xref: /dragonfly/sys/kern/kern_descrip.c (revision 50b09fda)
1 /*
2  * Copyright (c) 2005-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu and Matthew Dillon.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
68  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/sysproto.h>
75 #include <sys/conf.h>
76 #include <sys/device.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/vnode.h>
82 #include <sys/proc.h>
83 #include <sys/nlookup.h>
84 #include <sys/stat.h>
85 #include <sys/filio.h>
86 #include <sys/fcntl.h>
87 #include <sys/unistd.h>
88 #include <sys/resourcevar.h>
89 #include <sys/event.h>
90 #include <sys/kern_syscall.h>
91 #include <sys/kcore.h>
92 #include <sys/kinfo.h>
93 #include <sys/un.h>
94 #include <sys/objcache.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <sys/file2.h>
101 #include <sys/spinlock2.h>
102 
103 static int fdalloc_locked(struct proc *p, struct filedesc *fdp,
104 			int want, int *result);
105 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
106 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
107 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
108 static void ffree(struct file *fp);
109 
110 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
111 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
112 		     "file desc to leader structures");
113 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
114 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
115 
116 static struct krate krate_uidinfo = { .freq = 1 };
117 
118 static	 d_open_t  fdopen;
119 #define NUMFDESC 64
120 
121 #define CDEV_MAJOR 22
122 static struct dev_ops fildesc_ops = {
123 	{ "FD", 0, 0 },
124 	.d_open =	fdopen,
125 };
126 
127 /*
128  * Descriptor management.
129  */
130 #ifndef NFILELIST_HEADS
131 #define NFILELIST_HEADS		257	/* primary number */
132 #endif
133 
134 struct filelist_head {
135 	struct spinlock		spin;
136 	struct filelist		list;
137 } __cachealign;
138 
139 static struct filelist_head	filelist_heads[NFILELIST_HEADS];
140 
141 static int nfiles;		/* actual number of open files */
142 extern int cmask;
143 
144 struct lwkt_token revoke_token = LWKT_TOKEN_INITIALIZER(revoke_token);
145 
146 static struct objcache		*file_objcache;
147 
148 static struct objcache_malloc_args file_malloc_args = {
149 	.objsize	= sizeof(struct file),
150 	.mtype		= M_FILE
151 };
152 
153 /*
154  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
155  *
156  * must be called with fdp->fd_spin exclusively held
157  */
158 static __inline
159 void
160 fdfixup_locked(struct filedesc *fdp, int fd)
161 {
162 	if (fd < fdp->fd_freefile) {
163 	       fdp->fd_freefile = fd;
164 	}
165 	while (fdp->fd_lastfile >= 0 &&
166 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
167 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
168 	) {
169 		--fdp->fd_lastfile;
170 	}
171 }
172 
173 /*
174  * Clear the fd thread caches for this fdnode.
175  *
176  * If match_fdc is NULL, all thread caches of fdn will be cleared.
177  * The caller must hold fdp->fd_spin exclusively.  The threads caching
178  * the descriptor do not have to be the current thread.  The (status)
179  * argument is ignored.
180  *
181  * If match_fdc is not NULL, only the match_fdc's cache will be cleared.
182  * The caller must hold fdp->fd_spin shared and match_fdc must match a
183  * fdcache entry in curthread.  match_fdc has been locked by the caller
184  * and had the specified (status).
185  *
186  * Since we are matching against a fp in the fdp (which must still be present
187  * at this time), fp will have at least two refs on any match and we can
188  * decrement the count trivially.
189  */
190 static
191 void
192 fclearcache(struct fdnode *fdn, struct fdcache *match_fdc, int status)
193 {
194 	struct fdcache *fdc;
195 	struct file *fp;
196 	int i;
197 
198 	/*
199 	 * match_fdc == NULL	We are cleaning out all tdcache entries
200 	 *			for the fdn and hold fdp->fd_spin exclusively.
201 	 *			This can race against the target threads
202 	 *			cleaning out specific entries.
203 	 *
204 	 * match_fdc != NULL	We are cleaning out a specific tdcache
205 	 *			entry on behalf of the owning thread
206 	 *			and hold fdp->fd_spin shared.  The thread
207 	 *			has already locked the entry.  This cannot
208 	 *			race.
209 	 */
210 	fp = fdn->fp;
211 	for (i = 0; i < NTDCACHEFD; ++i) {
212 		if ((fdc = fdn->tdcache[i]) == NULL)
213 			continue;
214 
215 		/*
216 		 * If match_fdc is non-NULL we are being asked to
217 		 * clear a specific fdc owned by curthread.  There must
218 		 * be exactly one match.  The caller has already locked
219 		 * the cache entry and will dispose of the lock after
220 		 * we return.
221 		 *
222 		 * Since we also have a shared lock on fdp, we
223 		 * can do this without atomic ops.
224 		 */
225 		if (match_fdc) {
226 			if (fdc != match_fdc)
227 				continue;
228 			fdn->tdcache[i] = NULL;
229 			KASSERT(fp == fdc->fp,
230 				("fclearcache(1): fp mismatch %p/%p\n",
231 				fp, fdc->fp));
232 			fdc->fp = NULL;
233 			fdc->fd = -1;
234 
235 			/*
236 			 * status can be 0 or 2.  If 2 the ref is borrowed,
237 			 * if 0 the ref is not borrowed and we have to drop
238 			 * it.
239 			 */
240 			if (status == 0)
241 				atomic_add_int(&fp->f_count, -1);
242 			fdn->isfull = 0;	/* heuristic */
243 			return;
244 		}
245 
246 		/*
247 		 * Otherwise we hold an exclusive spin-lock and can only
248 		 * race thread consumers borrowing cache entries.
249 		 *
250 		 * Acquire the lock and dispose of the entry.  We have to
251 		 * spin until we get the lock.
252 		 */
253 		for (;;) {
254 			status = atomic_swap_int(&fdc->locked, 1);
255 			if (status == 1) {	/* foreign lock, retry */
256 				cpu_pause();
257 				continue;
258 			}
259 			fdn->tdcache[i] = NULL;
260 			KASSERT(fp == fdc->fp,
261 				("fclearcache(2): fp mismatch %p/%p\n",
262 				fp, fdc->fp));
263 			fdc->fp = NULL;
264 			fdc->fd = -1;
265 			if (status == 0)
266 				atomic_add_int(&fp->f_count, -1);
267 			fdn->isfull = 0;	/* heuristic */
268 			atomic_swap_int(&fdc->locked, 0);
269 			break;
270 		}
271 	}
272 	KKASSERT(match_fdc == NULL);
273 }
274 
275 /*
276  * Retrieve the fp for the specified fd given the specified file descriptor
277  * table.  The fdp does not have to be owned by the current process.
278  * If flags != -1, fp->f_flag must contain at least one of the flags.
279  *
280  * This function is not able to cache the fp.
281  */
282 struct file *
283 holdfp_fdp(struct filedesc *fdp, int fd, int flag)
284 {
285 	struct file *fp;
286 
287 	spin_lock_shared(&fdp->fd_spin);
288 	if (((u_int)fd) < fdp->fd_nfiles) {
289 		fp = fdp->fd_files[fd].fp;	/* can be NULL */
290 		if (fp) {
291 			if ((fp->f_flag & flag) == 0 && flag != -1) {
292 				fp = NULL;
293 			} else {
294 				fhold(fp);
295 			}
296 		}
297 	} else {
298 		fp = NULL;
299 	}
300 	spin_unlock_shared(&fdp->fd_spin);
301 
302 	return fp;
303 }
304 
305 struct file *
306 holdfp_fdp_locked(struct filedesc *fdp, int fd, int flag)
307 {
308 	struct file *fp;
309 
310 	if (((u_int)fd) < fdp->fd_nfiles) {
311 		fp = fdp->fd_files[fd].fp;	/* can be NULL */
312 		if (fp) {
313 			if ((fp->f_flag & flag) == 0 && flag != -1) {
314 				fp = NULL;
315 			} else {
316 				fhold(fp);
317 			}
318 		}
319 	} else {
320 		fp = NULL;
321 	}
322 	return fp;
323 }
324 
325 /*
326  * Acquire the fp for the specified file descriptor, using the thread
327  * cache if possible and caching it if possible.
328  *
329  * td must be the curren thread.
330  */
331 static
332 struct file *
333 _holdfp_cache(thread_t td, int fd)
334 {
335 	struct filedesc *fdp;
336 	struct fdcache *fdc;
337 	struct fdcache *best;
338 	struct fdnode *fdn;
339 	struct file *fp;
340 	int status;
341 	int delta;
342 	int i;
343 
344 	/*
345 	 * Fast
346 	 */
347 	for (fdc = &td->td_fdcache[0]; fdc < &td->td_fdcache[NFDCACHE]; ++fdc) {
348 		if (fdc->fd != fd || fdc->fp == NULL)
349 			continue;
350 		status = atomic_swap_int(&fdc->locked, 1);
351 
352 		/*
353 		 * If someone else has locked our cache entry they are in
354 		 * the middle of clearing it, skip the entry.
355 		 */
356 		if (status == 1)
357 			continue;
358 
359 		/*
360 		 * We have locked the entry, but if it no longer matches
361 		 * restore the previous state (0 or 2) and skip the entry.
362 		 */
363 		if (fdc->fd != fd || fdc->fp == NULL) {
364 			atomic_swap_int(&fdc->locked, status);
365 			continue;
366 		}
367 
368 		/*
369 		 * We have locked a valid entry.  We can borrow the ref
370 		 * for a mode 0 entry.  We can get a valid fp for a mode
371 		 * 2 entry but not borrow the ref.
372 		 */
373 		if (status == 0) {
374 			fp = fdc->fp;
375 			fdc->lru = ++td->td_fdcache_lru;
376 			atomic_swap_int(&fdc->locked, 2);
377 
378 			return fp;
379 		}
380 		if (status == 2) {
381 			fp = fdc->fp;
382 			fhold(fp);
383 			fdc->lru = ++td->td_fdcache_lru;
384 			atomic_swap_int(&fdc->locked, 2);
385 
386 			return fp;
387 		}
388 		KKASSERT(0);
389 	}
390 
391 	/*
392 	 * Lookup the descriptor the slow way.  This can contend against
393 	 * modifying operations in a multi-threaded environment and cause
394 	 * cache line ping ponging otherwise.
395 	 */
396 	fdp = td->td_proc->p_fd;
397 	spin_lock_shared(&fdp->fd_spin);
398 
399 	if (((u_int)fd) < fdp->fd_nfiles) {
400 		fp = fdp->fd_files[fd].fp;	/* can be NULL */
401 		if (fp) {
402 			fhold(fp);
403 			if (fdp->fd_files[fd].isfull == 0)
404 				goto enter;
405 		}
406 	} else {
407 		fp = NULL;
408 	}
409 	spin_unlock_shared(&fdp->fd_spin);
410 
411 	return fp;
412 
413 	/*
414 	 * We found a valid fp and held it, fdp is still shared locked.
415 	 * Enter the fp into the per-thread cache.  Find the oldest entry
416 	 * via lru, or an empty entry.
417 	 *
418 	 * Because fdp's spinlock is held (shared is fine), no other
419 	 * thread should be in the middle of clearing our selected entry.
420 	 */
421 enter:
422 	best = &td->td_fdcache[0];
423 	for (fdc = &td->td_fdcache[0]; fdc < &td->td_fdcache[NFDCACHE]; ++fdc) {
424 		if (fdc->fp == NULL) {
425 			best = fdc;
426 			break;
427 		}
428 		delta = fdc->lru - best->lru;
429 		if (delta < 0)
430 			best = fdc;
431 	}
432 
433 	/*
434 	 * Replace best
435 	 *
436 	 * Don't enter into the cache if we cannot get the lock.
437 	 */
438 	status = atomic_swap_int(&best->locked, 1);
439 	if (status == 1)
440 		goto done;
441 
442 	/*
443 	 * Clear the previous cache entry if present
444 	 */
445 	if (best->fp) {
446 		KKASSERT(best->fd >= 0);
447 		fclearcache(&fdp->fd_files[best->fd], best, status);
448 	}
449 
450 	/*
451 	 * Create our new cache entry.  This entry is 'safe' until we tie
452 	 * into the fdnode.  If we cannot tie in, we will clear the entry.
453 	 */
454 	best->fd = fd;
455 	best->fp = fp;
456 	best->lru = ++td->td_fdcache_lru;
457 	best->locked = 2;			/* borrowed ref */
458 
459 	fdn = &fdp->fd_files[fd];
460 	for (i = 0; i < NTDCACHEFD; ++i) {
461 		if (fdn->tdcache[i] == NULL &&
462 		    atomic_cmpset_ptr((void **)&fdn->tdcache[i], NULL, best)) {
463 			goto done;
464 		}
465 	}
466 	fdn->isfull = 1;			/* no space */
467 	best->fd = -1;
468 	best->fp = NULL;
469 	best->locked = 0;
470 done:
471 	spin_unlock_shared(&fdp->fd_spin);
472 
473 	return fp;
474 }
475 
476 /*
477  * Drop the file pointer and return to the thread cache if possible.
478  *
479  * Caller must not hold fdp's spin lock.
480  * td must be the current thread.
481  */
482 void
483 dropfp(thread_t td, int fd, struct file *fp)
484 {
485 	struct filedesc *fdp;
486 	struct fdcache *fdc;
487 	int status;
488 
489 	fdp = td->td_proc->p_fd;
490 
491 	/*
492 	 * If our placeholder is still present we can re-cache the ref.
493 	 *
494 	 * Note that we can race an fclearcache().
495 	 */
496 	for (fdc = &td->td_fdcache[0]; fdc < &td->td_fdcache[NFDCACHE]; ++fdc) {
497 		if (fdc->fp != fp || fdc->fd != fd)
498 			continue;
499 		status = atomic_swap_int(&fdc->locked, 1);
500 		switch(status) {
501 		case 0:
502 			/*
503 			 * Not in mode 2, fdrop fp without caching.
