atomic_add_int(&uip->ui_openfiles, -1);
1732 		}
1733 		if (ncr) {
1734 			uip = ncr->cr_uidinfo;
1735 			atomic_add_int(&uip->ui_openfiles, 1);
1736 		}
1737 	}
1738 	if (ncr)
1739 		crhold(ncr);
1740 	fp->f_cred = ncr;
1741 	if (ocr)
1742 		crfree(ocr);
1743 }
1744 
1745 /*
1746  * Free a file descriptor.
1747  */
1748 static
1749 void
1750 ffree(struct file *fp)
1751 {
1752 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1753 	fsetcred(fp, NULL);
1754 	if (fp->f_nchandle.ncp)
1755 	    cache_drop(&fp->f_nchandle);
1756 	kfree(fp, M_FILE);
1757 }
1758 
1759 /*
1760  * called from init_main, initialize filedesc0 for proc0.
1761  */
1762 void
1763 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1764 {
1765 	p0->p_fd = fdp0;
1766 	p0->p_fdtol = NULL;
1767 	fdp0->fd_refcnt = 1;
1768 	fdp0->fd_cmask = cmask;
1769 	fdp0->fd_files = fdp0->fd_builtin_files;
1770 	fdp0->fd_nfiles = NDFILE;
1771 	fdp0->fd_lastfile = -1;
1772 	spin_init(&fdp0->fd_spin, "fdinitbootstrap");
1773 }
1774 
1775 /*
1776  * Build a new filedesc structure.
1777  */
1778 struct filedesc *
1779 fdinit(struct proc *p)
1780 {
1781 	struct filedesc *newfdp;
1782 	struct filedesc *fdp = p->p_fd;
1783 
1784 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1785 	spin_lock(&fdp->fd_spin);
1786 	if (fdp->fd_cdir) {
1787 		newfdp->fd_cdir = fdp->fd_cdir;
1788 		vref(newfdp->fd_cdir);
1789 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1790 	}
1791 
1792 	/*
1793 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1794 	 * proc0, but should unconditionally exist in other processes.
1795 	 */
1796 	if (fdp->fd_rdir) {
1797 		newfdp->fd_rdir = fdp->fd_rdir;
1798 		vref(newfdp->fd_rdir);
1799 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1800 	}
1801 	if (fdp->fd_jdir) {
1802 		newfdp->fd_jdir = fdp->fd_jdir;
1803 		vref(newfdp->fd_jdir);
1804 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1805 	}
1806 	spin_unlock(&fdp->fd_spin);
1807 
1808 	/* Create the file descriptor table. */
1809 	newfdp->fd_refcnt = 1;
1810 	newfdp->fd_cmask = cmask;
1811 	newfdp->fd_files = newfdp->fd_builtin_files;
1812 	newfdp->fd_nfiles = NDFILE;
1813 	newfdp->fd_lastfile = -1;
1814 	spin_init(&newfdp->fd_spin, "fdinit");
1815 
1816 	return (newfdp);
1817 }
1818 
1819 /*
1820  * Share a filedesc structure.
1821  */
1822 struct filedesc *
1823 fdshare(struct proc *p)
1824 {
1825 	struct filedesc *fdp;
1826 
1827 	fdp = p->p_fd;
1828 	spin_lock(&fdp->fd_spin);
1829 	fdp->fd_refcnt++;
1830 	spin_unlock(&fdp->fd_spin);
1831 	return (fdp);
1832 }
1833 
1834 /*
1835  * Copy a filedesc structure.
1836  */
1837 int
1838 fdcopy(struct proc *p, struct filedesc **fpp)
1839 {
1840 	struct filedesc *fdp = p->p_fd;
1841 	struct filedesc *newfdp;
1842 	struct fdnode *fdnode;
1843 	int i;
1844 	int ni;
1845 
1846 	/*
1847 	 * Certain daemons might not have file descriptors.
1848 	 */
1849 	if (fdp == NULL)
1850 		return (0);
1851 
1852 	/*
1853 	 * Allocate the new filedesc and fd_files[] array.  This can race
1854 	 * with operations by other threads on the fdp so we have to be
1855 	 * careful.
1856 	 */
1857 	newfdp = kmalloc(sizeof(struct filedesc),
1858 			 M_FILEDESC, M_WAITOK | M_ZERO | M_NULLOK);
1859 	if (newfdp == NULL) {
1860 		*fpp = NULL;
1861 		return (-1);
1862 	}
1863 again:
1864 	spin_lock(&fdp->fd_spin);
1865 	if (fdp->fd_lastfile < NDFILE) {
1866 		newfdp->fd_files = newfdp->fd_builtin_files;
1867 		i = NDFILE;
1868 	} else {
1869 		/*
1870 		 * We have to allocate (N^2-1) entries for our in-place
1871 		 * binary tree.  Allow the table to shrink.
