xref: /dragonfly/sys/kern/kern_descrip.c (revision 65cc0652)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
68  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/sysproto.h>
75 #include <sys/conf.h>
76 #include <sys/device.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/vnode.h>
82 #include <sys/proc.h>
83 #include <sys/nlookup.h>
84 #include <sys/stat.h>
85 #include <sys/filio.h>
86 #include <sys/fcntl.h>
87 #include <sys/unistd.h>
88 #include <sys/resourcevar.h>
89 #include <sys/event.h>
90 #include <sys/kern_syscall.h>
91 #include <sys/kcore.h>
92 #include <sys/kinfo.h>
93 #include <sys/un.h>
94 #include <sys/objcache.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <sys/file2.h>
101 #include <sys/spinlock2.h>
102 
103 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
104 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
105 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
106 static void ffree(struct file *fp);
107 
108 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
109 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
110 		     "file desc to leader structures");
111 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
112 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
113 
114 static struct krate krate_uidinfo = { .freq = 1 };
115 
116 static	 d_open_t  fdopen;
117 #define NUMFDESC 64
118 
119 #define CDEV_MAJOR 22
120 static struct dev_ops fildesc_ops = {
121 	{ "FD", 0, 0 },
122 	.d_open =	fdopen,
123 };
124 
125 /*
126  * Descriptor management.
127  */
128 #ifndef NFILELIST_HEADS
129 #define NFILELIST_HEADS		257	/* primary number */
130 #endif
131 
132 struct filelist_head {
133 	struct spinlock		spin;
134 	struct filelist		list;
135 } __cachealign;
136 
137 static struct filelist_head	filelist_heads[NFILELIST_HEADS];
138 
139 static int nfiles;		/* actual number of open files */
140 extern int cmask;
141 
142 struct lwkt_token revoke_token = LWKT_TOKEN_INITIALIZER(revoke_token);
143 
144 static struct objcache		*file_objcache;
145 
146 static struct objcache_malloc_args file_malloc_args = {
147 	.objsize	= sizeof(struct file),
148 	.mtype		= M_FILE
149 };
150 
151 /*
152  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
153  *
154  * must be called with fdp->fd_spin exclusively held
155  */
156 static __inline
157 void
158 fdfixup_locked(struct filedesc *fdp, int fd)
159 {
160 	if (fd < fdp->fd_freefile) {
161 	       fdp->fd_freefile = fd;
162 	}
163 	while (fdp->fd_lastfile >= 0 &&
164 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
165 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
166 	) {
167 		--fdp->fd_lastfile;
168 	}
169 }
170 
171 static __inline struct filelist_head *
172 fp2filelist(const struct file *fp)
173 {
174 	u_int i;
175 
176 	i = (u_int)(uintptr_t)fp % NFILELIST_HEADS;
177 	return &filelist_heads[i];
178 }
179 
180 /*
181  * System calls on descriptors.
182  */
183 int
184 sys_getdtablesize(struct getdtablesize_args *uap)
185 {
186 	struct proc *p = curproc;
187 	struct plimit *limit = p->p_limit;
188 	int dtsize;
189 
190 	spin_lock(&limit->p_spin);
191 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
192 		dtsize = INT_MAX;
193 	else
194 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
195 	spin_unlock(&limit->p_spin);
196 
197 	if (dtsize > maxfilesperproc)
198 		dtsize = maxfilesperproc;
199 	if (dtsize < minfilesperproc)
200 		dtsize = minfilesperproc;
201 	if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
202 		dtsize = maxfilesperuser;
203 	uap->sysmsg_result = dtsize;
204 	return (0);
205 }
206 
207 /*
208  * Duplicate a file descriptor to a particular value.
209  *
210  * note: keep in mind that a potential race condition exists when closing
211  * descriptors from a shared descriptor table (via rfork).
212  */
213 int
214 sys_dup2(struct dup2_args *uap)
215 {
216 	int error;
217 	int fd = 0;
218 
219 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
220 	uap->sysmsg_fds[0] = fd;
221 
222 	return (error);
223 }
224 
225 /*
226  * Duplicate a file descriptor.
227  */
228 int
229 sys_dup(struct dup_args *uap)
230 {
231 	int error;
232 	int fd = 0;
233 
234 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
235 	uap->sysmsg_fds[0] = fd;
236 
237 	return (error);
238 }
239 
240 /*
241  * MPALMOSTSAFE - acquires mplock for fp operations
242  */
243 int
244 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
245 {
246 	struct thread *td = curthread;
247 	struct proc *p = td->td_proc;
248 	struct file *fp;
249 	struct vnode *vp;
250 	u_int newmin;
251 	u_int oflags;
252 	u_int nflags;
253 	int tmp, error, flg = F_POSIX;
254 
255 	KKASSERT(p);
256 
257 	/*
258 	 * Operations on file descriptors that do not require a file pointer.
259 	 */
260 	switch (cmd) {
261 	case F_GETFD:
262 		error = fgetfdflags(p->p_fd, fd, &tmp);
263 		if (error == 0)
264 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
265 		return (error);
266 
267 	case F_SETFD:
268 		if (dat->fc_cloexec & FD_CLOEXEC)
269 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
270 		else
271 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
272 		return (error);
273 	case F_DUPFD:
274 		newmin = dat->fc_fd;
275 		error = kern_dup(DUP_VARIABLE | DUP_FCNTL, fd, newmin,
276 		    &dat->fc_fd);
277 		return (error);
278 	case F_DUPFD_CLOEXEC:
279 		newmin = dat->fc_fd;
280 		error = kern_dup(DUP_VARIABLE | DUP_CLOEXEC | DUP_FCNTL,
281 		    fd, newmin, &dat->fc_fd);
282 		return (error);
283 	case F_DUP2FD:
284 		newmin = dat->fc_fd;
285 		error = kern_dup(DUP_FIXED, fd, newmin, &dat->fc_fd);
286 		return (error);
287 	case F_DUP2FD_CLOEXEC:
288 		newmin = dat->fc_fd;
289 		error = kern_dup(DUP_FIXED | DUP_CLOEXEC, fd, newmin,
290 				 &dat->fc_fd);
291 		return (error);
292 	default:
293 		break;
294 	}
295 
296 	/*
297 	 * Operations on file pointers
298 	 */
299 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
300 		return (EBADF);
301 
302 	switch (cmd) {
303 	case F_GETFL:
304 		dat->fc_flags = OFLAGS(fp->f_flag);
305 		error = 0;
306 		break;
307 
308 	case F_SETFL:
309 		oflags = fp->f_flag;
310 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
311 		nflags |= oflags & ~FCNTLFLAGS;
312 
313 		error = 0;
314 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
315 			error = EINVAL;
316 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
317 			tmp = nflags & FASYNC;
318 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
319 					 cred, NULL);
320 		}
321 
322 		/*
323 		 * If no error, must be atomically set.
324 		 */
325 		while (error == 0) {
326 			oflags = fp->f_flag;
327 			cpu_ccfence();
328 			nflags = (oflags & ~FCNTLFLAGS) | (nflags & FCNTLFLAGS);
329 			if (atomic_cmpset_int(&fp->f_flag, oflags, nflags))
330 				break;
331 			cpu_pause();
332 		}
333 		break;
334 
335 	case F_GETOWN:
336 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
337 				 cred, NULL);
338 		break;
339 
340 	case F_SETOWN:
341 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
342 				 cred, NULL);
343 		break;
344 
345 	case F_SETLKW:
346 		flg |= F_WAIT;
347 		/* Fall into F_SETLK */
348 
349 	case F_SETLK:
350 		if (fp->f_type != DTYPE_VNODE) {
351 			error = EBADF;
352 			break;
353 		}
354 		vp = (struct vnode *)fp->f_data;
355 
356 		/*
357 		 * copyin/lockop may block
358 		 */
359 		if (dat->fc_flock.l_whence == SEEK_CUR)
360 			dat->fc_flock.l_start += fp->f_offset;
361 
362 		switch (dat->fc_flock.l_type) {
363 		case F_RDLCK:
364 			if ((fp->f_flag & FREAD) == 0) {
365 				error = EBADF;
366 				break;
367 			}
368 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
369 				lwkt_gettoken(&p->p_leader->p_token);
370 				p->p_leader->p_flags |= P_ADVLOCK;
371 				lwkt_reltoken(&p->p_leader->p_token);
372 			}
373 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
374 			    &dat->fc_flock, flg);
375 			break;
376 		case F_WRLCK:
377 			if ((fp->f_flag & FWRITE) == 0) {
378 				error = EBADF;
379 				break;
380 			}
381 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
382 				lwkt_gettoken(&p->p_leader->p_token);
383 				p->p_leader->p_flags |= P_ADVLOCK;
384 				lwkt_reltoken(&p->p_leader->p_token);
385 			}
386 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
387 			    &dat->fc_flock, flg);
388 			break;
389 		case F_UNLCK:
390 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
391 				&dat->fc_flock, F_POSIX);
392 			break;
393 		default:
394 			error = EINVAL;
395 			break;
396 		}
397 
398 		/*
399 		 * It is possible to race a close() on the descriptor while
400 		 * we were blocked getting the lock.  If this occurs the
401 		 * close might not have caught the lock.
402 		 */
403 		if (checkfdclosed(p->p_fd, fd, fp)) {
404 			dat->fc_flock.l_whence = SEEK_SET;
405 			dat->fc_flock.l_start = 0;
406 			dat->fc_flock.l_len = 0;
407 			dat->fc_flock.l_type = F_UNLCK;
408 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
409 					   F_UNLCK, &dat->fc_flock, F_POSIX);
410 		}
411 		break;
412 
413 	case F_GETLK:
414 		if (fp->f_type != DTYPE_VNODE) {
415 			error = EBADF;
416 			break;
417 		}
418 		vp = (struct vnode *)fp->f_data;
419 		/*
420 		 * copyin/lockop may block
421 		 */
422 		if (dat->fc_flock.l_type != F_RDLCK &&
423 		    dat->fc_flock.l_type != F_WRLCK &&
424 		    dat->fc_flock.l_type != F_UNLCK) {
425 			error = EINVAL;
426 			break;
427 		}
428 		if (dat->fc_flock.l_whence == SEEK_CUR)
429 			dat->fc_flock.l_start += fp->f_offset;
430 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
431 			    &dat->fc_flock, F_POSIX);
432 		break;
433 	default:
434 		error = EINVAL;
435 		break;
436 	}
437 
438 	fdrop(fp);
439 	return (error);
440 }
441 
442 /*
443  * The file control system call.
444  */
445 int
446 sys_fcntl(struct fcntl_args *uap)
447 {
448 	union fcntl_dat dat;
449 	int error;
450 
451 	switch (uap->cmd) {
452 	case F_DUPFD:
453 	case F_DUP2FD:
454 	case F_DUPFD_CLOEXEC:
455 	case F_DUP2FD_CLOEXEC:
456 		dat.fc_fd = uap->arg;
457 		break;
458 	case F_SETFD:
459 		dat.fc_cloexec = uap->arg;
460 		break;
461 	case F_SETFL:
462 		dat.fc_flags = uap->arg;
463 		break;
464 	case F_SETOWN:
465 		dat.fc_owner = uap->arg;
466 		break;
467 	case F_SETLKW:
468 	case F_SETLK:
469 	case F_GETLK:
470 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
471 			       sizeof(struct flock));
472 		if (error)
473 			return (error);
474 		break;
475 	}
476 
477 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
478 
479 	if (error == 0) {
480 		switch (uap->cmd) {
481 		case F_DUPFD:
482 		case F_DUP2FD:
483 		case F_DUPFD_CLOEXEC:
484 		case F_DUP2FD_CLOEXEC:
485 			uap->sysmsg_result = dat.fc_fd;
486 			break;
487 		case F_GETFD:
488 			uap->sysmsg_result = dat.fc_cloexec;
489 			break;
490 		case F_GETFL:
491 			uap->sysmsg_result = dat.fc_flags;
492 			break;
493 		case F_GETOWN:
494 			uap->sysmsg_result = dat.fc_owner;
495 			break;
496 		case F_GETLK:
497 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
498 			    sizeof(struct flock));
499 			break;
500 		}
501 	}
502 
503 	return (error);
504 }
505 
506 /*
507  * Common code for dup, dup2, and fcntl(F_DUPFD).