504 			 */
505 			atomic_swap_int(&fdc->locked, 0);
506 			break;
507 		case 1:
508 			/*
509 			 * Not in mode 2, locked by someone else.
510 			 * fdrop fp without caching.
511 			 */
512 			break;
513 		case 2:
514 			/*
515 			 * Intact borrowed ref, return to mode 0
516 			 * indicating that we have returned the ref.
517 			 *
518 			 * Return the borrowed ref (2->1->0)
519 			 */
520 			if (fdc->fp == fp && fdc->fd == fd) {
521 				atomic_swap_int(&fdc->locked, 0);
522 				return;
523 			}
524 			atomic_swap_int(&fdc->locked, 2);
525 			break;
526 		}
527 	}
528 
529 	/*
530 	 * Failed to re-cache, drop the fp without caching.
531 	 */
532 	fdrop(fp);
533 }
534 
535 /*
536  * Clear all descriptors cached in the per-thread fd cache for
537  * the specified thread.
538  *
539  * Caller must not hold p_fd->spin.  This function will temporarily
540  * obtain a shared spin lock.
541  */
542 void
543 fexitcache(thread_t td)
544 {
545 	struct filedesc *fdp;
546 	struct fdcache *fdc;
547 	int status;
548 	int i;
549 
550 	if (td->td_proc == NULL)
551 		return;
552 	fdp = td->td_proc->p_fd;
553 	if (fdp == NULL)
554 		return;
555 
556 	/*
557 	 * A shared lock is sufficient as the caller controls td and we
558 	 * are only clearing td's cache.
559 	 */
560 	spin_lock_shared(&fdp->fd_spin);
561 	for (i = 0; i < NFDCACHE; ++i) {
562 		fdc = &td->td_fdcache[i];
563 		if (fdc->fp) {
564 			status = atomic_swap_int(&fdc->locked, 1);
565 			if (status == 1) {
566 				cpu_pause();
567 				--i;
568 				continue;
569 			}
570 			if (fdc->fp) {
571 				KKASSERT(fdc->fd >= 0);
572 				fclearcache(&fdp->fd_files[fdc->fd], fdc,
573 					    status);
574 			}
575 			atomic_swap_int(&fdc->locked, 0);
576 		}
577 	}
578 	spin_unlock_shared(&fdp->fd_spin);
579 }
580 
581 static __inline struct filelist_head *
582 fp2filelist(const struct file *fp)
583 {
584 	u_int i;
585 
586 	i = (u_int)(uintptr_t)fp % NFILELIST_HEADS;
587 	return &filelist_heads[i];
588 }
589 
590 static __inline
591 struct plimit *
592 readplimits(struct proc *p)
593 {
594 	thread_t td = curthread;
595 	struct plimit *limit;
596 
597 	limit = td->td_limit;
598 	if (limit != p->p_limit) {
599 		spin_lock_shared(&p->p_spin);
600 		limit = p->p_limit;
601 		atomic_add_int(&limit->p_refcnt, 1);
602 		spin_unlock_shared(&p->p_spin);
603 		if (td->td_limit)
604 			plimit_free(td->td_limit);
605 		td->td_limit = limit;
606 	}
607 	return limit;
608 }
609 
610 /*
611  * System calls on descriptors.
612  */
613 int
614 sys_getdtablesize(struct getdtablesize_args *uap)
615 {
616 	struct proc *p = curproc;
617 	struct plimit *limit = readplimits(p);
618 	int dtsize;
619 
620 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
621 		dtsize = INT_MAX;
622 	else
623 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
624 
625 	if (dtsize > maxfilesperproc)
626 		dtsize = maxfilesperproc;
627 	if (dtsize < minfilesperproc)
628 		dtsize = minfilesperproc;
629 	if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
630 		dtsize = maxfilesperuser;
631 	uap->sysmsg_result = dtsize;
632 	return (0);
633 }
634 
635 /*
636  * Duplicate a file descriptor to a particular value.
637  *
638  * note: keep in mind that a potential race condition exists when closing
639  * descriptors from a shared descriptor table (via rfork).
640  */
641 int
642 sys_dup2(struct dup2_args *uap)
643 {
644 	int error;
645 	int fd = 0;
646 
647 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
648 	uap->sysmsg_fds[0] = fd;
649 
650 	return (error);
651 }
652 
653 /*
654  * Duplicate a file descriptor.
655  */
656 int
657 sys_dup(struct dup_args *uap)
658 {
659 	int error;
660 	int fd = 0;
661 
662 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
663 	uap->sysmsg_fds[0] = fd;
664 
665 	return (error);
666 }
667 
668 /*
669  * MPALMOSTSAFE - acquires mplock for fp operations
670  */
671 int
672 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
673 {
674 	struct thread *td = curthread;
675 	struct proc *p = td->td_proc;
676 	struct file *fp;
677 	struct vnode *vp;
678 	u_int newmin;
679 	u_int oflags;
680 	u_int nflags;
681 	int closedcounter;
682 	int tmp, error, flg = F_POSIX;
683 
684 	KKASSERT(p);
685 
686 	/*
687 	 * Operations on file descriptors that do not require a file pointer.
688 	 */
689 	switch (cmd) {
690 	case F_GETFD:
691 		error = fgetfdflags(p->p_fd, fd, &tmp);
692 		if (error == 0)
693 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
694 		return (error);
695 
696 	case F_SETFD:
697 		if (dat->fc_cloexec & FD_CLOEXEC)
698 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
699 		else
700 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
701 		return (error);
702 	case F_DUPFD:
703 		newmin = dat->fc_fd;
704 		error = kern_dup(DUP_VARIABLE | DUP_FCNTL, fd, newmin,
705 		    &dat->fc_fd);
706 		return (error);
707 	case F_DUPFD_CLOEXEC:
708 		newmin = dat->fc_fd;
709 		error = kern_dup(DUP_VARIABLE | DUP_CLOEXEC | DUP_FCNTL,
710 		    fd, newmin, &dat->fc_fd);
711 		return (error);
712 	case F_DUP2FD:
713 		newmin = dat->fc_fd;
714 		error = kern_dup(DUP_FIXED, fd, newmin, &dat->fc_fd);
715 		return (error);
716 	case F_DUP2FD_CLOEXEC:
717 		newmin = dat->fc_fd;
718 		error = kern_dup(DUP_FIXED | DUP_CLOEXEC, fd, newmin,
719 				 &dat->fc_fd);
720 		return (error);
721 	default:
722 		break;
723 	}
724 
725 	/*
726 	 * Operations on file pointers
727 	 */
728 	closedcounter = p->p_fd->fd_closedcounter;
729 	if ((fp = holdfp(td, fd, -1)) == NULL)
730 		return (EBADF);
731 
732 	switch (cmd) {
733 	case F_GETFL:
734 		dat->fc_flags = OFLAGS(fp->f_flag);
735 		error = 0;
736 		break;
737 
738 	case F_SETFL:
739 		oflags = fp->f_flag;
740 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
741 		nflags |= oflags & ~FCNTLFLAGS;
742 
743 		error = 0;
744 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
745 			error = EINVAL;
746 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
747 			tmp = nflags & FASYNC;
748 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
749 					 cred, NULL);
750 		}
751 
752 		/*
753 		 * If no error, must be atomically set.
754 		 */
755 		while (error == 0) {
756 			oflags = fp->f_flag;
757 			cpu_ccfence();
758 			nflags = (oflags & ~FCNTLFLAGS) | (nflags & FCNTLFLAGS);
759 			if (atomic_cmpset_int(&fp->f_flag, oflags, nflags))
760 				break;
761 			cpu_pause();
762 		}
763 		break;
764 
765 	case F_GETOWN:
766 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
767 				 cred, NULL);
768 		break;
769 
770 	case F_SETOWN:
771 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
772 				 cred, NULL);
773 		break;
774 
775 	case F_SETLKW:
776 		flg |= F_WAIT;
777 		/* Fall into F_SETLK */
778 
779 	case F_SETLK:
780 		if (fp->f_type != DTYPE_VNODE) {
781 			error = EBADF;
782 			break;
783 		}
784 		vp = (struct vnode *)fp->f_data;
785 
786 		/*
787 		 * copyin/lockop may block
788 		 */
789 		if (dat->fc_flock.l_whence == SEEK_CUR)
790 			dat->fc_flock.l_start += fp->f_offset;
791 
792 		switch (dat->fc_flock.l_type) {
793 		case F_RDLCK:
794 			if ((fp->f_flag & FREAD) == 0) {
795 				error = EBADF;
796 				break;
797 			}
798 			if (p->p_leader->p_advlock_flag == 0)
799 				p->p_leader->p_advlock_flag = 1;
800 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
801 					    &dat->fc_flock, flg);
802 			break;
803 		case F_WRLCK:
804 			if ((fp->f_flag & FWRITE) == 0) {
805 				error = EBADF;
806 				break;
807 			}
808 			if (p->p_leader->p_advlock_flag == 0)
809 				p->p_leader->p_advlock_flag = 1;
810 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
811 					    &dat->fc_flock, flg);
812 			break;
813 		case F_UNLCK:
814 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
815 					    &dat->fc_flock, F_POSIX);
816 			break;
817 		default:
818 			error = EINVAL;
819 			break;
820 		}
821 
822 		/*
823 		 * It is possible to race a close() on the descriptor while
824 		 * we were blocked getting the lock.  If this occurs the
825 		 * close might not have caught the lock.
826 		 */
827 		if (checkfdclosed(td, p->p_fd, fd, fp, closedcounter)) {
828 			dat->fc_flock.l_whence = SEEK_SET;
829 			dat->fc_flock.l_start = 0;
830 			dat->fc_flock.l_len = 0;
831 			dat->fc_flock.l_type = F_UNLCK;
832 			VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
833 				    F_UNLCK, &dat->fc_flock, F_POSIX);
834 		}
835 		break;
836 
837 	case F_GETLK:
838 		if (fp->f_type != DTYPE_VNODE) {
839 			error = EBADF;
840 			break;
841 		}
842 		vp = (struct vnode *)fp->f_data;
843 		/*
844 		 * copyin/lockop may block
845 		 */
846 		if (dat->fc_flock.l_type != F_RDLCK &&
847 		    dat->fc_flock.l_type != F_WRLCK &&
848 		    dat->fc_flock.l_type != F_UNLCK) {
849 			error = EINVAL;
850 			break;
851 		}
852 		if (dat->fc_flock.l_whence == SEEK_CUR)
853 			dat->fc_flock.l_start += fp->f_offset;
854 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
855 				    &dat->fc_flock, F_POSIX);
856 		break;
857 	default:
858 		error = EINVAL;
859 		break;
860 	}
861 
862 	fdrop(fp);
863 	return (error);
864 }
865 
866 /*
867  * The file control system call.
868  */
869 int
870 sys_fcntl(struct fcntl_args *uap)
871 {
872 	union fcntl_dat dat;
873 	int error;
874 
875 	switch (uap->cmd) {
876 	case F_DUPFD:
877 	case F_DUP2FD:
878 	case F_DUPFD_CLOEXEC:
879 	case F_DUP2FD_CLOEXEC:
880 		dat.fc_fd = uap->arg;
881 		break;
882 	case F_SETFD:
883 		dat.fc_cloexec = uap->arg;
884 		break;
885 	case F_SETFL:
886 		dat.fc_flags = uap->arg;
887 		break;
888 	case F_SETOWN:
889 		dat.fc_owner = uap->arg;
890 		break;
891 	case F_SETLKW:
892 	case F_SETLK:
893 	case F_GETLK:
894 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
895 			       sizeof(struct flock));
896 		if (error)
897 			return (error);
898 		break;
899 	}
900 
901 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
902 
903 	if (error == 0) {
904 		switch (uap->cmd) {
905 		case F_DUPFD:
906 		case F_DUP2FD:
907 		case F_DUPFD_CLOEXEC:
908 		case F_DUP2FD_CLOEXEC:
909 			uap->sysmsg_result = dat.fc_fd;
910 			break;
911 		case F_GETFD:
912 			uap->sysmsg_result = dat.fc_cloexec;
913 			break;
914 		case F_GETFL:
915 			uap->sysmsg_result = dat.fc_flags;
916 			break;
917 		case F_GETOWN:
918 			uap->sysmsg_result = dat.fc_owner;
919 			break;
920 		case F_GETLK:
921 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
922 			    sizeof(struct flock));
923 			break;
924 		}
925 	}
926 
927 	return (error);
928 }
929 
930 /*
931  * Common code for dup, dup2, and fcntl(F_DUPFD).
932  *
933  * There are four type flags: DUP_FCNTL, DUP_FIXED, DUP_VARIABLE, and
934  * DUP_CLOEXEC.
935  *
936  * DUP_FCNTL is for handling EINVAL vs. EBADF differences between
937  * fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC and dup2() (per POSIX).
938  * The next two flags are mutually exclusive, and the fourth is optional.
939  * DUP_FIXED tells kern_dup() to destructively dup over an existing file
940  * descriptor if "new" is already open.  DUP_VARIABLE tells kern_dup()
941  * to find the lowest unused file descriptor that is greater than or
942  * equal to "new".  DUP_CLOEXEC, which works with either of the first
943  * two flags, sets the close-on-exec flag on the "new" file descriptor.
944  */
945 int
946 kern_dup(int flags, int old, int new, int *res)
947 {
948 	struct thread *td = curthread;
949 	struct proc *p = td->td_proc;
950 	struct plimit *limit = readplimits(p);
951 	struct filedesc *fdp = p->p_fd;
952 	struct file *fp;
953 	struct file *delfp;
954 	int oldflags;
955 	int holdleaders;
956 	int dtsize;
957 	int error, newfd;
958 
959 	/*
960 	 * Verify that we have a valid descriptor to dup from and
961 	 * possibly to dup to. When the new descriptor is out of
962 	 * bounds, fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC must
963 	 * return EINVAL, while dup2() returns EBADF in
964 	 * this case.