1872 		 */
1873 		i = fdp->fd_nfiles;
1874 		ni = (i - 1) / 2;
1875 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1876 			i = ni;
1877 			ni = (i - 1) / 2;
1878 		}
1879 		spin_unlock(&fdp->fd_spin);
1880 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1881 					  M_FILEDESC, M_WAITOK | M_ZERO);
1882 
1883 		/*
1884 		 * Check for race, retry
1885 		 */
1886 		spin_lock(&fdp->fd_spin);
1887 		if (i <= fdp->fd_lastfile) {
1888 			spin_unlock(&fdp->fd_spin);
1889 			kfree(newfdp->fd_files, M_FILEDESC);
1890 			goto again;
1891 		}
1892 	}
1893 
1894 	/*
1895 	 * Dup the remaining fields. vref() and cache_hold() can be
1896 	 * safely called while holding the read spinlock on fdp.
1897 	 *
1898 	 * The read spinlock on fdp is still being held.
1899 	 *
1900 	 * NOTE: vref and cache_hold calls for the case where the vnode
1901 	 * or cache entry already has at least one ref may be called
1902 	 * while holding spin locks.
1903 	 */
1904 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1905 		vref(newfdp->fd_cdir);
1906 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1907 	}
1908 	/*
1909 	 * We must check for fd_rdir here, at least for now because
1910 	 * the init process is created before we have access to the
1911 	 * rootvode to take a reference to it.
1912 	 */
1913 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1914 		vref(newfdp->fd_rdir);
1915 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1916 	}
1917 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1918 		vref(newfdp->fd_jdir);
1919 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1920 	}
1921 	newfdp->fd_refcnt = 1;
1922 	newfdp->fd_nfiles = i;
1923 	newfdp->fd_lastfile = fdp->fd_lastfile;
1924 	newfdp->fd_freefile = fdp->fd_freefile;
1925 	newfdp->fd_cmask = fdp->fd_cmask;
1926 	spin_init(&newfdp->fd_spin, "fdcopy");
1927 
1928 	/*
1929 	 * Copy the descriptor table through (i).  This also copies the
1930 	 * allocation state.   Then go through and ref the file pointers
1931 	 * and clean up any KQ descriptors.
1932 	 *
1933 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1934 	 * copied files yet we can ignore the return value from funsetfd().
1935 	 *
1936 	 * The read spinlock on fdp is still being held.
1937 	 */
1938 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1939 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1940 		fdnode = &newfdp->fd_files[i];
1941 		if (fdnode->reserved) {
1942 			fdreserve_locked(newfdp, i, -1);
1943 			fdnode->reserved = 0;
1944 			fdfixup_locked(newfdp, i);
1945 		} else if (fdnode->fp) {
1946 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1947 				(void)funsetfd_locked(newfdp, i);
1948 			} else {
1949 				fhold(fdnode->fp);
1950 			}
1951 		}
1952 	}
1953 	spin_unlock(&fdp->fd_spin);
1954 	*fpp = newfdp;
1955 	return (0);
1956 }
1957 
1958 /*
1959  * Release a filedesc structure.
1960  *
1961  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1962  */
1963 void
1964 fdfree(struct proc *p, struct filedesc *repl)
1965 {
1966 	struct filedesc *fdp;
1967 	struct fdnode *fdnode;
1968 	int i;
1969 	struct filedesc_to_leader *fdtol;
1970 	struct file *fp;
1971 	struct vnode *vp;
1972 	struct flock lf;
1973 
1974 	/*
1975 	 * Certain daemons might not have file descriptors.
1976 	 */
1977 	fdp = p->p_fd;
1978 	if (fdp == NULL) {
1979 		p->p_fd = repl;
1980 		return;
1981 	}
1982 
1983 	/*
1984 	 * Severe messing around to follow.
1985 	 */
1986 	spin_lock(&fdp->fd_spin);
1987 
1988 	/* Check for special need to clear POSIX style locks */
1989 	fdtol = p->p_fdtol;
1990 	if (fdtol != NULL) {
1991 		KASSERT(fdtol->fdl_refcount > 0,
1992 			("filedesc_to_refcount botch: fdl_refcount=%d",
1993 			 fdtol->fdl_refcount));
1994 		if (fdtol->fdl_refcount == 1 &&
1995 		    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
1996 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
1997 				fdnode = &fdp->fd_files[i];
1998 				if (fdnode->fp == NULL ||
1999 				    fdnode->fp->f_type != DTYPE_VNODE) {
2000 					continue;
2001 				}
2002 				fp = fdnode->fp;
2003 				fhold(fp);
2004 				spin_unlock(&fdp->fd_spin);
2005 
2006 				lf.l_whence = SEEK_SET;
2007 				lf.l_start = 0;
2008 				lf.l_len = 0;
2009 				lf.l_type = F_UNLCK;
2010 				vp = (struct vnode *)fp->f_data;
2011 				(void) VOP_ADVLOCK(vp,
2012 						   (caddr_t)p->p_leader,
2013 						   F_UNLCK,
2014 						   &lf,
2015 						   F_POSIX);
2016 				fdrop(fp);
2017 				spin_lock(&fdp->fd_spin);
2018 			}
2019 		}
2020 	retry:
2021 		if (fdtol->fdl_refcount == 1) {
2022 			if (fdp->fd_holdleaderscount > 0 &&
2023 			    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
2024 				/*
2025 				 * close() or do_dup() has cleared a reference
2026 				 * in a shared file descriptor table.