508  *
509  * There are four type flags: DUP_FCNTL, DUP_FIXED, DUP_VARIABLE, and
510  * DUP_CLOEXEC.
511  *
512  * DUP_FCNTL is for handling EINVAL vs. EBADF differences between
513  * fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC and dup2() (per POSIX).
514  * The next two flags are mutually exclusive, and the fourth is optional.
515  * DUP_FIXED tells kern_dup() to destructively dup over an existing file
516  * descriptor if "new" is already open.  DUP_VARIABLE tells kern_dup()
517  * to find the lowest unused file descriptor that is greater than or
518  * equal to "new".  DUP_CLOEXEC, which works with either of the first
519  * two flags, sets the close-on-exec flag on the "new" file descriptor.
520  */
521 int
522 kern_dup(int flags, int old, int new, int *res)
523 {
524 	struct thread *td = curthread;
525 	struct proc *p = td->td_proc;
526 	struct filedesc *fdp = p->p_fd;
527 	struct file *fp;
528 	struct file *delfp;
529 	int oldflags;
530 	int holdleaders;
531 	int dtsize;
532 	int error, newfd;
533 
534 	/*
535 	 * Verify that we have a valid descriptor to dup from and
536 	 * possibly to dup to. When the new descriptor is out of
537 	 * bounds, fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC must
538 	 * return EINVAL, while dup2() returns EBADF in
539 	 * this case.
540 	 *
541 	 * NOTE: maxfilesperuser is not applicable to dup()
542 	 */
543 retry:
544 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
545 		dtsize = INT_MAX;
546 	else
547 		dtsize = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
548 	if (dtsize > maxfilesperproc)
549 		dtsize = maxfilesperproc;
550 	if (dtsize < minfilesperproc)
551 		dtsize = minfilesperproc;
552 
553 	if (new < 0 || new > dtsize)
554 		return (flags & DUP_FCNTL ? EINVAL : EBADF);
555 
556 	spin_lock(&fdp->fd_spin);
557 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
558 		spin_unlock(&fdp->fd_spin);
559 		return (EBADF);
560 	}
561 	if ((flags & DUP_FIXED) && old == new) {
562 		*res = new;
563 		if (flags & DUP_CLOEXEC)
564 			fdp->fd_files[new].fileflags |= UF_EXCLOSE;
565 		spin_unlock(&fdp->fd_spin);
566 		return (0);
567 	}
568 	fp = fdp->fd_files[old].fp;
569 	oldflags = fdp->fd_files[old].fileflags;
570 	fhold(fp);
571 
572 	/*
573 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
574 	 * if the requested descriptor is beyond the current table size.
575 	 *
576 	 * This can block.  Retry if the source descriptor no longer matches
577 	 * or if our expectation in the expansion case races.
578 	 *
579 	 * If we are not expanding or allocating a new decriptor, then reset
580 	 * the target descriptor to a reserved state so we have a uniform
581 	 * setup for the next code block.
582 	 */
583 	if ((flags & DUP_VARIABLE) || new >= fdp->fd_nfiles) {
584 		spin_unlock(&fdp->fd_spin);
585 		error = fdalloc(p, new, &newfd);
586 		spin_lock(&fdp->fd_spin);
587 		if (error) {
588 			spin_unlock(&fdp->fd_spin);
589 			fdrop(fp);
590 			return (error);
591 		}
592 		/*
593 		 * Check for ripout
594 		 */
595 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
596 			fsetfd_locked(fdp, NULL, newfd);
597 			spin_unlock(&fdp->fd_spin);
598 			fdrop(fp);
599 			goto retry;
600 		}
601 		/*
602 		 * Check for expansion race
603 		 */
604 		if ((flags & DUP_VARIABLE) == 0 && new != newfd) {
605 			fsetfd_locked(fdp, NULL, newfd);
606 			spin_unlock(&fdp->fd_spin);
607 			fdrop(fp);
608 			goto retry;
609 		}
610 		/*
611 		 * Check for ripout, newfd reused old (this case probably
612 		 * can't occur).
613 		 */
614 		if (old == newfd) {
615 			fsetfd_locked(fdp, NULL, newfd);
616 			spin_unlock(&fdp->fd_spin);
617 			fdrop(fp);
618 			goto retry;
619 		}
620 		new = newfd;
621 		delfp = NULL;
622 	} else {
623 		if (fdp->fd_files[new].reserved) {
624 			spin_unlock(&fdp->fd_spin);
625 			fdrop(fp);
626 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
627 			tsleep(fdp, 0, "fdres", hz);
628 			goto retry;
629 		}
630 
631 		/*
632 		 * If the target descriptor was never allocated we have
633 		 * to allocate it.  If it was we have to clean out the
634 		 * old descriptor.  delfp inherits the ref from the
635 		 * descriptor table.
636 		 */
637 		delfp = fdp->fd_files[new].fp;
638 		fdp->fd_files[new].fp = NULL;
639 		fdp->fd_files[new].reserved = 1;
640 		if (delfp == NULL) {
641 			fdreserve_locked(fdp, new, 1);
642 			if (new > fdp->fd_lastfile)
643 				fdp->fd_lastfile = new;
644 		}
645 
646 	}
647 
648 	/*
649 	 * NOTE: still holding an exclusive spinlock
650 	 */
651 
652 	/*
653 	 * If a descriptor is being overwritten we may hve to tell
654 	 * fdfree() to sleep to ensure that all relevant process
655 	 * leaders can be traversed in closef().
656 	 */
657 	if (delfp != NULL && p->p_fdtol != NULL) {
658 		fdp->fd_holdleaderscount++;
659 		holdleaders = 1;
660 	} else {
661 		holdleaders = 0;
662 	}
663 	KASSERT(delfp == NULL || (flags & DUP_FIXED),
664 		("dup() picked an open file"));
665 
666 	/*
667 	 * Duplicate the source descriptor, update lastfile.  If the new
668 	 * descriptor was not allocated and we aren't replacing an existing
669 	 * descriptor we have to mark the descriptor as being in use.
670 	 *
671 	 * The fd_files[] array inherits fp's hold reference.
672 	 */
673 	fsetfd_locked(fdp, fp, new);
674 	if ((flags & DUP_CLOEXEC) != 0)
675 		fdp->fd_files[new].fileflags = oldflags | UF_EXCLOSE;
676 	else
677 		fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
678 	spin_unlock(&fdp->fd_spin);
679 	fdrop(fp);
680 	*res = new;
681 
682 	/*
683 	 * If we dup'd over a valid file, we now own the reference to it
684 	 * and must dispose of it using closef() semantics (as if a
685 	 * close() were performed on it).
686 	 */
687 	if (delfp) {
688 		if (SLIST_FIRST(&delfp->f_klist))
689 			knote_fdclose(delfp, fdp, new);
690 		closef(delfp, p);
691 		if (holdleaders) {
692 			spin_lock(&fdp->fd_spin);
693 			fdp->fd_holdleaderscount--;
694 			if (fdp->fd_holdleaderscount == 0 &&
695 			    fdp->fd_holdleaderswakeup != 0) {
696 				fdp->fd_holdleaderswakeup = 0;
697 				spin_unlock(&fdp->fd_spin);
698 				wakeup(&fdp->fd_holdleaderscount);
699 			} else {
700 				spin_unlock(&fdp->fd_spin);
701 			}
702 		}
703 	}
704 	return (0);
705 }
706 
707 /*
708  * If sigio is on the list associated with a process or process group,
709  * disable signalling from the device, remove sigio from the list and
710  * free sigio.
711  */
712 void
713 funsetown(struct sigio **sigiop)
714 {
715 	struct pgrp *pgrp;
716 	struct proc *p;
717 	struct sigio *sigio;
718 
719 	if ((sigio = *sigiop) != NULL) {
720 		lwkt_gettoken(&sigio_token);	/* protect sigio */
721 		KKASSERT(sigiop == sigio->sio_myref);
722 		sigio = *sigiop;
723 		*sigiop = NULL;
724 		lwkt_reltoken(&sigio_token);
725 	}
726 	if (sigio == NULL)
727 		return;
728 
729 	if (sigio->sio_pgid < 0) {
730 		pgrp = sigio->sio_pgrp;
731 		sigio->sio_pgrp = NULL;
732 		lwkt_gettoken(&pgrp->pg_token);
733 		SLIST_REMOVE(&pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio);
734 		lwkt_reltoken(&pgrp->pg_token);
735 		pgrel(pgrp);
736 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
737 		p = sigio->sio_proc;
738 		sigio->sio_proc = NULL;
739 		PHOLD(p);
740 		lwkt_gettoken(&p->p_token);
741 		SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
742 		lwkt_reltoken(&p->p_token);
743 		PRELE(p);
744 	}
745 	crfree(sigio->sio_ucred);
746 	sigio->sio_ucred = NULL;
747 	kfree(sigio, M_SIGIO);
748 }
749 
750 /*
751  * Free a list of sigio structures.  Caller is responsible for ensuring
752  * that the list is MPSAFE.
753  */
754 void
755 funsetownlst(struct sigiolst *sigiolst)
756 {
757 	struct sigio *sigio;
758 
759 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
760 		funsetown(sigio->sio_myref);
761 }
762 
763 /*
764  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
765  *
766  * After permission checking, add a sigio structure to the sigio list for
767  * the process or process group.
768  */
769 int
770 fsetown(pid_t pgid, struct sigio **sigiop)
771 {
772 	struct proc *proc = NULL;
773 	struct pgrp *pgrp = NULL;
774 	struct sigio *sigio;
775 	int error;
776 
777 	if (pgid == 0) {
778 		funsetown(sigiop);
779 		return (0);
780 	}
781 
782 	if (pgid > 0) {
783 		proc = pfind(pgid);
784 		if (proc == NULL) {
785 			error = ESRCH;
786 			goto done;
787 		}
788 
789 		/*
790 		 * Policy - Don't allow a process to FSETOWN a process
791 		 * in another session.
792 		 *
793 		 * Remove this test to allow maximum flexibility or
794 		 * restrict FSETOWN to the current process or process
795 		 * group for maximum safety.
796 		 */
797 		if (proc->p_session != curproc->p_session) {
798 			error = EPERM;
799 			goto done;
800 		}
801 	} else /* if (pgid < 0) */ {
802 		pgrp = pgfind(-pgid);
803 		if (pgrp == NULL) {
804 			error = ESRCH;
805 			goto done;
806 		}
807 
808 		/*
809 		 * Policy - Don't allow a process to FSETOWN a process
810 		 * in another session.
811 		 *
812 		 * Remove this test to allow maximum flexibility or
813 		 * restrict FSETOWN to the current process or process
814 		 * group for maximum safety.
