xref: /dragonfly/sys/kern/kern_descrip.c (revision 82730a9c)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
68  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/sysproto.h>
76 #include <sys/conf.h>
77 #include <sys/device.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/vnode.h>
83 #include <sys/proc.h>
84 #include <sys/nlookup.h>
85 #include <sys/stat.h>
86 #include <sys/filio.h>
87 #include <sys/fcntl.h>
88 #include <sys/unistd.h>
89 #include <sys/resourcevar.h>
90 #include <sys/event.h>
91 #include <sys/kern_syscall.h>
92 #include <sys/kcore.h>
93 #include <sys/kinfo.h>
94 #include <sys/un.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <sys/file2.h>
101 #include <sys/spinlock2.h>
102 
103 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
104 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
105 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
106 static void ffree(struct file *fp);
107 
108 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
109 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
110 		     "file desc to leader structures");
111 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
112 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
113 
114 static struct krate krate_uidinfo = { .freq = 1 };
115 
116 static	 d_open_t  fdopen;
117 #define NUMFDESC 64
118 
119 #define CDEV_MAJOR 22
120 static struct dev_ops fildesc_ops = {
121 	{ "FD", 0, 0 },
122 	.d_open =	fdopen,
123 };
124 
125 /*
126  * Descriptor management.
127  */
128 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
129 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin);
130 static int nfiles;		/* actual number of open files */
131 extern int cmask;
132 
133 /*
134  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
135  *
136  * MPSAFE - must be called with fdp->fd_spin exclusively held
137  */
138 static __inline
139 void
140 fdfixup_locked(struct filedesc *fdp, int fd)
141 {
142 	if (fd < fdp->fd_freefile) {
143 	       fdp->fd_freefile = fd;
144 	}
145 	while (fdp->fd_lastfile >= 0 &&
146 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
147 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
148 	) {
149 		--fdp->fd_lastfile;
150 	}
151 }
152 
153 /*
154  * System calls on descriptors.
155  *
156  * MPSAFE
157  */
158 int
159 sys_getdtablesize(struct getdtablesize_args *uap)
160 {
161 	struct proc *p = curproc;
162 	struct plimit *limit = p->p_limit;
163 	int dtsize;
164 
165 	spin_lock(&limit->p_spin);
166 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
167 		dtsize = INT_MAX;
168 	else
169 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
170 	spin_unlock(&limit->p_spin);
171 
172 	if (dtsize > maxfilesperproc)
173 		dtsize = maxfilesperproc;
174 	if (dtsize < minfilesperproc)
175 		dtsize = minfilesperproc;
176 	if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
177 		dtsize = maxfilesperuser;
178 	uap->sysmsg_result = dtsize;
179 	return (0);
180 }
181 
182 /*
183  * Duplicate a file descriptor to a particular value.
184  *
185  * note: keep in mind that a potential race condition exists when closing
186  * descriptors from a shared descriptor table (via rfork).
187  *
188  * MPSAFE
189  */
190 int
191 sys_dup2(struct dup2_args *uap)
192 {
193 	int error;
194 	int fd = 0;
195 
196 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
197 	uap->sysmsg_fds[0] = fd;
198 
199 	return (error);
200 }
201 
202 /*
203  * Duplicate a file descriptor.
204  *
205  * MPSAFE
206  */
207 int
208 sys_dup(struct dup_args *uap)
209 {
210 	int error;
211 	int fd = 0;
212 
213 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
214 	uap->sysmsg_fds[0] = fd;
215 
216 	return (error);
217 }
218 
219 /*
220  * MPALMOSTSAFE - acquires mplock for fp operations
221  */
222 int
223 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
224 {
225 	struct thread *td = curthread;
226 	struct proc *p = td->td_proc;
227 	struct file *fp;
228 	struct vnode *vp;
229 	u_int newmin;
230 	u_int oflags;
231 	u_int nflags;
232 	int tmp, error, flg = F_POSIX;
233 
234 	KKASSERT(p);
235 
236 	/*
237 	 * Operations on file descriptors that do not require a file pointer.
238 	 */
239 	switch (cmd) {
240 	case F_GETFD:
241 		error = fgetfdflags(p->p_fd, fd, &tmp);
242 		if (error == 0)
243 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
244 		return (error);
245 
246 	case F_SETFD:
247 		if (dat->fc_cloexec & FD_CLOEXEC)
248 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
249 		else
250 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
251 		return (error);
252 	case F_DUPFD:
253 		newmin = dat->fc_fd;
254 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
255 		return (error);
256 	case F_DUP2FD:
257 		newmin = dat->fc_fd;
258 		error = kern_dup(DUP_FIXED, fd, newmin, &dat->fc_fd);
259 		return (error);
260 	case F_DUPFD_CLOEXEC:
261 		newmin = dat->fc_fd;
262 		error = kern_dup(DUP_VARIABLE | DUP_CLOEXEC, fd, newmin,
263 				 &dat->fc_fd);
264 		return (error);
265 	case F_DUP2FD_CLOEXEC:
266 		newmin = dat->fc_fd;
267 		error = kern_dup(DUP_FIXED | DUP_CLOEXEC, fd, newmin,
268 				 &dat->fc_fd);
269 		return (error);
270 	default:
271 		break;
272 	}
273 
274 	/*
275 	 * Operations on file pointers
276 	 */
277 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
278 		return (EBADF);
279 
280 	switch (cmd) {
281 	case F_GETFL:
282 		dat->fc_flags = OFLAGS(fp->f_flag);
283 		error = 0;
284 		break;
285 
286 	case F_SETFL:
287 		oflags = fp->f_flag;
288 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
289 		nflags |= oflags & ~FCNTLFLAGS;
290 
291 		error = 0;
292 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
293 			error = EINVAL;
294 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
295 			tmp = nflags & FASYNC;
296 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
297 					 cred, NULL);
298 		}
299 		if (error == 0)
300 			fp->f_flag = nflags;
301 		break;
302 
303 	case F_GETOWN:
304 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
305 				 cred, NULL);
306 		break;
307 
308 	case F_SETOWN:
309 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
310 				 cred, NULL);
311 		break;
312 
313 	case F_SETLKW:
314 		flg |= F_WAIT;
315 		/* Fall into F_SETLK */
316 
317 	case F_SETLK:
318 		if (fp->f_type != DTYPE_VNODE) {
319 			error = EBADF;
320 			break;
321 		}
322 		vp = (struct vnode *)fp->f_data;
323 
324 		/*
325 		 * copyin/lockop may block
326 		 */
327 		if (dat->fc_flock.l_whence == SEEK_CUR)
328 			dat->fc_flock.l_start += fp->f_offset;
329 
330 		switch (dat->fc_flock.l_type) {
331 		case F_RDLCK:
332 			if ((fp->f_flag & FREAD) == 0) {
333 				error = EBADF;
334 				break;
335 			}
336 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
337 				lwkt_gettoken(&p->p_leader->p_token);
338 				p->p_leader->p_flags |= P_ADVLOCK;
339 				lwkt_reltoken(&p->p_leader->p_token);
340 			}
341 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
342 			    &dat->fc_flock, flg);
343 			break;
344 		case F_WRLCK:
345 			if ((fp->f_flag & FWRITE) == 0) {
346 				error = EBADF;
347 				break;
348 			}
349 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
350 				lwkt_gettoken(&p->p_leader->p_token);
351 				p->p_leader->p_flags |= P_ADVLOCK;
352 				lwkt_reltoken(&p->p_leader->p_token);
353 			}
354 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
355 			    &dat->fc_flock, flg);
356 			break;
357 		case F_UNLCK:
358 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
359 				&dat->fc_flock, F_POSIX);
360 			break;
361 		default:
362 			error = EINVAL;
363 			break;
364 		}
365 
366 		/*
367 		 * It is possible to race a close() on the descriptor while
368 		 * we were blocked getting the lock.  If this occurs the
369 		 * close might not have caught the lock.
370 		 */
371 		if (checkfdclosed(p->p_fd, fd, fp)) {
372 			dat->fc_flock.l_whence = SEEK_SET;
373 			dat->fc_flock.l_start = 0;
374 			dat->fc_flock.l_len = 0;
375 			dat->fc_flock.l_type = F_UNLCK;
376 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
377 					   F_UNLCK, &dat->fc_flock, F_POSIX);
378 		}
379 		break;
380 
381 	case F_GETLK:
382 		if (fp->f_type != DTYPE_VNODE) {
383 			error = EBADF;
384 			break;
385 		}
386 		vp = (struct vnode *)fp->f_data;
387 		/*
388 		 * copyin/lockop may block
389 		 */
390 		if (dat->fc_flock.l_type != F_RDLCK &&
391 		    dat->fc_flock.l_type != F_WRLCK &&
392 		    dat->fc_flock.l_type != F_UNLCK) {
393 			error = EINVAL;
394 			break;
395 		}
396 		if (dat->fc_flock.l_whence == SEEK_CUR)
397 			dat->fc_flock.l_start += fp->f_offset;
398 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
399 			    &dat->fc_flock, F_POSIX);
400 		break;
401 	default:
402 		error = EINVAL;
403 		break;
404 	}
405 
406 	fdrop(fp);
407 	return (error);
408 }
409 
410 /*
411  * The file control system call.
412  *
413  * MPSAFE
414  */
415 int
416 sys_fcntl(struct fcntl_args *uap)
417 {
418 	union fcntl_dat dat;
419 	int error;
420 
421 	switch (uap->cmd) {
422 	case F_DUPFD:
423 	case F_DUP2FD:
424 	case F_DUPFD_CLOEXEC:
425 	case F_DUP2FD_CLOEXEC:
426 		dat.fc_fd = uap->arg;
427 		break;
428 	case F_SETFD:
429 		dat.fc_cloexec = uap->arg;
430 		break;
431 	case F_SETFL:
432 		dat.fc_flags = uap->arg;
433 		break;
434 	case F_SETOWN:
435 		dat.fc_owner = uap->arg;
436 		break;
437 	case F_SETLKW:
438 	case F_SETLK:
439 	case F_GETLK:
440 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
441 			       sizeof(struct flock));
442 		if (error)
443 			return (error);
444 		break;
445 	}
446 
447 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
448 
449 	if (error == 0) {
450 		switch (uap->cmd) {
451 		case F_DUPFD:
452 		case F_DUP2FD:
453 		case F_DUPFD_CLOEXEC:
454 		case F_DUP2FD_CLOEXEC:
455 			uap->sysmsg_result = dat.fc_fd;
456 			break;
457 		case F_GETFD:
458 			uap->sysmsg_result = dat.fc_cloexec;
459 			break;
460 		case F_GETFL:
461 			uap->sysmsg_result = dat.fc_flags;
462 			break;
463 		case F_GETOWN:
464 			uap->sysmsg_result = dat.fc_owner;
465 			break;
466 		case F_GETLK:
467 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
468 			    sizeof(struct flock));
469 			break;
470 		}
471 	}
472 
473 	return (error);
474 }
475 
476 /*
477  * Common code for dup, dup2, and fcntl(F_DUPFD).