965 	 *
966 	 * NOTE: maxfilesperuser is not applicable to dup()
967 	 */
968 retry:
969 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
970 		dtsize = INT_MAX;
971 	else
972 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
973 	if (dtsize > maxfilesperproc)
974 		dtsize = maxfilesperproc;
975 	if (dtsize < minfilesperproc)
976 		dtsize = minfilesperproc;
977 
978 	if (new < 0 || new > dtsize)
979 		return (flags & DUP_FCNTL ? EINVAL : EBADF);
980 
981 	spin_lock(&fdp->fd_spin);
982 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
983 		spin_unlock(&fdp->fd_spin);
984 		return (EBADF);
985 	}
986 	if ((flags & DUP_FIXED) && old == new) {
987 		*res = new;
988 		if (flags & DUP_CLOEXEC)
989 			fdp->fd_files[new].fileflags |= UF_EXCLOSE;
990 		spin_unlock(&fdp->fd_spin);
991 		return (0);
992 	}
993 	fp = fdp->fd_files[old].fp;
994 	oldflags = fdp->fd_files[old].fileflags;
995 	fhold(fp);
996 
997 	/*
998 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
999 	 * if the requested descriptor is beyond the current table size.
1000 	 *
1001 	 * This can block.  Retry if the source descriptor no longer matches
1002 	 * or if our expectation in the expansion case races.
1003 	 *
1004 	 * If we are not expanding or allocating a new decriptor, then reset
1005 	 * the target descriptor to a reserved state so we have a uniform
1006 	 * setup for the next code block.
1007 	 */
1008 	if ((flags & DUP_VARIABLE) || new >= fdp->fd_nfiles) {
1009 		error = fdalloc_locked(p, fdp, new, &newfd);
1010 		if (error) {
1011 			spin_unlock(&fdp->fd_spin);
1012 			fdrop(fp);
1013 			return (error);
1014 		}
1015 		/*
1016 		 * Check for ripout
1017 		 */
1018 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
1019 			fsetfd_locked(fdp, NULL, newfd);
1020 			spin_unlock(&fdp->fd_spin);
1021 			fdrop(fp);
1022 			goto retry;
1023 		}
1024 		/*
1025 		 * Check for expansion race
1026 		 */
1027 		if ((flags & DUP_VARIABLE) == 0 && new != newfd) {
1028 			fsetfd_locked(fdp, NULL, newfd);
1029 			spin_unlock(&fdp->fd_spin);
1030 			fdrop(fp);
1031 			goto retry;
1032 		}
1033 		/*
1034 		 * Check for ripout, newfd reused old (this case probably
1035 		 * can't occur).
1036 		 */
1037 		if (old == newfd) {
1038 			fsetfd_locked(fdp, NULL, newfd);
1039 			spin_unlock(&fdp->fd_spin);
1040 			fdrop(fp);
1041 			goto retry;
1042 		}
1043 		new = newfd;
1044 		delfp = NULL;
1045 	} else {
1046 		if (fdp->fd_files[new].reserved) {
1047 			spin_unlock(&fdp->fd_spin);
1048 			fdrop(fp);
1049 			kprintf("Warning: dup(): target descriptor %d is "
1050 				"reserved, waiting for it to be resolved\n",
1051 				new);
1052 			tsleep(fdp, 0, "fdres", hz);
1053 			goto retry;
1054 		}
1055 
1056 		/*
1057 		 * If the target descriptor was never allocated we have
1058 		 * to allocate it.  If it was we have to clean out the
1059 		 * old descriptor.  delfp inherits the ref from the
1060 		 * descriptor table.
1061 		 */
1062 		++fdp->fd_closedcounter;
1063 		fclearcache(&fdp->fd_files[new], NULL, 0);
1064 		++fdp->fd_closedcounter;
1065 		delfp = fdp->fd_files[new].fp;
1066 		fdp->fd_files[new].fp = NULL;
1067 		fdp->fd_files[new].reserved = 1;
1068 		if (delfp == NULL) {
1069 			fdreserve_locked(fdp, new, 1);
1070 			if (new > fdp->fd_lastfile)
1071 				fdp->fd_lastfile = new;
1072 		}
1073 
1074 	}
1075 
1076 	/*
1077 	 * NOTE: still holding an exclusive spinlock
1078 	 */
1079 
1080 	/*
1081 	 * If a descriptor is being overwritten we may hve to tell
1082 	 * fdfree() to sleep to ensure that all relevant process
1083 	 * leaders can be traversed in closef().
1084 	 */
1085 	if (delfp != NULL && p->p_fdtol != NULL) {
1086 		fdp->fd_holdleaderscount++;
1087 		holdleaders = 1;
1088 	} else {
1089 		holdleaders = 0;
1090 	}
1091 	KASSERT(delfp == NULL || (flags & DUP_FIXED),
1092 		("dup() picked an open file"));
1093 
1094 	/*
1095 	 * Duplicate the source descriptor, update lastfile.  If the new
1096 	 * descriptor was not allocated and we aren't replacing an existing
1097 	 * descriptor we have to mark the descriptor as being in use.
1098 	 *
1099 	 * The fd_files[] array inherits fp's hold reference.
1100 	 */
1101 	fsetfd_locked(fdp, fp, new);
1102 	if ((flags & DUP_CLOEXEC) != 0)
1103 		fdp->fd_files[new].fileflags = oldflags | UF_EXCLOSE;
1104 	else
1105 		fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
1106 	spin_unlock(&fdp->fd_spin);
1107 	fdrop(fp);
1108 	*res = new;
1109 
1110 	/*
1111 	 * If we dup'd over a valid file, we now own the reference to it
1112 	 * and must dispose of it using closef() semantics (as if a
1113 	 * close() were performed on it).
1114 	 */
1115 	if (delfp) {
1116 		if (SLIST_FIRST(&delfp->f_klist))
1117 			knote_fdclose(delfp, fdp, new);
1118 		closef(delfp, p);
1119 		if (holdleaders) {
1120 			spin_lock(&fdp->fd_spin);
1121 			fdp->fd_holdleaderscount--;
1122 			if (fdp->fd_holdleaderscount == 0 &&
1123 			    fdp->fd_holdleaderswakeup != 0) {
1124 				fdp->fd_holdleaderswakeup = 0;
1125 				spin_unlock(&fdp->fd_spin);
1126 				wakeup(&fdp->fd_holdleaderscount);
1127 			} else {
1128 				spin_unlock(&fdp->fd_spin);
1129 			}
1130 		}
1131 	}
1132 	return (0);
1133 }
1134 
1135 /*
1136  * If sigio is on the list associated with a process or process group,
1137  * disable signalling from the device, remove sigio from the list and
1138  * free sigio.
1139  */
1140 void
1141 funsetown(struct sigio **sigiop)
1142 {
1143 	struct pgrp *pgrp;
1144 	struct proc *p;
1145 	struct sigio *sigio;
1146 
1147 	if ((sigio = *sigiop) != NULL) {
1148 		lwkt_gettoken(&sigio_token);	/* protect sigio */
1149 		KKASSERT(sigiop == sigio->sio_myref);
1150 		sigio = *sigiop;
1151 		*sigiop = NULL;
1152 		lwkt_reltoken(&sigio_token);
1153 	}
1154 	if (sigio == NULL)
1155 		return;
1156 
1157 	if (sigio->sio_pgid < 0) {
1158 		pgrp = sigio->sio_pgrp;
1159 		sigio->sio_pgrp = NULL;
1160 		lwkt_gettoken(&pgrp->pg_token);
1161 		SLIST_REMOVE(&pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio);
1162 		lwkt_reltoken(&pgrp->pg_token);
1163 		pgrel(pgrp);
1164 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
1165 		p = sigio->sio_proc;
1166 		sigio->sio_proc = NULL;
1167 		PHOLD(p);
1168 		lwkt_gettoken(&p->p_token);
1169 		SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
1170 		lwkt_reltoken(&p->p_token);
1171 		PRELE(p);
1172 	}
1173 	crfree(sigio->sio_ucred);
1174 	sigio->sio_ucred = NULL;
1175 	kfree(sigio, M_SIGIO);
1176 }
1177 
1178 /*
1179  * Free a list of sigio structures.  Caller is responsible for ensuring
1180  * that the list is MPSAFE.
1181  */
1182 void
1183 funsetownlst(struct sigiolst *sigiolst)
1184 {
1185 	struct sigio *sigio;
1186 
1187 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
1188 		funsetown(sigio->sio_myref);
1189 }
1190 
1191 /*
1192  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
1193  *
1194  * After permission checking, add a sigio structure to the sigio list for
1195  * the process or process group.
1196  */
1197 int
1198 fsetown(pid_t pgid, struct sigio **sigiop)
1199 {
1200 	struct proc *proc = NULL;
1201 	struct pgrp *pgrp = NULL;
1202 	struct sigio *sigio;
1203 	int error;
1204 
1205 	if (pgid == 0) {
1206 		funsetown(sigiop);
1207 		return (0);
1208 	}
1209 
1210 	if (pgid > 0) {
1211 		proc = pfind(pgid);
1212 		if (proc == NULL) {
1213 			error = ESRCH;
1214 			goto done;
1215 		}
1216 
1217 		/*
1218 		 * Policy - Don't allow a process to FSETOWN a process
1219 		 * in another session.
1220 		 *
1221 		 * Remove this test to allow maximum flexibility or
1222 		 * restrict FSETOWN to the current process or process
1223 		 * group for maximum safety.
1224 		 */
1225 		if (proc->p_session != curproc->p_session) {
1226 			error = EPERM;
1227 			goto done;
1228 		}
1229 	} else /* if (pgid < 0) */ {
1230 		pgrp = pgfind(-pgid);
1231 		if (pgrp == NULL) {
1232 			error = ESRCH;
1233 			goto done;
1234 		}
1235 
1236 		/*
1237 		 * Policy - Don't allow a process to FSETOWN a process
1238 		 * in another session.
1239 		 *
1240 		 * Remove this test to allow maximum flexibility or
1241 		 * restrict FSETOWN to the current process or process
1242 		 * group for maximum safety.
1243 		 */
1244 		if (pgrp->pg_session != curproc->p_session) {
1245 			error = EPERM;
1246 			goto done;
1247 		}
1248 	}
1249 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK | M_ZERO);
1250 	if (pgid > 0) {
1251 		KKASSERT(pgrp == NULL);
1252 		lwkt_gettoken(&proc->p_token);
1253 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
1254 		sigio->sio_proc = proc;
1255 		lwkt_reltoken(&proc->p_token);
1256 	} else {
1257 		KKASSERT(proc == NULL);
1258 		lwkt_gettoken(&pgrp->pg_token);
1259 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
1260 		sigio->sio_pgrp = pgrp;
1261 		lwkt_reltoken(&pgrp->pg_token);
1262 		pgrp = NULL;
1263 	}
1264 	sigio->sio_pgid = pgid;
1265 	sigio->sio_ucred = crhold(curthread->td_ucred);
1266 	/* It would be convenient if p_ruid was in ucred. */
1267 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
1268 	sigio->sio_myref = sigiop;
1269 
1270 	lwkt_gettoken(&sigio_token);
1271 	while (*sigiop)
1272 		funsetown(sigiop);
1273 	*sigiop = sigio;
1274 	lwkt_reltoken(&sigio_token);
1275 	error = 0;
1276 done:
1277 	if (pgrp)
1278 		pgrel(pgrp);
1279 	if (proc)
1280 		PRELE(proc);
1281 	return (error);
1282 }
1283 
1284 /*
1285  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
1286  */
1287 pid_t
1288 fgetown(struct sigio **sigiop)
1289 {
1290 	struct sigio *sigio;
1291 	pid_t own;
1292 
1293 	lwkt_gettoken_shared(&sigio_token);
1294 	sigio = *sigiop;
1295 	own = (sigio != NULL ? sigio->sio_pgid : 0);
1296 	lwkt_reltoken(&sigio_token);
1297 
1298 	return (own);
1299 }
1300 
1301 /*
1302  * Close many file descriptors.
1303  */
1304 int
1305 sys_closefrom(struct closefrom_args *uap)
1306 {
1307 	return(kern_closefrom(uap->fd));
1308 }
1309 
1310 /*
1311  * Close all file descriptors greater then or equal to fd
1312  */
1313 int
1314 kern_closefrom(int fd)
1315 {
1316 	struct thread *td = curthread;
1317 	struct proc *p = td->td_proc;
1318 	struct filedesc *fdp;
1319 	int error;
1320 	int e2;
1321 
1322 	KKASSERT(p);
1323 	fdp = p->p_fd;
1324 
1325 	if (fd < 0)
1326 		return (EINVAL);
1327 
1328 	/*
1329 	 * NOTE: This function will skip unassociated descriptors and
1330 	 *	 reserved descriptors that have not yet been assigned.
1331 	 *	 fd_lastfile can change as a side effect of kern_close().
1332 	 *
1333 	 * NOTE: We accumulate EINTR errors and return EINTR if any
1334 	 *	 close() returned EINTR.  However, the descriptor is
1335 	 *	 still closed and we do not break out of the loop.
1336 	 */
1337 	error = 0;
1338 	spin_lock(&fdp->fd_spin);
1339 	while (fd <= fdp->fd_lastfile) {
1340 		if (fdp->fd_files[fd].fp != NULL) {
1341 			spin_unlock(&fdp->fd_spin);
1342 			/* ok if this races another close */
1343 			e2 = kern_close(fd);
1344 			if (e2 == EINTR)
1345 				error = EINTR;
1346 			spin_lock(&fdp->fd_spin);
1347 		}
1348 		++fd;
1349 	}
1350 	spin_unlock(&fdp->fd_spin);
1351 
1352 	return error;
1353 }
1354 
1355 /*
1356  * Close a file descriptor.