815 		 */
816 		if (pgrp->pg_session != curproc->p_session) {
817 			error = EPERM;
818 			goto done;
819 		}
820 	}
821 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK | M_ZERO);
822 	if (pgid > 0) {
823 		KKASSERT(pgrp == NULL);
824 		lwkt_gettoken(&proc->p_token);
825 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
826 		sigio->sio_proc = proc;
827 		lwkt_reltoken(&proc->p_token);
828 	} else {
829 		KKASSERT(proc == NULL);
830 		lwkt_gettoken(&pgrp->pg_token);
831 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
832 		sigio->sio_pgrp = pgrp;
833 		lwkt_reltoken(&pgrp->pg_token);
834 		pgrp = NULL;
835 	}
836 	sigio->sio_pgid = pgid;
837 	sigio->sio_ucred = crhold(curthread->td_ucred);
838 	/* It would be convenient if p_ruid was in ucred. */
839 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
840 	sigio->sio_myref = sigiop;
841 
842 	lwkt_gettoken(&sigio_token);
843 	while (*sigiop)
844 		funsetown(sigiop);
845 	*sigiop = sigio;
846 	lwkt_reltoken(&sigio_token);
847 	error = 0;
848 done:
849 	if (pgrp)
850 		pgrel(pgrp);
851 	if (proc)
852 		PRELE(proc);
853 	return (error);
854 }
855 
856 /*
857  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
858  */
859 pid_t
860 fgetown(struct sigio **sigiop)
861 {
862 	struct sigio *sigio;
863 	pid_t own;
864 
865 	lwkt_gettoken_shared(&sigio_token);
866 	sigio = *sigiop;
867 	own = (sigio != NULL ? sigio->sio_pgid : 0);
868 	lwkt_reltoken(&sigio_token);
869 
870 	return (own);
871 }
872 
873 /*
874  * Close many file descriptors.
875  */
876 int
877 sys_closefrom(struct closefrom_args *uap)
878 {
879 	return(kern_closefrom(uap->fd));
880 }
881 
882 /*
883  * Close all file descriptors greater then or equal to fd
884  */
885 int
886 kern_closefrom(int fd)
887 {
888 	struct thread *td = curthread;
889 	struct proc *p = td->td_proc;
890 	struct filedesc *fdp;
891 
892 	KKASSERT(p);
893 	fdp = p->p_fd;
894 
895 	if (fd < 0)
896 		return (EINVAL);
897 
898 	/*
899 	 * NOTE: This function will skip unassociated descriptors and
900 	 * reserved descriptors that have not yet been assigned.
901 	 * fd_lastfile can change as a side effect of kern_close().
902 	 */
903 	spin_lock(&fdp->fd_spin);
904 	while (fd <= fdp->fd_lastfile) {
905 		if (fdp->fd_files[fd].fp != NULL) {
906 			spin_unlock(&fdp->fd_spin);
907 			/* ok if this races another close */
908 			if (kern_close(fd) == EINTR)
909 				return (EINTR);
910 			spin_lock(&fdp->fd_spin);
911 		}
912 		++fd;
913 	}
914 	spin_unlock(&fdp->fd_spin);
915 	return (0);
916 }
917 
918 /*
919  * Close a file descriptor.
920  */
921 int
922 sys_close(struct close_args *uap)
923 {
924 	return(kern_close(uap->fd));
925 }
926 
927 /*
928  * close() helper
929  */
930 int
931 kern_close(int fd)
932 {
933 	struct thread *td = curthread;
934 	struct proc *p = td->td_proc;
935 	struct filedesc *fdp;
936 	struct file *fp;
937 	int error;
938 	int holdleaders;
939 
940 	KKASSERT(p);
941 	fdp = p->p_fd;
942 
943 	spin_lock(&fdp->fd_spin);
944 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
945 		spin_unlock(&fdp->fd_spin);
946 		return (EBADF);
947 	}
948 	holdleaders = 0;
949 	if (p->p_fdtol != NULL) {
950 		/*
951 		 * Ask fdfree() to sleep to ensure that all relevant
952 		 * process leaders can be traversed in closef().
953 		 */
954 		fdp->fd_holdleaderscount++;
955 		holdleaders = 1;
956 	}
957 
958 	/*
959 	 * we now hold the fp reference that used to be owned by the descriptor
960 	 * array.
961 	 */
962 	spin_unlock(&fdp->fd_spin);
963 	if (SLIST_FIRST(&fp->f_klist))
964 		knote_fdclose(fp, fdp, fd);
965 	error = closef(fp, p);
966 	if (holdleaders) {
967 		spin_lock(&fdp->fd_spin);
968 		fdp->fd_holdleaderscount--;
969 		if (fdp->fd_holdleaderscount == 0 &&
970 		    fdp->fd_holdleaderswakeup != 0) {
971 			fdp->fd_holdleaderswakeup = 0;
972 			spin_unlock(&fdp->fd_spin);
973 			wakeup(&fdp->fd_holdleaderscount);
974 		} else {
975 			spin_unlock(&fdp->fd_spin);
976 		}
977 	}
978 	return (error);
979 }
980 
981 /*
982  * shutdown_args(int fd, int how)
983  */
984 int
985 kern_shutdown(int fd, int how)
986 {
987 	struct thread *td = curthread;
988 	struct proc *p = td->td_proc;
989 	struct file *fp;
990 	int error;
991 
992 	KKASSERT(p);
993 
994 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
995 		return (EBADF);
996 	error = fo_shutdown(fp, how);
997 	fdrop(fp);
998 
999 	return (error);
1000 }
1001 
1002 /*
1003  * MPALMOSTSAFE
1004  */
1005 int
1006 sys_shutdown(struct shutdown_args *uap)
1007 {
1008 	int error;
1009 
1010 	error = kern_shutdown(uap->s, uap->how);
1011 
1012 	return (error);
1013 }
1014 
1015 /*
1016  * fstat() helper
1017  */
1018 int
1019 kern_fstat(int fd, struct stat *ub)
1020 {
1021 	struct thread *td = curthread;
1022 	struct proc *p = td->td_proc;
1023 	struct file *fp;
1024 	int error;
1025 
1026 	KKASSERT(p);
1027 
1028 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
1029 		return (EBADF);
1030 	error = fo_stat(fp, ub, td->td_ucred);
1031 	fdrop(fp);
1032 
1033 	return (error);
1034 }
1035 
1036 /*
1037  * Return status information about a file descriptor.
1038  */
1039 int
1040 sys_fstat(struct fstat_args *uap)
1041 {
1042 	struct stat st;
1043 	int error;
1044 
1045 	error = kern_fstat(uap->fd, &st);
1046 
1047 	if (error == 0)
1048 		error = copyout(&st, uap->sb, sizeof(st));
1049 	return (error);
1050 }
1051 
1052 /*
1053  * Return pathconf information about a file descriptor.
1054  *
1055  * MPALMOSTSAFE
1056  */
1057 int
1058 sys_fpathconf(struct fpathconf_args *uap)
1059 {
1060 	struct thread *td = curthread;
1061 	struct proc *p = td->td_proc;
1062 	struct file *fp;
1063 	struct vnode *vp;
1064 	int error = 0;
1065 
1066 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
1067 		return (EBADF);
1068 
1069 	switch (fp->f_type) {
1070 	case DTYPE_PIPE:
1071 	case DTYPE_SOCKET:
1072 		if (uap->name != _PC_PIPE_BUF) {
1073 			error = EINVAL;
1074 		} else {
1075 			uap->sysmsg_result = PIPE_BUF;
1076 			error = 0;
1077 		}
1078 		break;
1079 	case DTYPE_FIFO:
1080 	case DTYPE_VNODE:
1081 		vp = (struct vnode *)fp->f_data;
1082 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
1083 		break;
1084 	default:
1085 		error = EOPNOTSUPP;
1086 		break;
1087 	}
1088 	fdrop(fp);
1089 	return(error);
1090 }
1091 
1092 static int fdexpand;
1093 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0,
1094     "Number of times a file table has been expanded");
1095 
1096 /*
1097  * Grow the file table so it can hold through descriptor (want).
1098  *
1099  * The fdp's spinlock must be held exclusively on entry and may be held
1100  * exclusively on return.  The spinlock may be cycled by the routine.
1101  */
1102 static void
1103 fdgrow_locked(struct filedesc *fdp, int want)
1104 {
1105 	struct fdnode *newfiles;
1106 	struct fdnode *oldfiles;
1107 	int nf, extra;
1108 
1109 	nf = fdp->fd_nfiles;
1110 	do {
1111 		/* nf has to be of the form 2^n - 1 */
1112 		nf = 2 * nf + 1;
1113 	} while (nf <= want);
1114 
1115 	spin_unlock(&fdp->fd_spin);
1116 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1117 	spin_lock(&fdp->fd_spin);
1118 
1119 	/*
1120 	 * We could have raced another extend while we were not holding
1121 	 * the spinlock.
1122 	 */
1123 	if (fdp->fd_nfiles >= nf) {
1124 		spin_unlock(&fdp->fd_spin);
1125 		kfree(newfiles, M_FILEDESC);
1126 		spin_lock(&fdp->fd_spin);
1127 		return;
1128 	}
1129 	/*
1130 	 * Copy the existing ofile and ofileflags arrays
1131 	 * and zero the new portion of each array.
1132 	 */
1133 	extra = nf - fdp->fd_nfiles;
1134 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1135 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1136 
1137 	oldfiles = fdp->fd_files;
1138 	fdp->fd_files = newfiles;
1139 	fdp->fd_nfiles = nf;
1140 
1141 	if (oldfiles != fdp->fd_builtin_files) {
1142 		spin_unlock(&fdp->fd_spin);
1143 		kfree(oldfiles, M_FILEDESC);
1144 		spin_lock(&fdp->fd_spin);
1145 	}
1146 	fdexpand++;
1147 }
1148 
1149 /*
1150  * Number of nodes in right subtree, including the root.
1151  */
1152 static __inline int
1153 right_subtree_size(int n)
1154 {
1155 	return (n ^ (n | (n + 1)));
1156 }
1157 
1158 /*
1159  * Bigger ancestor.
1160  */
1161 static __inline int
1162 right_ancestor(int n)
1163 {
1164 	return (n | (n + 1));
1165 }
1166 
1167 /*
1168  * Smaller ancestor.
1169  */
1170 static __inline int
1171 left_ancestor(int n)
1172 {
1173 	return ((n & (n + 1)) - 1);
1174 }
1175 
1176 /*
1177  * Traverse the in-place binary tree buttom-up adjusting the allocation
1178  * count so scans can determine where free descriptors are located.
1179  *
1180  * caller must be holding an exclusive spinlock on fdp
1181  */
1182 static
1183 void
1184 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1185 {
1186 	while (fd >= 0) {
1187 		fdp->fd_files[fd].allocated += incr;
1188 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1189 		fd = left_ancestor(fd);
1190 	}
1191 }
1192 
1193 /*
1194  * Reserve a file descriptor for the process.  If no error occurs, the
1195  * caller MUST at some point call fsetfd() or assign a file pointer
1196  * or dispose of the reservation.