2027 				 */
2028 				fdp->fd_holdleaderswakeup = 1;
2029 				ssleep(&fdp->fd_holdleaderscount,
2030 				       &fdp->fd_spin, 0, "fdlhold", 0);
2031 				goto retry;
2032 			}
2033 			if (fdtol->fdl_holdcount > 0) {
2034 				/*
2035 				 * Ensure that fdtol->fdl_leader
2036 				 * remains valid in closef().
2037 				 */
2038 				fdtol->fdl_wakeup = 1;
2039 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
2040 				goto retry;
2041 			}
2042 		}
2043 		fdtol->fdl_refcount--;
2044 		if (fdtol->fdl_refcount == 0 &&
2045 		    fdtol->fdl_holdcount == 0) {
2046 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2047 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2048 		} else {
2049 			fdtol = NULL;
2050 		}
2051 		p->p_fdtol = NULL;
2052 		if (fdtol != NULL) {
2053 			spin_unlock(&fdp->fd_spin);
2054 			kfree(fdtol, M_FILEDESC_TO_LEADER);
2055 			spin_lock(&fdp->fd_spin);
2056 		}
2057 	}
2058 	if (--fdp->fd_refcnt > 0) {
2059 		spin_unlock(&fdp->fd_spin);
2060 		spin_lock(&p->p_spin);
2061 		p->p_fd = repl;
2062 		spin_unlock(&p->p_spin);
2063 		return;
2064 	}
2065 
2066 	/*
2067 	 * Even though we are the last reference to the structure allproc
2068 	 * scans may still reference the structure.  Maintain proper
2069 	 * locks until we can replace p->p_fd.
2070 	 *
2071 	 * Also note that kqueue's closef still needs to reference the
2072 	 * fdp via p->p_fd, so we have to close the descriptors before
2073 	 * we replace p->p_fd.
2074 	 */
2075 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
2076 		if (fdp->fd_files[i].fp) {
2077 			fp = funsetfd_locked(fdp, i);
2078 			if (fp) {
2079 				spin_unlock(&fdp->fd_spin);
2080 				if (SLIST_FIRST(&fp->f_klist))
2081 					knote_fdclose(fp, fdp, i);
2082 				closef(fp, p);
2083 				spin_lock(&fdp->fd_spin);
2084 			}
2085 		}
2086 	}
2087 	spin_unlock(&fdp->fd_spin);
2088 
2089 	/*
2090 	 * Interlock against an allproc scan operations (typically frevoke).
2091 	 */
2092 	spin_lock(&p->p_spin);
2093 	p->p_fd = repl;
2094 	spin_unlock(&p->p_spin);
2095 
2096 	/*
2097 	 * Wait for any softrefs to go away.  This race rarely occurs so
2098 	 * we can use a non-critical-path style poll/sleep loop.  The
2099 	 * race only occurs against allproc scans.
2100 	 *
2101 	 * No new softrefs can occur with the fdp disconnected from the
2102 	 * process.
2103 	 */
2104 	if (fdp->fd_softrefs) {
2105 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2106 		while (fdp->fd_softrefs)
2107 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2108 	}
2109 
2110 	if (fdp->fd_files != fdp->fd_builtin_files)
2111 		kfree(fdp->fd_files, M_FILEDESC);
2112 	if (fdp->fd_cdir) {
2113 		cache_drop(&fdp->fd_ncdir);
2114 		vrele(fdp->fd_cdir);
2115 	}
2116 	if (fdp->fd_rdir) {
2117 		cache_drop(&fdp->fd_nrdir);
2118 		vrele(fdp->fd_rdir);
2119 	}
2120 	if (fdp->fd_jdir) {
2121 		cache_drop(&fdp->fd_njdir);
2122 		vrele(fdp->fd_jdir);
2123 	}
2124 	kfree(fdp, M_FILEDESC);
2125 }
2126 
2127 /*
2128  * Retrieve and reference the file pointer associated with a descriptor.
2129  */
2130 struct file *
2131 holdfp(struct filedesc *fdp, int fd, int flag)
2132 {
2133 	struct file* fp;
2134 
2135 	spin_lock_shared(&fdp->fd_spin);
2136 	if (((u_int)fd) >= fdp->fd_nfiles) {
2137 		fp = NULL;
2138 		goto done;
2139 	}
2140 	if ((fp = fdp->fd_files[fd].fp) == NULL)
2141 		goto done;
2142 	if ((fp->f_flag & flag) == 0 && flag != -1) {
2143 		fp = NULL;
2144 		goto done;
2145 	}
2146 	fhold(fp);
2147 done:
2148 	spin_unlock_shared(&fdp->fd_spin);
2149 	return (fp);
2150 }
2151 
2152 /*
2153  * holdsock() - load the struct file pointer associated
2154  * with a socket into *fpp.  If an error occurs, non-zero
2155  * will be returned and *fpp will be set to NULL.