478  *
479  * There are three type flags: DUP_FIXED, DUP_VARIABLE, and DUP_CLOEXEC.
480  * The first two flags are mutually exclusive, and the third is optional.
481  * DUP_FIXED tells kern_dup() to destructively dup over an existing file
482  * descriptor if "new" is already open.  DUP_VARIABLE tells kern_dup()
483  * to find the lowest unused file descriptor that is greater than or
484  * equal to "new".  DUP_CLOEXEC, which works with either of the first
485  * two flags, sets the close-on-exec flag on the "new" file descriptor.
486  *
487  * MPSAFE
488  */
489 int
490 kern_dup(int flags, int old, int new, int *res)
491 {
492 	struct thread *td = curthread;
493 	struct proc *p = td->td_proc;
494 	struct filedesc *fdp = p->p_fd;
495 	struct file *fp;
496 	struct file *delfp;
497 	int oldflags;
498 	int holdleaders;
499 	int dtsize;
500 	int error, newfd;
501 
502 	/*
503 	 * Verify that we have a valid descriptor to dup from and
504 	 * possibly to dup to.
505 	 *
506 	 * NOTE: maxfilesperuser is not applicable to dup()
507 	 */
508 retry:
509 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
510 		dtsize = INT_MAX;
511 	else
512 		dtsize = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
513 	if (dtsize > maxfilesperproc)
514 		dtsize = maxfilesperproc;
515 	if (dtsize < minfilesperproc)
516 		dtsize = minfilesperproc;
517 
518 	if (new < 0 || new > dtsize)
519 		return (EINVAL);
520 
521 	spin_lock(&fdp->fd_spin);
522 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
523 		spin_unlock(&fdp->fd_spin);
524 		return (EBADF);
525 	}
526 	if ((flags & DUP_FIXED) && old == new) {
527 		*res = new;
528 		if (flags & DUP_CLOEXEC)
529 			fdp->fd_files[new].fileflags |= UF_EXCLOSE;
530 		spin_unlock(&fdp->fd_spin);
531 		return (0);
532 	}
533 	fp = fdp->fd_files[old].fp;
534 	oldflags = fdp->fd_files[old].fileflags;
535 	fhold(fp);	/* MPSAFE - can be called with a spinlock held */
536 
537 	/*
538 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
539 	 * if the requested descriptor is beyond the current table size.
540 	 *
541 	 * This can block.  Retry if the source descriptor no longer matches
542 	 * or if our expectation in the expansion case races.
543 	 *
544 	 * If we are not expanding or allocating a new decriptor, then reset
545 	 * the target descriptor to a reserved state so we have a uniform
546 	 * setup for the next code block.
547 	 */
548 	if ((flags & DUP_VARIABLE) || new >= fdp->fd_nfiles) {
549 		spin_unlock(&fdp->fd_spin);
550 		error = fdalloc(p, new, &newfd);
551 		spin_lock(&fdp->fd_spin);
552 		if (error) {
553 			spin_unlock(&fdp->fd_spin);
554 			fdrop(fp);
555 			return (error);
556 		}
557 		/*
558 		 * Check for ripout
559 		 */
560 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
561 			fsetfd_locked(fdp, NULL, newfd);
562 			spin_unlock(&fdp->fd_spin);
563 			fdrop(fp);
564 			goto retry;
565 		}
566 		/*
567 		 * Check for expansion race
568 		 */
569 		if ((flags & DUP_VARIABLE) == 0 && new != newfd) {
570 			fsetfd_locked(fdp, NULL, newfd);
571 			spin_unlock(&fdp->fd_spin);
572 			fdrop(fp);
573 			goto retry;
574 		}
575 		/*
576 		 * Check for ripout, newfd reused old (this case probably
577 		 * can't occur).
578 		 */
579 		if (old == newfd) {
580 			fsetfd_locked(fdp, NULL, newfd);
581 			spin_unlock(&fdp->fd_spin);
582 			fdrop(fp);
583 			goto retry;
584 		}
585 		new = newfd;
586 		delfp = NULL;
587 	} else {
588 		if (fdp->fd_files[new].reserved) {
589 			spin_unlock(&fdp->fd_spin);
590 			fdrop(fp);
591 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
592 			tsleep(fdp, 0, "fdres", hz);
593 			goto retry;
594 		}
595 
596 		/*
597 		 * If the target descriptor was never allocated we have
598 		 * to allocate it.  If it was we have to clean out the
599 		 * old descriptor.  delfp inherits the ref from the
600 		 * descriptor table.
601 		 */
602 		delfp = fdp->fd_files[new].fp;
603 		fdp->fd_files[new].fp = NULL;
604 		fdp->fd_files[new].reserved = 1;
605 		if (delfp == NULL) {
606 			fdreserve_locked(fdp, new, 1);
607 			if (new > fdp->fd_lastfile)
608 				fdp->fd_lastfile = new;
609 		}
610 
611 	}
612 
613 	/*
614 	 * NOTE: still holding an exclusive spinlock
615 	 */
616 
617 	/*
618 	 * If a descriptor is being overwritten we may hve to tell
619 	 * fdfree() to sleep to ensure that all relevant process
620 	 * leaders can be traversed in closef().
621 	 */
622 	if (delfp != NULL && p->p_fdtol != NULL) {
623 		fdp->fd_holdleaderscount++;
624 		holdleaders = 1;
625 	} else {
626 		holdleaders = 0;
627 	}
628 	KASSERT(delfp == NULL || (flags & DUP_FIXED),
629 		("dup() picked an open file"));
630 
631 	/*
632 	 * Duplicate the source descriptor, update lastfile.  If the new
633 	 * descriptor was not allocated and we aren't replacing an existing
634 	 * descriptor we have to mark the descriptor as being in use.
635 	 *
636 	 * The fd_files[] array inherits fp's hold reference.
637 	 */
638 	fsetfd_locked(fdp, fp, new);
639 	if ((flags & DUP_CLOEXEC) != 0)
640 		fdp->fd_files[new].fileflags = oldflags | UF_EXCLOSE;
641 	else
642 		fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
643 	spin_unlock(&fdp->fd_spin);
644 	fdrop(fp);
645 	*res = new;
646 
647 	/*
648 	 * If we dup'd over a valid file, we now own the reference to it
649 	 * and must dispose of it using closef() semantics (as if a
650 	 * close() were performed on it).
651 	 */
652 	if (delfp) {
653 		if (SLIST_FIRST(&delfp->f_klist))
654 			knote_fdclose(delfp, fdp, new);
655 		closef(delfp, p);
656 		if (holdleaders) {
657 			spin_lock(&fdp->fd_spin);
658 			fdp->fd_holdleaderscount--;
659 			if (fdp->fd_holdleaderscount == 0 &&
660 			    fdp->fd_holdleaderswakeup != 0) {
661 				fdp->fd_holdleaderswakeup = 0;
662 				spin_unlock(&fdp->fd_spin);
663 				wakeup(&fdp->fd_holdleaderscount);
664 			} else {
665 				spin_unlock(&fdp->fd_spin);
666 			}
667 		}
668 	}
669 	return (0);
670 }
671 
672 /*
673  * If sigio is on the list associated with a process or process group,
674  * disable signalling from the device, remove sigio from the list and
675  * free sigio.
676  *
677  * MPSAFE
678  */
679 void
680 funsetown(struct sigio **sigiop)
681 {
682 	struct pgrp *pgrp;
683 	struct proc *p;
684 	struct sigio *sigio;
685 
686 	if ((sigio = *sigiop) != NULL) {
687 		lwkt_gettoken(&sigio_token);	/* protect sigio */
688 		KKASSERT(sigiop == sigio->sio_myref);
689 		sigio = *sigiop;
690 		*sigiop = NULL;
691 		lwkt_reltoken(&sigio_token);
692 	}
693 	if (sigio == NULL)
694 		return;
695 
696 	if (sigio->sio_pgid < 0) {
697 		pgrp = sigio->sio_pgrp;
698 		sigio->sio_pgrp = NULL;
699 		lwkt_gettoken(&pgrp->pg_token);
700 		SLIST_REMOVE(&pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio);
701 		lwkt_reltoken(&pgrp->pg_token);
702 		pgrel(pgrp);
703 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
704 		p = sigio->sio_proc;
705 		sigio->sio_proc = NULL;
706 		PHOLD(p);
707 		lwkt_gettoken(&p->p_token);
708 		SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
709 		lwkt_reltoken(&p->p_token);
710 		PRELE(p);
711 	}
712 	crfree(sigio->sio_ucred);
713 	sigio->sio_ucred = NULL;
714 	kfree(sigio, M_SIGIO);
715 }
716 
717 /*
718  * Free a list of sigio structures.  Caller is responsible for ensuring
719  * that the list is MPSAFE.
720  *
721  * MPSAFE
722  */
723 void
724 funsetownlst(struct sigiolst *sigiolst)
725 {
726 	struct sigio *sigio;
727 
728 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
729 		funsetown(sigio->sio_myref);
730 }
731 
732 /*
733  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
734  *
735  * After permission checking, add a sigio structure to the sigio list for
736  * the process or process group.
737  *
738  * MPSAFE
739  */
740 int
741 fsetown(pid_t pgid, struct sigio **sigiop)
742 {
743 	struct proc *proc = NULL;
744 	struct pgrp *pgrp = NULL;
745 	struct sigio *sigio;
746 	int error;
747 
748 	if (pgid == 0) {
749 		funsetown(sigiop);
750 		return (0);
751 	}
752 
753 	if (pgid > 0) {
754 		proc = pfind(pgid);
755 		if (proc == NULL) {
756 			error = ESRCH;
757 			goto done;
758 		}
759 
760 		/*
761 		 * Policy - Don't allow a process to FSETOWN a process
762 		 * in another session.
763 		 *
764 		 * Remove this test to allow maximum flexibility or
765 		 * restrict FSETOWN to the current process or process
766 		 * group for maximum safety.
767 		 */
768 		if (proc->p_session != curproc->p_session) {
769 			error = EPERM;
770 			goto done;
771 		}
772 	} else /* if (pgid < 0) */ {
773 		pgrp = pgfind(-pgid);
774 		if (pgrp == NULL) {
775 			error = ESRCH;
776 			goto done;
777 		}
778 
779 		/*
780 		 * Policy - Don't allow a process to FSETOWN a process
781 		 * in another session.
782 		 *
783 		 * Remove this test to allow maximum flexibility or
784 		 * restrict FSETOWN to the current process or process
785 		 * group for maximum safety.