1197  */
1198 int
1199 fdalloc(struct proc *p, int want, int *result)
1200 {
1201 	struct filedesc *fdp = p->p_fd;
1202 	struct uidinfo *uip;
1203 	int fd, rsize, rsum, node, lim;
1204 
1205 	/*
1206 	 * Check dtable size limit
1207 	 */
1208 	*result = -1;	/* avoid gcc warnings */
1209 	spin_lock(&p->p_limit->p_spin);
1210 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1211 		lim = INT_MAX;
1212 	else
1213 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1214 	spin_unlock(&p->p_limit->p_spin);
1215 
1216 	if (lim > maxfilesperproc)
1217 		lim = maxfilesperproc;
1218 	if (lim < minfilesperproc)
1219 		lim = minfilesperproc;
1220 	if (want >= lim)
1221 		return (EMFILE);
1222 
1223 	/*
1224 	 * Check that the user has not run out of descriptors (non-root only).
1225 	 * As a safety measure the dtable is allowed to have at least
1226 	 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1227 	 */
1228 	if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1229 		uip = p->p_ucred->cr_uidinfo;
1230 		if (uip->ui_openfiles > maxfilesperuser) {
1231 			krateprintf(&krate_uidinfo,
1232 				    "Warning: user %d pid %d (%s) ran out of "
1233 				    "file descriptors (%d/%d)\n",
1234 				    p->p_ucred->cr_uid, (int)p->p_pid,
1235 				    p->p_comm,
1236 				    uip->ui_openfiles, maxfilesperuser);
1237 			return(ENFILE);
1238 		}
1239 	}
1240 
1241 	/*
1242 	 * Grow the dtable if necessary
1243 	 */
1244 	spin_lock(&fdp->fd_spin);
1245 	if (want >= fdp->fd_nfiles)
1246 		fdgrow_locked(fdp, want);
1247 
1248 	/*
1249 	 * Search for a free descriptor starting at the higher
1250 	 * of want or fd_freefile.  If that fails, consider
1251 	 * expanding the ofile array.
1252 	 *
1253 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1254 	 * count.  If we happen to see a value of 0 then we can shortcut
1255 	 * our search.  Otherwise we run through through the tree going
1256 	 * down branches we know have free descriptor(s) until we hit a
1257 	 * leaf node.  The leaf node will be free but will not necessarily
1258 	 * have an allocated field of 0.
1259 	 */
1260 retry:
1261 	/* move up the tree looking for a subtree with a free node */
1262 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1263 	     fd = right_ancestor(fd)) {
1264 		if (fdp->fd_files[fd].allocated == 0)
1265 			goto found;
1266 
1267 		rsize = right_subtree_size(fd);
1268 		if (fdp->fd_files[fd].allocated == rsize)
1269 			continue;	/* right subtree full */
1270 
1271 		/*
1272 		 * Free fd is in the right subtree of the tree rooted at fd.
1273 		 * Call that subtree R.  Look for the smallest (leftmost)
1274 		 * subtree of R with an unallocated fd: continue moving
1275 		 * down the left branch until encountering a full left
1276 		 * subtree, then move to the right.
1277 		 */
1278 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1279 			node = fd + rsize;
1280 			rsum += fdp->fd_files[node].allocated;
1281 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1282 				fd = node;	/* move to the right */
1283 				if (fdp->fd_files[node].allocated == 0)
1284 					goto found;
1285 				rsum = 0;
1286 			}
1287 		}
1288 		goto found;
1289 	}
1290 
1291 	/*
1292 	 * No space in current array.  Expand?
1293 	 */
1294 	if (fdp->fd_nfiles >= lim) {
1295 		spin_unlock(&fdp->fd_spin);
1296 		return (EMFILE);
1297 	}
1298 	fdgrow_locked(fdp, want);
1299 	goto retry;
1300 
1301 found:
1302 	KKASSERT(fd < fdp->fd_nfiles);
1303 	if (fd > fdp->fd_lastfile)
1304 		fdp->fd_lastfile = fd;
1305 	if (want <= fdp->fd_freefile)
1306 		fdp->fd_freefile = fd;
1307 	*result = fd;
1308 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1309 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1310 	fdp->fd_files[fd].fileflags = 0;
1311 	fdp->fd_files[fd].reserved = 1;
1312 	fdreserve_locked(fdp, fd, 1);
1313 	spin_unlock(&fdp->fd_spin);
1314 	return (0);
1315 }
1316 
1317 /*
1318  * Check to see whether n user file descriptors
1319  * are available to the process p.
1320  */
1321 int
1322 fdavail(struct proc *p, int n)
1323 {
1324 	struct filedesc *fdp = p->p_fd;
1325 	struct fdnode *fdnode;
1326 	int i, lim, last;
1327 
1328 	spin_lock(&p->p_limit->p_spin);
1329 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1330 		lim = INT_MAX;
1331 	else
1332 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1333 	spin_unlock(&p->p_limit->p_spin);
1334 
1335 	if (lim > maxfilesperproc)
1336 		lim = maxfilesperproc;
1337 	if (lim < minfilesperproc)
1338 		lim = minfilesperproc;
1339 
1340 	spin_lock(&fdp->fd_spin);
1341 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1342 		spin_unlock(&fdp->fd_spin);
1343 		return (1);
1344 	}
1345 	last = min(fdp->fd_nfiles, lim);
1346 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1347 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1348 		if (fdnode->fp == NULL && --n <= 0) {
1349 			spin_unlock(&fdp->fd_spin);
1350 			return (1);
1351 		}
1352 	}
1353 	spin_unlock(&fdp->fd_spin);
1354 	return (0);
1355 }
1356 
1357 /*
1358  * Revoke open descriptors referencing (f_data, f_type)
1359  *
1360  * Any revoke executed within a prison is only able to
1361  * revoke descriptors for processes within that prison.
1362  *
1363  * Returns 0 on success or an error code.
1364  */
1365 struct fdrevoke_info {
1366 	void *data;
1367 	short type;
1368 	short unused;
1369 	int found;
1370 	struct ucred *cred;
1371 	struct file *nfp;
1372 };
1373 
1374 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1375 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1376 
1377 int
1378 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1379 {
1380 	struct fdrevoke_info info;
1381 	int error;
1382 
1383 	bzero(&info, sizeof(info));
1384 	info.data = f_data;
1385 	info.type = f_type;
1386 	info.cred = cred;
1387 	error = falloc(NULL, &info.nfp, NULL);
1388 	if (error)
1389 		return (error);
1390 
1391 	/*
1392 	 * Scan the file pointer table once.  dups do not dup file pointers,
1393 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1394 	 * being revoked.
1395 	 *
1396 	 * Any fps sent over unix-domain sockets will be revoked by the
1397 	 * socket code checking for FREVOKED when the fps are externialized.
1398 	 * revoke_token is used to make sure that fps marked FREVOKED and
1399 	 * externalized will be picked up by the following allproc_scan().
1400 	 */
1401 	lwkt_gettoken(&revoke_token);
1402 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1403 	lwkt_reltoken(&revoke_token);
1404 
1405 	/*
1406 	 * If any fps were marked track down the related descriptors
1407 	 * and close them.  Any dup()s at this point will notice
1408 	 * the FREVOKED already set in the fp and do the right thing.
1409 	 */
1410 	if (info.found)
1411 		allproc_scan(fdrevoke_proc_callback, &info, 0);
1412 	fdrop(info.nfp);
1413 	return(0);
1414 }
1415 
1416 /*
1417  * Locate matching file pointers directly.
1418  *
1419  * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1420  */
1421 static int
1422 fdrevoke_check_callback(struct file *fp, void *vinfo)
1423 {
1424 	struct fdrevoke_info *info = vinfo;
1425 
1426 	/*
1427 	 * File pointers already flagged for revokation are skipped.
1428 	 */
1429 	if (fp->f_flag & FREVOKED)
1430 		return(0);
1431 
1432 	/*
1433 	 * If revoking from a prison file pointers created outside of
1434 	 * that prison, or file pointers without creds, cannot be revoked.
1435 	 */
1436 	if (info->cred->cr_prison &&
1437 	    (fp->f_cred == NULL ||
1438 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1439 		return(0);
1440 	}
1441 
1442 	/*
1443 	 * If the file pointer matches then mark it for revocation.  The
1444 	 * flag is currently only used by unp_revoke_gc().
1445 	 *
1446 	 * info->found is a heuristic and can race in a SMP environment.
1447 	 */
1448 	if (info->data == fp->f_data && info->type == fp->f_type) {
1449 		atomic_set_int(&fp->f_flag, FREVOKED);
1450 		info->found = 1;
1451 	}
1452 	return(0);
1453 }
1454 
1455 /*
1456  * Locate matching file pointers via process descriptor tables.
1457  */
1458 static int
1459 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1460 {
1461 	struct fdrevoke_info *info = vinfo;
1462 	struct filedesc *fdp;
1463 	struct file *fp;
1464 	int n;
1465 
1466 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1467 		return(0);
1468 	if (info->cred->cr_prison &&
1469 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1470 		return(0);
1471 	}
1472 
1473 	/*
1474 	 * If the controlling terminal of the process matches the
1475 	 * vnode being revoked we clear the controlling terminal.
1476 	 *
1477 	 * The normal spec_close() may not catch this because it
1478 	 * uses curproc instead of p.
1479 	 */
1480 	if (p->p_session && info->type == DTYPE_VNODE &&
1481 	    info->data == p->p_session->s_ttyvp) {
1482 		p->p_session->s_ttyvp = NULL;
1483 		vrele(info->data);
1484 	}
1485 
1486 	/*
1487 	 * Softref the fdp to prevent it from being destroyed
1488 	 */
1489 	spin_lock(&p->p_spin);
1490 	if ((fdp = p->p_fd) == NULL) {
1491 		spin_unlock(&p->p_spin);
1492 		return(0);
1493 	}
1494 	atomic_add_int(&fdp->fd_softrefs, 1);
1495 	spin_unlock(&p->p_spin);
1496 
1497 	/*
1498 	 * Locate and close any matching file descriptors.
1499 	 */
1500 	spin_lock(&fdp->fd_spin);
1501 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1502 		if ((fp = fdp->fd_files[n].fp) == NULL)
1503 			continue;
1504 		if (fp->f_flag & FREVOKED) {
1505 			fhold(info->nfp);
1506 			fdp->fd_files[n].fp = info->nfp;
1507 			spin_unlock(&fdp->fd_spin);
1508 			knote_fdclose(fp, fdp, n);	/* XXX */
1509 			closef(fp, p);
1510 			spin_lock(&fdp->fd_spin);
1511 		}
1512 	}
1513 	spin_unlock(&fdp->fd_spin);
1514 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1515 	return(0);
1516 }
1517 
1518 /*
1519  * falloc:
1520  *	Create a new open file structure and reserve a file decriptor
1521  *	for the process that refers to it.
1522  *
1523  *	Root creds are checked using lp, or assumed if lp is NULL.  If
1524  *	resultfd is non-NULL then lp must also be non-NULL.  No file
1525  *	descriptor is reserved (and no process context is needed) if
1526  *	resultfd is NULL.
1527  *
1528  *	A file pointer with a refcount of 1 is returned.  Note that the
1529  *	file pointer is NOT associated with the descriptor.  If falloc
1530  *	returns success, fsetfd() MUST be called to either associate the
1531  *	file pointer or clear the reservation.
1532  */
1533 int
1534 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1535 {
1536 	static struct timeval lastfail;
1537 	static int curfail;
1538 	struct filelist_head *head;
1539 	struct file *fp;
1540 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1541 	int error;
1542 
1543 	fp = NULL;
1544 
1545 	/*
1546 	 * Handle filetable full issues and root overfill.