1357  */
1358 int
1359 sys_close(struct close_args *uap)
1360 {
1361 	return(kern_close(uap->fd));
1362 }
1363 
1364 /*
1365  * close() helper
1366  */
1367 int
1368 kern_close(int fd)
1369 {
1370 	struct thread *td = curthread;
1371 	struct proc *p = td->td_proc;
1372 	struct filedesc *fdp;
1373 	struct file *fp;
1374 	int error;
1375 	int holdleaders;
1376 
1377 	KKASSERT(p);
1378 	fdp = p->p_fd;
1379 
1380 	/*
1381 	 * funsetfd*() also clears the fd cache
1382 	 */
1383 	spin_lock(&fdp->fd_spin);
1384 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
1385 		spin_unlock(&fdp->fd_spin);
1386 		return (EBADF);
1387 	}
1388 	holdleaders = 0;
1389 	if (p->p_fdtol != NULL) {
1390 		/*
1391 		 * Ask fdfree() to sleep to ensure that all relevant
1392 		 * process leaders can be traversed in closef().
1393 		 */
1394 		fdp->fd_holdleaderscount++;
1395 		holdleaders = 1;
1396 	}
1397 
1398 	/*
1399 	 * we now hold the fp reference that used to be owned by the descriptor
1400 	 * array.
1401 	 */
1402 	spin_unlock(&fdp->fd_spin);
1403 	if (SLIST_FIRST(&fp->f_klist))
1404 		knote_fdclose(fp, fdp, fd);
1405 	error = closef(fp, p);
1406 	if (holdleaders) {
1407 		spin_lock(&fdp->fd_spin);
1408 		fdp->fd_holdleaderscount--;
1409 		if (fdp->fd_holdleaderscount == 0 &&
1410 		    fdp->fd_holdleaderswakeup != 0) {
1411 			fdp->fd_holdleaderswakeup = 0;
1412 			spin_unlock(&fdp->fd_spin);
1413 			wakeup(&fdp->fd_holdleaderscount);
1414 		} else {
1415 			spin_unlock(&fdp->fd_spin);
1416 		}
1417 	}
1418 	return (error);
1419 }
1420 
1421 /*
1422  * shutdown_args(int fd, int how)
1423  */
1424 int
1425 kern_shutdown(int fd, int how)
1426 {
1427 	struct thread *td = curthread;
1428 	struct file *fp;
1429 	int error;
1430 
1431 	if ((fp = holdfp(td, fd, -1)) == NULL)
1432 		return (EBADF);
1433 	error = fo_shutdown(fp, how);
1434 	fdrop(fp);
1435 
1436 	return (error);
1437 }
1438 
1439 /*
1440  * MPALMOSTSAFE
1441  */
1442 int
1443 sys_shutdown(struct shutdown_args *uap)
1444 {
1445 	int error;
1446 
1447 	error = kern_shutdown(uap->s, uap->how);
1448 
1449 	return (error);
1450 }
1451 
1452 /*
1453  * fstat() helper
1454  */
1455 int
1456 kern_fstat(int fd, struct stat *ub)
1457 {
1458 	struct thread *td = curthread;
1459 	struct file *fp;
1460 	int error;
1461 
1462 	if ((fp = holdfp(td, fd, -1)) == NULL)
1463 		return (EBADF);
1464 	error = fo_stat(fp, ub, td->td_ucred);
1465 	fdrop(fp);
1466 
1467 	return (error);
1468 }
1469 
1470 /*
1471  * Return status information about a file descriptor.
1472  */
1473 int
1474 sys_fstat(struct fstat_args *uap)
1475 {
1476 	struct stat st;
1477 	int error;
1478 
1479 	error = kern_fstat(uap->fd, &st);
1480 
1481 	if (error == 0)
1482 		error = copyout(&st, uap->sb, sizeof(st));
1483 	return (error);
1484 }
1485 
1486 /*
1487  * Return pathconf information about a file descriptor.
1488  *
1489  * MPALMOSTSAFE
1490  */
1491 int
1492 sys_fpathconf(struct fpathconf_args *uap)
1493 {
1494 	struct thread *td = curthread;
1495 	struct file *fp;
1496 	struct vnode *vp;
1497 	int error = 0;
1498 
1499 	if ((fp = holdfp(td, uap->fd, -1)) == NULL)
1500 		return (EBADF);
1501 
1502 	switch (fp->f_type) {
1503 	case DTYPE_PIPE:
1504 	case DTYPE_SOCKET:
1505 		if (uap->name != _PC_PIPE_BUF) {
1506 			error = EINVAL;
1507 		} else {
1508 			uap->sysmsg_result = PIPE_BUF;
1509 			error = 0;
1510 		}
1511 		break;
1512 	case DTYPE_FIFO:
1513 	case DTYPE_VNODE:
1514 		vp = (struct vnode *)fp->f_data;
1515 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
1516 		break;
1517 	default:
1518 		error = EOPNOTSUPP;
1519 		break;
1520 	}
1521 	fdrop(fp);
1522 	return(error);
1523 }
1524 
1525 /*
1526  * Grow the file table so it can hold through descriptor (want).
1527  *
1528  * The fdp's spinlock must be held exclusively on entry and may be held
1529  * exclusively on return.  The spinlock may be cycled by the routine.
1530  */
1531 static void
1532 fdgrow_locked(struct filedesc *fdp, int want)
1533 {
1534 	struct fdnode *newfiles;
1535 	struct fdnode *oldfiles;
1536 	int nf, extra;
1537 
1538 	nf = fdp->fd_nfiles;
1539 	do {
1540 		/* nf has to be of the form 2^n - 1 */
1541 		nf = 2 * nf + 1;
1542 	} while (nf <= want);
1543 
1544 	spin_unlock(&fdp->fd_spin);
1545 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1546 	spin_lock(&fdp->fd_spin);
1547 
1548 	/*
1549 	 * We could have raced another extend while we were not holding
1550 	 * the spinlock.
1551 	 */
1552 	if (fdp->fd_nfiles >= nf) {
1553 		spin_unlock(&fdp->fd_spin);
1554 		kfree(newfiles, M_FILEDESC);
1555 		spin_lock(&fdp->fd_spin);
1556 		return;
1557 	}
1558 	/*
1559 	 * Copy the existing ofile and ofileflags arrays
1560 	 * and zero the new portion of each array.
1561 	 */
1562 	extra = nf - fdp->fd_nfiles;
1563 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1564 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1565 
1566 	oldfiles = fdp->fd_files;
1567 	fdp->fd_files = newfiles;
1568 	fdp->fd_nfiles = nf;
1569 
1570 	if (oldfiles != fdp->fd_builtin_files) {
1571 		spin_unlock(&fdp->fd_spin);
1572 		kfree(oldfiles, M_FILEDESC);
1573 		spin_lock(&fdp->fd_spin);
1574 	}
1575 }
1576 
1577 /*
1578  * Number of nodes in right subtree, including the root.
1579  */
1580 static __inline int
1581 right_subtree_size(int n)
1582 {
1583 	return (n ^ (n | (n + 1)));
1584 }
1585 
1586 /*
1587  * Bigger ancestor.
1588  */
1589 static __inline int
1590 right_ancestor(int n)
1591 {
1592 	return (n | (n + 1));
1593 }
1594 
1595 /*
1596  * Smaller ancestor.
1597  */
1598 static __inline int
1599 left_ancestor(int n)
1600 {
1601 	return ((n & (n + 1)) - 1);
1602 }
1603 
1604 /*
1605  * Traverse the in-place binary tree buttom-up adjusting the allocation
1606  * count so scans can determine where free descriptors are located.
1607  *
1608  * caller must be holding an exclusive spinlock on fdp
1609  */
1610 static
1611 void
1612 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1613 {
1614 	while (fd >= 0) {
1615 		fdp->fd_files[fd].allocated += incr;
1616 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1617 		fd = left_ancestor(fd);
1618 	}
1619 }
1620 
1621 /*
1622  * Reserve a file descriptor for the process.  If no error occurs, the
1623  * caller MUST at some point call fsetfd() or assign a file pointer
1624  * or dispose of the reservation.
1625  */
1626 static
1627 int
1628 fdalloc_locked(struct proc *p, struct filedesc *fdp, int want, int *result)
1629 {
1630 	struct plimit *limit = readplimits(p);
1631 	struct uidinfo *uip;
1632 	int fd, rsize, rsum, node, lim;
1633 
1634 	/*
1635 	 * Check dtable size limit
1636 	 */
1637 	*result = -1;	/* avoid gcc warnings */
1638 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1639 		lim = INT_MAX;
1640 	else
1641 		lim = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
1642 
1643 	if (lim > maxfilesperproc)
1644 		lim = maxfilesperproc;
1645 	if (lim < minfilesperproc)
1646 		lim = minfilesperproc;
1647 	if (want >= lim)
1648 		return (EMFILE);
1649 
1650 	/*
1651 	 * Check that the user has not run out of descriptors (non-root only).
1652 	 * As a safety measure the dtable is allowed to have at least
1653 	 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1654 	 *
1655 	 * This isn't as loose a spec as ui_posixlocks, so we use atomic
1656 	 * ops to force synchronize and recheck if we would otherwise
1657 	 * error.
1658 	 */
1659 	if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1660 		uip = p->p_ucred->cr_uidinfo;
1661 		if (uip->ui_openfiles > maxfilesperuser) {
1662 			int n;
1663 			int count;
1664 
1665 			count = 0;
1666 			for (n = 0; n < ncpus; ++n) {
1667 				count += atomic_swap_int(
1668 					    &uip->ui_pcpu[n].pu_openfiles, 0);
1669 			}
1670 			atomic_add_int(&uip->ui_openfiles, count);
1671 			if (uip->ui_openfiles > maxfilesperuser) {
1672 				krateprintf(&krate_uidinfo,
1673 					    "Warning: user %d pid %d (%s) "
1674 					    "ran out of file descriptors "
1675 					    "(%d/%d)\n",
1676 					    p->p_ucred->cr_uid, (int)p->p_pid,
1677 					    p->p_comm,
1678 					    uip->ui_openfiles, maxfilesperuser);
1679 				return(ENFILE);
1680 			}
1681 		}
1682 	}
1683 
1684 	/*
1685 	 * Grow the dtable if necessary
1686 	 */
1687 	if (want >= fdp->fd_nfiles)
1688 		fdgrow_locked(fdp, want);
1689 
1690 	/*
1691 	 * Search for a free descriptor starting at the higher
1692 	 * of want or fd_freefile.  If that fails, consider
1693 	 * expanding the ofile array.
1694 	 *
1695 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1696 	 * count.  If we happen to see a value of 0 then we can shortcut
1697 	 * our search.  Otherwise we run through through the tree going
1698 	 * down branches we know have free descriptor(s) until we hit a
1699 	 * leaf node.  The leaf node will be free but will not necessarily
1700 	 * have an allocated field of 0.
1701 	 */
1702 retry:
1703 	/* move up the tree looking for a subtree with a free node */
1704 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1705 	     fd = right_ancestor(fd)) {
1706 		if (fdp->fd_files[fd].allocated == 0)
1707 			goto found;
1708 
1709 		rsize = right_subtree_size(fd);
1710 		if (fdp->fd_files[fd].allocated == rsize)
1711 			continue;	/* right subtree full */
1712 
1713 		/*
1714 		 * Free fd is in the right subtree of the tree rooted at fd.
1715 		 * Call that subtree R.  Look for the smallest (leftmost)
1716 		 * subtree of R with an unallocated fd: continue moving
1717 		 * down the left branch until encountering a full left
1718 		 * subtree, then move to the right.
1719 		 */
1720 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1721 			node = fd + rsize;
1722 			rsum += fdp->fd_files[node].allocated;
1723 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1724 				fd = node;	/* move to the right */
1725 				if (fdp->fd_files[node].allocated == 0)
1726 					goto found;
1727 				rsum = 0;
1728 			}
1729 		}
1730 		goto found;
1731 	}
1732 
1733 	/*
1734 	 * No space in current array.  Expand?
1735 	 */
1736 	if (fdp->fd_nfiles >= lim) {
1737 		return (EMFILE);
1738 	}
1739 	fdgrow_locked(fdp, want);
1740 	goto retry;
1741 
1742 found:
1743 	KKASSERT(fd < fdp->fd_nfiles);
1744 	if (fd > fdp->fd_lastfile)
1745 		fdp->fd_lastfile = fd;
1746 	if (want <= fdp->fd_freefile)
1747 		fdp->fd_freefile = fd;
1748 	*result = fd;
1749 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1750 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1751 	fdp->fd_files[fd].fileflags = 0;
1752 	fdp->fd_files[fd].reserved = 1;
1753 	fdreserve_locked(fdp, fd, 1);
1754 
1755 	return (0);
1756 }
1757 
1758 int
1759 fdalloc(struct proc *p, int want, int *result)
1760 {
1761 	struct filedesc *fdp = p->p_fd;
1762 	int error;
1763 
1764 	spin_lock(&fdp->fd_spin);
1765 	error = fdalloc_locked(p, fdp, want, result);
1766 	spin_unlock(&fdp->fd_spin);
1767 
1768 	return error;
1769 }
1770 
1771 /*
1772  * Check to see whether n user file descriptors
1773  * are available to the process p.