786 		 */
787 		if (pgrp->pg_session != curproc->p_session) {
788 			error = EPERM;
789 			goto done;
790 		}
791 	}
792 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK | M_ZERO);
793 	if (pgid > 0) {
794 		KKASSERT(pgrp == NULL);
795 		lwkt_gettoken(&proc->p_token);
796 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
797 		sigio->sio_proc = proc;
798 		lwkt_reltoken(&proc->p_token);
799 	} else {
800 		KKASSERT(proc == NULL);
801 		lwkt_gettoken(&pgrp->pg_token);
802 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
803 		sigio->sio_pgrp = pgrp;
804 		lwkt_reltoken(&pgrp->pg_token);
805 		pgrp = NULL;
806 	}
807 	sigio->sio_pgid = pgid;
808 	sigio->sio_ucred = crhold(curthread->td_ucred);
809 	/* It would be convenient if p_ruid was in ucred. */
810 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
811 	sigio->sio_myref = sigiop;
812 
813 	lwkt_gettoken(&sigio_token);
814 	while (*sigiop)
815 		funsetown(sigiop);
816 	*sigiop = sigio;
817 	lwkt_reltoken(&sigio_token);
818 	error = 0;
819 done:
820 	if (pgrp)
821 		pgrel(pgrp);
822 	if (proc)
823 		PRELE(proc);
824 	return (error);
825 }
826 
827 /*
828  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
829  *
830  * MPSAFE
831  */
832 pid_t
833 fgetown(struct sigio **sigiop)
834 {
835 	struct sigio *sigio;
836 	pid_t own;
837 
838 	lwkt_gettoken_shared(&sigio_token);
839 	sigio = *sigiop;
840 	own = (sigio != NULL ? sigio->sio_pgid : 0);
841 	lwkt_reltoken(&sigio_token);
842 
843 	return (own);
844 }
845 
846 /*
847  * Close many file descriptors.
848  *
849  * MPSAFE
850  */
851 int
852 sys_closefrom(struct closefrom_args *uap)
853 {
854 	return(kern_closefrom(uap->fd));
855 }
856 
857 /*
858  * Close all file descriptors greater then or equal to fd
859  *
860  * MPSAFE
861  */
862 int
863 kern_closefrom(int fd)
864 {
865 	struct thread *td = curthread;
866 	struct proc *p = td->td_proc;
867 	struct filedesc *fdp;
868 
869 	KKASSERT(p);
870 	fdp = p->p_fd;
871 
872 	if (fd < 0)
873 		return (EINVAL);
874 
875 	/*
876 	 * NOTE: This function will skip unassociated descriptors and
877 	 * reserved descriptors that have not yet been assigned.
878 	 * fd_lastfile can change as a side effect of kern_close().
879 	 */
880 	spin_lock(&fdp->fd_spin);
881 	while (fd <= fdp->fd_lastfile) {
882 		if (fdp->fd_files[fd].fp != NULL) {
883 			spin_unlock(&fdp->fd_spin);
884 			/* ok if this races another close */
885 			if (kern_close(fd) == EINTR)
886 				return (EINTR);
887 			spin_lock(&fdp->fd_spin);
888 		}
889 		++fd;
890 	}
891 	spin_unlock(&fdp->fd_spin);
892 	return (0);
893 }
894 
895 /*
896  * Close a file descriptor.
897  *
898  * MPSAFE
899  */
900 int
901 sys_close(struct close_args *uap)
902 {
903 	return(kern_close(uap->fd));
904 }
905 
906 /*
907  * MPSAFE
908  */
909 int
910 kern_close(int fd)
911 {
912 	struct thread *td = curthread;
913 	struct proc *p = td->td_proc;
914 	struct filedesc *fdp;
915 	struct file *fp;
916 	int error;
917 	int holdleaders;
918 
919 	KKASSERT(p);
920 	fdp = p->p_fd;
921 
922 	spin_lock(&fdp->fd_spin);
923 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
924 		spin_unlock(&fdp->fd_spin);
925 		return (EBADF);
926 	}
927 	holdleaders = 0;
928 	if (p->p_fdtol != NULL) {
929 		/*
930 		 * Ask fdfree() to sleep to ensure that all relevant
931 		 * process leaders can be traversed in closef().
932 		 */
933 		fdp->fd_holdleaderscount++;
934 		holdleaders = 1;
935 	}
936 
937 	/*
938 	 * we now hold the fp reference that used to be owned by the descriptor
939 	 * array.
940 	 */
941 	spin_unlock(&fdp->fd_spin);
942 	if (SLIST_FIRST(&fp->f_klist))
943 		knote_fdclose(fp, fdp, fd);
944 	error = closef(fp, p);
945 	if (holdleaders) {
946 		spin_lock(&fdp->fd_spin);
947 		fdp->fd_holdleaderscount--;
948 		if (fdp->fd_holdleaderscount == 0 &&
949 		    fdp->fd_holdleaderswakeup != 0) {
950 			fdp->fd_holdleaderswakeup = 0;
951 			spin_unlock(&fdp->fd_spin);
952 			wakeup(&fdp->fd_holdleaderscount);
953 		} else {
954 			spin_unlock(&fdp->fd_spin);
955 		}
956 	}
957 	return (error);
958 }
959 
960 /*
961  * shutdown_args(int fd, int how)
962  */
963 int
964 kern_shutdown(int fd, int how)
965 {
966 	struct thread *td = curthread;
967 	struct proc *p = td->td_proc;
968 	struct file *fp;
969 	int error;
970 
971 	KKASSERT(p);
972 
973 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
974 		return (EBADF);
975 	error = fo_shutdown(fp, how);
976 	fdrop(fp);
977 
978 	return (error);
979 }
980 
981 /*
982  * MPALMOSTSAFE
983  */
984 int
985 sys_shutdown(struct shutdown_args *uap)
986 {
987 	int error;
988 
989 	error = kern_shutdown(uap->s, uap->how);
990 
991 	return (error);
992 }
993 
994 /*
995  * MPSAFE
996  */
997 int
998 kern_fstat(int fd, struct stat *ub)
999 {
1000 	struct thread *td = curthread;
1001 	struct proc *p = td->td_proc;
1002 	struct file *fp;
1003 	int error;
1004 
1005 	KKASSERT(p);
1006 
1007 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
1008 		return (EBADF);
1009 	error = fo_stat(fp, ub, td->td_ucred);
1010 	fdrop(fp);
1011 
1012 	return (error);
1013 }
1014 
1015 /*
1016  * Return status information about a file descriptor.
1017  *
1018  * MPSAFE
1019  */
1020 int
1021 sys_fstat(struct fstat_args *uap)
1022 {
1023 	struct stat st;
1024 	int error;
1025 
1026 	error = kern_fstat(uap->fd, &st);
1027 
1028 	if (error == 0)
1029 		error = copyout(&st, uap->sb, sizeof(st));
1030 	return (error);
1031 }
1032 
1033 /*
1034  * Return pathconf information about a file descriptor.
1035  *
1036  * MPALMOSTSAFE
1037  */
1038 int
1039 sys_fpathconf(struct fpathconf_args *uap)
1040 {
1041 	struct thread *td = curthread;
1042 	struct proc *p = td->td_proc;
1043 	struct file *fp;
1044 	struct vnode *vp;
1045 	int error = 0;
1046 
1047 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
1048 		return (EBADF);
1049 
1050 	switch (fp->f_type) {
1051 	case DTYPE_PIPE:
1052 	case DTYPE_SOCKET:
1053 		if (uap->name != _PC_PIPE_BUF) {
1054 			error = EINVAL;
1055 		} else {
1056 			uap->sysmsg_result = PIPE_BUF;
1057 			error = 0;
1058 		}
1059 		break;
1060 	case DTYPE_FIFO:
1061 	case DTYPE_VNODE:
1062 		vp = (struct vnode *)fp->f_data;
1063 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
1064 		break;
1065 	default:
1066 		error = EOPNOTSUPP;
1067 		break;
1068 	}
1069 	fdrop(fp);
1070 	return(error);
1071 }
1072 
1073 static int fdexpand;
1074 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0,
1075     "Number of times a file table has been expanded");
1076 
1077 /*
1078  * Grow the file table so it can hold through descriptor (want).
1079  *
1080  * The fdp's spinlock must be held exclusively on entry and may be held
1081  * exclusively on return.  The spinlock may be cycled by the routine.
1082  *
1083  * MPSAFE
1084  */
1085 static void
1086 fdgrow_locked(struct filedesc *fdp, int want)
1087 {
1088 	struct fdnode *newfiles;
1089 	struct fdnode *oldfiles;
1090 	int nf, extra;
1091 
1092 	nf = fdp->fd_nfiles;
1093 	do {
1094 		/* nf has to be of the form 2^n - 1 */
1095 		nf = 2 * nf + 1;
1096 	} while (nf <= want);
1097 
1098 	spin_unlock(&fdp->fd_spin);
1099 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1100 	spin_lock(&fdp->fd_spin);
1101 
1102 	/*
1103 	 * We could have raced another extend while we were not holding
1104 	 * the spinlock.
1105 	 */
1106 	if (fdp->fd_nfiles >= nf) {
1107 		spin_unlock(&fdp->fd_spin);
1108 		kfree(newfiles, M_FILEDESC);
1109 		spin_lock(&fdp->fd_spin);
1110 		return;
1111 	}
1112 	/*
1113 	 * Copy the existing ofile and ofileflags arrays
1114 	 * and zero the new portion of each array.
1115 	 */
1116 	extra = nf - fdp->fd_nfiles;
1117 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1118 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1119 
1120 	oldfiles = fdp->fd_files;
1121 	fdp->fd_files = newfiles;
1122 	fdp->fd_nfiles = nf;
1123 
1124 	if (oldfiles != fdp->fd_builtin_files) {
1125 		spin_unlock(&fdp->fd_spin);
1126 		kfree(oldfiles, M_FILEDESC);
1127 		spin_lock(&fdp->fd_spin);
1128 	}
1129 	fdexpand++;
1130 }
1131 
1132 /*
1133  * Number of nodes in right subtree, including the root.
1134  */
1135 static __inline int
1136 right_subtree_size(int n)
1137 {
1138 	return (n ^ (n | (n + 1)));
1139 }
1140 
1141 /*
1142  * Bigger ancestor.
1143  */
1144 static __inline int
1145 right_ancestor(int n)
1146 {
1147 	return (n | (n + 1));
1148 }
1149 
1150 /*
1151  * Smaller ancestor.
1152  */
1153 static __inline int
1154 left_ancestor(int n)
1155 {
1156 	return ((n & (n + 1)) - 1);
1157 }
1158 
1159 /*
1160  * Traverse the in-place binary tree buttom-up adjusting the allocation
1161  * count so scans can determine where free descriptors are located.
1162  *
1163  * MPSAFE - caller must be holding an exclusive spinlock on fdp
1164  */
1165 static
1166 void
1167 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1168 {
1169 	while (fd >= 0) {
1170 		fdp->fd_files[fd].allocated += incr;
1171 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1172 		fd = left_ancestor(fd);
1173 	}
1174 }
1175 
1176 /*
1177  * Reserve a file descriptor for the process.  If no error occurs, the
1178  * caller MUST at some point call fsetfd() or assign a file pointer
1179  * or dispose of the reservation.