1547 	 */
1548 	if (nfiles >= maxfiles - maxfilesrootres &&
1549 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
1550 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1551 			kprintf("kern.maxfiles limit exceeded by uid %d, "
1552 				"please see tuning(7).\n",
1553 				cred->cr_ruid);
1554 		}
1555 		error = ENFILE;
1556 		goto done;
1557 	}
1558 
1559 	/*
1560 	 * Allocate a new file descriptor.
1561 	 */
1562 	fp = objcache_get(file_objcache, M_WAITOK);
1563 	bzero(fp, sizeof(*fp));
1564 	spin_init(&fp->f_spin, "falloc");
1565 	SLIST_INIT(&fp->f_klist);
1566 	fp->f_count = 1;
1567 	fp->f_ops = &badfileops;
1568 	fp->f_seqcount = 1;
1569 	fsetcred(fp, cred);
1570 	atomic_add_int(&nfiles, 1);
1571 
1572 	head = fp2filelist(fp);
1573 	spin_lock(&head->spin);
1574 	LIST_INSERT_HEAD(&head->list, fp, f_list);
1575 	spin_unlock(&head->spin);
1576 
1577 	if (resultfd) {
1578 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
1579 			fdrop(fp);
1580 			fp = NULL;
1581 		}
1582 	} else {
1583 		error = 0;
1584 	}
1585 done:
1586 	*resultfp = fp;
1587 	return (error);
1588 }
1589 
1590 /*
1591  * Check for races against a file descriptor by determining that the
1592  * file pointer is still associated with the specified file descriptor,
1593  * and a close is not currently in progress.
1594  */
1595 int
1596 checkfdclosed(struct filedesc *fdp, int fd, struct file *fp)
1597 {
1598 	int error;
1599 
1600 	spin_lock_shared(&fdp->fd_spin);
1601 	if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1602 		error = EBADF;
1603 	else
1604 		error = 0;
1605 	spin_unlock_shared(&fdp->fd_spin);
1606 	return (error);
1607 }
1608 
1609 /*
1610  * Associate a file pointer with a previously reserved file descriptor.
1611  * This function always succeeds.
1612  *
1613  * If fp is NULL, the file descriptor is returned to the pool.
1614  */
1615 
1616 /*
1617  * (exclusive spinlock must be held on call)
1618  */
1619 static void
1620 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1621 {
1622 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1623 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1624 	if (fp) {
1625 		fhold(fp);
1626 		fdp->fd_files[fd].fp = fp;
1627 		fdp->fd_files[fd].reserved = 0;
1628 	} else {
1629 		fdp->fd_files[fd].reserved = 0;
1630 		fdreserve_locked(fdp, fd, -1);
1631 		fdfixup_locked(fdp, fd);
1632 	}
1633 }
1634 
1635 void
1636 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
1637 {
1638 	spin_lock(&fdp->fd_spin);
1639 	fsetfd_locked(fdp, fp, fd);
1640 	spin_unlock(&fdp->fd_spin);
1641 }
1642 
1643 /*
1644  * (exclusive spinlock must be held on call)
1645  */
1646 static
1647 struct file *
1648 funsetfd_locked(struct filedesc *fdp, int fd)
1649 {
1650 	struct file *fp;
1651 
1652 	if ((unsigned)fd >= fdp->fd_nfiles)
1653 		return (NULL);
1654 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1655 		return (NULL);
1656 	fdp->fd_files[fd].fp = NULL;
1657 	fdp->fd_files[fd].fileflags = 0;
1658 
1659 	fdreserve_locked(fdp, fd, -1);
1660 	fdfixup_locked(fdp, fd);
1661 	return(fp);
1662 }
1663 
1664 /*
1665  * WARNING: May not be called before initial fsetfd().
1666  */
1667 int
1668 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1669 {
1670 	int error;
1671 
1672 	spin_lock(&fdp->fd_spin);
1673 	if (((u_int)fd) >= fdp->fd_nfiles) {
1674 		error = EBADF;
1675 	} else if (fdp->fd_files[fd].fp == NULL) {
1676 		error = EBADF;
1677 	} else {
1678 		*flagsp = fdp->fd_files[fd].fileflags;
1679 		error = 0;
1680 	}
1681 	spin_unlock(&fdp->fd_spin);
1682 	return (error);
1683 }
1684 
1685 /*
1686  * WARNING: May not be called before initial fsetfd().
1687  */
1688 int
1689 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1690 {
1691 	int error;
1692 
1693 	spin_lock(&fdp->fd_spin);
1694 	if (((u_int)fd) >= fdp->fd_nfiles) {
1695 		error = EBADF;
1696 	} else if (fdp->fd_files[fd].fp == NULL) {
1697 		error = EBADF;
1698 	} else {
1699 		fdp->fd_files[fd].fileflags |= add_flags;
1700 		error = 0;
1701 	}
1702 	spin_unlock(&fdp->fd_spin);
1703 	return (error);
1704 }
1705 
1706 /*
1707  * WARNING: May not be called before initial fsetfd().
1708  */
1709 int
1710 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1711 {
1712 	int error;
1713 
1714 	spin_lock(&fdp->fd_spin);
1715 	if (((u_int)fd) >= fdp->fd_nfiles) {
1716 		error = EBADF;
1717 	} else if (fdp->fd_files[fd].fp == NULL) {
1718 		error = EBADF;
1719 	} else {
1720 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1721 		error = 0;
1722 	}
1723 	spin_unlock(&fdp->fd_spin);
1724 	return (error);
1725 }
1726 
1727 /*
1728  * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
1729  */
1730 void
1731 fsetcred(struct file *fp, struct ucred *ncr)
1732 {
1733 	struct ucred *ocr;
1734 	struct uidinfo *uip;
1735 
1736 	ocr = fp->f_cred;
1737 	if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
1738 		if (ocr) {
1739 			uip = ocr->cr_uidinfo;
1740 			atomic_add_int(&uip->ui_openfiles, -1);
1741 		}
1742 		if (ncr) {
1743 			uip = ncr->cr_uidinfo;
1744 			atomic_add_int(&uip->ui_openfiles, 1);
1745 		}
1746 	}
1747 	if (ncr)
1748 		crhold(ncr);
1749 	fp->f_cred = ncr;
1750 	if (ocr)
1751 		crfree(ocr);
1752 }
1753 
1754 /*
1755  * Free a file descriptor.
1756  */
1757 static
1758 void
1759 ffree(struct file *fp)
1760 {
1761 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1762 	fsetcred(fp, NULL);
1763 	if (fp->f_nchandle.ncp)
1764 	    cache_drop(&fp->f_nchandle);
1765 	objcache_put(file_objcache, fp);
1766 }
1767 
1768 /*
1769  * called from init_main, initialize filedesc0 for proc0.
1770  */
1771 void
1772 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1773 {
1774 	p0->p_fd = fdp0;
1775 	p0->p_fdtol = NULL;
1776 	fdp0->fd_refcnt = 1;
1777 	fdp0->fd_cmask = cmask;
1778 	fdp0->fd_files = fdp0->fd_builtin_files;
1779 	fdp0->fd_nfiles = NDFILE;
1780 	fdp0->fd_lastfile = -1;
1781 	spin_init(&fdp0->fd_spin, "fdinitbootstrap");
1782 }
1783 
1784 /*
1785  * Build a new filedesc structure.
1786  */
1787 struct filedesc *
1788 fdinit(struct proc *p)
1789 {
1790 	struct filedesc *newfdp;
1791 	struct filedesc *fdp = p->p_fd;
1792 
1793 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1794 	spin_lock(&fdp->fd_spin);
1795 	if (fdp->fd_cdir) {
1796 		newfdp->fd_cdir = fdp->fd_cdir;
1797 		vref(newfdp->fd_cdir);
1798 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1799 	}
1800 
1801 	/*
1802 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1803 	 * proc0, but should unconditionally exist in other processes.
1804 	 */
1805 	if (fdp->fd_rdir) {
1806 		newfdp->fd_rdir = fdp->fd_rdir;
1807 		vref(newfdp->fd_rdir);
1808 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1809 	}
1810 	if (fdp->fd_jdir) {
1811 		newfdp->fd_jdir = fdp->fd_jdir;
1812 		vref(newfdp->fd_jdir);
1813 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1814 	}
1815 	spin_unlock(&fdp->fd_spin);
1816 
1817 	/* Create the file descriptor table. */
1818 	newfdp->fd_refcnt = 1;
1819 	newfdp->fd_cmask = cmask;
1820 	newfdp->fd_files = newfdp->fd_builtin_files;
1821 	newfdp->fd_nfiles = NDFILE;
1822 	newfdp->fd_lastfile = -1;
1823 	spin_init(&newfdp->fd_spin, "fdinit");
1824 
1825 	return (newfdp);
1826 }
1827 
1828 /*
1829  * Share a filedesc structure.
1830  */
1831 struct filedesc *
1832 fdshare(struct proc *p)
1833 {
1834 	struct filedesc *fdp;
1835 
1836 	fdp = p->p_fd;
1837 	spin_lock(&fdp->fd_spin);
1838 	fdp->fd_refcnt++;
1839 	spin_unlock(&fdp->fd_spin);
1840 	return (fdp);
1841 }
1842 
1843 /*
1844  * Copy a filedesc structure.
1845  */
1846 int
1847 fdcopy(struct proc *p, struct filedesc **fpp)
1848 {
1849 	struct filedesc *fdp = p->p_fd;
1850 	struct filedesc *newfdp;
1851 	struct fdnode *fdnode;
1852 	int i;
1853 	int ni;
1854 
1855 	/*
1856 	 * Certain daemons might not have file descriptors.
1857 	 */
1858 	if (fdp == NULL)
1859 		return (0);
1860 
1861 	/*
1862 	 * Allocate the new filedesc and fd_files[] array.  This can race
1863 	 * with operations by other threads on the fdp so we have to be
1864 	 * careful.
1865 	 */
1866 	newfdp = kmalloc(sizeof(struct filedesc),
1867 			 M_FILEDESC, M_WAITOK | M_ZERO | M_NULLOK);
1868 	if (newfdp == NULL) {
1869 		*fpp = NULL;
1870 		return (-1);
1871 	}
1872 again:
1873 	spin_lock(&fdp->fd_spin);
1874 	if (fdp->fd_lastfile < NDFILE) {
1875 		newfdp->fd_files = newfdp->fd_builtin_files;
1876 		i = NDFILE;
1877 	} else {
1878 		/*
1879 		 * We have to allocate (N^2-1) entries for our in-place
1880 		 * binary tree.  Allow the table to shrink.
1881 		 */
1882 		i = fdp->fd_nfiles;
1883 		ni = (i - 1) / 2;
1884 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1885 			i = ni;
1886 			ni = (i - 1) / 2;
1887 		}
1888 		spin_unlock(&fdp->fd_spin);
1889 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1890 					  M_FILEDESC, M_WAITOK | M_ZERO);
1891 
1892 		/*
1893 		 * Check for race, retry
1894 		 */
1895 		spin_lock(&fdp->fd_spin);
1896 		if (i <= fdp->fd_lastfile) {
1897 			spin_unlock(&fdp->fd_spin);
1898 			kfree(newfdp->fd_files, M_FILEDESC);
1899 			goto again;
1900 		}
1901 	}
1902 
1903 	/*
1904 	 * Dup the remaining fields. vref() and cache_hold() can be
1905 	 * safely called while holding the read spinlock on fdp.
1906 	 *
1907 	 * The read spinlock on fdp is still being held.
1908 	 *
1909 	 * NOTE: vref and cache_hold calls for the case where the vnode
1910 	 * or cache entry already has at least one ref may be called
1911 	 * while holding spin locks.