2156  */
2157 int
2158 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2159 {
2160 	struct file *fp;
2161 	int error;
2162 
2163 	spin_lock_shared(&fdp->fd_spin);
2164 	if ((unsigned)fd >= fdp->fd_nfiles) {
2165 		error = EBADF;
2166 		fp = NULL;
2167 		goto done;
2168 	}
2169 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2170 		error = EBADF;
2171 		goto done;
2172 	}
2173 	if (fp->f_type != DTYPE_SOCKET) {
2174 		error = ENOTSOCK;
2175 		goto done;
2176 	}
2177 	fhold(fp);
2178 	error = 0;
2179 done:
2180 	spin_unlock_shared(&fdp->fd_spin);
2181 	*fpp = fp;
2182 	return (error);
2183 }
2184 
2185 /*
2186  * Convert a user file descriptor to a held file pointer.
2187  */
2188 int
2189 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2190 {
2191 	struct file *fp;
2192 	int error;
2193 
2194 	spin_lock_shared(&fdp->fd_spin);
2195 	if ((unsigned)fd >= fdp->fd_nfiles) {
2196 		error = EBADF;
2197 		fp = NULL;
2198 		goto done;
2199 	}
2200 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2201 		error = EBADF;
2202 		goto done;
2203 	}
2204 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2205 		fp = NULL;
2206 		error = EINVAL;
2207 		goto done;
2208 	}
2209 	fhold(fp);
2210 	error = 0;
2211 done:
2212 	spin_unlock_shared(&fdp->fd_spin);
2213 	*fpp = fp;
2214 	return (error);
2215 }
2216 
2217 /*
2218  * For setugid programs, we don't want to people to use that setugidness
2219  * to generate error messages which write to a file which otherwise would
2220  * otherwise be off-limits to the process.
2221  *
2222  * This is a gross hack to plug the hole.  A better solution would involve
2223  * a special vop or other form of generalized access control mechanism.  We
2224  * go ahead and just reject all procfs file systems accesses as dangerous.
2225  *
2226  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2227  * sufficient.  We also don't for check setugidness since we know we are.
2228  */
2229 static int
2230 is_unsafe(struct file *fp)
2231 {
2232 	if (fp->f_type == DTYPE_VNODE &&
2233 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2234 		return (1);
2235 	return (0);
2236 }
2237 
2238 /*
2239  * Make this setguid thing safe, if at all possible.
2240  *
2241  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2242  */
2243 void
2244 setugidsafety(struct proc *p)
2245 {
2246 	struct filedesc *fdp = p->p_fd;
2247 	int i;
2248 
2249 	/* Certain daemons might not have file descriptors. */
2250 	if (fdp == NULL)
2251 		return;
2252 
2253 	/*
2254 	 * note: fdp->fd_files may be reallocated out from under us while
2255 	 * we are blocked in a close.  Be careful!
2256 	 */
2257 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2258 		if (i > 2)
2259 			break;
2260 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2261 			struct file *fp;
2262 
2263 			/*
2264 			 * NULL-out descriptor prior to close to avoid
2265 			 * a race while close blocks.
2266 			 */
2267 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2268 				knote_fdclose(fp, fdp, i);
2269 				closef(fp, p);
2270 			}
2271 		}
2272 	}
2273 }
2274 
2275 /*
2276  * Close any files on exec?
2277  *
2278  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2279  */
2280 void
2281 fdcloseexec(struct proc *p)
2282 {
2283 	struct filedesc *fdp = p->p_fd;
2284 	int i;
2285 
2286 	/* Certain daemons might not have file descriptors. */
2287 	if (fdp == NULL)
2288 		return;
2289 
2290 	/*
2291 	 * We cannot cache fd_files since operations may block and rip
2292 	 * them out from under us.
2293 	 */
2294 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2295 		if (fdp->fd_files[i].fp != NULL &&
2296 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2297 			struct file *fp;
2298 
2299 			/*
2300 			 * NULL-out descriptor prior to close to avoid
2301 			 * a race while close blocks.
2302 			 */
2303 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2304 				knote_fdclose(fp, fdp, i);
2305 				closef(fp, p);
2306 			}
2307 		}
2308 	}
2309 }
2310 
2311 /*
2312  * It is unsafe for set[ug]id processes to be started with file
2313  * descriptors 0..2 closed, as these descriptors are given implicit
2314  * significance in the Standard C library.  fdcheckstd() will create a
2315  * descriptor referencing /dev/null for each of stdin, stdout, and
2316  * stderr that is not already open.