1180  *
1181  * MPSAFE
1182  */
1183 int
1184 fdalloc(struct proc *p, int want, int *result)
1185 {
1186 	struct filedesc *fdp = p->p_fd;
1187 	struct uidinfo *uip;
1188 	int fd, rsize, rsum, node, lim;
1189 
1190 	/*
1191 	 * Check dtable size limit
1192 	 */
1193 	spin_lock(&p->p_limit->p_spin);
1194 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1195 		lim = INT_MAX;
1196 	else
1197 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1198 	spin_unlock(&p->p_limit->p_spin);
1199 
1200 	if (lim > maxfilesperproc)
1201 		lim = maxfilesperproc;
1202 	if (lim < minfilesperproc)
1203 		lim = minfilesperproc;
1204 	if (want >= lim)
1205 		return (EMFILE);
1206 
1207 	/*
1208 	 * Check that the user has not run out of descriptors (non-root only).
1209 	 * As a safety measure the dtable is allowed to have at least
1210 	 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1211 	 */
1212 	if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1213 		uip = p->p_ucred->cr_uidinfo;
1214 		if (uip->ui_openfiles > maxfilesperuser) {
1215 			krateprintf(&krate_uidinfo,
1216 				    "Warning: user %d pid %d (%s) ran out of "
1217 				    "file descriptors (%d/%d)\n",
1218 				    p->p_ucred->cr_uid, (int)p->p_pid,
1219 				    p->p_comm,
1220 				    uip->ui_openfiles, maxfilesperuser);
1221 			return(ENFILE);
1222 		}
1223 	}
1224 
1225 	/*
1226 	 * Grow the dtable if necessary
1227 	 */
1228 	spin_lock(&fdp->fd_spin);
1229 	if (want >= fdp->fd_nfiles)
1230 		fdgrow_locked(fdp, want);
1231 
1232 	/*
1233 	 * Search for a free descriptor starting at the higher
1234 	 * of want or fd_freefile.  If that fails, consider
1235 	 * expanding the ofile array.
1236 	 *
1237 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1238 	 * count.  If we happen to see a value of 0 then we can shortcut
1239 	 * our search.  Otherwise we run through through the tree going
1240 	 * down branches we know have free descriptor(s) until we hit a
1241 	 * leaf node.  The leaf node will be free but will not necessarily
1242 	 * have an allocated field of 0.
1243 	 */
1244 retry:
1245 	/* move up the tree looking for a subtree with a free node */
1246 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1247 	     fd = right_ancestor(fd)) {
1248 		if (fdp->fd_files[fd].allocated == 0)
1249 			goto found;
1250 
1251 		rsize = right_subtree_size(fd);
1252 		if (fdp->fd_files[fd].allocated == rsize)
1253 			continue;	/* right subtree full */
1254 
1255 		/*
1256 		 * Free fd is in the right subtree of the tree rooted at fd.
1257 		 * Call that subtree R.  Look for the smallest (leftmost)
1258 		 * subtree of R with an unallocated fd: continue moving
1259 		 * down the left branch until encountering a full left
1260 		 * subtree, then move to the right.
1261 		 */
1262 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1263 			node = fd + rsize;
1264 			rsum += fdp->fd_files[node].allocated;
1265 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1266 				fd = node;	/* move to the right */
1267 				if (fdp->fd_files[node].allocated == 0)
1268 					goto found;
1269 				rsum = 0;
1270 			}
1271 		}
1272 		goto found;
1273 	}
1274 
1275 	/*
1276 	 * No space in current array.  Expand?
1277 	 */
1278 	if (fdp->fd_nfiles >= lim) {
1279 		spin_unlock(&fdp->fd_spin);
1280 		return (EMFILE);
1281 	}
1282 	fdgrow_locked(fdp, want);
1283 	goto retry;
1284 
1285 found:
1286 	KKASSERT(fd < fdp->fd_nfiles);
1287 	if (fd > fdp->fd_lastfile)
1288 		fdp->fd_lastfile = fd;
1289 	if (want <= fdp->fd_freefile)
1290 		fdp->fd_freefile = fd;
1291 	*result = fd;
1292 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1293 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1294 	fdp->fd_files[fd].fileflags = 0;
1295 	fdp->fd_files[fd].reserved = 1;
1296 	fdreserve_locked(fdp, fd, 1);
1297 	spin_unlock(&fdp->fd_spin);
1298 	return (0);
1299 }
1300 
1301 /*
1302  * Check to see whether n user file descriptors
1303  * are available to the process p.
1304  *
1305  * MPSAFE
1306  */
1307 int
1308 fdavail(struct proc *p, int n)
1309 {
1310 	struct filedesc *fdp = p->p_fd;
1311 	struct fdnode *fdnode;
1312 	int i, lim, last;
1313 
1314 	spin_lock(&p->p_limit->p_spin);
1315 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1316 		lim = INT_MAX;
1317 	else
1318 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1319 	spin_unlock(&p->p_limit->p_spin);
1320 
1321 	if (lim > maxfilesperproc)
1322 		lim = maxfilesperproc;
1323 	if (lim < minfilesperproc)
1324 		lim = minfilesperproc;
1325 
1326 	spin_lock(&fdp->fd_spin);
1327 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1328 		spin_unlock(&fdp->fd_spin);
1329 		return (1);
1330 	}
1331 	last = min(fdp->fd_nfiles, lim);
1332 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1333 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1334 		if (fdnode->fp == NULL && --n <= 0) {
1335 			spin_unlock(&fdp->fd_spin);
1336 			return (1);
1337 		}
1338 	}
1339 	spin_unlock(&fdp->fd_spin);
1340 	return (0);
1341 }
1342 
1343 /*
1344  * Revoke open descriptors referencing (f_data, f_type)
1345  *
1346  * Any revoke executed within a prison is only able to
1347  * revoke descriptors for processes within that prison.
1348  *
1349  * Returns 0 on success or an error code.
1350  */
1351 struct fdrevoke_info {
1352 	void *data;
1353 	short type;
1354 	short unused;
1355 	int count;
1356 	int intransit;
1357 	struct ucred *cred;
1358 	struct file *nfp;
1359 };
1360 
1361 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1362 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1363 
1364 int
1365 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1366 {
1367 	struct fdrevoke_info info;
1368 	int error;
1369 
1370 	bzero(&info, sizeof(info));
1371 	info.data = f_data;
1372 	info.type = f_type;
1373 	info.cred = cred;
1374 	error = falloc(NULL, &info.nfp, NULL);
1375 	if (error)
1376 		return (error);
1377 
1378 	/*
1379 	 * Scan the file pointer table once.  dups do not dup file pointers,
1380 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1381 	 * being revoked.
1382 	 */
1383 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1384 
1385 	/*
1386 	 * If any fps were marked track down the related descriptors
1387 	 * and close them.  Any dup()s at this point will notice
1388 	 * the FREVOKED already set in the fp and do the right thing.
1389 	 *
1390 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1391 	 * socket) bumped the intransit counter and will require a
1392 	 * scan.  Races against fps leaving the socket are closed by
1393 	 * the socket code checking for FREVOKED.
1394 	 */
1395 	if (info.count)
1396 		allproc_scan(fdrevoke_proc_callback, &info);
1397 	if (info.intransit)
1398 		unp_revoke_gc(info.nfp);
1399 	fdrop(info.nfp);
1400 	return(0);
1401 }
1402 
1403 /*
1404  * Locate matching file pointers directly.
1405  *
1406  * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1407  */
1408 static int
1409 fdrevoke_check_callback(struct file *fp, void *vinfo)
1410 {
1411 	struct fdrevoke_info *info = vinfo;
1412 
1413 	/*
1414 	 * File pointers already flagged for revokation are skipped.
1415 	 */
1416 	if (fp->f_flag & FREVOKED)
1417 		return(0);
1418 
1419 	/*
1420 	 * If revoking from a prison file pointers created outside of
1421 	 * that prison, or file pointers without creds, cannot be revoked.
1422 	 */
1423 	if (info->cred->cr_prison &&
1424 	    (fp->f_cred == NULL ||
1425 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1426 		return(0);
1427 	}
1428 
1429 	/*
1430 	 * If the file pointer matches then mark it for revocation.  The
1431 	 * flag is currently only used by unp_revoke_gc().
1432 	 *
1433 	 * info->count is a heuristic and can race in a SMP environment.
1434 	 */
1435 	if (info->data == fp->f_data && info->type == fp->f_type) {
1436 		atomic_set_int(&fp->f_flag, FREVOKED);
1437 		info->count += fp->f_count;
1438 		if (fp->f_msgcount)
1439 			++info->intransit;
1440 	}
1441 	return(0);
1442 }
1443 
1444 /*
1445  * Locate matching file pointers via process descriptor tables.
1446  */
1447 static int
1448 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1449 {
1450 	struct fdrevoke_info *info = vinfo;
1451 	struct filedesc *fdp;
1452 	struct file *fp;
1453 	int n;
1454 
1455 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1456 		return(0);
1457 	if (info->cred->cr_prison &&
1458 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1459 		return(0);
1460 	}
1461 
1462 	/*
1463 	 * If the controlling terminal of the process matches the
1464 	 * vnode being revoked we clear the controlling terminal.
1465 	 *
1466 	 * The normal spec_close() may not catch this because it
1467 	 * uses curproc instead of p.
1468 	 */
1469 	if (p->p_session && info->type == DTYPE_VNODE &&
1470 	    info->data == p->p_session->s_ttyvp) {
1471 		p->p_session->s_ttyvp = NULL;
1472 		vrele(info->data);
1473 	}
1474 
1475 	/*
1476 	 * Softref the fdp to prevent it from being destroyed
1477 	 */
1478 	spin_lock(&p->p_spin);
1479 	if ((fdp = p->p_fd) == NULL) {
1480 		spin_unlock(&p->p_spin);
1481 		return(0);
1482 	}
1483 	atomic_add_int(&fdp->fd_softrefs, 1);
1484 	spin_unlock(&p->p_spin);
1485 
1486 	/*
1487 	 * Locate and close any matching file descriptors.
1488 	 */
1489 	spin_lock(&fdp->fd_spin);
1490 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1491 		if ((fp = fdp->fd_files[n].fp) == NULL)
1492 			continue;
1493 		if (fp->f_flag & FREVOKED) {
1494 			fhold(info->nfp);
1495 			fdp->fd_files[n].fp = info->nfp;
1496 			spin_unlock(&fdp->fd_spin);
1497 			knote_fdclose(fp, fdp, n);	/* XXX */
1498 			closef(fp, p);
1499 			spin_lock(&fdp->fd_spin);
1500 			--info->count;
1501 		}
1502 	}
1503 	spin_unlock(&fdp->fd_spin);
1504 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1505 	return(0);
1506 }
1507 
1508 /*
1509  * falloc:
1510  *	Create a new open file structure and reserve a file decriptor
1511  *	for the process that refers to it.
1512  *
1513  *	Root creds are checked using lp, or assumed if lp is NULL.  If
1514  *	resultfd is non-NULL then lp must also be non-NULL.  No file
1515  *	descriptor is reserved (and no process context is needed) if
1516  *	resultfd is NULL.
1517  *
1518  *	A file pointer with a refcount of 1 is returned.  Note that the
1519  *	file pointer is NOT associated with the descriptor.  If falloc
1520  *	returns success, fsetfd() MUST be called to either associate the
1521  *	file pointer or clear the reservation.