1774  */
1775 int
1776 fdavail(struct proc *p, int n)
1777 {
1778 	struct plimit *limit = readplimits(p);
1779 	struct filedesc *fdp = p->p_fd;
1780 	struct fdnode *fdnode;
1781 	int i, lim, last;
1782 
1783 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1784 		lim = INT_MAX;
1785 	else
1786 		lim = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
1787 
1788 	if (lim > maxfilesperproc)
1789 		lim = maxfilesperproc;
1790 	if (lim < minfilesperproc)
1791 		lim = minfilesperproc;
1792 
1793 	spin_lock(&fdp->fd_spin);
1794 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1795 		spin_unlock(&fdp->fd_spin);
1796 		return (1);
1797 	}
1798 	last = min(fdp->fd_nfiles, lim);
1799 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1800 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1801 		if (fdnode->fp == NULL && --n <= 0) {
1802 			spin_unlock(&fdp->fd_spin);
1803 			return (1);
1804 		}
1805 	}
1806 	spin_unlock(&fdp->fd_spin);
1807 	return (0);
1808 }
1809 
1810 /*
1811  * Revoke open descriptors referencing (f_data, f_type)
1812  *
1813  * Any revoke executed within a prison is only able to
1814  * revoke descriptors for processes within that prison.
1815  *
1816  * Returns 0 on success or an error code.
1817  */
1818 struct fdrevoke_info {
1819 	void *data;
1820 	short type;
1821 	short unused;
1822 	int found;
1823 	struct ucred *cred;
1824 	struct file *nfp;
1825 };
1826 
1827 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1828 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1829 
1830 int
1831 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1832 {
1833 	struct fdrevoke_info info;
1834 	int error;
1835 
1836 	bzero(&info, sizeof(info));
1837 	info.data = f_data;
1838 	info.type = f_type;
1839 	info.cred = cred;
1840 	error = falloc(NULL, &info.nfp, NULL);
1841 	if (error)
1842 		return (error);
1843 
1844 	/*
1845 	 * Scan the file pointer table once.  dups do not dup file pointers,
1846 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1847 	 * being revoked.
1848 	 *
1849 	 * Any fps sent over unix-domain sockets will be revoked by the
1850 	 * socket code checking for FREVOKED when the fps are externialized.
1851 	 * revoke_token is used to make sure that fps marked FREVOKED and
1852 	 * externalized will be picked up by the following allproc_scan().
1853 	 */
1854 	lwkt_gettoken(&revoke_token);
1855 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1856 	lwkt_reltoken(&revoke_token);
1857 
1858 	/*
1859 	 * If any fps were marked track down the related descriptors
1860 	 * and close them.  Any dup()s at this point will notice
1861 	 * the FREVOKED already set in the fp and do the right thing.
1862 	 */
1863 	if (info.found)
1864 		allproc_scan(fdrevoke_proc_callback, &info, 0);
1865 	fdrop(info.nfp);
1866 	return(0);
1867 }
1868 
1869 /*
1870  * Locate matching file pointers directly.
1871  *
1872  * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1873  */
1874 static int
1875 fdrevoke_check_callback(struct file *fp, void *vinfo)
1876 {
1877 	struct fdrevoke_info *info = vinfo;
1878 
1879 	/*
1880 	 * File pointers already flagged for revokation are skipped.
1881 	 */
1882 	if (fp->f_flag & FREVOKED)
1883 		return(0);
1884 
1885 	/*
1886 	 * If revoking from a prison file pointers created outside of
1887 	 * that prison, or file pointers without creds, cannot be revoked.
1888 	 */
1889 	if (info->cred->cr_prison &&
1890 	    (fp->f_cred == NULL ||
1891 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1892 		return(0);
1893 	}
1894 
1895 	/*
1896 	 * If the file pointer matches then mark it for revocation.  The
1897 	 * flag is currently only used by unp_revoke_gc().
1898 	 *
1899 	 * info->found is a heuristic and can race in a SMP environment.
1900 	 */
1901 	if (info->data == fp->f_data && info->type == fp->f_type) {
1902 		atomic_set_int(&fp->f_flag, FREVOKED);
1903 		info->found = 1;
1904 	}
1905 	return(0);
1906 }
1907 
1908 /*
1909  * Locate matching file pointers via process descriptor tables.
1910  */
1911 static int
1912 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1913 {
1914 	struct fdrevoke_info *info = vinfo;
1915 	struct filedesc *fdp;
1916 	struct file *fp;
1917 	int n;
1918 
1919 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1920 		return(0);
1921 	if (info->cred->cr_prison &&
1922 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1923 		return(0);
1924 	}
1925 
1926 	/*
1927 	 * If the controlling terminal of the process matches the
1928 	 * vnode being revoked we clear the controlling terminal.
1929 	 *
1930 	 * The normal spec_close() may not catch this because it
1931 	 * uses curproc instead of p.
1932 	 */
1933 	if (p->p_session && info->type == DTYPE_VNODE &&
1934 	    info->data == p->p_session->s_ttyvp) {
1935 		p->p_session->s_ttyvp = NULL;
1936 		vrele(info->data);
1937 	}
1938 
1939 	/*
1940 	 * Softref the fdp to prevent it from being destroyed
1941 	 */
1942 	spin_lock(&p->p_spin);
1943 	if ((fdp = p->p_fd) == NULL) {
1944 		spin_unlock(&p->p_spin);
1945 		return(0);
1946 	}
1947 	atomic_add_int(&fdp->fd_softrefs, 1);
1948 	spin_unlock(&p->p_spin);
1949 
1950 	/*
1951 	 * Locate and close any matching file descriptors, replacing
1952 	 * them with info->nfp.
1953 	 */
1954 	spin_lock(&fdp->fd_spin);
1955 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1956 		if ((fp = fdp->fd_files[n].fp) == NULL)
1957 			continue;
1958 		if (fp->f_flag & FREVOKED) {
1959 			++fdp->fd_closedcounter;
1960 			fclearcache(&fdp->fd_files[n], NULL, 0);
1961 			++fdp->fd_closedcounter;
1962 			fhold(info->nfp);
1963 			fdp->fd_files[n].fp = info->nfp;
1964 			spin_unlock(&fdp->fd_spin);
1965 			knote_fdclose(fp, fdp, n);	/* XXX */
1966 			closef(fp, p);
1967 			spin_lock(&fdp->fd_spin);
1968 		}
1969 	}
1970 	spin_unlock(&fdp->fd_spin);
1971 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1972 	return(0);
1973 }
1974 
1975 /*
1976  * falloc:
1977  *	Create a new open file structure and reserve a file decriptor
1978  *	for the process that refers to it.
1979  *
1980  *	Root creds are checked using lp, or assumed if lp is NULL.  If
1981  *	resultfd is non-NULL then lp must also be non-NULL.  No file
1982  *	descriptor is reserved (and no process context is needed) if
1983  *	resultfd is NULL.
1984  *
1985  *	A file pointer with a refcount of 1 is returned.  Note that the
1986  *	file pointer is NOT associated with the descriptor.  If falloc
1987  *	returns success, fsetfd() MUST be called to either associate the
1988  *	file pointer or clear the reservation.
1989  */
1990 int
1991 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1992 {
1993 	static struct timeval lastfail;
1994 	static int curfail;
1995 	struct filelist_head *head;
1996 	struct file *fp;
1997 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1998 	int error;
1999 
2000 	fp = NULL;
2001 
2002 	/*
2003 	 * Handle filetable full issues and root overfill.
2004 	 */
2005 	if (nfiles >= maxfiles - maxfilesrootres &&
2006 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
2007 		if (ppsratecheck(&lastfail, &curfail, 1)) {
2008 			kprintf("kern.maxfiles limit exceeded by uid %d, "
2009 				"please see tuning(7).\n",
2010 				cred->cr_ruid);
2011 		}
2012 		error = ENFILE;
2013 		goto done;
2014 	}
2015 
2016 	/*
2017 	 * Allocate a new file descriptor.
2018 	 */
2019 	fp = objcache_get(file_objcache, M_WAITOK);
2020 	bzero(fp, sizeof(*fp));
2021 	spin_init(&fp->f_spin, "falloc");
2022 	SLIST_INIT(&fp->f_klist);
2023 	fp->f_count = 1;
2024 	fp->f_ops = &badfileops;
2025 	fp->f_seqcount = 1;
2026 	fsetcred(fp, cred);
2027 	atomic_add_int(&nfiles, 1);
2028 
2029 	head = fp2filelist(fp);
2030 	spin_lock(&head->spin);
2031 	LIST_INSERT_HEAD(&head->list, fp, f_list);
2032 	spin_unlock(&head->spin);
2033 
2034 	if (resultfd) {
2035 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
2036 			fdrop(fp);
2037 			fp = NULL;
2038 		}
2039 	} else {
2040 		error = 0;
2041 	}
2042 done:
2043 	*resultfp = fp;
2044 	return (error);
2045 }
2046 
2047 /*
2048  * Check for races against a file descriptor by determining that the
2049  * file pointer is still associated with the specified file descriptor,
2050  * and a close is not currently in progress.
2051  */
2052 int
2053 checkfdclosed(thread_t td, struct filedesc *fdp, int fd, struct file *fp,
2054 	      int closedcounter)
2055 {
2056 	struct fdcache *fdc;
2057 	int error;
2058 
2059 	cpu_lfence();
2060 	if (fdp->fd_closedcounter == closedcounter)
2061 		return 0;
2062 
2063 	if (td->td_proc && td->td_proc->p_fd == fdp) {
2064 		for (fdc = &td->td_fdcache[0];
2065 		     fdc < &td->td_fdcache[NFDCACHE]; ++fdc) {
2066 			if (fdc->fd == fd && fdc->fp == fp)
2067 				return 0;
2068 		}
2069 	}
2070 
2071 	spin_lock_shared(&fdp->fd_spin);
2072 	if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
2073 		error = EBADF;
2074 	else
2075 		error = 0;
2076 	spin_unlock_shared(&fdp->fd_spin);
2077 	return (error);
2078 }
2079 
2080 /*
2081  * Associate a file pointer with a previously reserved file descriptor.
2082  * This function always succeeds.
2083  *
2084  * If fp is NULL, the file descriptor is returned to the pool.
2085  *
2086  * Caller must hold an exclusive spinlock on fdp->fd_spin.
2087  */
2088 static void
2089 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
2090 {
2091 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
2092 	KKASSERT(fdp->fd_files[fd].reserved != 0);
2093 	if (fp) {
2094 		fhold(fp);
2095 		/* fclearcache(&fdp->fd_files[fd], NULL, 0); */
2096 		fdp->fd_files[fd].fp = fp;
2097 		fdp->fd_files[fd].reserved = 0;
2098 	} else {
2099 		fdp->fd_files[fd].reserved = 0;
2100 		fdreserve_locked(fdp, fd, -1);
2101 		fdfixup_locked(fdp, fd);
2102 	}
2103 }
2104 
2105 /*
2106  * Caller must hold an exclusive spinlock on fdp->fd_spin.
2107  */
2108 void
2109 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
2110 {
2111 	spin_lock(&fdp->fd_spin);
2112 	fsetfd_locked(fdp, fp, fd);
2113 	spin_unlock(&fdp->fd_spin);
2114 }
2115 
2116 /*
2117  * Caller must hold an exclusive spinlock on fdp->fd_spin.
2118  */
2119 static
2120 struct file *
2121 funsetfd_locked(struct filedesc *fdp, int fd)
2122 {
2123 	struct file *fp;
2124 
2125 	if ((unsigned)fd >= fdp->fd_nfiles)
2126 		return (NULL);
2127 	if ((fp = fdp->fd_files[fd].fp) == NULL)
2128 		return (NULL);
2129 	++fdp->fd_closedcounter;
2130 	fclearcache(&fdp->fd_files[fd], NULL, 0);
2131 	fdp->fd_files[fd].fp = NULL;
2132 	fdp->fd_files[fd].fileflags = 0;
2133 	++fdp->fd_closedcounter;
2134 
2135 	fdreserve_locked(fdp, fd, -1);
2136 	fdfixup_locked(fdp, fd);
2137 
2138 	return(fp);
2139 }
2140 
2141 /*
2142  * WARNING: May not be called before initial fsetfd().
2143  */
2144 int
2145 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
2146 {
2147 	int error;
2148 
2149 	spin_lock_shared(&fdp->fd_spin);
2150 	if (((u_int)fd) >= fdp->fd_nfiles) {
2151 		error = EBADF;
2152 	} else if (fdp->fd_files[fd].fp == NULL) {
2153 		error = EBADF;
2154 	} else {
2155 		*flagsp = fdp->fd_files[fd].fileflags;
2156 		error = 0;
2157 	}
2158 	spin_unlock_shared(&fdp->fd_spin);
2159 
2160 	return (error);
2161 }
2162 
2163 /*
2164  * WARNING: May not be called before initial fsetfd().
2165  */
2166 int
2167 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
2168 {
2169 	int error;
2170 
2171 	spin_lock(&fdp->fd_spin);
2172 	if (((u_int)fd) >= fdp->fd_nfiles) {
2173 		error = EBADF;
2174 	} else if (fdp->fd_files[fd].fp == NULL) {
2175 		error = EBADF;
2176 	} else {
2177 		fdp->fd_files[fd].fileflags |= add_flags;
2178 		error = 0;
2179 	}
2180 	spin_unlock(&fdp->fd_spin);
2181 
2182 	return (error);
2183 }
2184 
2185 /*
2186  * WARNING: May not be called before initial fsetfd().