1912 	 */
1913 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1914 		vref(newfdp->fd_cdir);
1915 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1916 	}
1917 	/*
1918 	 * We must check for fd_rdir here, at least for now because
1919 	 * the init process is created before we have access to the
1920 	 * rootvode to take a reference to it.
1921 	 */
1922 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1923 		vref(newfdp->fd_rdir);
1924 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1925 	}
1926 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1927 		vref(newfdp->fd_jdir);
1928 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1929 	}
1930 	newfdp->fd_refcnt = 1;
1931 	newfdp->fd_nfiles = i;
1932 	newfdp->fd_lastfile = fdp->fd_lastfile;
1933 	newfdp->fd_freefile = fdp->fd_freefile;
1934 	newfdp->fd_cmask = fdp->fd_cmask;
1935 	spin_init(&newfdp->fd_spin, "fdcopy");
1936 
1937 	/*
1938 	 * Copy the descriptor table through (i).  This also copies the
1939 	 * allocation state.   Then go through and ref the file pointers
1940 	 * and clean up any KQ descriptors.
1941 	 *
1942 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1943 	 * copied files yet we can ignore the return value from funsetfd().
1944 	 *
1945 	 * The read spinlock on fdp is still being held.
1946 	 */
1947 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1948 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1949 		fdnode = &newfdp->fd_files[i];
1950 		if (fdnode->reserved) {
1951 			fdreserve_locked(newfdp, i, -1);
1952 			fdnode->reserved = 0;
1953 			fdfixup_locked(newfdp, i);
1954 		} else if (fdnode->fp) {
1955 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1956 				(void)funsetfd_locked(newfdp, i);
1957 			} else {
1958 				fhold(fdnode->fp);
1959 			}
1960 		}
1961 	}
1962 	spin_unlock(&fdp->fd_spin);
1963 	*fpp = newfdp;
1964 	return (0);
1965 }
1966 
1967 /*
1968  * Release a filedesc structure.
1969  *
1970  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1971  */
1972 void
1973 fdfree(struct proc *p, struct filedesc *repl)
1974 {
1975 	struct filedesc *fdp;
1976 	struct fdnode *fdnode;
1977 	int i;
1978 	struct filedesc_to_leader *fdtol;
1979 	struct file *fp;
1980 	struct vnode *vp;
1981 	struct flock lf;
1982 
1983 	/*
1984 	 * Certain daemons might not have file descriptors.
1985 	 */
1986 	fdp = p->p_fd;
1987 	if (fdp == NULL) {
1988 		p->p_fd = repl;
1989 		return;
1990 	}
1991 
1992 	/*
1993 	 * Severe messing around to follow.
1994 	 */
1995 	spin_lock(&fdp->fd_spin);
1996 
1997 	/* Check for special need to clear POSIX style locks */
1998 	fdtol = p->p_fdtol;
1999 	if (fdtol != NULL) {
2000 		KASSERT(fdtol->fdl_refcount > 0,
2001 			("filedesc_to_refcount botch: fdl_refcount=%d",
2002 			 fdtol->fdl_refcount));
2003 		if (fdtol->fdl_refcount == 1 &&
2004 		    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
2005 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
2006 				fdnode = &fdp->fd_files[i];
2007 				if (fdnode->fp == NULL ||
2008 				    fdnode->fp->f_type != DTYPE_VNODE) {
2009 					continue;
2010 				}
2011 				fp = fdnode->fp;
2012 				fhold(fp);
2013 				spin_unlock(&fdp->fd_spin);
2014 
2015 				lf.l_whence = SEEK_SET;
2016 				lf.l_start = 0;
2017 				lf.l_len = 0;
2018 				lf.l_type = F_UNLCK;
2019 				vp = (struct vnode *)fp->f_data;
2020 				(void) VOP_ADVLOCK(vp,
2021 						   (caddr_t)p->p_leader,
2022 						   F_UNLCK,
2023 						   &lf,
2024 						   F_POSIX);
2025 				fdrop(fp);
2026 				spin_lock(&fdp->fd_spin);
2027 			}
2028 		}
2029 	retry:
2030 		if (fdtol->fdl_refcount == 1) {
2031 			if (fdp->fd_holdleaderscount > 0 &&
2032 			    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
2033 				/*
2034 				 * close() or do_dup() has cleared a reference
2035 				 * in a shared file descriptor table.
2036 				 */
2037 				fdp->fd_holdleaderswakeup = 1;
2038 				ssleep(&fdp->fd_holdleaderscount,
2039 				       &fdp->fd_spin, 0, "fdlhold", 0);
2040 				goto retry;
2041 			}
2042 			if (fdtol->fdl_holdcount > 0) {
2043 				/*
2044 				 * Ensure that fdtol->fdl_leader
2045 				 * remains valid in closef().
2046 				 */
2047 				fdtol->fdl_wakeup = 1;
2048 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
2049 				goto retry;
2050 			}
2051 		}
2052 		fdtol->fdl_refcount--;
2053 		if (fdtol->fdl_refcount == 0 &&
2054 		    fdtol->fdl_holdcount == 0) {
2055 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2056 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2057 		} else {
2058 			fdtol = NULL;
2059 		}
2060 		p->p_fdtol = NULL;
2061 		if (fdtol != NULL) {
2062 			spin_unlock(&fdp->fd_spin);
2063 			kfree(fdtol, M_FILEDESC_TO_LEADER);
2064 			spin_lock(&fdp->fd_spin);
2065 		}
2066 	}
2067 	if (--fdp->fd_refcnt > 0) {
2068 		spin_unlock(&fdp->fd_spin);
2069 		spin_lock(&p->p_spin);
2070 		p->p_fd = repl;
2071 		spin_unlock(&p->p_spin);
2072 		return;
2073 	}
2074 
2075 	/*
2076 	 * Even though we are the last reference to the structure allproc
2077 	 * scans may still reference the structure.  Maintain proper
2078 	 * locks until we can replace p->p_fd.
2079 	 *
2080 	 * Also note that kqueue's closef still needs to reference the
2081 	 * fdp via p->p_fd, so we have to close the descriptors before
2082 	 * we replace p->p_fd.
2083 	 */
2084 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
2085 		if (fdp->fd_files[i].fp) {
2086 			fp = funsetfd_locked(fdp, i);
2087 			if (fp) {
2088 				spin_unlock(&fdp->fd_spin);
2089 				if (SLIST_FIRST(&fp->f_klist))
2090 					knote_fdclose(fp, fdp, i);
2091 				closef(fp, p);
2092 				spin_lock(&fdp->fd_spin);
2093 			}
2094 		}
2095 	}
2096 	spin_unlock(&fdp->fd_spin);
2097 
2098 	/*
2099 	 * Interlock against an allproc scan operations (typically frevoke).
2100 	 */
2101 	spin_lock(&p->p_spin);
2102 	p->p_fd = repl;
2103 	spin_unlock(&p->p_spin);
2104 
2105 	/*
2106 	 * Wait for any softrefs to go away.  This race rarely occurs so
2107 	 * we can use a non-critical-path style poll/sleep loop.  The
2108 	 * race only occurs against allproc scans.
2109 	 *
2110 	 * No new softrefs can occur with the fdp disconnected from the
2111 	 * process.
2112 	 */
2113 	if (fdp->fd_softrefs) {
2114 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2115 		while (fdp->fd_softrefs)
2116 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2117 	}
2118 
2119 	if (fdp->fd_files != fdp->fd_builtin_files)
2120 		kfree(fdp->fd_files, M_FILEDESC);
2121 	if (fdp->fd_cdir) {
2122 		cache_drop(&fdp->fd_ncdir);
2123 		vrele(fdp->fd_cdir);
2124 	}
2125 	if (fdp->fd_rdir) {
2126 		cache_drop(&fdp->fd_nrdir);
2127 		vrele(fdp->fd_rdir);
2128 	}
2129 	if (fdp->fd_jdir) {
2130 		cache_drop(&fdp->fd_njdir);
2131 		vrele(fdp->fd_jdir);
2132 	}
2133 	kfree(fdp, M_FILEDESC);
2134 }
2135 
2136 /*
2137  * Retrieve and reference the file pointer associated with a descriptor.
2138  */
2139 struct file *
2140 holdfp(struct filedesc *fdp, int fd, int flag)
2141 {
2142 	struct file* fp;
2143 
2144 	spin_lock_shared(&fdp->fd_spin);
2145 	if (((u_int)fd) >= fdp->fd_nfiles) {
2146 		fp = NULL;
2147 		goto done;
2148 	}
2149 	if ((fp = fdp->fd_files[fd].fp) == NULL)
2150 		goto done;
2151 	if ((fp->f_flag & flag) == 0 && flag != -1) {
2152 		fp = NULL;
2153 		goto done;
2154 	}
2155 	fhold(fp);
2156 done:
2157 	spin_unlock_shared(&fdp->fd_spin);
2158 	return (fp);
2159 }
2160 
2161 /*
2162  * holdsock() - load the struct file pointer associated
2163  * with a socket into *fpp.  If an error occurs, non-zero
2164  * will be returned and *fpp will be set to NULL.
2165  */
2166 int
2167 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2168 {
2169 	struct file *fp;
2170 	int error;
2171 
2172 	spin_lock_shared(&fdp->fd_spin);
2173 	if ((unsigned)fd >= fdp->fd_nfiles) {
2174 		error = EBADF;
2175 		fp = NULL;
2176 		goto done;
2177 	}
2178 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2179 		error = EBADF;
2180 		goto done;
2181 	}
2182 	if (fp->f_type != DTYPE_SOCKET) {
2183 		error = ENOTSOCK;
2184 		goto done;
2185 	}
2186 	fhold(fp);
2187 	error = 0;
2188 done:
2189 	spin_unlock_shared(&fdp->fd_spin);
2190 	*fpp = fp;
2191 	return (error);
2192 }
2193 
2194 /*
2195  * Convert a user file descriptor to a held file pointer.
2196  */
2197 int
2198 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2199 {
2200 	struct file *fp;
2201 	int error;
2202 
2203 	spin_lock_shared(&fdp->fd_spin);
2204 	if ((unsigned)fd >= fdp->fd_nfiles) {
2205 		error = EBADF;
2206 		fp = NULL;
2207 		goto done;
2208 	}
2209 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2210 		error = EBADF;
2211 		goto done;
2212 	}
2213 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2214 		fp = NULL;
2215 		error = EINVAL;
2216 		goto done;
2217 	}
2218 	fhold(fp);
2219 	error = 0;
2220 done:
2221 	spin_unlock_shared(&fdp->fd_spin);
2222 	*fpp = fp;
2223 	return (error);
2224 }
2225 
2226 /*
2227  * For setugid programs, we don't want to people to use that setugidness
2228  * to generate error messages which write to a file which otherwise would
2229  * otherwise be off-limits to the process.
2230  *
2231  * This is a gross hack to plug the hole.  A better solution would involve
2232  * a special vop or other form of generalized access control mechanism.  We
2233  * go ahead and just reject all procfs file systems accesses as dangerous.
2234  *
2235  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2236  * sufficient.  We also don't for check setugidness since we know we are.
2237  */
2238 static int
2239 is_unsafe(struct file *fp)
2240 {
2241 	if (fp->f_type == DTYPE_VNODE &&
2242 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2243 		return (1);
2244 	return (0);
2245 }
2246 
2247 /*
2248  * Make this setguid thing safe, if at all possible.