2317  *
2318  * NOT MPSAFE - calls falloc, vn_open, etc
2319  */
2320 int
2321 fdcheckstd(struct lwp *lp)
2322 {
2323 	struct nlookupdata nd;
2324 	struct filedesc *fdp;
2325 	struct file *fp;
2326 	int retval;
2327 	int i, error, flags, devnull;
2328 
2329 	fdp = lp->lwp_proc->p_fd;
2330 	if (fdp == NULL)
2331 		return (0);
2332 	devnull = -1;
2333 	error = 0;
2334 	for (i = 0; i < 3; i++) {
2335 		if (fdp->fd_files[i].fp != NULL)
2336 			continue;
2337 		if (devnull < 0) {
2338 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2339 				break;
2340 
2341 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2342 						NLC_FOLLOW|NLC_LOCKVP);
2343 			flags = FREAD | FWRITE;
2344 			if (error == 0)
2345 				error = vn_open(&nd, fp, flags, 0);
2346 			if (error == 0)
2347 				fsetfd(fdp, fp, devnull);
2348 			else
2349 				fsetfd(fdp, NULL, devnull);
2350 			fdrop(fp);
2351 			nlookup_done(&nd);
2352 			if (error)
2353 				break;
2354 			KKASSERT(i == devnull);
2355 		} else {
2356 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2357 			if (error != 0)
2358 				break;
2359 		}
2360 	}
2361 	return (error);
2362 }
2363 
2364 /*
2365  * Internal form of close.
2366  * Decrement reference count on file structure.
2367  * Note: td and/or p may be NULL when closing a file
2368  * that was being passed in a message.
2369  *
2370  * MPALMOSTSAFE - acquires mplock for VOP operations
2371  */
2372 int
2373 closef(struct file *fp, struct proc *p)
2374 {
2375 	struct vnode *vp;
2376 	struct flock lf;
2377 	struct filedesc_to_leader *fdtol;
2378 
2379 	if (fp == NULL)
2380 		return (0);
2381 
2382 	/*
2383 	 * POSIX record locking dictates that any close releases ALL
2384 	 * locks owned by this process.  This is handled by setting
2385 	 * a flag in the unlock to free ONLY locks obeying POSIX
2386 	 * semantics, and not to free BSD-style file locks.
2387 	 * If the descriptor was in a message, POSIX-style locks
2388 	 * aren't passed with the descriptor.
2389 	 */
2390 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2391 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2392 	) {
2393 		if ((p->p_leader->p_flags & P_ADVLOCK) != 0) {
2394 			lf.l_whence = SEEK_SET;
2395 			lf.l_start = 0;
2396 			lf.l_len = 0;
2397 			lf.l_type = F_UNLCK;
2398 			vp = (struct vnode *)fp->f_data;
2399 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2400 					   &lf, F_POSIX);
2401 		}
2402 		fdtol = p->p_fdtol;
2403 		if (fdtol != NULL) {
2404 			lwkt_gettoken(&p->p_token);
2405 			/*
2406 			 * Handle special case where file descriptor table
2407 			 * is shared between multiple process leaders.
2408 			 */
2409 			for (fdtol = fdtol->fdl_next;
2410 			     fdtol != p->p_fdtol;
2411 			     fdtol = fdtol->fdl_next) {
2412 				if ((fdtol->fdl_leader->p_flags &
2413 				     P_ADVLOCK) == 0)
2414 					continue;
2415 				fdtol->fdl_holdcount++;
2416 				lf.l_whence = SEEK_SET;
2417 				lf.l_start = 0;
2418 				lf.l_len = 0;
2419 				lf.l_type = F_UNLCK;
2420 				vp = (struct vnode *)fp->f_data;
2421 				(void) VOP_ADVLOCK(vp,
2422 						   (caddr_t)fdtol->fdl_leader,
2423 						   F_UNLCK, &lf, F_POSIX);
2424 				fdtol->fdl_holdcount--;
2425 				if (fdtol->fdl_holdcount == 0 &&
2426 				    fdtol->fdl_wakeup != 0) {
2427 					fdtol->fdl_wakeup = 0;
2428 					wakeup(fdtol);
2429 				}
2430 			}
2431 			lwkt_reltoken(&p->p_token);
2432 		}
2433 	}
2434 	return (fdrop(fp));
2435 }
2436 
2437 /*
2438  * fhold() can only be called if f_count is already at least 1 (i.e. the
2439  * caller of fhold() already has a reference to the file pointer in some
2440  * manner or other).
2441  *
2442  * Atomic ops are used for incrementing and decrementing f_count before
2443  * the 1->0 transition.  f_count 1->0 transition is special, see the
2444  * comment in fdrop().
2445  */
2446 void
2447 fhold(struct file *fp)
2448 {
2449 	/* 0->1 transition will never work */
2450 	KASSERT(fp->f_count > 0, ("fhold: invalid f_count %d", fp->f_count));
2451 	atomic_add_int(&fp->f_count, 1);
2452 }
2453 
2454 /*
2455  * fdrop() - drop a reference to a descriptor
2456  */
2457 int
2458 fdrop(struct file *fp)
2459 {
2460 	struct flock lf;
2461 	struct vnode *vp;
2462 	int error, do_free = 0;
2463 
2464 	/*
2465 	 * NOTE:
2466 	 * Simple atomic_fetchadd_int(f_count, -1) here will cause use-
2467 	 * after-free or double free (due to f_count 0->1 transition), if
2468 	 * fhold() is called on the fps found through filehead iteration.