2187  */
2188 int
2189 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
2190 {
2191 	int error;
2192 
2193 	spin_lock(&fdp->fd_spin);
2194 	if (((u_int)fd) >= fdp->fd_nfiles) {
2195 		error = EBADF;
2196 	} else if (fdp->fd_files[fd].fp == NULL) {
2197 		error = EBADF;
2198 	} else {
2199 		fdp->fd_files[fd].fileflags &= ~rem_flags;
2200 		error = 0;
2201 	}
2202 	spin_unlock(&fdp->fd_spin);
2203 
2204 	return (error);
2205 }
2206 
2207 /*
2208  * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
2209  */
2210 void
2211 fsetcred(struct file *fp, struct ucred *ncr)
2212 {
2213 	struct ucred *ocr;
2214 	struct uidinfo *uip;
2215 	struct uidcount *pup;
2216 	int cpu = mycpuid;
2217 	int count;
2218 
2219 	ocr = fp->f_cred;
2220 	if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
2221 		if (ocr) {
2222 			uip = ocr->cr_uidinfo;
2223 			pup = &uip->ui_pcpu[cpu];
2224 			atomic_add_int(&pup->pu_openfiles, -1);
2225 			if (pup->pu_openfiles < -PUP_LIMIT ||
2226 			    pup->pu_openfiles > PUP_LIMIT) {
2227 				count = atomic_swap_int(&pup->pu_openfiles, 0);
2228 				atomic_add_int(&uip->ui_openfiles, count);
2229 			}
2230 		}
2231 		if (ncr) {
2232 			uip = ncr->cr_uidinfo;
2233 			pup = &uip->ui_pcpu[cpu];
2234 			atomic_add_int(&pup->pu_openfiles, 1);
2235 			if (pup->pu_openfiles < -PUP_LIMIT ||
2236 			    pup->pu_openfiles > PUP_LIMIT) {
2237 				count = atomic_swap_int(&pup->pu_openfiles, 0);
2238 				atomic_add_int(&uip->ui_openfiles, count);
2239 			}
2240 		}
2241 	}
2242 	if (ncr)
2243 		crhold(ncr);
2244 	fp->f_cred = ncr;
2245 	if (ocr)
2246 		crfree(ocr);
2247 }
2248 
2249 /*
2250  * Free a file descriptor.
2251  */
2252 static
2253 void
2254 ffree(struct file *fp)
2255 {
2256 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
2257 	fsetcred(fp, NULL);
2258 	if (fp->f_nchandle.ncp)
2259 	    cache_drop(&fp->f_nchandle);
2260 	objcache_put(file_objcache, fp);
2261 }
2262 
2263 /*
2264  * called from init_main, initialize filedesc0 for proc0.
2265  */
2266 void
2267 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
2268 {
2269 	p0->p_fd = fdp0;
2270 	p0->p_fdtol = NULL;
2271 	fdp0->fd_refcnt = 1;
2272 	fdp0->fd_cmask = cmask;
2273 	fdp0->fd_files = fdp0->fd_builtin_files;
2274 	fdp0->fd_nfiles = NDFILE;
2275 	fdp0->fd_lastfile = -1;
2276 	spin_init(&fdp0->fd_spin, "fdinitbootstrap");
2277 }
2278 
2279 /*
2280  * Build a new filedesc structure.
2281  */
2282 struct filedesc *
2283 fdinit(struct proc *p)
2284 {
2285 	struct filedesc *newfdp;
2286 	struct filedesc *fdp = p->p_fd;
2287 
2288 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
2289 	spin_lock(&fdp->fd_spin);
2290 	if (fdp->fd_cdir) {
2291 		newfdp->fd_cdir = fdp->fd_cdir;
2292 		vref(newfdp->fd_cdir);
2293 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
2294 	}
2295 
2296 	/*
2297 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
2298 	 * proc0, but should unconditionally exist in other processes.
2299 	 */
2300 	if (fdp->fd_rdir) {
2301 		newfdp->fd_rdir = fdp->fd_rdir;
2302 		vref(newfdp->fd_rdir);
2303 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
2304 	}
2305 	if (fdp->fd_jdir) {
2306 		newfdp->fd_jdir = fdp->fd_jdir;
2307 		vref(newfdp->fd_jdir);
2308 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
2309 	}
2310 	spin_unlock(&fdp->fd_spin);
2311 
2312 	/* Create the file descriptor table. */
2313 	newfdp->fd_refcnt = 1;
2314 	newfdp->fd_cmask = cmask;
2315 	newfdp->fd_files = newfdp->fd_builtin_files;
2316 	newfdp->fd_nfiles = NDFILE;
2317 	newfdp->fd_lastfile = -1;
2318 	spin_init(&newfdp->fd_spin, "fdinit");
2319 
2320 	return (newfdp);
2321 }
2322 
2323 /*
2324  * Share a filedesc structure.
2325  */
2326 struct filedesc *
2327 fdshare(struct proc *p)
2328 {
2329 	struct filedesc *fdp;
2330 
2331 	fdp = p->p_fd;
2332 	spin_lock(&fdp->fd_spin);
2333 	fdp->fd_refcnt++;
2334 	spin_unlock(&fdp->fd_spin);
2335 	return (fdp);
2336 }
2337 
2338 /*
2339  * Copy a filedesc structure.
2340  */
2341 int
2342 fdcopy(struct proc *p, struct filedesc **fpp)
2343 {
2344 	struct filedesc *fdp = p->p_fd;
2345 	struct filedesc *newfdp;
2346 	struct fdnode *fdnode;
2347 	int i;
2348 	int ni;
2349 
2350 	/*
2351 	 * Certain daemons might not have file descriptors.
2352 	 */
2353 	if (fdp == NULL)
2354 		return (0);
2355 
2356 	/*
2357 	 * Allocate the new filedesc and fd_files[] array.  This can race
2358 	 * with operations by other threads on the fdp so we have to be
2359 	 * careful.
2360 	 */
2361 	newfdp = kmalloc(sizeof(struct filedesc),
2362 			 M_FILEDESC, M_WAITOK | M_ZERO | M_NULLOK);
2363 	if (newfdp == NULL) {
2364 		*fpp = NULL;
2365 		return (-1);
2366 	}
2367 again:
2368 	spin_lock(&fdp->fd_spin);
2369 	if (fdp->fd_lastfile < NDFILE) {
2370 		newfdp->fd_files = newfdp->fd_builtin_files;
2371 		i = NDFILE;
2372 	} else {
2373 		/*
2374 		 * We have to allocate (N^2-1) entries for our in-place
2375 		 * binary tree.  Allow the table to shrink.
2376 		 */
2377 		i = fdp->fd_nfiles;
2378 		ni = (i - 1) / 2;
2379 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
2380 			i = ni;
2381 			ni = (i - 1) / 2;
2382 		}
2383 		spin_unlock(&fdp->fd_spin);
2384 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
2385 					  M_FILEDESC, M_WAITOK | M_ZERO);
2386 
2387 		/*
2388 		 * Check for race, retry
2389 		 */
2390 		spin_lock(&fdp->fd_spin);
2391 		if (i <= fdp->fd_lastfile) {
2392 			spin_unlock(&fdp->fd_spin);
2393 			kfree(newfdp->fd_files, M_FILEDESC);
2394 			goto again;
2395 		}
2396 	}
2397 
2398 	/*
2399 	 * Dup the remaining fields. vref() and cache_hold() can be
2400 	 * safely called while holding the read spinlock on fdp.
2401 	 *
2402 	 * The read spinlock on fdp is still being held.
2403 	 *
2404 	 * NOTE: vref and cache_hold calls for the case where the vnode
2405 	 * or cache entry already has at least one ref may be called
2406 	 * while holding spin locks.
2407 	 */
2408 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
2409 		vref(newfdp->fd_cdir);
2410 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
2411 	}
2412 	/*
2413 	 * We must check for fd_rdir here, at least for now because
2414 	 * the init process is created before we have access to the
2415 	 * rootvode to take a reference to it.
2416 	 */
2417 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
2418 		vref(newfdp->fd_rdir);
2419 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
2420 	}
2421 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
2422 		vref(newfdp->fd_jdir);
2423 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
2424 	}
2425 	newfdp->fd_refcnt = 1;
2426 	newfdp->fd_nfiles = i;
2427 	newfdp->fd_lastfile = fdp->fd_lastfile;
2428 	newfdp->fd_freefile = fdp->fd_freefile;
2429 	newfdp->fd_cmask = fdp->fd_cmask;
2430 	spin_init(&newfdp->fd_spin, "fdcopy");
2431 
2432 	/*
2433 	 * Copy the descriptor table through (i).  This also copies the
2434 	 * allocation state.   Then go through and ref the file pointers
2435 	 * and clean up any KQ descriptors.
2436 	 *
2437 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
2438 	 * copied files yet we can ignore the return value from funsetfd().
2439 	 *
2440 	 * The read spinlock on fdp is still being held.
2441 	 *
2442 	 * Be sure to clean out fdnode->tdcache, otherwise bad things will
2443 	 * happen.
2444 	 */
2445 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
2446 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
2447 		fdnode = &newfdp->fd_files[i];
2448 		if (fdnode->reserved) {
2449 			fdreserve_locked(newfdp, i, -1);
2450 			fdnode->reserved = 0;
2451 			fdfixup_locked(newfdp, i);
2452 		} else if (fdnode->fp) {
2453 			bzero(&fdnode->tdcache, sizeof(fdnode->tdcache));
2454 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
2455 				(void)funsetfd_locked(newfdp, i);
2456 			} else {
2457 				fhold(fdnode->fp);
2458 			}
2459 		}
2460 	}
2461 	spin_unlock(&fdp->fd_spin);
2462 	*fpp = newfdp;
2463 	return (0);
2464 }
2465 
2466 /*
2467  * Release a filedesc structure.
2468  *
2469  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
2470  */
2471 void
2472 fdfree(struct proc *p, struct filedesc *repl)
2473 {
2474 	struct filedesc *fdp;
2475 	struct fdnode *fdnode;
2476 	int i;
2477 	struct filedesc_to_leader *fdtol;
2478 	struct file *fp;
2479 	struct vnode *vp;
2480 	struct flock lf;
2481 
2482 	/*
2483 	 * Before destroying or replacing p->p_fd we must be sure to
2484 	 * clean out the cache of the last thread, which should be
2485 	 * curthread.
2486 	 */
2487 	fexitcache(curthread);
2488 
2489 	/*
2490 	 * Certain daemons might not have file descriptors.
2491 	 */
2492 	fdp = p->p_fd;
2493 	if (fdp == NULL) {
2494 		p->p_fd = repl;
2495 		return;
2496 	}
2497 
2498 	/*
2499 	 * Severe messing around to follow.
2500 	 */
2501 	spin_lock(&fdp->fd_spin);
2502 
2503 	/* Check for special need to clear POSIX style locks */
2504 	fdtol = p->p_fdtol;
2505 	if (fdtol != NULL) {
2506 		KASSERT(fdtol->fdl_refcount > 0,
2507 			("filedesc_to_refcount botch: fdl_refcount=%d",
2508 			 fdtol->fdl_refcount));
2509 		if (fdtol->fdl_refcount == 1 && p->p_leader->p_advlock_flag) {
2510 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
2511 				fdnode = &fdp->fd_files[i];
2512 				if (fdnode->fp == NULL ||
2513 				    fdnode->fp->f_type != DTYPE_VNODE) {
2514 					continue;
2515 				}
2516 				fp = fdnode->fp;
2517 				fhold(fp);
2518 				spin_unlock(&fdp->fd_spin);
2519 
2520 				lf.l_whence = SEEK_SET;
2521 				lf.l_start = 0;
2522 				lf.l_len = 0;
2523 				lf.l_type = F_UNLCK;
2524 				vp = (struct vnode *)fp->f_data;
2525 				VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
2526 					    F_UNLCK, &lf, F_POSIX);
2527 				fdrop(fp);
2528 				spin_lock(&fdp->fd_spin);
2529 			}
2530 		}
2531 	retry:
2532 		if (fdtol->fdl_refcount == 1) {
2533 			if (fdp->fd_holdleaderscount > 0 &&
2534 			    p->p_leader->p_advlock_flag) {
2535 				/*
2536 				 * close() or do_dup() has cleared a reference
2537 				 * in a shared file descriptor table.
2538 				 */
2539 				fdp->fd_holdleaderswakeup = 1;
2540 				ssleep(&fdp->fd_holdleaderscount,
2541 				       &fdp->fd_spin, 0, "fdlhold", 0);
2542 				goto retry;
2543 			}
2544 			if (fdtol->fdl_holdcount > 0) {
2545 				/*
2546 				 * Ensure that fdtol->fdl_leader
2547 				 * remains valid in closef().
2548 				 */
2549 				fdtol->fdl_wakeup = 1;
2550 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
2551 				goto retry;
2552 			}
2553 		}
2554 		fdtol->fdl_refcount--;
2555 		if (fdtol->fdl_refcount == 0 &&
2556 		    fdtol->fdl_holdcount == 0) {
2557 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2558 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2559 		} else {
2560 			fdtol = NULL;
2561 		}
2562 		p->p_fdtol = NULL;
2563 		if (fdtol != NULL) {
2564 			spin_unlock(&fdp->fd_spin);
2565 			kfree(fdtol, M_FILEDESC_TO_LEADER);
2566 			spin_lock(&fdp->fd_spin);
2567 		}
2568 	}
2569 	if (--fdp->fd_refcnt > 0) {
2570 		spin_unlock(&fdp->fd_spin);
2571 		spin_lock(&p->p_spin);
2572 		p->p_fd = repl;
2573 		spin_unlock(&p->p_spin);
2574 		return;
2575 	}
2576 
2577 	/*
2578 	 * Even though we are the last reference to the structure allproc
2579 	 * scans may still reference the structure.  Maintain proper
2580 	 * locks until we can replace p->p_fd.
2581 	 *
2582 	 * Also note that kqueue's closef still needs to reference the
2583 	 * fdp via p->p_fd, so we have to close the descriptors before
2584 	 * we replace p->p_fd.
2585 	 */
2586 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
2587 		if (fdp->fd_files[i].fp) {
2588 			fp = funsetfd_locked(fdp, i);
2589 			if (fp) {
2590 				spin_unlock(&fdp->fd_spin);
2591 				if (SLIST_FIRST(&fp->f_klist))
2592 					knote_fdclose(fp, fdp, i);
2593 				closef(fp, p);
2594 				spin_lock(&fdp->fd_spin);
2595 			}
2596 		}
2597 	}
2598 	spin_unlock(&fdp->fd_spin);
2599 
2600 	/*
2601 	 * Interlock against an allproc scan operations (typically frevoke).