1522  *
1523  * MPSAFE
1524  */
1525 int
1526 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1527 {
1528 	static struct timeval lastfail;
1529 	static int curfail;
1530 	struct file *fp;
1531 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1532 	int error;
1533 
1534 	fp = NULL;
1535 
1536 	/*
1537 	 * Handle filetable full issues and root overfill.
1538 	 */
1539 	if (nfiles >= maxfiles - maxfilesrootres &&
1540 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
1541 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1542 			kprintf("kern.maxfiles limit exceeded by uid %d, "
1543 				"please see tuning(7).\n",
1544 				cred->cr_ruid);
1545 		}
1546 		error = ENFILE;
1547 		goto done;
1548 	}
1549 
1550 	/*
1551 	 * Allocate a new file descriptor.
1552 	 */
1553 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1554 	spin_init(&fp->f_spin);
1555 	SLIST_INIT(&fp->f_klist);
1556 	fp->f_count = 1;
1557 	fp->f_ops = &badfileops;
1558 	fp->f_seqcount = 1;
1559 	fsetcred(fp, cred);
1560 	spin_lock(&filehead_spin);
1561 	nfiles++;
1562 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1563 	spin_unlock(&filehead_spin);
1564 	if (resultfd) {
1565 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
1566 			fdrop(fp);
1567 			fp = NULL;
1568 		}
1569 	} else {
1570 		error = 0;
1571 	}
1572 done:
1573 	*resultfp = fp;
1574 	return (error);
1575 }
1576 
1577 /*
1578  * Check for races against a file descriptor by determining that the
1579  * file pointer is still associated with the specified file descriptor,
1580  * and a close is not currently in progress.
1581  *
1582  * MPSAFE
1583  */
1584 int
1585 checkfdclosed(struct filedesc *fdp, int fd, struct file *fp)
1586 {
1587 	int error;
1588 
1589 	spin_lock_shared(&fdp->fd_spin);
1590 	if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1591 		error = EBADF;
1592 	else
1593 		error = 0;
1594 	spin_unlock_shared(&fdp->fd_spin);
1595 	return (error);
1596 }
1597 
1598 /*
1599  * Associate a file pointer with a previously reserved file descriptor.
1600  * This function always succeeds.
1601  *
1602  * If fp is NULL, the file descriptor is returned to the pool.
1603  */
1604 
1605 /*
1606  * MPSAFE (exclusive spinlock must be held on call)
1607  */
1608 static void
1609 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1610 {
1611 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1612 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1613 	if (fp) {
1614 		fhold(fp);
1615 		fdp->fd_files[fd].fp = fp;
1616 		fdp->fd_files[fd].reserved = 0;
1617 	} else {
1618 		fdp->fd_files[fd].reserved = 0;
1619 		fdreserve_locked(fdp, fd, -1);
1620 		fdfixup_locked(fdp, fd);
1621 	}
1622 }
1623 
1624 /*
1625  * MPSAFE
1626  */
1627 void
1628 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
1629 {
1630 	spin_lock(&fdp->fd_spin);
1631 	fsetfd_locked(fdp, fp, fd);
1632 	spin_unlock(&fdp->fd_spin);
1633 }
1634 
1635 /*
1636  * MPSAFE (exclusive spinlock must be held on call)
1637  */
1638 static
1639 struct file *
1640 funsetfd_locked(struct filedesc *fdp, int fd)
1641 {
1642 	struct file *fp;
1643 
1644 	if ((unsigned)fd >= fdp->fd_nfiles)
1645 		return (NULL);
1646 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1647 		return (NULL);
1648 	fdp->fd_files[fd].fp = NULL;
1649 	fdp->fd_files[fd].fileflags = 0;
1650 
1651 	fdreserve_locked(fdp, fd, -1);
1652 	fdfixup_locked(fdp, fd);
1653 	return(fp);
1654 }
1655 
1656 /*
1657  * MPSAFE
1658  */
1659 int
1660 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1661 {
1662 	int error;
1663 
1664 	spin_lock(&fdp->fd_spin);
1665 	if (((u_int)fd) >= fdp->fd_nfiles) {
1666 		error = EBADF;
1667 	} else if (fdp->fd_files[fd].fp == NULL) {
1668 		error = EBADF;
1669 	} else {
1670 		*flagsp = fdp->fd_files[fd].fileflags;
1671 		error = 0;
1672 	}
1673 	spin_unlock(&fdp->fd_spin);
1674 	return (error);
1675 }
1676 
1677 /*
1678  * MPSAFE
1679  */
1680 int
1681 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1682 {
1683 	int error;
1684 
1685 	spin_lock(&fdp->fd_spin);
1686 	if (((u_int)fd) >= fdp->fd_nfiles) {
1687 		error = EBADF;
1688 	} else if (fdp->fd_files[fd].fp == NULL) {
1689 		error = EBADF;
1690 	} else {
1691 		fdp->fd_files[fd].fileflags |= add_flags;
1692 		error = 0;
1693 	}
1694 	spin_unlock(&fdp->fd_spin);
1695 	return (error);
1696 }
1697 
1698 /*
1699  * MPSAFE
1700  */
1701 int
1702 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1703 {
1704 	int error;
1705 
1706 	spin_lock(&fdp->fd_spin);
1707 	if (((u_int)fd) >= fdp->fd_nfiles) {
1708 		error = EBADF;
1709 	} else if (fdp->fd_files[fd].fp == NULL) {
1710 		error = EBADF;
1711 	} else {
1712 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1713 		error = 0;
1714 	}
1715 	spin_unlock(&fdp->fd_spin);
1716 	return (error);
1717 }
1718 
1719 /*
1720  * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
1721  */
1722 void
1723 fsetcred(struct file *fp, struct ucred *ncr)
1724 {
1725 	struct ucred *ocr;
1726 	struct uidinfo *uip;
1727 
1728 	ocr = fp->f_cred;
1729 	if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
1730 		if (ocr) {
1731 			uip = ocr->cr_uidinfo;
1732 			atomic_add_int(&uip->ui_openfiles, -1);
1733 		}
1734 		if (ncr) {
1735 			uip = ncr->cr_uidinfo;
1736 			atomic_add_int(&uip->ui_openfiles, 1);
1737 		}
1738 	}
1739 	if (ncr)
1740 		crhold(ncr);
1741 	fp->f_cred = ncr;
1742 	if (ocr)
1743 		crfree(ocr);
1744 }
1745 
1746 /*
1747  * Free a file descriptor.
1748  */
1749 static
1750 void
1751 ffree(struct file *fp)
1752 {
1753 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1754 	spin_lock(&filehead_spin);
1755 	LIST_REMOVE(fp, f_list);
1756 	nfiles--;
1757 	spin_unlock(&filehead_spin);
1758 	fsetcred(fp, NULL);
1759 	if (fp->f_nchandle.ncp)
1760 	    cache_drop(&fp->f_nchandle);
1761 	kfree(fp, M_FILE);
1762 }
1763 
1764 /*
1765  * called from init_main, initialize filedesc0 for proc0.
1766  */
1767 void
1768 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1769 {
1770 	p0->p_fd = fdp0;
1771 	p0->p_fdtol = NULL;
1772 	fdp0->fd_refcnt = 1;
1773 	fdp0->fd_cmask = cmask;
1774 	fdp0->fd_files = fdp0->fd_builtin_files;
1775 	fdp0->fd_nfiles = NDFILE;
1776 	fdp0->fd_lastfile = -1;
1777 	spin_init(&fdp0->fd_spin);
1778 }
1779 
1780 /*
1781  * Build a new filedesc structure.
1782  *
1783  * NOT MPSAFE (vref)
1784  */
1785 struct filedesc *
1786 fdinit(struct proc *p)
1787 {
1788 	struct filedesc *newfdp;
1789 	struct filedesc *fdp = p->p_fd;
1790 
1791 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1792 	spin_lock(&fdp->fd_spin);
1793 	if (fdp->fd_cdir) {
1794 		newfdp->fd_cdir = fdp->fd_cdir;
1795 		vref(newfdp->fd_cdir);
1796 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1797 	}
1798 
1799 	/*
1800 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1801 	 * proc0, but should unconditionally exist in other processes.
1802 	 */
1803 	if (fdp->fd_rdir) {
1804 		newfdp->fd_rdir = fdp->fd_rdir;
1805 		vref(newfdp->fd_rdir);
1806 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1807 	}
1808 	if (fdp->fd_jdir) {
1809 		newfdp->fd_jdir = fdp->fd_jdir;
1810 		vref(newfdp->fd_jdir);
1811 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1812 	}
1813 	spin_unlock(&fdp->fd_spin);
1814 
1815 	/* Create the file descriptor table. */
1816 	newfdp->fd_refcnt = 1;
1817 	newfdp->fd_cmask = cmask;
1818 	newfdp->fd_files = newfdp->fd_builtin_files;
1819 	newfdp->fd_nfiles = NDFILE;
1820 	newfdp->fd_lastfile = -1;
1821 	spin_init(&newfdp->fd_spin);
1822 
1823 	return (newfdp);
1824 }
1825 
1826 /*
1827  * Share a filedesc structure.
1828  *
1829  * MPSAFE
1830  */
1831 struct filedesc *
1832 fdshare(struct proc *p)
1833 {
1834 	struct filedesc *fdp;
1835 
1836 	fdp = p->p_fd;
1837 	spin_lock(&fdp->fd_spin);
1838 	fdp->fd_refcnt++;
1839 	spin_unlock(&fdp->fd_spin);
1840 	return (fdp);
1841 }
1842 
1843 /*
1844  * Copy a filedesc structure.
1845  *
1846  * MPSAFE
1847  */
1848 int
1849 fdcopy(struct proc *p, struct filedesc **fpp)
1850 {
1851 	struct filedesc *fdp = p->p_fd;
1852 	struct filedesc *newfdp;
1853 	struct fdnode *fdnode;
1854 	int i;
1855 	int ni;
1856 
1857 	/*
1858 	 * Certain daemons might not have file descriptors.
1859 	 */
1860 	if (fdp == NULL)
1861 		return (0);
1862 
1863 	/*
1864 	 * Allocate the new filedesc and fd_files[] array.  This can race
1865 	 * with operations by other threads on the fdp so we have to be
1866 	 * careful.
1867 	 */
1868 	newfdp = kmalloc(sizeof(struct filedesc),
1869 			 M_FILEDESC, M_WAITOK | M_ZERO | M_NULLOK);
1870 	if (newfdp == NULL) {
1871 		*fpp = NULL;
1872 		return (-1);
1873 	}
1874 again:
1875 	spin_lock(&fdp->fd_spin);
1876 	if (fdp->fd_lastfile < NDFILE) {
1877 		newfdp->fd_files = newfdp->fd_builtin_files;
1878 		i = NDFILE;
1879 	} else {
1880 		/*
1881 		 * We have to allocate (N^2-1) entries for our in-place
1882 		 * binary tree.  Allow the table to shrink.