2249  *
2250  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2251  */
2252 void
2253 setugidsafety(struct proc *p)
2254 {
2255 	struct filedesc *fdp = p->p_fd;
2256 	int i;
2257 
2258 	/* Certain daemons might not have file descriptors. */
2259 	if (fdp == NULL)
2260 		return;
2261 
2262 	/*
2263 	 * note: fdp->fd_files may be reallocated out from under us while
2264 	 * we are blocked in a close.  Be careful!
2265 	 */
2266 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2267 		if (i > 2)
2268 			break;
2269 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2270 			struct file *fp;
2271 
2272 			/*
2273 			 * NULL-out descriptor prior to close to avoid
2274 			 * a race while close blocks.
2275 			 */
2276 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2277 				knote_fdclose(fp, fdp, i);
2278 				closef(fp, p);
2279 			}
2280 		}
2281 	}
2282 }
2283 
2284 /*
2285  * Close any files on exec?
2286  *
2287  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2288  */
2289 void
2290 fdcloseexec(struct proc *p)
2291 {
2292 	struct filedesc *fdp = p->p_fd;
2293 	int i;
2294 
2295 	/* Certain daemons might not have file descriptors. */
2296 	if (fdp == NULL)
2297 		return;
2298 
2299 	/*
2300 	 * We cannot cache fd_files since operations may block and rip
2301 	 * them out from under us.
2302 	 */
2303 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2304 		if (fdp->fd_files[i].fp != NULL &&
2305 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2306 			struct file *fp;
2307 
2308 			/*
2309 			 * NULL-out descriptor prior to close to avoid
2310 			 * a race while close blocks.
2311 			 */
2312 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2313 				knote_fdclose(fp, fdp, i);
2314 				closef(fp, p);
2315 			}
2316 		}
2317 	}
2318 }
2319 
2320 /*
2321  * It is unsafe for set[ug]id processes to be started with file
2322  * descriptors 0..2 closed, as these descriptors are given implicit
2323  * significance in the Standard C library.  fdcheckstd() will create a
2324  * descriptor referencing /dev/null for each of stdin, stdout, and
2325  * stderr that is not already open.
2326  *
2327  * NOT MPSAFE - calls falloc, vn_open, etc
2328  */
2329 int
2330 fdcheckstd(struct lwp *lp)
2331 {
2332 	struct nlookupdata nd;
2333 	struct filedesc *fdp;
2334 	struct file *fp;
2335 	int retval;
2336 	int i, error, flags, devnull;
2337 
2338 	fdp = lp->lwp_proc->p_fd;
2339 	if (fdp == NULL)
2340 		return (0);
2341 	devnull = -1;
2342 	error = 0;
2343 	for (i = 0; i < 3; i++) {
2344 		if (fdp->fd_files[i].fp != NULL)
2345 			continue;
2346 		if (devnull < 0) {
2347 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2348 				break;
2349 
2350 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2351 						NLC_FOLLOW|NLC_LOCKVP);
2352 			flags = FREAD | FWRITE;
2353 			if (error == 0)
2354 				error = vn_open(&nd, fp, flags, 0);
2355 			if (error == 0)
2356 				fsetfd(fdp, fp, devnull);
2357 			else
2358 				fsetfd(fdp, NULL, devnull);
2359 			fdrop(fp);
2360 			nlookup_done(&nd);
2361 			if (error)
2362 				break;
2363 			KKASSERT(i == devnull);
2364 		} else {
2365 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2366 			if (error != 0)
2367 				break;
2368 		}
2369 	}
2370 	return (error);
2371 }
2372 
2373 /*
2374  * Internal form of close.
2375  * Decrement reference count on file structure.
2376  * Note: td and/or p may be NULL when closing a file
2377  * that was being passed in a message.
2378  *
2379  * MPALMOSTSAFE - acquires mplock for VOP operations
2380  */
2381 int
2382 closef(struct file *fp, struct proc *p)
2383 {
2384 	struct vnode *vp;
2385 	struct flock lf;
2386 	struct filedesc_to_leader *fdtol;
2387 
2388 	if (fp == NULL)
2389 		return (0);
2390 
2391 	/*
2392 	 * POSIX record locking dictates that any close releases ALL
2393 	 * locks owned by this process.  This is handled by setting
2394 	 * a flag in the unlock to free ONLY locks obeying POSIX
2395 	 * semantics, and not to free BSD-style file locks.
2396 	 * If the descriptor was in a message, POSIX-style locks
2397 	 * aren't passed with the descriptor.
2398 	 */
2399 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2400 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2401 	) {
2402 		if ((p->p_leader->p_flags & P_ADVLOCK) != 0) {
2403 			lf.l_whence = SEEK_SET;
2404 			lf.l_start = 0;
2405 			lf.l_len = 0;
2406 			lf.l_type = F_UNLCK;
2407 			vp = (struct vnode *)fp->f_data;
2408 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2409 					   &lf, F_POSIX);
2410 		}
2411 		fdtol = p->p_fdtol;
2412 		if (fdtol != NULL) {
2413 			lwkt_gettoken(&p->p_token);
2414 			/*
2415 			 * Handle special case where file descriptor table
2416 			 * is shared between multiple process leaders.
2417 			 */
2418 			for (fdtol = fdtol->fdl_next;
2419 			     fdtol != p->p_fdtol;
2420 			     fdtol = fdtol->fdl_next) {
2421 				if ((fdtol->fdl_leader->p_flags &
2422 				     P_ADVLOCK) == 0)
2423 					continue;
2424 				fdtol->fdl_holdcount++;
2425 				lf.l_whence = SEEK_SET;
2426 				lf.l_start = 0;
2427 				lf.l_len = 0;
2428 				lf.l_type = F_UNLCK;
2429 				vp = (struct vnode *)fp->f_data;
2430 				(void) VOP_ADVLOCK(vp,
2431 						   (caddr_t)fdtol->fdl_leader,
2432 						   F_UNLCK, &lf, F_POSIX);
2433 				fdtol->fdl_holdcount--;
2434 				if (fdtol->fdl_holdcount == 0 &&
2435 				    fdtol->fdl_wakeup != 0) {
2436 					fdtol->fdl_wakeup = 0;
2437 					wakeup(fdtol);
2438 				}
2439 			}
2440 			lwkt_reltoken(&p->p_token);
2441 		}
2442 	}
2443 	return (fdrop(fp));
2444 }
2445 
2446 /*
2447  * fhold() can only be called if f_count is already at least 1 (i.e. the
2448  * caller of fhold() already has a reference to the file pointer in some
2449  * manner or other).
2450  *
2451  * Atomic ops are used for incrementing and decrementing f_count before
2452  * the 1->0 transition.  f_count 1->0 transition is special, see the
2453  * comment in fdrop().
2454  */
2455 void
2456 fhold(struct file *fp)
2457 {
2458 	/* 0->1 transition will never work */
2459 	KASSERT(fp->f_count > 0, ("fhold: invalid f_count %d", fp->f_count));
2460 	atomic_add_int(&fp->f_count, 1);
2461 }
2462 
2463 /*
2464  * fdrop() - drop a reference to a descriptor
2465  */
2466 int
2467 fdrop(struct file *fp)
2468 {
2469 	struct flock lf;
2470 	struct vnode *vp;
2471 	int error, do_free = 0;
2472 
2473 	/*
2474 	 * NOTE:
2475 	 * Simple atomic_fetchadd_int(f_count, -1) here will cause use-
2476 	 * after-free or double free (due to f_count 0->1 transition), if
2477 	 * fhold() is called on the fps found through filehead iteration.
2478 	 */
2479 	for (;;) {
2480 		int count = fp->f_count;
2481 
2482 		cpu_ccfence();
2483 		KASSERT(count > 0, ("fdrop: invalid f_count %d", count));
2484 		if (count == 1) {
2485 			struct filelist_head *head = fp2filelist(fp);
2486 
2487 			/*
2488 			 * About to drop the last reference, hold the
2489 			 * filehead spin lock and drop it, so that no
2490 			 * one could see this fp through filehead anymore,
2491 			 * let alone fhold() this fp.
2492 			 */
2493 			spin_lock(&head->spin);
2494 			if (atomic_cmpset_int(&fp->f_count, count, 0)) {
2495 				LIST_REMOVE(fp, f_list);
2496 				spin_unlock(&head->spin);
2497 				atomic_subtract_int(&nfiles, 1);
2498 				do_free = 1; /* free this fp */
2499 				break;
2500 			}
2501 			spin_unlock(&head->spin);
2502 			/* retry */
2503 		} else if (atomic_cmpset_int(&fp->f_count, count, count - 1)) {
2504 			break;
2505 		}
2506 		/* retry */
2507 	}
2508 	if (!do_free)
2509 		return (0);
2510 
2511 	KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
2512 
2513 	/*
2514 	 * The last reference has gone away, we own the fp structure free
2515 	 * and clear.
2516 	 */
2517 	if (fp->f_count < 0)
2518 		panic("fdrop: count < 0");
2519 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2520 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2521 	) {
2522 		lf.l_whence = SEEK_SET;
2523 		lf.l_start = 0;
2524 		lf.l_len = 0;
2525 		lf.l_type = F_UNLCK;
2526 		vp = (struct vnode *)fp->f_data;
2527 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2528 	}
2529 	if (fp->f_ops != &badfileops)
2530 		error = fo_close(fp);
2531 	else
2532 		error = 0;
2533 	ffree(fp);
2534 	return (error);
2535 }
2536 
2537 /*
2538  * Apply an advisory lock on a file descriptor.
2539  *
2540  * Just attempt to get a record lock of the requested type on
2541  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2542  *
2543  * MPALMOSTSAFE
2544  */
2545 int
2546 sys_flock(struct flock_args *uap)
2547 {
2548 	struct proc *p = curproc;
2549 	struct file *fp;
2550 	struct vnode *vp;
2551 	struct flock lf;
2552 	int error;
2553 
2554 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2555 		return (EBADF);
2556 	if (fp->f_type != DTYPE_VNODE) {
2557 		error = EOPNOTSUPP;
2558 		goto done;
2559 	}
2560 	vp = (struct vnode *)fp->f_data;
2561 	lf.l_whence = SEEK_SET;
2562 	lf.l_start = 0;
2563 	lf.l_len = 0;
2564 	if (uap->how & LOCK_UN) {
2565 		lf.l_type = F_UNLCK;
2566 		atomic_clear_int(&fp->f_flag, FHASLOCK); /* race ok */
2567 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2568 		goto done;
2569 	}
2570 	if (uap->how & LOCK_EX)
2571 		lf.l_type = F_WRLCK;
2572 	else if (uap->how & LOCK_SH)
2573 		lf.l_type = F_RDLCK;
2574 	else {
2575 		error = EBADF;
2576 		goto done;
2577 	}
2578 	if (uap->how & LOCK_NB)
2579 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2580 	else
2581 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2582 	atomic_set_int(&fp->f_flag, FHASLOCK);	/* race ok */
2583 done:
2584 	fdrop(fp);
2585 	return (error);
2586 }
2587 
2588 /*
2589  * File Descriptor pseudo-device driver (/dev/fd/).
2590  *
2591  * Opening minor device N dup()s the file (if any) connected to file
2592  * descriptor N belonging to the calling process.  Note that this driver
2593  * consists of only the ``open()'' routine, because all subsequent
2594  * references to this file will be direct to the other driver.