2469 	 */
2470 	for (;;) {
2471 		int count = fp->f_count;
2472 
2473 		cpu_ccfence();
2474 		KASSERT(count > 0, ("fdrop: invalid f_count %d", count));
2475 		if (count == 1) {
2476 			struct filelist_head *head = fp2filelist(fp);
2477 
2478 			/*
2479 			 * About to drop the last reference, hold the
2480 			 * filehead spin lock and drop it, so that no
2481 			 * one could see this fp through filehead anymore,
2482 			 * let alone fhold() this fp.
2483 			 */
2484 			spin_lock(&head->spin);
2485 			if (atomic_cmpset_int(&fp->f_count, count, 0)) {
2486 				LIST_REMOVE(fp, f_list);
2487 				spin_unlock(&head->spin);
2488 				atomic_subtract_int(&nfiles, 1);
2489 				do_free = 1; /* free this fp */
2490 				break;
2491 			}
2492 			spin_unlock(&head->spin);
2493 			/* retry */
2494 		} else if (atomic_cmpset_int(&fp->f_count, count, count - 1)) {
2495 			break;
2496 		}
2497 		/* retry */
2498 	}
2499 	if (!do_free)
2500 		return (0);
2501 
2502 	KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
2503 
2504 	/*
2505 	 * The last reference has gone away, we own the fp structure free
2506 	 * and clear.
2507 	 */
2508 	if (fp->f_count < 0)
2509 		panic("fdrop: count < 0");
2510 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2511 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2512 	) {
2513 		lf.l_whence = SEEK_SET;
2514 		lf.l_start = 0;
2515 		lf.l_len = 0;
2516 		lf.l_type = F_UNLCK;
2517 		vp = (struct vnode *)fp->f_data;
2518 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2519 	}
2520 	if (fp->f_ops != &badfileops)
2521 		error = fo_close(fp);
2522 	else
2523 		error = 0;
2524 	ffree(fp);
2525 	return (error);
2526 }
2527 
2528 /*
2529  * Apply an advisory lock on a file descriptor.
2530  *
2531  * Just attempt to get a record lock of the requested type on
2532  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2533  *
2534  * MPALMOSTSAFE
2535  */
2536 int
2537 sys_flock(struct flock_args *uap)
2538 {
2539 	struct proc *p = curproc;
2540 	struct file *fp;
2541 	struct vnode *vp;
2542 	struct flock lf;
2543 	int error;
2544 
2545 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2546 		return (EBADF);
2547 	if (fp->f_type != DTYPE_VNODE) {
2548 		error = EOPNOTSUPP;
2549 		goto done;
2550 	}
2551 	vp = (struct vnode *)fp->f_data;
2552 	lf.l_whence = SEEK_SET;
2553 	lf.l_start = 0;
2554 	lf.l_len = 0;
2555 	if (uap->how & LOCK_UN) {
2556 		lf.l_type = F_UNLCK;
2557 		atomic_clear_int(&fp->f_flag, FHASLOCK); /* race ok */
2558 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2559 		goto done;
2560 	}
2561 	if (uap->how & LOCK_EX)
2562 		lf.l_type = F_WRLCK;
2563 	else if (uap->how & LOCK_SH)
2564 		lf.l_type = F_RDLCK;
2565 	else {
2566 		error = EBADF;
2567 		goto done;
2568 	}
2569 	if (uap->how & LOCK_NB)
2570 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2571 	else
2572 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2573 	atomic_set_int(&fp->f_flag, FHASLOCK);	/* race ok */
2574 done:
2575 	fdrop(fp);
2576 	return (error);
2577 }
2578 
2579 /*
2580  * File Descriptor pseudo-device driver (/dev/fd/).
2581  *
2582  * Opening minor device N dup()s the file (if any) connected to file
2583  * descriptor N belonging to the calling process.  Note that this driver
2584  * consists of only the ``open()'' routine, because all subsequent
2585  * references to this file will be direct to the other driver.
2586  */
2587 static int
2588 fdopen(struct dev_open_args *ap)
2589 {
2590 	thread_t td = curthread;
2591 
2592 	KKASSERT(td->td_lwp != NULL);
2593 
2594 	/*
2595 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2596 	 * the file descriptor being sought for duplication. The error
2597 	 * return ensures that the vnode for this device will be released
2598 	 * by vn_open. Open will detect this special error and take the
2599 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2600 	 * will simply report the error.
2601 	 */
2602 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2603 	return (ENODEV);
2604 }
2605 
2606 /*
2607  * The caller has reserved the file descriptor dfd for us.  On success we
2608  * must fsetfd() it.  On failure the caller will clean it up.
2609  */
2610 int
2611 dupfdopen(struct filedesc *fdp, int dfd, int sfd, int mode, int error)
2612 {
2613 	struct file *wfp;
2614 	struct file *xfp;
2615 	int werror;
2616 
2617 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2618 		return (EBADF);
2619 
2620 	/*
2621 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2622 	 * will dup a dummy descriptor instead of the real one.
2623 	 */
2624 	if (wfp->f_flag & FREVOKED) {
2625 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2626 		fdrop(wfp);
2627 		wfp = NULL;
2628 		werror = falloc(NULL, &wfp, NULL);
2629 		if (werror)
2630 			return (werror);
2631 	}
2632 
2633 	/*
2634 	 * There are two cases of interest here.