1883 		 */
1884 		i = fdp->fd_nfiles;
1885 		ni = (i - 1) / 2;
1886 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1887 			i = ni;
1888 			ni = (i - 1) / 2;
1889 		}
1890 		spin_unlock(&fdp->fd_spin);
1891 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1892 					  M_FILEDESC, M_WAITOK | M_ZERO);
1893 
1894 		/*
1895 		 * Check for race, retry
1896 		 */
1897 		spin_lock(&fdp->fd_spin);
1898 		if (i <= fdp->fd_lastfile) {
1899 			spin_unlock(&fdp->fd_spin);
1900 			kfree(newfdp->fd_files, M_FILEDESC);
1901 			goto again;
1902 		}
1903 	}
1904 
1905 	/*
1906 	 * Dup the remaining fields. vref() and cache_hold() can be
1907 	 * safely called while holding the read spinlock on fdp.
1908 	 *
1909 	 * The read spinlock on fdp is still being held.
1910 	 *
1911 	 * NOTE: vref and cache_hold calls for the case where the vnode
1912 	 * or cache entry already has at least one ref may be called
1913 	 * while holding spin locks.
1914 	 */
1915 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1916 		vref(newfdp->fd_cdir);
1917 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1918 	}
1919 	/*
1920 	 * We must check for fd_rdir here, at least for now because
1921 	 * the init process is created before we have access to the
1922 	 * rootvode to take a reference to it.
1923 	 */
1924 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1925 		vref(newfdp->fd_rdir);
1926 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1927 	}
1928 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1929 		vref(newfdp->fd_jdir);
1930 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1931 	}
1932 	newfdp->fd_refcnt = 1;
1933 	newfdp->fd_nfiles = i;
1934 	newfdp->fd_lastfile = fdp->fd_lastfile;
1935 	newfdp->fd_freefile = fdp->fd_freefile;
1936 	newfdp->fd_cmask = fdp->fd_cmask;
1937 	spin_init(&newfdp->fd_spin);
1938 
1939 	/*
1940 	 * Copy the descriptor table through (i).  This also copies the
1941 	 * allocation state.   Then go through and ref the file pointers
1942 	 * and clean up any KQ descriptors.
1943 	 *
1944 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1945 	 * copied files yet we can ignore the return value from funsetfd().
1946 	 *
1947 	 * The read spinlock on fdp is still being held.
1948 	 */
1949 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1950 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1951 		fdnode = &newfdp->fd_files[i];
1952 		if (fdnode->reserved) {
1953 			fdreserve_locked(newfdp, i, -1);
1954 			fdnode->reserved = 0;
1955 			fdfixup_locked(newfdp, i);
1956 		} else if (fdnode->fp) {
1957 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1958 				(void)funsetfd_locked(newfdp, i);
1959 			} else {
1960 				fhold(fdnode->fp);
1961 			}
1962 		}
1963 	}
1964 	spin_unlock(&fdp->fd_spin);
1965 	*fpp = newfdp;
1966 	return (0);
1967 }
1968 
1969 /*
1970  * Release a filedesc structure.
1971  *
1972  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1973  */
1974 void
1975 fdfree(struct proc *p, struct filedesc *repl)
1976 {
1977 	struct filedesc *fdp;
1978 	struct fdnode *fdnode;
1979 	int i;
1980 	struct filedesc_to_leader *fdtol;
1981 	struct file *fp;
1982 	struct vnode *vp;
1983 	struct flock lf;
1984 
1985 	/*
1986 	 * Certain daemons might not have file descriptors.
1987 	 */
1988 	fdp = p->p_fd;
1989 	if (fdp == NULL) {
1990 		p->p_fd = repl;
1991 		return;
1992 	}
1993 
1994 	/*
1995 	 * Severe messing around to follow.
1996 	 */
1997 	spin_lock(&fdp->fd_spin);
1998 
1999 	/* Check for special need to clear POSIX style locks */
2000 	fdtol = p->p_fdtol;
2001 	if (fdtol != NULL) {
2002 		KASSERT(fdtol->fdl_refcount > 0,
2003 			("filedesc_to_refcount botch: fdl_refcount=%d",
2004 			 fdtol->fdl_refcount));
2005 		if (fdtol->fdl_refcount == 1 &&
2006 		    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
2007 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
2008 				fdnode = &fdp->fd_files[i];
2009 				if (fdnode->fp == NULL ||
2010 				    fdnode->fp->f_type != DTYPE_VNODE) {
2011 					continue;
2012 				}
2013 				fp = fdnode->fp;
2014 				fhold(fp);
2015 				spin_unlock(&fdp->fd_spin);
2016 
2017 				lf.l_whence = SEEK_SET;
2018 				lf.l_start = 0;
2019 				lf.l_len = 0;
2020 				lf.l_type = F_UNLCK;
2021 				vp = (struct vnode *)fp->f_data;
2022 				(void) VOP_ADVLOCK(vp,
2023 						   (caddr_t)p->p_leader,
2024 						   F_UNLCK,
2025 						   &lf,
2026 						   F_POSIX);
2027 				fdrop(fp);
2028 				spin_lock(&fdp->fd_spin);
2029 			}
2030 		}
2031 	retry:
2032 		if (fdtol->fdl_refcount == 1) {
2033 			if (fdp->fd_holdleaderscount > 0 &&
2034 			    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
2035 				/*
2036 				 * close() or do_dup() has cleared a reference
2037 				 * in a shared file descriptor table.
2038 				 */
2039 				fdp->fd_holdleaderswakeup = 1;
2040 				ssleep(&fdp->fd_holdleaderscount,
2041 				       &fdp->fd_spin, 0, "fdlhold", 0);
2042 				goto retry;
2043 			}
2044 			if (fdtol->fdl_holdcount > 0) {
2045 				/*
2046 				 * Ensure that fdtol->fdl_leader
2047 				 * remains valid in closef().
2048 				 */
2049 				fdtol->fdl_wakeup = 1;
2050 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
2051 				goto retry;
2052 			}
2053 		}
2054 		fdtol->fdl_refcount--;
2055 		if (fdtol->fdl_refcount == 0 &&
2056 		    fdtol->fdl_holdcount == 0) {
2057 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2058 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2059 		} else {
2060 			fdtol = NULL;
2061 		}
2062 		p->p_fdtol = NULL;
2063 		if (fdtol != NULL) {
2064 			spin_unlock(&fdp->fd_spin);
2065 			kfree(fdtol, M_FILEDESC_TO_LEADER);
2066 			spin_lock(&fdp->fd_spin);
2067 		}
2068 	}
2069 	if (--fdp->fd_refcnt > 0) {
2070 		spin_unlock(&fdp->fd_spin);
2071 		spin_lock(&p->p_spin);
2072 		p->p_fd = repl;
2073 		spin_unlock(&p->p_spin);
2074 		return;
2075 	}
2076 
2077 	/*
2078 	 * Even though we are the last reference to the structure allproc
2079 	 * scans may still reference the structure.  Maintain proper
2080 	 * locks until we can replace p->p_fd.
2081 	 *
2082 	 * Also note that kqueue's closef still needs to reference the
2083 	 * fdp via p->p_fd, so we have to close the descriptors before
2084 	 * we replace p->p_fd.
2085 	 */
2086 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
2087 		if (fdp->fd_files[i].fp) {
2088 			fp = funsetfd_locked(fdp, i);
2089 			if (fp) {
2090 				spin_unlock(&fdp->fd_spin);
2091 				if (SLIST_FIRST(&fp->f_klist))
2092 					knote_fdclose(fp, fdp, i);
2093 				closef(fp, p);
2094 				spin_lock(&fdp->fd_spin);
2095 			}
2096 		}
2097 	}
2098 	spin_unlock(&fdp->fd_spin);
2099 
2100 	/*
2101 	 * Interlock against an allproc scan operations (typically frevoke).
2102 	 */
2103 	spin_lock(&p->p_spin);
2104 	p->p_fd = repl;
2105 	spin_unlock(&p->p_spin);
2106 
2107 	/*
2108 	 * Wait for any softrefs to go away.  This race rarely occurs so
2109 	 * we can use a non-critical-path style poll/sleep loop.  The
2110 	 * race only occurs against allproc scans.
2111 	 *
2112 	 * No new softrefs can occur with the fdp disconnected from the
2113 	 * process.
2114 	 */
2115 	if (fdp->fd_softrefs) {
2116 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2117 		while (fdp->fd_softrefs)
2118 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2119 	}
2120 
2121 	if (fdp->fd_files != fdp->fd_builtin_files)
2122 		kfree(fdp->fd_files, M_FILEDESC);
2123 	if (fdp->fd_cdir) {
2124 		cache_drop(&fdp->fd_ncdir);
2125 		vrele(fdp->fd_cdir);
2126 	}
2127 	if (fdp->fd_rdir) {
2128 		cache_drop(&fdp->fd_nrdir);
2129 		vrele(fdp->fd_rdir);
2130 	}
2131 	if (fdp->fd_jdir) {
2132 		cache_drop(&fdp->fd_njdir);
2133 		vrele(fdp->fd_jdir);
2134 	}
2135 	kfree(fdp, M_FILEDESC);
2136 }
2137 
2138 /*
2139  * Retrieve and reference the file pointer associated with a descriptor.
2140  *
2141  * MPSAFE
2142  */
2143 struct file *
2144 holdfp(struct filedesc *fdp, int fd, int flag)
2145 {
2146 	struct file* fp;
2147 
2148 	spin_lock_shared(&fdp->fd_spin);
2149 	if (((u_int)fd) >= fdp->fd_nfiles) {
2150 		fp = NULL;
2151 		goto done;
2152 	}
2153 	if ((fp = fdp->fd_files[fd].fp) == NULL)
2154 		goto done;
2155 	if ((fp->f_flag & flag) == 0 && flag != -1) {
2156 		fp = NULL;
2157 		goto done;
2158 	}
2159 	fhold(fp);
2160 done:
2161 	spin_unlock_shared(&fdp->fd_spin);
2162 	return (fp);
2163 }
2164 
2165 /*
2166  * holdsock() - load the struct file pointer associated
2167  * with a socket into *fpp.  If an error occurs, non-zero
2168  * will be returned and *fpp will be set to NULL.
2169  *
2170  * MPSAFE
2171  */
2172 int
2173 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2174 {
2175 	struct file *fp;
2176 	int error;
2177 
2178 	spin_lock_shared(&fdp->fd_spin);
2179 	if ((unsigned)fd >= fdp->fd_nfiles) {
2180 		error = EBADF;
2181 		fp = NULL;
2182 		goto done;
2183 	}
2184 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2185 		error = EBADF;
2186 		goto done;
2187 	}
2188 	if (fp->f_type != DTYPE_SOCKET) {
2189 		error = ENOTSOCK;
2190 		goto done;
2191 	}
2192 	fhold(fp);
2193 	error = 0;
2194 done:
2195 	spin_unlock_shared(&fdp->fd_spin);
2196 	*fpp = fp;
2197 	return (error);
2198 }
2199 
2200 /*
2201  * Convert a user file descriptor to a held file pointer.