2602 	 */
2603 	spin_lock(&p->p_spin);
2604 	p->p_fd = repl;
2605 	spin_unlock(&p->p_spin);
2606 
2607 	/*
2608 	 * Wait for any softrefs to go away.  This race rarely occurs so
2609 	 * we can use a non-critical-path style poll/sleep loop.  The
2610 	 * race only occurs against allproc scans.
2611 	 *
2612 	 * No new softrefs can occur with the fdp disconnected from the
2613 	 * process.
2614 	 */
2615 	if (fdp->fd_softrefs) {
2616 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2617 		while (fdp->fd_softrefs)
2618 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2619 	}
2620 
2621 	if (fdp->fd_files != fdp->fd_builtin_files)
2622 		kfree(fdp->fd_files, M_FILEDESC);
2623 	if (fdp->fd_cdir) {
2624 		cache_drop(&fdp->fd_ncdir);
2625 		vrele(fdp->fd_cdir);
2626 	}
2627 	if (fdp->fd_rdir) {
2628 		cache_drop(&fdp->fd_nrdir);
2629 		vrele(fdp->fd_rdir);
2630 	}
2631 	if (fdp->fd_jdir) {
2632 		cache_drop(&fdp->fd_njdir);
2633 		vrele(fdp->fd_jdir);
2634 	}
2635 	kfree(fdp, M_FILEDESC);
2636 }
2637 
2638 /*
2639  * Retrieve and reference the file pointer associated with a descriptor.
2640  *
2641  * td must be the current thread.
2642  */
2643 struct file *
2644 holdfp(thread_t td, int fd, int flag)
2645 {
2646 	struct file *fp;
2647 
2648 	fp = _holdfp_cache(td, fd);
2649 	if (fp) {
2650 		if ((fp->f_flag & flag) == 0 && flag != -1) {
2651 			fdrop(fp);
2652 			fp = NULL;
2653 		}
2654 	}
2655 	return fp;
2656 }
2657 
2658 /*
2659  * holdsock() - load the struct file pointer associated
2660  * with a socket into *fpp.  If an error occurs, non-zero
2661  * will be returned and *fpp will be set to NULL.
2662  *
2663  * td must be the current thread.
2664  */
2665 int
2666 holdsock(thread_t td, int fd, struct file **fpp)
2667 {
2668 	struct file *fp;
2669 	int error;
2670 
2671 	/*
2672 	 * Lockless shortcut
2673 	 */
2674 	fp = _holdfp_cache(td, fd);
2675 	if (fp) {
2676 		if (fp->f_type != DTYPE_SOCKET) {
2677 			fdrop(fp);
2678 			fp = NULL;
2679 			error = ENOTSOCK;
2680 		} else {
2681 			error = 0;
2682 		}
2683 	} else {
2684 		error = EBADF;
2685 	}
2686 	*fpp = fp;
2687 
2688 	return (error);
2689 }
2690 
2691 /*
2692  * Convert a user file descriptor to a held file pointer.
2693  *
2694  * td must be the current thread.
2695  */
2696 int
2697 holdvnode(thread_t td, int fd, struct file **fpp)
2698 {
2699 	struct file *fp;
2700 	int error;
2701 
2702 	fp = _holdfp_cache(td, fd);
2703 	if (fp) {
2704 		if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2705 			fdrop(fp);
2706 			fp = NULL;
2707 			error = EINVAL;
2708 		} else {
2709 			error = 0;
2710 		}
2711 	} else {
2712 		error = EBADF;
2713 	}
2714 	*fpp = fp;
2715 
2716 	return (error);
2717 }
2718 
2719 /*
2720  * For setugid programs, we don't want to people to use that setugidness
2721  * to generate error messages which write to a file which otherwise would
2722  * otherwise be off-limits to the process.
2723  *
2724  * This is a gross hack to plug the hole.  A better solution would involve
2725  * a special vop or other form of generalized access control mechanism.  We
2726  * go ahead and just reject all procfs file systems accesses as dangerous.
2727  *
2728  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2729  * sufficient.  We also don't for check setugidness since we know we are.
2730  */
2731 static int
2732 is_unsafe(struct file *fp)
2733 {
2734 	if (fp->f_type == DTYPE_VNODE &&
2735 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2736 		return (1);
2737 	return (0);
2738 }
2739 
2740 /*
2741  * Make this setguid thing safe, if at all possible.
2742  *
2743  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2744  */
2745 void
2746 setugidsafety(struct proc *p)
2747 {
2748 	struct filedesc *fdp = p->p_fd;
2749 	int i;
2750 
2751 	/* Certain daemons might not have file descriptors. */
2752 	if (fdp == NULL)
2753 		return;
2754 
2755 	/*
2756 	 * note: fdp->fd_files may be reallocated out from under us while
2757 	 * we are blocked in a close.  Be careful!
2758 	 */
2759 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2760 		if (i > 2)
2761 			break;
2762 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2763 			struct file *fp;
2764 
2765 			/*
2766 			 * NULL-out descriptor prior to close to avoid
2767 			 * a race while close blocks.
2768 			 */
2769 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2770 				knote_fdclose(fp, fdp, i);
2771 				closef(fp, p);
2772 			}
2773 		}
2774 	}
2775 }
2776 
2777 /*
2778  * Close all CLOEXEC files on exec.
2779  *
2780  * Only a single thread remains for the current process.
2781  *
2782  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2783  */
2784 void
2785 fdcloseexec(struct proc *p)
2786 {
2787 	struct filedesc *fdp = p->p_fd;
2788 	int i;
2789 
2790 	/* Certain daemons might not have file descriptors. */
2791 	if (fdp == NULL)
2792 		return;
2793 
2794 	/*
2795 	 * We cannot cache fd_files since operations may block and rip
2796 	 * them out from under us.
2797 	 */
2798 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2799 		if (fdp->fd_files[i].fp != NULL &&
2800 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2801 			struct file *fp;
2802 
2803 			/*
2804 			 * NULL-out descriptor prior to close to avoid
2805 			 * a race while close blocks.
2806 			 *
2807 			 * (funsetfd*() also clears the fd cache)
2808 			 */
2809 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2810 				knote_fdclose(fp, fdp, i);
2811 				closef(fp, p);
2812 			}
2813 		}
2814 	}
2815 }
2816 
2817 /*
2818  * It is unsafe for set[ug]id processes to be started with file
2819  * descriptors 0..2 closed, as these descriptors are given implicit
2820  * significance in the Standard C library.  fdcheckstd() will create a
2821  * descriptor referencing /dev/null for each of stdin, stdout, and
2822  * stderr that is not already open.
2823  *
2824  * NOT MPSAFE - calls falloc, vn_open, etc
2825  */
2826 int
2827 fdcheckstd(struct lwp *lp)
2828 {
2829 	struct nlookupdata nd;
2830 	struct filedesc *fdp;
2831 	struct file *fp;
2832 	int retval;
2833 	int i, error, flags, devnull;
2834 
2835 	fdp = lp->lwp_proc->p_fd;
2836 	if (fdp == NULL)
2837 		return (0);
2838 	devnull = -1;
2839 	error = 0;
2840 	for (i = 0; i < 3; i++) {
2841 		if (fdp->fd_files[i].fp != NULL)
2842 			continue;
2843 		if (devnull < 0) {
2844 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2845 				break;
2846 
2847 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2848 						NLC_FOLLOW|NLC_LOCKVP);
2849 			flags = FREAD | FWRITE;
2850 			if (error == 0)
2851 				error = vn_open(&nd, fp, flags, 0);
2852 			if (error == 0)
2853 				fsetfd(fdp, fp, devnull);
2854 			else
2855 				fsetfd(fdp, NULL, devnull);
2856 			fdrop(fp);
2857 			nlookup_done(&nd);
2858 			if (error)
2859 				break;
2860 			KKASSERT(i == devnull);
2861 		} else {
2862 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2863 			if (error != 0)
2864 				break;
2865 		}
2866 	}
2867 	return (error);
2868 }
2869 
2870 /*
2871  * Internal form of close.
2872  * Decrement reference count on file structure.
2873  * Note: td and/or p may be NULL when closing a file
2874  * that was being passed in a message.
2875  *
2876  * MPALMOSTSAFE - acquires mplock for VOP operations
2877  */
2878 int
2879 closef(struct file *fp, struct proc *p)
2880 {
2881 	struct vnode *vp;
2882 	struct flock lf;
2883 	struct filedesc_to_leader *fdtol;
2884 
2885 	if (fp == NULL)
2886 		return (0);
2887 
2888 	/*
2889 	 * POSIX record locking dictates that any close releases ALL
2890 	 * locks owned by this process.  This is handled by setting
2891 	 * a flag in the unlock to free ONLY locks obeying POSIX
2892 	 * semantics, and not to free BSD-style file locks.
2893 	 * If the descriptor was in a message, POSIX-style locks
2894 	 * aren't passed with the descriptor.
2895 	 */
2896 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2897 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2898 	) {
2899 		if (p->p_leader->p_advlock_flag) {
2900 			lf.l_whence = SEEK_SET;
2901 			lf.l_start = 0;
2902 			lf.l_len = 0;
2903 			lf.l_type = F_UNLCK;
2904 			vp = (struct vnode *)fp->f_data;
2905 			VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2906 				    &lf, F_POSIX);
2907 		}
2908 		fdtol = p->p_fdtol;
2909 		if (fdtol != NULL) {
2910 			lwkt_gettoken(&p->p_token);
2911 
2912 			/*
2913 			 * Handle special case where file descriptor table
2914 			 * is shared between multiple process leaders.
2915 			 */
2916 			for (fdtol = fdtol->fdl_next;
2917 			     fdtol != p->p_fdtol;
2918 			     fdtol = fdtol->fdl_next) {
2919 				if (fdtol->fdl_leader->p_advlock_flag == 0)
2920 					continue;
2921 				fdtol->fdl_holdcount++;
2922 				lf.l_whence = SEEK_SET;
2923 				lf.l_start = 0;
2924 				lf.l_len = 0;
2925 				lf.l_type = F_UNLCK;
2926 				vp = (struct vnode *)fp->f_data;
2927 				VOP_ADVLOCK(vp, (caddr_t)fdtol->fdl_leader,
2928 					    F_UNLCK, &lf, F_POSIX);
2929 				fdtol->fdl_holdcount--;
2930 				if (fdtol->fdl_holdcount == 0 &&
2931 				    fdtol->fdl_wakeup != 0) {
2932 					fdtol->fdl_wakeup = 0;
2933 					wakeup(fdtol);
2934 				}
2935 			}
2936 			lwkt_reltoken(&p->p_token);
2937 		}
2938 	}
2939 	return (fdrop(fp));
2940 }
2941 
2942 /*
2943  * fhold() can only be called if f_count is already at least 1 (i.e. the
2944  * caller of fhold() already has a reference to the file pointer in some
2945  * manner or other).
2946  *
2947  * Atomic ops are used for incrementing and decrementing f_count before
2948  * the 1->0 transition.  f_count 1->0 transition is special, see the
2949  * comment in fdrop().
2950  */
2951 void
2952 fhold(struct file *fp)
2953 {
2954 	/* 0->1 transition will never work */
2955 	KASSERT(fp->f_count > 0, ("fhold: invalid f_count %d", fp->f_count));
2956 	atomic_add_int(&fp->f_count, 1);
2957 }
2958 
2959 /*
2960  * fdrop() - drop a reference to a descriptor
2961  */
2962 int
2963 fdrop(struct file *fp)
2964 {
2965 	struct flock lf;
2966 	struct vnode *vp;
2967 	int error, do_free = 0;
2968 
2969 	/*
2970 	 * NOTE:
2971 	 * Simple atomic_fetchadd_int(f_count, -1) here will cause use-
2972 	 * after-free or double free (due to f_count 0->1 transition), if
2973 	 * fhold() is called on the fps found through filehead iteration.
2974 	 */
2975 	for (;;) {
2976 		int count = fp->f_count;
2977 
2978 		cpu_ccfence();
2979 		KASSERT(count > 0, ("fdrop: invalid f_count %d", count));
2980 		if (count == 1) {
2981 			struct filelist_head *head = fp2filelist(fp);
2982 
2983 			/*
2984 			 * About to drop the last reference, hold the
2985 			 * filehead spin lock and drop it, so that no
2986 			 * one could see this fp through filehead anymore,
2987 			 * let alone fhold() this fp.
2988 			 */
2989 			spin_lock(&head->spin);
2990 			if (atomic_cmpset_int(&fp->f_count, count, 0)) {
2991 				LIST_REMOVE(fp, f_list);
2992 				spin_unlock(&head->spin);
2993 				atomic_subtract_int(&nfiles, 1);
2994 				do_free = 1; /* free this fp */
2995 				break;
2996 			}
2997 			spin_unlock(&head->spin);
2998 			/* retry */
2999 		} else if (atomic_cmpset_int(&fp->f_count, count, count - 1)) {
3000 			break;
3001 		}
3002 		/* retry */
3003 	}
3004 	if (!do_free)
3005 		return (0);
3006 
3007 	KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
3008 
3009 	/*
3010 	 * The last reference has gone away, we own the fp structure free
3011 	 * and clear.
3012 	 */
3013 	if (fp->f_count < 0)
3014 		panic("fdrop: count < 0");
3015 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
3016 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
3017 	) {
3018 		lf.l_whence = SEEK_SET;
3019 		lf.l_start = 0;
3020 		lf.l_len = 0;
3021 		lf.l_type = F_UNLCK;
3022 		vp = (struct vnode *)fp->f_data;
3023 		VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
3024 	}
3025 	if (fp->f_ops != &badfileops)
3026 		error = fo_close(fp);
3027 	else
3028 		error = 0;
3029 	ffree(fp);
3030 	return (error);
3031 }
3032 
3033 /*
3034  * Apply an advisory lock on a file descriptor.