2635 	 *
2636 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2637 	 *
2638 	 * For ENXIO steal away the file structure from sfd and store it
2639 	 * dfd.  sfd is effectively closed by this operation.
2640 	 *
2641 	 * Any other error code is just returned.
2642 	 */
2643 	switch (error) {
2644 	case ENODEV:
2645 		/*
2646 		 * Check that the mode the file is being opened for is a
2647 		 * subset of the mode of the existing descriptor.
2648 		 */
2649 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2650 			error = EACCES;
2651 			break;
2652 		}
2653 		spin_lock(&fdp->fd_spin);
2654 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2655 		fsetfd_locked(fdp, wfp, dfd);
2656 		spin_unlock(&fdp->fd_spin);
2657 		error = 0;
2658 		break;
2659 	case ENXIO:
2660 		/*
2661 		 * Steal away the file pointer from dfd, and stuff it into indx.
2662 		 */
2663 		spin_lock(&fdp->fd_spin);
2664 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2665 		fsetfd(fdp, wfp, dfd);
2666 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
2667 			spin_unlock(&fdp->fd_spin);
2668 			fdrop(xfp);
2669 		} else {
2670 			spin_unlock(&fdp->fd_spin);
2671 		}
2672 		error = 0;
2673 		break;
2674 	default:
2675 		break;
2676 	}
2677 	fdrop(wfp);
2678 	return (error);
2679 }
2680 
2681 /*
2682  * NOT MPSAFE - I think these refer to a common file descriptor table
2683  * and we need to spinlock that to link fdtol in.
2684  */
2685 struct filedesc_to_leader *
2686 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2687 			 struct proc *leader)
2688 {
2689 	struct filedesc_to_leader *fdtol;
2690 
2691 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2692 			M_FILEDESC_TO_LEADER, M_WAITOK | M_ZERO);
2693 	fdtol->fdl_refcount = 1;
2694 	fdtol->fdl_holdcount = 0;
2695 	fdtol->fdl_wakeup = 0;
2696 	fdtol->fdl_leader = leader;
2697 	if (old != NULL) {
2698 		fdtol->fdl_next = old->fdl_next;
2699 		fdtol->fdl_prev = old;
2700 		old->fdl_next = fdtol;
2701 		fdtol->fdl_next->fdl_prev = fdtol;
2702 	} else {
2703 		fdtol->fdl_next = fdtol;
2704 		fdtol->fdl_prev = fdtol;
2705 	}
2706 	return fdtol;
2707 }
2708 
2709 /*
2710  * Scan all file pointers in the system.  The callback is made with
2711  * the master list spinlock held exclusively.
2712  */
2713 void
2714 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2715 {
2716 	int i;
2717 
2718 	for (i = 0; i < NFILELIST_HEADS; ++i) {
2719 		struct filelist_head *head = &filelist_heads[i];
2720 		struct file *fp;
2721 
2722 		spin_lock(&head->spin);
2723 		LIST_FOREACH(fp, &head->list, f_list) {
2724 			int res;
2725 
2726 			res = callback(fp, data);
2727 			if (res < 0)
2728 				break;
2729 		}
2730 		spin_unlock(&head->spin);
2731 	}
2732 }
2733 
2734 /*
2735  * Get file structures.
2736  *
2737  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2738  */
2739 
2740 struct sysctl_kern_file_info {
2741 	int count;
2742 	int error;
2743 	struct sysctl_req *req;
2744 };
2745 
2746 static int sysctl_kern_file_callback(struct proc *p, void *data);
2747 
2748 static int
2749 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2750 {
2751 	struct sysctl_kern_file_info info;
2752 
2753 	/*
2754 	 * Note: because the number of file descriptors is calculated
2755 	 * in different ways for sizing vs returning the data,
2756 	 * there is information leakage from the first loop.  However,
2757 	 * it is of a similar order of magnitude to the leakage from
2758 	 * global system statistics such as kern.openfiles.
2759 	 *
2760 	 * When just doing a count, note that we cannot just count
2761 	 * the elements and add f_count via the filehead list because
2762 	 * threaded processes share their descriptor table and f_count might
2763 	 * still be '1' in that case.
2764 	 *
2765 	 * Since the SYSCTL op can block, we must hold the process to
2766 	 * prevent it being ripped out from under us either in the
2767 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2768 	 * process may be in varying states of disrepair.  If the process
2769 	 * is in SZOMB we may have caught it just as it is being removed
2770 	 * from the allproc list, we must skip it in that case to maintain
2771 	 * an unbroken chain through the allproc list.
2772 	 */
2773 	info.count = 0;
2774 	info.error = 0;
2775 	info.req = req;
2776 	allproc_scan(sysctl_kern_file_callback, &info);
2777 
2778 	/*
2779 	 * When just calculating the size, overestimate a bit to try to
2780 	 * prevent system activity from causing the buffer-fill call
2781 	 * to fail later on.