2202  *
2203  * MPSAFE
2204  */
2205 int
2206 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2207 {
2208 	struct file *fp;
2209 	int error;
2210 
2211 	spin_lock_shared(&fdp->fd_spin);
2212 	if ((unsigned)fd >= fdp->fd_nfiles) {
2213 		error = EBADF;
2214 		fp = NULL;
2215 		goto done;
2216 	}
2217 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2218 		error = EBADF;
2219 		goto done;
2220 	}
2221 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2222 		fp = NULL;
2223 		error = EINVAL;
2224 		goto done;
2225 	}
2226 	fhold(fp);
2227 	error = 0;
2228 done:
2229 	spin_unlock_shared(&fdp->fd_spin);
2230 	*fpp = fp;
2231 	return (error);
2232 }
2233 
2234 /*
2235  * For setugid programs, we don't want to people to use that setugidness
2236  * to generate error messages which write to a file which otherwise would
2237  * otherwise be off-limits to the process.
2238  *
2239  * This is a gross hack to plug the hole.  A better solution would involve
2240  * a special vop or other form of generalized access control mechanism.  We
2241  * go ahead and just reject all procfs file systems accesses as dangerous.
2242  *
2243  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2244  * sufficient.  We also don't for check setugidness since we know we are.
2245  */
2246 static int
2247 is_unsafe(struct file *fp)
2248 {
2249 	if (fp->f_type == DTYPE_VNODE &&
2250 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2251 		return (1);
2252 	return (0);
2253 }
2254 
2255 /*
2256  * Make this setguid thing safe, if at all possible.
2257  *
2258  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2259  */
2260 void
2261 setugidsafety(struct proc *p)
2262 {
2263 	struct filedesc *fdp = p->p_fd;
2264 	int i;
2265 
2266 	/* Certain daemons might not have file descriptors. */
2267 	if (fdp == NULL)
2268 		return;
2269 
2270 	/*
2271 	 * note: fdp->fd_files may be reallocated out from under us while
2272 	 * we are blocked in a close.  Be careful!
2273 	 */
2274 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2275 		if (i > 2)
2276 			break;
2277 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2278 			struct file *fp;
2279 
2280 			/*
2281 			 * NULL-out descriptor prior to close to avoid
2282 			 * a race while close blocks.
2283 			 */
2284 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2285 				knote_fdclose(fp, fdp, i);
2286 				closef(fp, p);
2287 			}
2288 		}
2289 	}
2290 }
2291 
2292 /*
2293  * Close any files on exec?
2294  *
2295  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2296  */
2297 void
2298 fdcloseexec(struct proc *p)
2299 {
2300 	struct filedesc *fdp = p->p_fd;
2301 	int i;
2302 
2303 	/* Certain daemons might not have file descriptors. */
2304 	if (fdp == NULL)
2305 		return;
2306 
2307 	/*
2308 	 * We cannot cache fd_files since operations may block and rip
2309 	 * them out from under us.
2310 	 */
2311 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2312 		if (fdp->fd_files[i].fp != NULL &&
2313 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2314 			struct file *fp;
2315 
2316 			/*
2317 			 * NULL-out descriptor prior to close to avoid
2318 			 * a race while close blocks.
2319 			 */
2320 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2321 				knote_fdclose(fp, fdp, i);
2322 				closef(fp, p);
2323 			}
2324 		}
2325 	}
2326 }
2327 
2328 /*
2329  * It is unsafe for set[ug]id processes to be started with file
2330  * descriptors 0..2 closed, as these descriptors are given implicit
2331  * significance in the Standard C library.  fdcheckstd() will create a
2332  * descriptor referencing /dev/null for each of stdin, stdout, and
2333  * stderr that is not already open.
2334  *
2335  * NOT MPSAFE - calls falloc, vn_open, etc
2336  */
2337 int
2338 fdcheckstd(struct lwp *lp)
2339 {
2340 	struct nlookupdata nd;
2341 	struct filedesc *fdp;
2342 	struct file *fp;
2343 	int retval;
2344 	int i, error, flags, devnull;
2345 
2346 	fdp = lp->lwp_proc->p_fd;
2347 	if (fdp == NULL)
2348 		return (0);
2349 	devnull = -1;
2350 	error = 0;
2351 	for (i = 0; i < 3; i++) {
2352 		if (fdp->fd_files[i].fp != NULL)
2353 			continue;
2354 		if (devnull < 0) {
2355 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2356 				break;
2357 
2358 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2359 						NLC_FOLLOW|NLC_LOCKVP);
2360 			flags = FREAD | FWRITE;
2361 			if (error == 0)
2362 				error = vn_open(&nd, fp, flags, 0);
2363 			if (error == 0)
2364 				fsetfd(fdp, fp, devnull);
2365 			else
2366 				fsetfd(fdp, NULL, devnull);
2367 			fdrop(fp);
2368 			nlookup_done(&nd);
2369 			if (error)
2370 				break;
2371 			KKASSERT(i == devnull);
2372 		} else {
2373 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2374 			if (error != 0)
2375 				break;
2376 		}
2377 	}
2378 	return (error);
2379 }
2380 
2381 /*
2382  * Internal form of close.
2383  * Decrement reference count on file structure.
2384  * Note: td and/or p may be NULL when closing a file
2385  * that was being passed in a message.
2386  *
2387  * MPALMOSTSAFE - acquires mplock for VOP operations
2388  */
2389 int
2390 closef(struct file *fp, struct proc *p)
2391 {
2392 	struct vnode *vp;
2393 	struct flock lf;
2394 	struct filedesc_to_leader *fdtol;
2395 
2396 	if (fp == NULL)
2397 		return (0);
2398 
2399 	/*
2400 	 * POSIX record locking dictates that any close releases ALL
2401 	 * locks owned by this process.  This is handled by setting
2402 	 * a flag in the unlock to free ONLY locks obeying POSIX
2403 	 * semantics, and not to free BSD-style file locks.
2404 	 * If the descriptor was in a message, POSIX-style locks
2405 	 * aren't passed with the descriptor.
2406 	 */
2407 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2408 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2409 	) {
2410 		if ((p->p_leader->p_flags & P_ADVLOCK) != 0) {
2411 			lf.l_whence = SEEK_SET;
2412 			lf.l_start = 0;
2413 			lf.l_len = 0;
2414 			lf.l_type = F_UNLCK;
2415 			vp = (struct vnode *)fp->f_data;
2416 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2417 					   &lf, F_POSIX);
2418 		}
2419 		fdtol = p->p_fdtol;
2420 		if (fdtol != NULL) {
2421 			lwkt_gettoken(&p->p_token);
2422 			/*
2423 			 * Handle special case where file descriptor table
2424 			 * is shared between multiple process leaders.
2425 			 */
2426 			for (fdtol = fdtol->fdl_next;
2427 			     fdtol != p->p_fdtol;
2428 			     fdtol = fdtol->fdl_next) {
2429 				if ((fdtol->fdl_leader->p_flags &
2430 				     P_ADVLOCK) == 0)
2431 					continue;
2432 				fdtol->fdl_holdcount++;
2433 				lf.l_whence = SEEK_SET;
2434 				lf.l_start = 0;
2435 				lf.l_len = 0;
2436 				lf.l_type = F_UNLCK;
2437 				vp = (struct vnode *)fp->f_data;
2438 				(void) VOP_ADVLOCK(vp,
2439 						   (caddr_t)fdtol->fdl_leader,
2440 						   F_UNLCK, &lf, F_POSIX);
2441 				fdtol->fdl_holdcount--;
2442 				if (fdtol->fdl_holdcount == 0 &&
2443 				    fdtol->fdl_wakeup != 0) {
2444 					fdtol->fdl_wakeup = 0;
2445 					wakeup(fdtol);
2446 				}
2447 			}
2448 			lwkt_reltoken(&p->p_token);
2449 		}
2450 	}
2451 	return (fdrop(fp));
2452 }
2453 
2454 /*
2455  * MPSAFE
2456  *
2457  * fhold() can only be called if f_count is already at least 1 (i.e. the
2458  * caller of fhold() already has a reference to the file pointer in some
2459  * manner or other).
2460  *
2461  * f_count is not spin-locked.  Instead, atomic ops are used for
2462  * incrementing, decrementing, and handling the 1->0 transition.
2463  */
2464 void
2465 fhold(struct file *fp)
2466 {
2467 	atomic_add_int(&fp->f_count, 1);
2468 }
2469 
2470 /*
2471  * fdrop() - drop a reference to a descriptor
2472  *
2473  * MPALMOSTSAFE - acquires mplock for final close sequence
2474  */
2475 int
2476 fdrop(struct file *fp)
2477 {
2478 	struct flock lf;
2479 	struct vnode *vp;
2480 	int error;
2481 
2482 	/*
2483 	 * A combined fetch and subtract is needed to properly detect
2484 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2485 	 * count of 2 might both try to run the 1->0 code.
2486 	 */
2487 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2488 		return (0);
2489 
2490 	KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
2491 
2492 	/*
2493 	 * The last reference has gone away, we own the fp structure free
2494 	 * and clear.
2495 	 */
2496 	if (fp->f_count < 0)
2497 		panic("fdrop: count < 0");
2498 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2499 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2500 	) {
2501 		lf.l_whence = SEEK_SET;
2502 		lf.l_start = 0;
2503 		lf.l_len = 0;
2504 		lf.l_type = F_UNLCK;
2505 		vp = (struct vnode *)fp->f_data;
2506 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2507 	}
2508 	if (fp->f_ops != &badfileops)
2509 		error = fo_close(fp);
2510 	else
2511 		error = 0;
2512 	ffree(fp);
2513 	return (error);
2514 }
2515 
2516 /*
2517  * Apply an advisory lock on a file descriptor.
2518  *
2519  * Just attempt to get a record lock of the requested type on
2520  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2521  *
2522  * MPALMOSTSAFE
2523  */
2524 int
2525 sys_flock(struct flock_args *uap)
2526 {
2527 	struct proc *p = curproc;
2528 	struct file *fp;
2529 	struct vnode *vp;
2530 	struct flock lf;
2531 	int error;
2532 
2533 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2534 		return (EBADF);
2535 	if (fp->f_type != DTYPE_VNODE) {
2536 		error = EOPNOTSUPP;
2537 		goto done;
2538 	}
2539 	vp = (struct vnode *)fp->f_data;
2540 	lf.l_whence = SEEK_SET;
2541 	lf.l_start = 0;
2542 	lf.l_len = 0;
2543 	if (uap->how & LOCK_UN) {
2544 		lf.l_type = F_UNLCK;
2545 		fp->f_flag &= ~FHASLOCK;
2546 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2547 		goto done;
2548 	}
2549 	if (uap->how & LOCK_EX)
2550 		lf.l_type = F_WRLCK;
2551 	else if (uap->how & LOCK_SH)
2552 		lf.l_type = F_RDLCK;
2553 	else {
2554 		error = EBADF;
2555 		goto done;
2556 	}
2557 	fp->f_flag |= FHASLOCK;
2558 	if (uap->how & LOCK_NB)
2559 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2560 	else
2561 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2562 done:
2563 	fdrop(fp);
2564 	return (error);
2565 }
2566 
2567 /*
2568  * File Descriptor pseudo-device driver (/dev/fd/).