2595  */
2596 static int
2597 fdopen(struct dev_open_args *ap)
2598 {
2599 	thread_t td = curthread;
2600 
2601 	KKASSERT(td->td_lwp != NULL);
2602 
2603 	/*
2604 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2605 	 * the file descriptor being sought for duplication. The error
2606 	 * return ensures that the vnode for this device will be released
2607 	 * by vn_open. Open will detect this special error and take the
2608 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2609 	 * will simply report the error.
2610 	 */
2611 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2612 	return (ENODEV);
2613 }
2614 
2615 /*
2616  * The caller has reserved the file descriptor dfd for us.  On success we
2617  * must fsetfd() it.  On failure the caller will clean it up.
2618  */
2619 int
2620 dupfdopen(struct filedesc *fdp, int dfd, int sfd, int mode, int error)
2621 {
2622 	struct file *wfp;
2623 	struct file *xfp;
2624 	int werror;
2625 
2626 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2627 		return (EBADF);
2628 
2629 	/*
2630 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2631 	 * will dup a dummy descriptor instead of the real one.
2632 	 */
2633 	if (wfp->f_flag & FREVOKED) {
2634 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2635 		fdrop(wfp);
2636 		wfp = NULL;
2637 		werror = falloc(NULL, &wfp, NULL);
2638 		if (werror)
2639 			return (werror);
2640 	}
2641 
2642 	/*
2643 	 * There are two cases of interest here.
2644 	 *
2645 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2646 	 *
2647 	 * For ENXIO steal away the file structure from sfd and store it
2648 	 * dfd.  sfd is effectively closed by this operation.
2649 	 *
2650 	 * Any other error code is just returned.
2651 	 */
2652 	switch (error) {
2653 	case ENODEV:
2654 		/*
2655 		 * Check that the mode the file is being opened for is a
2656 		 * subset of the mode of the existing descriptor.
2657 		 */
2658 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2659 			error = EACCES;
2660 			break;
2661 		}
2662 		spin_lock(&fdp->fd_spin);
2663 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2664 		fsetfd_locked(fdp, wfp, dfd);
2665 		spin_unlock(&fdp->fd_spin);
2666 		error = 0;
2667 		break;
2668 	case ENXIO:
2669 		/*
2670 		 * Steal away the file pointer from dfd, and stuff it into indx.
2671 		 */
2672 		spin_lock(&fdp->fd_spin);
2673 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2674 		fsetfd(fdp, wfp, dfd);
2675 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
2676 			spin_unlock(&fdp->fd_spin);
2677 			fdrop(xfp);
2678 		} else {
2679 			spin_unlock(&fdp->fd_spin);
2680 		}
2681 		error = 0;
2682 		break;
2683 	default:
2684 		break;
2685 	}
2686 	fdrop(wfp);
2687 	return (error);
2688 }
2689 
2690 /*
2691  * NOT MPSAFE - I think these refer to a common file descriptor table
2692  * and we need to spinlock that to link fdtol in.
2693  */
2694 struct filedesc_to_leader *
2695 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2696 			 struct proc *leader)
2697 {
2698 	struct filedesc_to_leader *fdtol;
2699 
2700 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2701 			M_FILEDESC_TO_LEADER, M_WAITOK | M_ZERO);
2702 	fdtol->fdl_refcount = 1;
2703 	fdtol->fdl_holdcount = 0;
2704 	fdtol->fdl_wakeup = 0;
2705 	fdtol->fdl_leader = leader;
2706 	if (old != NULL) {
2707 		fdtol->fdl_next = old->fdl_next;
2708 		fdtol->fdl_prev = old;
2709 		old->fdl_next = fdtol;
2710 		fdtol->fdl_next->fdl_prev = fdtol;
2711 	} else {
2712 		fdtol->fdl_next = fdtol;
2713 		fdtol->fdl_prev = fdtol;
2714 	}
2715 	return fdtol;
2716 }
2717 
2718 /*
2719  * Scan all file pointers in the system.  The callback is made with
2720  * the master list spinlock held exclusively.
2721  */
2722 void
2723 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2724 {
2725 	int i;
2726 
2727 	for (i = 0; i < NFILELIST_HEADS; ++i) {
2728 		struct filelist_head *head = &filelist_heads[i];
2729 		struct file *fp;
2730 
2731 		spin_lock(&head->spin);
2732 		LIST_FOREACH(fp, &head->list, f_list) {
2733 			int res;
2734 
2735 			res = callback(fp, data);
2736 			if (res < 0)
2737 				break;
2738 		}
2739 		spin_unlock(&head->spin);
2740 	}
2741 }
2742 
2743 /*
2744  * Get file structures.
2745  *
2746  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2747  */
2748 
2749 struct sysctl_kern_file_info {
2750 	int count;
2751 	int error;
2752 	struct sysctl_req *req;
2753 };
2754 
2755 static int sysctl_kern_file_callback(struct proc *p, void *data);
2756 
2757 static int
2758 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2759 {
2760 	struct sysctl_kern_file_info info;
2761 
2762 	/*
2763 	 * Note: because the number of file descriptors is calculated
2764 	 * in different ways for sizing vs returning the data,
2765 	 * there is information leakage from the first loop.  However,
2766 	 * it is of a similar order of magnitude to the leakage from
2767 	 * global system statistics such as kern.openfiles.
2768 	 *
2769 	 * When just doing a count, note that we cannot just count
2770 	 * the elements and add f_count via the filehead list because
2771 	 * threaded processes share their descriptor table and f_count might
2772 	 * still be '1' in that case.
2773 	 *
2774 	 * Since the SYSCTL op can block, we must hold the process to
2775 	 * prevent it being ripped out from under us either in the
2776 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2777 	 * process may be in varying states of disrepair.  If the process
2778 	 * is in SZOMB we may have caught it just as it is being removed
2779 	 * from the allproc list, we must skip it in that case to maintain
2780 	 * an unbroken chain through the allproc list.
2781 	 */
2782 	info.count = 0;
2783 	info.error = 0;
2784 	info.req = req;
2785 	allproc_scan(sysctl_kern_file_callback, &info, 0);
2786 
2787 	/*
2788 	 * When just calculating the size, overestimate a bit to try to
2789 	 * prevent system activity from causing the buffer-fill call
2790 	 * to fail later on.
2791 	 */
2792 	if (req->oldptr == NULL) {
2793 		info.count = (info.count + 16) + (info.count / 10);
2794 		info.error = SYSCTL_OUT(req, NULL,
2795 					info.count * sizeof(struct kinfo_file));
2796 	}
2797 	return (info.error);
2798 }
2799 
2800 static int
2801 sysctl_kern_file_callback(struct proc *p, void *data)
2802 {
2803 	struct sysctl_kern_file_info *info = data;
2804 	struct kinfo_file kf;
2805 	struct filedesc *fdp;
2806 	struct file *fp;
2807 	uid_t uid;
2808 	int n;
2809 
2810 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2811 		return(0);
2812 	if (!(PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0))
2813 		return(0);
2814 
2815 	/*
2816 	 * Softref the fdp to prevent it from being destroyed
2817 	 */
2818 	spin_lock(&p->p_spin);
2819 	if ((fdp = p->p_fd) == NULL) {
2820 		spin_unlock(&p->p_spin);
2821 		return(0);
2822 	}
2823 	atomic_add_int(&fdp->fd_softrefs, 1);
2824 	spin_unlock(&p->p_spin);
2825 
2826 	/*
2827 	 * The fdp's own spinlock prevents the contents from being
2828 	 * modified.
2829 	 */
2830 	spin_lock_shared(&fdp->fd_spin);
2831 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2832 		if ((fp = fdp->fd_files[n].fp) == NULL)
2833 			continue;
2834 		if (info->req->oldptr == NULL) {
2835 			++info->count;
2836 		} else {
2837 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2838 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2839 			spin_unlock_shared(&fdp->fd_spin);
2840 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2841 			spin_lock_shared(&fdp->fd_spin);
2842 			if (info->error)
2843 				break;
2844 		}
2845 	}
2846 	spin_unlock_shared(&fdp->fd_spin);
2847 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2848 	if (info->error)
2849 		return(-1);
2850 	return(0);
2851 }
2852 
2853 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2854     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2855 
2856 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
2857     &minfilesperproc, 0, "Minimum files allowed open per process");
2858 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2859     &maxfilesperproc, 0, "Maximum files allowed open per process");
2860 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
2861     &maxfilesperuser, 0, "Maximum files allowed open per user");
2862 
2863 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2864     &maxfiles, 0, "Maximum number of files");
2865 
2866 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2867     &maxfilesrootres, 0, "Descriptors reserved for root use");
2868 
2869 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2870 	&nfiles, 0, "System-wide number of open files");
2871 
2872 static void
2873 fildesc_drvinit(void *unused)
2874 {
2875 	int fd;
2876 
2877 	for (fd = 0; fd < NUMFDESC; fd++) {
2878 		make_dev(&fildesc_ops, fd,
2879 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2880 	}
2881 
2882 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2883 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2884 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2885 }
2886 
2887 struct fileops badfileops = {
2888 	.fo_read = badfo_readwrite,
2889 	.fo_write = badfo_readwrite,
2890 	.fo_ioctl = badfo_ioctl,
2891 	.fo_kqfilter = badfo_kqfilter,
2892 	.fo_stat = badfo_stat,
2893 	.fo_close = badfo_close,
2894 	.fo_shutdown = badfo_shutdown
2895 };
2896 
2897 int
2898 badfo_readwrite(
2899 	struct file *fp,
2900 	struct uio *uio,
2901 	struct ucred *cred,
2902 	int flags
2903 ) {
2904 	return (EBADF);
2905 }
2906 
2907 int
2908 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2909 	    struct ucred *cred, struct sysmsg *msgv)
2910 {
2911 	return (EBADF);
2912 }
2913 
2914 /*
2915  * Must return an error to prevent registration, typically
2916  * due to a revoked descriptor (file_filtops assigned).
2917  */
2918 int
2919 badfo_kqfilter(struct file *fp, struct knote *kn)
2920 {
2921 	return (EOPNOTSUPP);
2922 }
2923 
2924 int
2925 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2926 {
2927 	return (EBADF);
2928 }
2929 
2930 int
2931 badfo_close(struct file *fp)
2932 {
2933 	return (EBADF);
2934 }
2935 
2936 int
2937 badfo_shutdown(struct file *fp, int how)
2938 {
2939 	return (EBADF);
2940 }
2941 
2942 int
2943 nofo_shutdown(struct file *fp, int how)
2944 {
2945 	return (EOPNOTSUPP);
2946 }
2947 
2948 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR,
2949     fildesc_drvinit,NULL);
2950 
2951 static void
2952 filelist_heads_init(void *arg __unused)
2953 {
2954 	int i;
2955 
2956 	for (i = 0; i < NFILELIST_HEADS; ++i) {
2957 		struct filelist_head *head = &filelist_heads[i];
2958 
2959 		spin_init(&head->spin, "filehead_spin");
2960 		LIST_INIT(&head->list);
2961 	}
2962 }
2963 
2964 SYSINIT(filelistheads, SI_BOOT1_LOCK, SI_ORDER_ANY,
2965     filelist_heads_init, NULL);
2966 
2967 static void
2968 file_objcache_init(void *dummy __unused)
2969 {
2970 	file_objcache = objcache_create("file", maxfiles, maxfiles / 8,
2971 	    NULL, NULL, NULL, /* TODO: ctor/dtor */
2972 	    objcache_malloc_alloc, objcache_malloc_free, &file_malloc_args);
2973 }
2974 SYSINIT(fpobjcache, SI_BOOT2_POST_SMP, SI_ORDER_ANY, file_objcache_init, NULL);
2975