2782 	 */
2783 	if (req->oldptr == NULL) {
2784 		info.count = (info.count + 16) + (info.count / 10);
2785 		info.error = SYSCTL_OUT(req, NULL,
2786 					info.count * sizeof(struct kinfo_file));
2787 	}
2788 	return (info.error);
2789 }
2790 
2791 static int
2792 sysctl_kern_file_callback(struct proc *p, void *data)
2793 {
2794 	struct sysctl_kern_file_info *info = data;
2795 	struct kinfo_file kf;
2796 	struct filedesc *fdp;
2797 	struct file *fp;
2798 	uid_t uid;
2799 	int n;
2800 
2801 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2802 		return(0);
2803 	if (!(PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0))
2804 		return(0);
2805 
2806 	/*
2807 	 * Softref the fdp to prevent it from being destroyed
2808 	 */
2809 	spin_lock(&p->p_spin);
2810 	if ((fdp = p->p_fd) == NULL) {
2811 		spin_unlock(&p->p_spin);
2812 		return(0);
2813 	}
2814 	atomic_add_int(&fdp->fd_softrefs, 1);
2815 	spin_unlock(&p->p_spin);
2816 
2817 	/*
2818 	 * The fdp's own spinlock prevents the contents from being
2819 	 * modified.
2820 	 */
2821 	spin_lock_shared(&fdp->fd_spin);
2822 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2823 		if ((fp = fdp->fd_files[n].fp) == NULL)
2824 			continue;
2825 		if (info->req->oldptr == NULL) {
2826 			++info->count;
2827 		} else {
2828 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2829 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2830 			spin_unlock_shared(&fdp->fd_spin);
2831 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2832 			spin_lock_shared(&fdp->fd_spin);
2833 			if (info->error)
2834 				break;
2835 		}
2836 	}
2837 	spin_unlock_shared(&fdp->fd_spin);
2838 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2839 	if (info->error)
2840 		return(-1);
2841 	return(0);
2842 }
2843 
2844 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2845     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2846 
2847 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
2848     &minfilesperproc, 0, "Minimum files allowed open per process");
2849 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2850     &maxfilesperproc, 0, "Maximum files allowed open per process");
2851 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
2852     &maxfilesperuser, 0, "Maximum files allowed open per user");
2853 
2854 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2855     &maxfiles, 0, "Maximum number of files");
2856 
2857 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2858     &maxfilesrootres, 0, "Descriptors reserved for root use");
2859 
2860 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2861 	&nfiles, 0, "System-wide number of open files");
2862 
2863 static void
2864 fildesc_drvinit(void *unused)
2865 {
2866 	int fd;
2867 
2868 	for (fd = 0; fd < NUMFDESC; fd++) {
2869 		make_dev(&fildesc_ops, fd,
2870 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2871 	}
2872 
2873 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2874 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2875 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2876 }
2877 
2878 struct fileops badfileops = {
2879 	.fo_read = badfo_readwrite,
2880 	.fo_write = badfo_readwrite,
2881 	.fo_ioctl = badfo_ioctl,
2882 	.fo_kqfilter = badfo_kqfilter,
2883 	.fo_stat = badfo_stat,
2884 	.fo_close = badfo_close,
2885 	.fo_shutdown = badfo_shutdown
2886 };
2887 
2888 int
2889 badfo_readwrite(
2890 	struct file *fp,
2891 	struct uio *uio,
2892 	struct ucred *cred,
2893 	int flags
2894 ) {
2895 	return (EBADF);
2896 }
2897 
2898 int
2899 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2900 	    struct ucred *cred, struct sysmsg *msgv)
2901 {
2902 	return (EBADF);
2903 }
2904 
2905 /*
2906  * Must return an error to prevent registration, typically
2907  * due to a revoked descriptor (file_filtops assigned).
2908  */
2909 int
2910 badfo_kqfilter(struct file *fp, struct knote *kn)
2911 {
2912 	return (EOPNOTSUPP);
2913 }
2914 
2915 int
2916 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2917 {
2918 	return (EBADF);
2919 }
2920 
2921 int
2922 badfo_close(struct file *fp)
2923 {
2924 	return (EBADF);
2925 }
2926 
2927 int
2928 badfo_shutdown(struct file *fp, int how)
2929 {
2930 	return (EBADF);
2931 }
2932 
2933 int
2934 nofo_shutdown(struct file *fp, int how)
2935 {
2936 	return (EOPNOTSUPP);
2937 }
2938 
2939 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR,
2940     fildesc_drvinit,NULL);
2941 
2942 static void
2943 filelist_heads_init(void *arg __unused)
2944 {
2945 	int i;
2946 
2947 	for (i = 0; i < NFILELIST_HEADS; ++i) {
2948 		struct filelist_head *head = &filelist_heads[i];
2949 
2950 		spin_init(&head->spin, "filehead_spin");
2951 		LIST_INIT(&head->list);
2952 	}
2953 }
2954 
2955 SYSINIT(filelistheads, SI_BOOT1_LOCK, SI_ORDER_ANY,
2956     filelist_heads_init, NULL);
2957