2569  *
2570  * Opening minor device N dup()s the file (if any) connected to file
2571  * descriptor N belonging to the calling process.  Note that this driver
2572  * consists of only the ``open()'' routine, because all subsequent
2573  * references to this file will be direct to the other driver.
2574  */
2575 static int
2576 fdopen(struct dev_open_args *ap)
2577 {
2578 	thread_t td = curthread;
2579 
2580 	KKASSERT(td->td_lwp != NULL);
2581 
2582 	/*
2583 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2584 	 * the file descriptor being sought for duplication. The error
2585 	 * return ensures that the vnode for this device will be released
2586 	 * by vn_open. Open will detect this special error and take the
2587 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2588 	 * will simply report the error.
2589 	 */
2590 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2591 	return (ENODEV);
2592 }
2593 
2594 /*
2595  * The caller has reserved the file descriptor dfd for us.  On success we
2596  * must fsetfd() it.  On failure the caller will clean it up.
2597  *
2598  * MPSAFE
2599  */
2600 int
2601 dupfdopen(struct filedesc *fdp, int dfd, int sfd, int mode, int error)
2602 {
2603 	struct file *wfp;
2604 	struct file *xfp;
2605 	int werror;
2606 
2607 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2608 		return (EBADF);
2609 
2610 	/*
2611 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2612 	 * will dup a dummy descriptor instead of the real one.
2613 	 */
2614 	if (wfp->f_flag & FREVOKED) {
2615 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2616 		fdrop(wfp);
2617 		wfp = NULL;
2618 		werror = falloc(NULL, &wfp, NULL);
2619 		if (werror)
2620 			return (werror);
2621 	}
2622 
2623 	/*
2624 	 * There are two cases of interest here.
2625 	 *
2626 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2627 	 *
2628 	 * For ENXIO steal away the file structure from sfd and store it
2629 	 * dfd.  sfd is effectively closed by this operation.
2630 	 *
2631 	 * Any other error code is just returned.
2632 	 */
2633 	switch (error) {
2634 	case ENODEV:
2635 		/*
2636 		 * Check that the mode the file is being opened for is a
2637 		 * subset of the mode of the existing descriptor.
2638 		 */
2639 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2640 			error = EACCES;
2641 			break;
2642 		}
2643 		spin_lock(&fdp->fd_spin);
2644 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2645 		fsetfd_locked(fdp, wfp, dfd);
2646 		spin_unlock(&fdp->fd_spin);
2647 		error = 0;
2648 		break;
2649 	case ENXIO:
2650 		/*
2651 		 * Steal away the file pointer from dfd, and stuff it into indx.
2652 		 */
2653 		spin_lock(&fdp->fd_spin);
2654 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2655 		fsetfd(fdp, wfp, dfd);
2656 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
2657 			spin_unlock(&fdp->fd_spin);
2658 			fdrop(xfp);
2659 		} else {
2660 			spin_unlock(&fdp->fd_spin);
2661 		}
2662 		error = 0;
2663 		break;
2664 	default:
2665 		break;
2666 	}
2667 	fdrop(wfp);
2668 	return (error);
2669 }
2670 
2671 /*
2672  * NOT MPSAFE - I think these refer to a common file descriptor table
2673  * and we need to spinlock that to link fdtol in.
2674  */
2675 struct filedesc_to_leader *
2676 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2677 			 struct proc *leader)
2678 {
2679 	struct filedesc_to_leader *fdtol;
2680 
2681 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2682 			M_FILEDESC_TO_LEADER, M_WAITOK | M_ZERO);
2683 	fdtol->fdl_refcount = 1;
2684 	fdtol->fdl_holdcount = 0;
2685 	fdtol->fdl_wakeup = 0;
2686 	fdtol->fdl_leader = leader;
2687 	if (old != NULL) {
2688 		fdtol->fdl_next = old->fdl_next;
2689 		fdtol->fdl_prev = old;
2690 		old->fdl_next = fdtol;
2691 		fdtol->fdl_next->fdl_prev = fdtol;
2692 	} else {
2693 		fdtol->fdl_next = fdtol;
2694 		fdtol->fdl_prev = fdtol;
2695 	}
2696 	return fdtol;
2697 }
2698 
2699 /*
2700  * Scan all file pointers in the system.  The callback is made with
2701  * the master list spinlock held exclusively.
2702  *
2703  * MPSAFE
2704  */
2705 void
2706 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2707 {
2708 	struct file *fp;
2709 	int res;
2710 
2711 	spin_lock(&filehead_spin);
2712 	LIST_FOREACH(fp, &filehead, f_list) {
2713 		res = callback(fp, data);
2714 		if (res < 0)
2715 			break;
2716 	}
2717 	spin_unlock(&filehead_spin);
2718 }
2719 
2720 /*
2721  * Get file structures.
2722  *
2723  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2724  */
2725 
2726 struct sysctl_kern_file_info {
2727 	int count;
2728 	int error;
2729 	struct sysctl_req *req;
2730 };
2731 
2732 static int sysctl_kern_file_callback(struct proc *p, void *data);
2733 
2734 static int
2735 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2736 {
2737 	struct sysctl_kern_file_info info;
2738 
2739 	/*
2740 	 * Note: because the number of file descriptors is calculated
2741 	 * in different ways for sizing vs returning the data,
2742 	 * there is information leakage from the first loop.  However,
2743 	 * it is of a similar order of magnitude to the leakage from
2744 	 * global system statistics such as kern.openfiles.
2745 	 *
2746 	 * When just doing a count, note that we cannot just count
2747 	 * the elements and add f_count via the filehead list because
2748 	 * threaded processes share their descriptor table and f_count might
2749 	 * still be '1' in that case.
2750 	 *
2751 	 * Since the SYSCTL op can block, we must hold the process to
2752 	 * prevent it being ripped out from under us either in the
2753 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2754 	 * process may be in varying states of disrepair.  If the process
2755 	 * is in SZOMB we may have caught it just as it is being removed
2756 	 * from the allproc list, we must skip it in that case to maintain
2757 	 * an unbroken chain through the allproc list.
2758 	 */
2759 	info.count = 0;
2760 	info.error = 0;
2761 	info.req = req;
2762 	allproc_scan(sysctl_kern_file_callback, &info);
2763 
2764 	/*
2765 	 * When just calculating the size, overestimate a bit to try to
2766 	 * prevent system activity from causing the buffer-fill call
2767 	 * to fail later on.
2768 	 */
2769 	if (req->oldptr == NULL) {
2770 		info.count = (info.count + 16) + (info.count / 10);
2771 		info.error = SYSCTL_OUT(req, NULL,
2772 					info.count * sizeof(struct kinfo_file));
2773 	}
2774 	return (info.error);
2775 }
2776 
2777 static int
2778 sysctl_kern_file_callback(struct proc *p, void *data)
2779 {
2780 	struct sysctl_kern_file_info *info = data;
2781 	struct kinfo_file kf;
2782 	struct filedesc *fdp;
2783 	struct file *fp;
2784 	uid_t uid;
2785 	int n;
2786 
2787 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2788 		return(0);
2789 	if (!PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0)
2790 		return(0);
2791 
2792 	/*
2793 	 * Softref the fdp to prevent it from being destroyed
2794 	 */
2795 	spin_lock(&p->p_spin);
2796 	if ((fdp = p->p_fd) == NULL) {
2797 		spin_unlock(&p->p_spin);
2798 		return(0);
2799 	}
2800 	atomic_add_int(&fdp->fd_softrefs, 1);
2801 	spin_unlock(&p->p_spin);
2802 
2803 	/*
2804 	 * The fdp's own spinlock prevents the contents from being
2805 	 * modified.
2806 	 */
2807 	spin_lock_shared(&fdp->fd_spin);
2808 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2809 		if ((fp = fdp->fd_files[n].fp) == NULL)
2810 			continue;
2811 		if (info->req->oldptr == NULL) {
2812 			++info->count;
2813 		} else {
2814 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2815 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2816 			spin_unlock_shared(&fdp->fd_spin);
2817 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2818 			spin_lock_shared(&fdp->fd_spin);
2819 			if (info->error)
2820 				break;
2821 		}
2822 	}
2823 	spin_unlock_shared(&fdp->fd_spin);
2824 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2825 	if (info->error)
2826 		return(-1);
2827 	return(0);
2828 }
2829 
2830 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2831     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2832 
2833 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
2834     &minfilesperproc, 0, "Minimum files allowed open per process");
2835 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2836     &maxfilesperproc, 0, "Maximum files allowed open per process");
2837 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
2838     &maxfilesperuser, 0, "Maximum files allowed open per user");
2839 
2840 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2841     &maxfiles, 0, "Maximum number of files");
2842 
2843 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2844     &maxfilesrootres, 0, "Descriptors reserved for root use");
2845 
2846 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2847 	&nfiles, 0, "System-wide number of open files");
2848 
2849 static void
2850 fildesc_drvinit(void *unused)
2851 {
2852 	int fd;
2853 
2854 	for (fd = 0; fd < NUMFDESC; fd++) {
2855 		make_dev(&fildesc_ops, fd,
2856 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2857 	}
2858 
2859 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2860 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2861 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2862 }
2863 
2864 /*
2865  * MPSAFE
2866  */
2867 struct fileops badfileops = {
2868 	.fo_read = badfo_readwrite,
2869 	.fo_write = badfo_readwrite,
2870 	.fo_ioctl = badfo_ioctl,
2871 	.fo_kqfilter = badfo_kqfilter,
2872 	.fo_stat = badfo_stat,
2873 	.fo_close = badfo_close,
2874 	.fo_shutdown = badfo_shutdown
2875 };
2876 
2877 int
2878 badfo_readwrite(
2879 	struct file *fp,
2880 	struct uio *uio,
2881 	struct ucred *cred,
2882 	int flags
2883 ) {
2884 	return (EBADF);
2885 }
2886 
2887 int
2888 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2889 	    struct ucred *cred, struct sysmsg *msgv)
2890 {
2891 	return (EBADF);
2892 }
2893 
2894 /*
2895  * Must return an error to prevent registration, typically
2896  * due to a revoked descriptor (file_filtops assigned).
2897  */
2898 int
2899 badfo_kqfilter(struct file *fp, struct knote *kn)
2900 {
2901 	return (EOPNOTSUPP);
2902 }
2903 
2904 /*
2905  * MPSAFE
2906  */
2907 int
2908 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2909 {
2910 	return (EBADF);
2911 }
2912 
2913 /*
2914  * MPSAFE
2915  */
2916 int
2917 badfo_close(struct file *fp)
2918 {
2919 	return (EBADF);
2920 }
2921 
2922 /*
2923  * MPSAFE
2924  */
2925 int
2926 badfo_shutdown(struct file *fp, int how)
2927 {
2928 	return (EBADF);
2929 }
2930 
2931 /*
2932  * MPSAFE
2933  */
2934 int
2935 nofo_shutdown(struct file *fp, int how)
2936 {
2937 	return (EOPNOTSUPP);
2938 }
2939 
2940 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2941 					fildesc_drvinit,NULL)
2942