3035  *
3036  * Just attempt to get a record lock of the requested type on
3037  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
3038  *
3039  * MPALMOSTSAFE
3040  */
3041 int
3042 sys_flock(struct flock_args *uap)
3043 {
3044 	thread_t td = curthread;
3045 	struct file *fp;
3046 	struct vnode *vp;
3047 	struct flock lf;
3048 	int error;
3049 
3050 	if ((fp = holdfp(td, uap->fd, -1)) == NULL)
3051 		return (EBADF);
3052 	if (fp->f_type != DTYPE_VNODE) {
3053 		error = EOPNOTSUPP;
3054 		goto done;
3055 	}
3056 	vp = (struct vnode *)fp->f_data;
3057 	lf.l_whence = SEEK_SET;
3058 	lf.l_start = 0;
3059 	lf.l_len = 0;
3060 	if (uap->how & LOCK_UN) {
3061 		lf.l_type = F_UNLCK;
3062 		atomic_clear_int(&fp->f_flag, FHASLOCK); /* race ok */
3063 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
3064 		goto done;
3065 	}
3066 	if (uap->how & LOCK_EX)
3067 		lf.l_type = F_WRLCK;
3068 	else if (uap->how & LOCK_SH)
3069 		lf.l_type = F_RDLCK;
3070 	else {
3071 		error = EBADF;
3072 		goto done;
3073 	}
3074 	if (uap->how & LOCK_NB)
3075 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
3076 	else
3077 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
3078 	atomic_set_int(&fp->f_flag, FHASLOCK);	/* race ok */
3079 done:
3080 	fdrop(fp);
3081 	return (error);
3082 }
3083 
3084 /*
3085  * File Descriptor pseudo-device driver (/dev/fd/).
3086  *
3087  * Opening minor device N dup()s the file (if any) connected to file
3088  * descriptor N belonging to the calling process.  Note that this driver
3089  * consists of only the ``open()'' routine, because all subsequent
3090  * references to this file will be direct to the other driver.
3091  */
3092 static int
3093 fdopen(struct dev_open_args *ap)
3094 {
3095 	thread_t td = curthread;
3096 
3097 	KKASSERT(td->td_lwp != NULL);
3098 
3099 	/*
3100 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
3101 	 * the file descriptor being sought for duplication. The error
3102 	 * return ensures that the vnode for this device will be released
3103 	 * by vn_open. Open will detect this special error and take the
3104 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
3105 	 * will simply report the error.
3106 	 */
3107 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
3108 	return (ENODEV);
3109 }
3110 
3111 /*
3112  * The caller has reserved the file descriptor dfd for us.  On success we
3113  * must fsetfd() it.  On failure the caller will clean it up.
3114  */
3115 int
3116 dupfdopen(thread_t td, int dfd, int sfd, int mode, int error)
3117 {
3118 	struct filedesc *fdp;
3119 	struct file *wfp;
3120 	struct file *xfp;
3121 	int werror;
3122 
3123 	if ((wfp = holdfp(td, sfd, -1)) == NULL)
3124 		return (EBADF);
3125 
3126 	/*
3127 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
3128 	 * will dup a dummy descriptor instead of the real one.
3129 	 */
3130 	if (wfp->f_flag & FREVOKED) {
3131 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
3132 		fdrop(wfp);
3133 		wfp = NULL;
3134 		werror = falloc(NULL, &wfp, NULL);
3135 		if (werror)
3136 			return (werror);
3137 	}
3138 
3139 	fdp = td->td_proc->p_fd;
3140 
3141 	/*
3142 	 * There are two cases of interest here.
3143 	 *
3144 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
3145 	 *
3146 	 * For ENXIO steal away the file structure from sfd and store it
3147 	 * dfd.  sfd is effectively closed by this operation.
3148 	 *
3149 	 * Any other error code is just returned.
3150 	 */
3151 	switch (error) {
3152 	case ENODEV:
3153 		/*
3154 		 * Check that the mode the file is being opened for is a
3155 		 * subset of the mode of the existing descriptor.
3156 		 */
3157 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
3158 			error = EACCES;
3159 			break;
3160 		}
3161 		spin_lock(&fdp->fd_spin);
3162 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
3163 		fsetfd_locked(fdp, wfp, dfd);
3164 		spin_unlock(&fdp->fd_spin);
3165 		error = 0;
3166 		break;
3167 	case ENXIO:
3168 		/*
3169 		 * Steal away the file pointer from dfd, and stuff it into indx.
3170 		 */
3171 		spin_lock(&fdp->fd_spin);
3172 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
3173 		fsetfd(fdp, wfp, dfd);
3174 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
3175 			spin_unlock(&fdp->fd_spin);
3176 			fdrop(xfp);
3177 		} else {
3178 			spin_unlock(&fdp->fd_spin);
3179 		}
3180 		error = 0;
3181 		break;
3182 	default:
3183 		break;
3184 	}
3185 	fdrop(wfp);
3186 	return (error);
3187 }
3188 
3189 /*
3190  * NOT MPSAFE - I think these refer to a common file descriptor table
3191  * and we need to spinlock that to link fdtol in.
3192  */
3193 struct filedesc_to_leader *
3194 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
3195 			 struct proc *leader)
3196 {
3197 	struct filedesc_to_leader *fdtol;
3198 
3199 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
3200 			M_FILEDESC_TO_LEADER, M_WAITOK | M_ZERO);
3201 	fdtol->fdl_refcount = 1;
3202 	fdtol->fdl_holdcount = 0;
3203 	fdtol->fdl_wakeup = 0;
3204 	fdtol->fdl_leader = leader;
3205 	if (old != NULL) {
3206 		fdtol->fdl_next = old->fdl_next;
3207 		fdtol->fdl_prev = old;
3208 		old->fdl_next = fdtol;
3209 		fdtol->fdl_next->fdl_prev = fdtol;
3210 	} else {
3211 		fdtol->fdl_next = fdtol;
3212 		fdtol->fdl_prev = fdtol;
3213 	}
3214 	return fdtol;
3215 }
3216 
3217 /*
3218  * Scan all file pointers in the system.  The callback is made with
3219  * the master list spinlock held exclusively.
3220  */
3221 void
3222 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
3223 {
3224 	int i;
3225 
3226 	for (i = 0; i < NFILELIST_HEADS; ++i) {
3227 		struct filelist_head *head = &filelist_heads[i];
3228 		struct file *fp;
3229 
3230 		spin_lock(&head->spin);
3231 		LIST_FOREACH(fp, &head->list, f_list) {
3232 			int res;
3233 
3234 			res = callback(fp, data);
3235 			if (res < 0)
3236 				break;
3237 		}
3238 		spin_unlock(&head->spin);
3239 	}
3240 }
3241 
3242 /*
3243  * Get file structures.
3244  *
3245  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
3246  */
3247 
3248 struct sysctl_kern_file_info {
3249 	int count;
3250 	int error;
3251 	struct sysctl_req *req;
3252 };
3253 
3254 static int sysctl_kern_file_callback(struct proc *p, void *data);
3255 
3256 static int
3257 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
3258 {
3259 	struct sysctl_kern_file_info info;
3260 
3261 	/*
3262 	 * Note: because the number of file descriptors is calculated
3263 	 * in different ways for sizing vs returning the data,
3264 	 * there is information leakage from the first loop.  However,
3265 	 * it is of a similar order of magnitude to the leakage from
3266 	 * global system statistics such as kern.openfiles.
3267 	 *
3268 	 * When just doing a count, note that we cannot just count
3269 	 * the elements and add f_count via the filehead list because
3270 	 * threaded processes share their descriptor table and f_count might
3271 	 * still be '1' in that case.
3272 	 *
3273 	 * Since the SYSCTL op can block, we must hold the process to
3274 	 * prevent it being ripped out from under us either in the
3275 	 * file descriptor loop or in the greater LIST_FOREACH.  The
3276 	 * process may be in varying states of disrepair.  If the process
3277 	 * is in SZOMB we may have caught it just as it is being removed
3278 	 * from the allproc list, we must skip it in that case to maintain
3279 	 * an unbroken chain through the allproc list.
3280 	 */
3281 	info.count = 0;
3282 	info.error = 0;
3283 	info.req = req;
3284 	allproc_scan(sysctl_kern_file_callback, &info, 0);
3285 
3286 	/*
3287 	 * When just calculating the size, overestimate a bit to try to
3288 	 * prevent system activity from causing the buffer-fill call
3289 	 * to fail later on.
3290 	 */
3291 	if (req->oldptr == NULL) {
3292 		info.count = (info.count + 16) + (info.count / 10);
3293 		info.error = SYSCTL_OUT(req, NULL,
3294 					info.count * sizeof(struct kinfo_file));
3295 	}
3296 	return (info.error);
3297 }
3298 
3299 static int
3300 sysctl_kern_file_callback(struct proc *p, void *data)
3301 {
3302 	struct sysctl_kern_file_info *info = data;
3303 	struct kinfo_file kf;
3304 	struct filedesc *fdp;
3305 	struct file *fp;
3306 	uid_t uid;
3307 	int n;
3308 
3309 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
3310 		return(0);
3311 	if (!(PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0))
3312 		return(0);
3313 
3314 	/*
3315 	 * Softref the fdp to prevent it from being destroyed
3316 	 */
3317 	spin_lock(&p->p_spin);
3318 	if ((fdp = p->p_fd) == NULL) {
3319 		spin_unlock(&p->p_spin);
3320 		return(0);
3321 	}
3322 	atomic_add_int(&fdp->fd_softrefs, 1);
3323 	spin_unlock(&p->p_spin);
3324 
3325 	/*
3326 	 * The fdp's own spinlock prevents the contents from being
3327 	 * modified.
3328 	 */
3329 	spin_lock_shared(&fdp->fd_spin);
3330 	for (n = 0; n < fdp->fd_nfiles; ++n) {
3331 		if ((fp = fdp->fd_files[n].fp) == NULL)
3332 			continue;
3333 		if (info->req->oldptr == NULL) {
3334 			++info->count;
3335 		} else {
3336 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
3337 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
3338 			spin_unlock_shared(&fdp->fd_spin);
3339 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
3340 			spin_lock_shared(&fdp->fd_spin);
3341 			if (info->error)
3342 				break;
3343 		}
3344 	}
3345 	spin_unlock_shared(&fdp->fd_spin);
3346 	atomic_subtract_int(&fdp->fd_softrefs, 1);
3347 	if (info->error)
3348 		return(-1);
3349 	return(0);
3350 }
3351 
3352 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
3353     0, 0, sysctl_kern_file, "S,file", "Entire file table");
3354 
3355 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
3356     &minfilesperproc, 0, "Minimum files allowed open per process");
3357 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
3358     &maxfilesperproc, 0, "Maximum files allowed open per process");
3359 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
3360     &maxfilesperuser, 0, "Maximum files allowed open per user");
3361 
3362 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
3363     &maxfiles, 0, "Maximum number of files");
3364 
3365 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
3366     &maxfilesrootres, 0, "Descriptors reserved for root use");
3367 
3368 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
3369 	&nfiles, 0, "System-wide number of open files");
3370 
3371 static void
3372 fildesc_drvinit(void *unused)
3373 {
3374 	int fd;
3375 
3376 	for (fd = 0; fd < NUMFDESC; fd++) {
3377 		make_dev(&fildesc_ops, fd,
3378 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
3379 	}
3380 
3381 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
3382 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
3383 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
3384 }
3385 
3386 struct fileops badfileops = {
3387 	.fo_read = badfo_readwrite,
3388 	.fo_write = badfo_readwrite,
3389 	.fo_ioctl = badfo_ioctl,
3390 	.fo_kqfilter = badfo_kqfilter,
3391 	.fo_stat = badfo_stat,
3392 	.fo_close = badfo_close,
3393 	.fo_shutdown = badfo_shutdown
3394 };
3395 
3396 int
3397 badfo_readwrite(
3398 	struct file *fp,
3399 	struct uio *uio,
3400 	struct ucred *cred,
3401 	int flags
3402 ) {
3403 	return (EBADF);
3404 }
3405 
3406 int
3407 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
3408 	    struct ucred *cred, struct sysmsg *msgv)
3409 {
3410 	return (EBADF);
3411 }
3412 
3413 /*
3414  * Must return an error to prevent registration, typically
3415  * due to a revoked descriptor (file_filtops assigned).
3416  */
3417 int
3418 badfo_kqfilter(struct file *fp, struct knote *kn)
3419 {
3420 	return (EOPNOTSUPP);
3421 }
3422 
3423 int
3424 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
3425 {
3426 	return (EBADF);
3427 }
3428 
3429 int
3430 badfo_close(struct file *fp)
3431 {
3432 	return (EBADF);
3433 }
3434 
3435 int
3436 badfo_shutdown(struct file *fp, int how)
3437 {
3438 	return (EBADF);
3439 }
3440 
3441 int
3442 nofo_shutdown(struct file *fp, int how)
3443 {
3444 	return (EOPNOTSUPP);
3445 }
3446 
3447 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR,
3448     fildesc_drvinit,NULL);
3449 
3450 static void
3451 filelist_heads_init(void *arg __unused)
3452 {
3453 	int i;
3454 
3455 	for (i = 0; i < NFILELIST_HEADS; ++i) {
3456 		struct filelist_head *head = &filelist_heads[i];
3457 
3458 		spin_init(&head->spin, "filehead_spin");
3459 		LIST_INIT(&head->list);
3460 	}
3461 }
3462 
3463 SYSINIT(filelistheads, SI_BOOT1_LOCK, SI_ORDER_ANY,
3464     filelist_heads_init, NULL);
3465 
3466 static void
3467 file_objcache_init(void *dummy __unused)
3468 {
3469 	file_objcache = objcache_create("file", maxfiles, maxfiles / 8,
3470 	    NULL, NULL, NULL, /* TODO: ctor/dtor */
3471 	    objcache_malloc_alloc, objcache_malloc_free, &file_malloc_args);
3472 }
3473 SYSINIT(fpobjcache, SI_BOOT2_POST_SMP, SI_ORDER_ANY, file_objcache_init, NULL);
3474